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ABSTRACT

Adapting BERT on in-domain text corpus is a good way to boost its performance
on domain-specific natural language processing (NLP) tasks. Common domain
adaptation methods, however, can be deficient in capturing domain knowledge.
Meanwhile, the context fragmentation inherent in Transformer-based models also
hinders the acquisition of domain knowledge. Given the semi-structural char-
acteristics of documents and their potential for alleviating these problems, we
leverage semi-structured information of documents to supplement domain knowl-
edge to BERT. To this end, we propose a topic-based domain adaptation method,
which enhances the capture of domain knowledge at various levels of text gran-
ularity. Specifically, topic masked language model is designed at the paragraph
level for pre-training; topic subsection matching degree dataset is automatically
constructed at the subsection level for intermediate fine-tuning. Experiments are
conducted over three biomedical NLP tasks across five datasets, and the results
validate the importance of the previously overlooked semi-structured information
for domain adaptation. Our method benefits BERT, RoBERTa, BioBERT, and
PubMedBERT in nearly all cases and yield significant gains over the topic-related
task, question answering, with an average accuracy improvement of 4.

1 INTRODUCTION

BERT-like models (Devlin et al., 2019; Liu et al., 2019; Joshi et al., 2020; Lan et al., 2020) learn
rich syntactic, semantic, and world knowledge in general domain text during pre-training (Rogers
et al., 2020), and can subsequently be applied to target domain tasks via fine-tuning. To close the
gap between target domain and general domain, several domain-customized BERT models (Lee
et al., 2020; Gu et al., 2021; Yang et al., 2020; Chalkidis et al., 2020) have been released, most
of which are achieved by continual pre-training of general-domain language models or pre-training
language models from scratch over in-domain text – and new state-of-the-art results are observed in
many domain-specific natural language processing (NLP) tasks. However, such domain adaptation
methods can be deficient in capturing the domain knowledge focused by domain experts, while they
are skilled in learning universal in-domain language representations (Kalyan et al., 2021).

The semi-structured information, i.e. heading and hierarchy of documents plays a significant role
when we learn domain knowledge. Heading is a brief statement that identifies the central argument
of the article or section, which divides into first-level heading (h1, i.e., the article title), second-level
heading (h2, i.e., the section title), third-level heading (h3, i.e., the subsection title), etc. Hierarchy
is the order in which the ideological content of an article is expressed, reflecting the development
stages of objective things or all aspects of contradictions. It often consists of multiple paragraphs,
which can be subdivided into section, subsection, with paragraph being the smallest hierarchy. Take
“COVID-19” on Wikipedia as an example, cause, diagnosis and treatment in the table of contents are
second-level headings and section divisions, combining heading and hierarchy helps readers learn
all aspects of the disease, i.e., the domain knowledge interests doctors and patients.

Regrettably, the semi-structured information has been seriously neglected: 1) the pre-training data
from Wikipedia only retains text passages, whereas headers, lists, and tables are ignored (Devlin
et al., 2019; Liu et al., 2019); 2) for BERT models, either two segments of text are sampled and
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(a) Sections (b) Subsections (c) Paragraphs

Figure 1: The length distributions of sections, subsections and paragraphs.

then concatenated as a training input sequence (Devlin et al., 2019) or the input is packed with full
sentences sampled contiguously from one or more documents (Liu et al., 2019; Joshi et al., 2020).
In addition, Transformer-based models require a fixed-length input sequence of up to 512 tokens, so
chunking is needed for long texts, and thereby the context fragmentation problem seems inevitable
(Dai et al., 2020). All the above factors hinder models to learn domain knowledge better.

Some researchers try to resolve the above problems. Dai et al. (2020) proposes Transformer-XL
based on a segment-level recurrence mechanism to improve vanilla Transformer with the context
fragmentation problem. So far the pre-trained language models (PLMs) based on Transformer-
XL are relatively few (Yang et al., 2019). DiseaseBERT (He et al., 2020) introduces a disease
knowledge infusion training procedure, where the training sequences are question-answer pairs,
with question constructed using disease (article title) and aspect (section title) and answer being the
whole section; and masked language model (MLM) is merely active to the title tokens in training
sequences. However, there are some drawbacks: 1) its usage of the semi-structured information
is limited, the questions only covers two kinds of titles; 2) sections are generally long, and simple
chunking still leads to contextual fragmentation. Figure 1 (a) and (c) illustrate this more intuitively
that the lengths of almost 40% of sections exceed 200 words, whereas the proportion is only 3% for
paragraphs, so taking paragraphs as answers are more likely to alleviate contextual fragmentation.

In this paper, we propose topic-based domain adaptation (TDA), which enables BERT to better learn
domain knowledge with the semi-structured information of documents. This method emphasizes
the intrinsic relation among heading, hierarchy, and domain knowledge, and enhances the capture
of domain knowledge at various levels of text granularity. Specifically, at the paragraph level, we
create topic-paragraph pairs as training sequences, then theme masked language model (TMLM)
is designed, which selectively masks some headings in the topic part to force BERT to learn the
semantic relationship between a paragraph and its topic and thereby capture the domain knowledge
embedded in paragraphs; at the subsection level, the paragraphs under the same topic are merged
into a functional subsection, then topic-subsection pairs are available, on this basis, theme subsection
matching degree (TSMD) dataset is automatically constructed, which is used for intermediate fine-
tuning, to help target task via transfer learning.

We evaluate our TDA on three tasks in biomedical domain, including consumer health question
answering, medical language inference, and disease name recognition. And we implement TDA in
three modes, i.e., PLM+TMLM, PLM+TSMD, and PLM+TMLM+TSMD. The results show that
(1) TMLM benefits the BERT models in all tasks, especially on the QA tasks. For example, the
accuracy of BERT on the MEDIQA-2019 is improved from 67.75% to 71.91%; (2) BERT models
intermediate fine-tuned on TSMD gain more performance improvements than that of TMLM on QA
task, with an average accuracy improvement of 5.4; (3) The performances of training with TMLM
and TSMD sequentially fall somewhere in between most of the time. TDA can be easily drawn on
to other domains. The code and dataset will be publicly available.
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2 ADDITIONAL RELATED WORK

Domain knowledge enhanced PLM. Many studies have shown continual pre-training and domain-
specific pre-training are effective domain adaptation methods, recently, some researchers improved
them based on domain features. Considering the features of in-domain text corpus, general domain
vocabulary can be extended with in-domain vocabulary (Poerner et al., 2020; Tai et al., 2020; Yao
et al., 2021; Zhang et al., 2020), which allows PLMs to learn prior domain knowledge during pre-
training and fine-tuning. Considering the features of downstream tasks, Gururangan et al. (2020)
presents task-adaptive pre-training – it involves further pre-training on task-related unlabelled in-
stances, Gu et al. (2020) propose a selective masking strategy, which enables language model to
learn task-specific patterns during pre-training. Zhang et al. (2020) formulate synthetic tasks using
the inherent structure in unlabeled data for intermediate fine-tuning.

Clever use of the semi-structured information. Quite a few cloze-style QA datasets are auto-
matically created using part of the semi-structured information. They were created using the semi-
structured information from either news articles (Hermann et al., 2015) or books (Hill et al., 2016;
Bajgar et al., 2016) or scientific literature (Pappas et al., 2018; 2020; Kim et al., 2018). These
datasets are usually vast and thus can be used for pretraining (Dhingra et al., 2018) or as tasks (Her-
mann et al., 2015; Pappas et al., 2020; Kim et al., 2018). However, they are generally noisy due to the
limited use of semi-structured information. Besides, the non-cloze-style QA datasets, PubMedQA
(Jin et al., 2019) and MedQuAD (Ben Abacha & Demner-Fushman, 2019), use the semi-structured
information more accurately, which allows their data quality to be greatly enhanced.

Inspired by these studies, our TDA aims to make BERT capture more domain knowledge with better
use of the semi-structured information. The novel domain adaptation framework involves TMLM
and TSMD the two key technologies, which enable BERT to capture domain knowledge embedded
in paragraph and subsection respectively during multiple training phases.

3 TOPIC MASKED LANGUAGE MODEL

In this section, we introduce a new pre-training task, topic masked language model (TMLM), to
enable PLMs to capture the domain knowledge contained in paragraph. It consists of two steps: 1)
construct a pre-training corpus with the paragraph level semi-structured information; 2) propose a
topic masking strategy. In the following, we will discuss each step in more detail.

3.1 PRE-TRAINING CORPUS

Following He et al. (2020), we verify the effectiveness of TDA in the biomedical domain, and the
disease-related articles in English Wikipedia are used as in-domain text source. To get as many
articles as possible, we collect disease terms from two main branches, Diseases [C] and Mental
Disorders [F03], of the Medical Subject Headings (MeSH) tree1. Besides,the Wikipedia page “Cat-
egory: Lists of diseases” 2 serves as a supplement source of disease terms. After eliminating those
duplicate or empty entries, 4,930 disease-themed English Wikipedia articles are obtained.

To construct an in-domain text corpus with the semi-structured information, we retain the heading
and hierarchy of articles in web crawler phase. During data cleaning, the texts that are irrelevant to
the topic of the article and the images, complicated tables, and special characters that are hard to
process by PLMs are filtered out to reduce data noise. The in-domain text corpus we get is further
organized into the paragraph level pre-training corpus – topic-passage pairs.

As discussed in §1, paragraphs are better as answers in terms of length, and thus we focus on the
domain knowledge contained in paragraph. Generally speaking, paragraph title along with para-
graph itself can depict paragraph level domain knowledge, but the following defects exist: a) many
paragraphs do not have a title; b) the title of a paragraph alone cannot fully summarize its topic.
Considering the hierarchy of an article, we concatenate the headings of each level hierarchy a para-
graph belongs to, i.e., h1, h2, h3, etc., with separators to form its topic, thereby a topic-passage pair
is generated. The whole process is shown in Figure 2. When a table or a list appears supplementary

1https://meshb.nlm.nih.gov/treeView
2https://en.wikipedia.ahmu.cf/wiki/Category:Lists_of_diseases
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Lichen planus

1 Classification
     1.1 Site
     1.2 Pattern
     1.3 Overlap syndromes
2 Signs and symptoms
      2.1 Skin
      2.2 Mucous membranes

2.2 Mucous membranes
  Lichen planus affecting mucosal...
      - Esophageal lichen planus...
      - Genital lichen planus...
Mouth
  Oral lichen planus (also....
      - Table
  These types often coexist...
  Generally, oral lichen planus tends...

Lichen planus | Signs and symptoms || Mucous membranes
  Lichen planus affecting mucosal...：
      - Esophageal lichen planus...
      - Genital lichen planus...
Lichen planus | Signs and symptoms || Mucous membranes ||| Mouth
  Oral lichen planus...Six clinical forms of OLP are recognized:
      - Table
  These types often coexist...
  Generally, oral lichen planus tends...

Headings Hierarchy Paragraph topics

+ =

Lichen planus | Signs and symptoms || Mucous membranes ¦ Lichen planus affecting mucosal...: - Esophageal lichen planus...; - Genital lichen planus...
Lichen planus | Signs and symptoms || Mucous membranes ||| Mouth ¦ Oral lichen planus...Six clinical forms of OLP are recognized: - Reticular: The most common 
presentation...; - Erosive/ Ulcerative: The second most common...; - Papular: This form is...; -Plaque-like: Large, homogenous white...; Atrophic: This form is...; - 
Bullous: Rare form of OLP...
Lichen planus | Signs and symptoms || Mucous membranes ||| Mouth ¦ These types often coexist...
Lichen planus | Signs and symptoms || Mucous membranes ||| Mouth ¦ Generally, oral lichen planus tends...

Topic-passage pairs

Figure 2: Topic-passage Pairs Generation

to one paragraph, we do the following: 1) convert the table to a list, 2) convert the list to plain text,
and add it into the paragraph.

The statistics of the pre-training corpus are shown in Table 1. For fair comparison, we also get the
section level in-domain text corpus, and generate topic-section pairs following the similar process
in Figure 2, and obtain their statistics. As you can see from this table, there are more heading
elements in paragraph topics than that of section topics, and the average length of paragraphs are
evidently shorter than that of sections, with less than one third of its length, all of which demonstrate
the superiority of our paragraph level pre-training corpus in the high usage of the semi-structured
information and the potential to reduce context fragmentation.

Table 1: Statistics of the pre-training corpus

Number of articles 4,930
Number of sections 30,432
Average length of sections (in words) 250.14
Average length of sections (in tokens) 359.14
Average length of section topics (in words) 3.26
Average length of section topics (in tokens) 6.79
Number of passages 104,696
Average length of passages (in words) 72.47
Average length of passages (in tokens) 104.39
Average length of passage topics (in words) 4.27
Average length of passage topics (in tokens) 7.94

3.2 TOPIC MASKING

To help BERT capture the domain knowledge contained in paragraph, we propose a topic masking
strategy, which selectively masks some heading tokens in the topic part by an average 50% masking
rate. Specifically, if there is only one heading element in the topic, mask it; if the number of heading
elements in the topic exceeds 1, mask the odd and even heading elements with equal probability.
Thereby the topic part can serve as a question, and the passage is the target answer. The final
training instances are shown in Figure 3.

[MASK] [MASK] ¦ Lichen planus (LP) is a chronic inflammatory and immune-mediated disease that affects the...
[MASK] [MASK] | Signs and symptoms || [MASK] [MASK] ||| Mouth ¦ These types often coexist in the same...
Lichen planus | [MASK] [MASK] [MASK] || Mucous membranes ||| [MASK] ¦ Generally, oral lichen planus tends...

Figure 3: Examples of topic masking strategy

In this way, TMLM forces BERT to learn the semantic relationship between the paragraph and its
topic during pre-training, thereby capture the domain knowledge embedded in paragraphs.
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4 THEME SUBSECTION MATCHING DEGREE DATASET

Gu et al. (2020) note that insufficient supervised data is frequently a matter during fine-tuning, es-
pecially for specific domains, which results in PLM’s poorer performance in domain-specific tasks.
However, intermediate fine-tuning on large, related datasets allows PLMs to learn more domain-
specific and task-specific patterns, which improves the performance on small target datasets (Kalyan
et al., 2021). Inspired by this theory, we again use the subsection level semi-structured information to
automatically create a large dataset - theme subsection matching degree (TSMD), which is used for
intermediate fine-tuning to help the target task, consumer health QA (CHQA), via transfer learning.

4.1 KNOWLEDGE ARTICLES

The objective of the CHQA task like MEDIQA-2019 (Abacha et al., 2019) and TRECQA-2017
(Abacha et al., 2017) is to rate and re-rank candidate answers to consumer health questions. Xu
et al. (2019) cast this task as a regression problem where numerical scores ranging from -2 to 2 are
assigned to QA instances. Inspired by it, we reorganize the pre-training corpus obtained in §3.1 by
merging all paragraphs under the same topic into a “functional subsection” (called subsection in the
following content), then the new topic-subsection pairs are available. On this basis, we will generate
MEDIQA-2019-like QA instances at the article level.

First, the topic-subsection pairs are split by article, and then to ensure a balanced score distribution
of QA instances, the articles with less than three topic-subsection pairs are filtered out. We take the
remaining 4,619 articles as the collection of articles, denoted by A. Figure 1 (b) shows the length
distribution of subsections. Compare Figure 1(b) with Figure 1(c), it is evident that subsection
usually has richer and fuller context about the topic, which is more favorable for us rating topic-
subsection pairs based on the matching degree of a topic and its subsection.

4.2 QUESTION-ANSWER PAIRS

In this section, the generation of QA instances is depicted in detail. We generate two negative
instances for each positive instance to ensure the diversity of negative instances.

Preparation: we randomly select an article A from A, let B be the list of topic-subsection pairs
within it, and b be the randomly selected element from B, to prepare for the positive instance gen-
erated from A. A non-b element b is randomly selected from B to prepare for the b-related negative
instance generated from A. Besides, let B be another article randomly selected from A, and C be
the list of topic-subsection pairs within it. An element c is randomly selected from C to prepare for
the b-related negative instance generated from B.

When we generate QA instances at the article level, the number of positive instances should be set
in advance to leave a degree of choice for the negative instances, then for article A, we have:

np = len(B)× p0 (1)

where p0 is the proportion of positive instances, we empirically set it as 0.4.

4.2.1 POSITIVE INSTANCE GENERATED BY b

Note: we define two key topic-related concepts, the first filial (F1) topics, and the offspring topics.
Here, we take the topic-subsection pairs within the Wikipedia article “COVID-19” as an example
to illustrate the two concepts: the term “COVID-19” is seen as a maternal topic, and its F1 topics
are the ones that contain and only contain its sub-level headings besides itself, such as COVID-19
| Etymology, COVID-19 | Cause, COVID-19 | Pathophysiology, etc. While the topics descending
from the root node – “COVID-19” are all its offspring topics, such as COVID-19 | Cause, COVID-19
| Prevention || Vaccine and COVID-19 | Mortality || Infection fatality rate ||| Estimates.

The topic of b is denoted as topicb, and the subsection of b is denoted as subsectionb. We assume
that the contribution of each F1 topic to the maternal topic is equal, if the number of topicb’s F1
topics is t, then we can rate b by:

scoreb =

{
2/t t > 0
2 t = 0

(2)
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Algorithm 1 TSMD construction procedure
Input: the articles collection, A
Output: TSMD dataset
1: for each article A in A do
2: Determine the number of positive instance np by Equ.(1)
3: Randomly sample np elements from its topic-subsection pair list B to get List B1

4: for each element b in B1 do
5: Rate b by Equ.(2)
6: end for
7: Randomly sample np elements from set(B)− set(B1) to get List B2

8: Let the elements from B1 and B2 be bijective, get the elements of List B3 by the way b′ generates
9: for each element b′ in B3 do

10: Rate b′ by Equ.(3) - Equ.(9)
11: end for
12: Randomly sample np elements from the topic-subsection pair list C to get List C1

13: Let the elements from B1 and C1 be bijective, get the elements of List B4 by the way b′′ generates
14: for b′′ in B4 do
15: Rate b′′ by Equ.(10)
16: end for
17: end for

4.2.2 NEGATIVE INSTANCE GENERATED BY b

Note: we measure a topic’s level by the level of its last heading element. The levels of topicb and
topicb are denoted as lb and lb, respectively; the initial differentiation level of topicb and topicb i.e.,
the level of their first different heading element is denoted as ld.

We combine topicb and subsectionb into a new instance b′, and then rate b′ according to the distance
d between topicb and topicb, which can be further divided into 3 cases:

(1) if lb < lb and topicb is an offspring topic of topicb, then the distance d is:
d = lb − ld (3)

we assume that there are t1 F1 topics of topicb, and the number of lb–level topics is d-th
power of 2, then we rate b′ by the following expression:

scoreb′ = (2/t1)/2
d (4)

(2) if lb > lb and topicb is an offspring topic of topicb, then the distance d is:
d = lb − ld + 1 (5)

when topicb has t2 F1 topics, similar to case (1) we rate b′ by:

scoreb′ = (2/t2)/2
d (6)

(3) in addition to the above cases, the distance d between topicb and topicb is:
d = max(lb, lb)− ld + 1 (7)

and we can rate b′ by:
scoreb′ = 2d × s0 (8)

here we empirically set s0 as -0.6.

Finally, to limit the scores within [−2, 2], we constrain the scores via:
scoreb′ = max(s1, scoreb′) (9)

where s1 is the minimum score set for b′, here we set it as -1.95.

4.2.3 NEGATIVE INSTANCE GENERATED BY c

We combine topicb and subsectionc into a new instance b′′, and we assume the topic-subsection
pairs from different articles are independent of each other, then we rate b′′ by:

scoreb′′ = −2 (10)
The complete procedure for automatically constructing the TSMD dataset is presented in Algo-
rithm 1. Finally we obtained 32,695 TSMD instances.
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5 EXPERIMENTS

In this section, we evaluate topic-based domain adaptation (TDA) over three tasks in biomedical do-
main. As you know, theme masked language model (TMLM) and theme subsection matching degree
(TSMD) dataset are the key contributions of TDA. In order to evaluate TDA more scientifically, we
design three modes: 1) PLM+TMLM, which conducts continual pre-training of a general-domain
PLM on the pre-training corpus constructed in §3.1 with TMLM; 2) PLM+TSMD, which conducts
intermediate fine-tuning of a general-domain PLM on TSMD before fine-tuning on the target con-
sumer health QA (CHQA) task; 3) PLM+TMLM+TSMD, which investigates the effect of using
TMLM and TSMD sequentially before fine-tuning on CHQA.

Table 2: Experimental results on consumer health QA task

Datasets MEDIQA-2019 TRCEQA-2017
Metrics(%) Accuracy MRR Precision Accuracy MRR Precision

BERT (Devlin et al., 2019) 67.75 79.28 72.22 79.02 52.48 62.12
BERT+TMLM 71.91 83.56 75.84 81.05 53.13 64.96
BERT+TSMD 73.98 83.22 78.29 81.41 51.76 66.5
BERT+TMLM+TSMD 73.62 86.22 79.91 81.88 51.28 67.10

RoBERTa (Liu et al., 2019) 70.1 83.74 70.67 76.16 43.59 57.8
RoBERTa+TMLM 71.43 81.22 73.53 78.22 41.2 60.77
RoBERTa+TSMD 76.15 89.06 77.72 81.13 43.27 71.28
RoBERTa+TMLM+TSMD 75.79 87.02 77.05 80.57 43.44 67.19

BioBERT (Lee et al., 2020) 71.54 84.44 73.67 79.26 50.96 62.01
BioBERT+TMLM 74.43 88.72 76.53 80.21 52.24 63.07
BioBERT+TSMD 75.79 89.53 79.88 80.69 51.57 67.36
BioBERT+TMLM+TSMD 74.8 89.56 79.36 80.45 55.93 62.85

PubMedBERT (Gu et al., 2021) 72.9 84 77.25 80.45 52.24 62.96
PubMedBERT+TMLM 75.7 89.11 77.84 81.76 54.65 67.3
PubMedBERT+TSMD 76.24 86.34 83.56 81.29 54.33 66.22
PubMedBERT+TMLM+TSMD 77.78 92.22 81.71 81.88 54.11 67.28

diseaseBERT (He et al., 2020) 66.40 83.33 68.94 75.33 56.41 54.01
Our diseaseBERT 70.46 76.77 74.95 79.98 53.96 63.05
DAKI-BERT (Lu et al., 2021) 69.47 85.06 70.17 77.95 54.65 58.27

diseaseBioBERT (He et al., 2020) 72.09 87.78 74.40 78.43 54.76 58.45
Our diseaseBioBERT 73.26 87.22 77.82 79.74 51.44 62.66
DAKI-BioBERT (Lu et al., 2021) 72.54 87.33 77.46 78.55 54.17 59.04

5.1 DOWNSTREAM TASKS

The three tasks are disease-related, including CHQA, medical language inference, and disease name
recognition. We expect the topic-related task, CHQA, will particularly benefit from our TDA.

Consumer Health Question Answering. We consider MEDIQA-2019 (Ben Abacha & Demner-
Fushman, 2019) and TRECQA-2017 (Abacha et al., 2017) the two datasets. Originally, a Reference
Score (1 to 10) and a Reference Rank (4: Excellent, 3: Correct but Incomplete, 2: Related, 1:
Incorrect) were assigned to each QA pair. Later, Xu et al. (2019) cast this task as a regression
problem to predict the score.

Medical Language Inference. MEDNLI (Romanov & Shivade, 2018) is a clinical NLI dataset,
where a description about a patient from MIMIC-III clinical notes is seen as the premise, and clini-
cians generate three descriptions of it as hypotheses: a true one (entailment), a false one (contradic-
tion), and one that might be true (neutral). It is clearly a multi-classification problem.

Disease Name Recognition. NCBI (Doğan et al., 2014) and BC5CDR (Wei et al., 2016) are the
datasets of NER task, they are developed by medical experts annotating diseases mentioned in the
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collections of PubMed titles and abstracts. And the task is cast as a classification task to label tokens
in sentences with B, I, or O (Peng et al., 2019).

It is notable that the five datasets are small in size (ranging from 1,000 to 10,000 instances), with
only hundreds of Dev instances in the QA datasets, and model’s performance may vary for the
multiple sources of randomness in experiments (Sellam et al., 2022), especially for small datasets
like MEDIQA-2019, TRECQA-2017. Following Gu et al. (2021), we report the average scores from
ten runs for MEDIQA-2019 and TRECQA-2017 and five runs for other datasets.

5.2 BASELINES

We take BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019) the two general domain PLMs,
and BioBERT (Lee et al., 2020), PubMedBERT (Gu et al., 2021) the two biomedical domain PLMs
as the mian baselines. For fair comparison and carbon reduction, their base models including bert-
base-cased, roberta-base, biobert-base-cased-v1.1 and PubMedBERT-base-uncased-abstract-fulltext
from HuggingFace Transformers are used in our experiments.

In addition, diseaseBERT series (He et al., 2020), our diseaseBERT series3 and DAKI-BERT se-
ries which encode domain knowledge stored in multiple sources via adapters (Lu et al., 2021) are
relatively new domain adaptation methods, and they are taken as supplement baselines. It should
be noted that continual pre-training with BERT’s vanilla MLM on the in-domain text corpus con-
structed in §3.1 is included as part of the ablation study.

5.3 IMPLEMENTATION

We initialize a language model with the pre-trained parameters of a baseline model, then adopt each
mode of TDA on the PLM befor fine-tuning on the downstream tasks. We directly inherit the hyper-
parameters of diseaseBERT (He et al., 2020) except that we set max seq length = 512 for TMLM
training procedure, TSMD intermediate fine-tuning, and CHQA task. For PLM+TMLM, our pre-
training corpus (52MB) is about 2.5 times bigger than that of He et al. (2020), which would consume
longer training time. When the mode is performed on one NVIDIA V100 GPU, it takes about 80
minutes to complete one training epoch, and just 2-5 epochs are enough to enhance PLMs’ better
performance on the three downstream tasks. For PLM+TSMD, intermediate fine-tuning on TSMD
is faster for its smaller size (35MB). It takes no more than 10 epochs to reach its best performance.

5.4 RESULTS

Table 2 shows the performance of consumer health QA tasks. Predictably, the topic-related task
benefits a lot from TDA. Our best implementation of TDA – PLM+TSMD increases the accuracy
by 5.38% for MEDIQA-2019 and 2.67% for TRECQA-2017 on average. PLM+TSMD surpasses
PLM+TMLM+TSMD, which suggests 1) our TSMD constructed with the semi-structured informa-
tion is similar with CHQA task thereby can help it via transfer learning; 2) intermediate fine-tuning
is more effective in capturing task-specific domain knowledge than continual pre-training. Over-
all, the excellent performance of TDA confirms our predictions that the semi-structured information
based method does make PLMs learn more domian knowledge. And the results of diseaseBERT and
our diseaseBioBERT suggest longer training sequence suits consumer health QA task.

As is shown in Table 3, TMLM helps PLMs do better on MEDNLI. It rewards the learning of
semantic relationship between the paragraph and its topic, which involves logical reasoning ability
needed by MEDNLI task. Similarly, a longer training sequence is better for NLI task.

Table 3 also shows the performance on NER task. For BC5CDR, the accuracy of the models
equipped with TMLM increases by 0.45% on average, and 0.58% for NCBI. Although NER-related
task is not covered in TDA, it still works, which probably owing to that TMLM forces PLMs re-
member the disease terms during pre-training.

Ablation Study. To investigate the effect of different masking strategies, we conduct an ablation
study on MEDIQA-2019, the results are shown in Table 4. The main differences between the strate-

3The reimplemention of diseaseBERT by setting the maximal sequence length as 512 both for disease
knowledge infusion procedure and CHQA task

8



Under review as a conference paper at ICLR 2023

Table 3: Experimental results on NLI and NER tasks

Tasks NLI NER

Datasets MEDNLI BC5CDR NCBI
Metrics(%) Accuracy F1 F1

BERT (Devlin et al., 2019) 78.13 83.28 85.56
BERT+TMLM 79.82 84.23 86.52

RoBERTa (Liu et al., 2019) 82.49 83.47 87.01
RoBERTa+TMLM 83.54 83.7 87.63

BioBERT (Lee et al., 2020) 82.77 85.58 87.70
BioBERT+TMLM 84.04 86.13 87.91

PubMedBERT (Gu et al., 2021) 83.76 87.82 88.3
PubMedBERT+TMLM 84.6 87.89 88.83

diseaseBERT (He et al., 2020) 77.29 83.47 86.81
Our diseaseBERT 78.76 83.73 86.64
DAKI-BERT(Lu et al., 2021) 77.85 83.43 85.67

diseaseBioBERT (He et al., 2020) 82.21 86.52 87.14
Our diseaseBioBERT 82.63 86.57 87.57
DAKI-BioBERT (Lu et al., 2021) 83.41 86.51 89.01

gies are the masking rate of heading elements and if randomly masking or not. The results suggest:
1) increasing the masking rate in a certain range is suitable for this task; 2) TMLM (Default) works
better than the randomized one (50% random heading masking); 3) For PLMs, TMLM is a more
effective masking strategy in capturing domain knowledge than the vanilla MLM.

Table 4: Ablation study on MEDIQA-2019

Metrics(%) Accuracy MRR Precision

Default (selective masking) 71.91 83.56 75.84

75% random heading masking 70.55 83.28 71.65
50% random heading masking 71.18 82.61 73.82
30% random heading masking 70.73 82.94 74.31
15% random heading masking 70.46 82.84 73.33

Vanilla MLM (Devlin et al., 2019) 69.74 79.0 74.23

6 CONCLUSION

In this paper, we show the importance of semi-structured information of documents to enhance the
domain knowledge of PLMs. Firstly, we realize the value of the semi-structured information in
human learning domain knowledge and design a general pre-training corpus construction method,
which could incorporate the semi-structured information well. Secondly, we find the inner link
between topic, paragraph, and domain knowledge and propose TDA, which enables PLM to capture
the domain knowledge embedded in paragraph and subsection respectively during pre-training and
fine-tuning. The experimental results show the effectiveness of TDA on the three biomedical domain
tasks, and a significant improvement is observed in the topic-related task, CHQA. The last that must
be emphasized is that our TDA is not domain-specific and can be easily applied to various domains,
even the general domain.
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