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Abstract
Large Language Models have been extensively001
studied as neural knowledge bases for their002
knowledge access, editability, reasoning, and003
explainability. However, few works focus on004
structural patterns of their knowledge. Moti-005
vated by this gap, we investigate these struc-006
tural patterns from a graph perspective. We in-007
troduce triplet/entity knowledgeability to quan-008
tify the knowledge of LLMs at both the triplet009
and entity levels, and analyze how it relates to010
graph structural properties such as node degree.011
Furthermore, we uncover the knowledge ho-012
mophily, where topologically close entities ex-013
hibit similar levels of knowledgeability, which014
further motivates us to develop graph machine015
learning models to estimate entity knowledge016
based on its local neighbors. This model further017
enables more valuable knowledge checking by018
selecting triplets less known to LLMs. Empiri-019
cal results show that using selected triplets for020
fine-tuning leads to superior performance. Our021
code is publicly available here.022

1 Introduction023

Large Language Models (LLMs) have emerged024

as powerful knowledge bases by encoding world025

knowledge within their neural parameters (Kada-026

vath et al., 2022; Pezeshkpour, 2023; Yin et al.,027

2023). This world knowledge allows LLMs to028

generate contextually relevant and factually rich re-029

sponses to natural language prompts that serve real-030

world applications. To more wisely leverage this031

capability, researchers have been probing LLMs’032

knowledge from various aspects (AlKhamissi et al.,033

2022; Zheng et al., 2023), including consistency,034

editability, reasoning, and explainability. These035

probing efforts have inspired adaptive retrieval,036

LLM unlearning, confidence calibration, and hallu-037

cination detection (Si et al., 2023; Farquhar et al.,038

2024; Ahdritz et al., 2024).039

Despite the above progress (Kadavath et al.,040

2022; Pezeshkpour, 2023; Zheng et al., 2024), few041

have examined structural patterns of LLMs’ knowl-042

edge. Inspired by cognitive neuroscience (Liu et al.,043

2025), which has uncovered structured patterns in044

human knowledge organization, such as semantic045

networks that cluster related concepts (Huth et al.,046

2016; Hoedemaker and Gordon, 2017), specialized047

Figure 1: (a) Prompting LLMs to check their knowledge
about each triplet and aggregate them to obtain entity
knowledgeabilty; (b) These scores are assigned to graph
nodes, enabling analysis of structural patterns such as
knowledge imbalance (depicted in darker/lighter color),
and knowledge homophly where topologically close
entities possess similar levels of knowledgeability.

brain regions for specific categories of informa- 048

tion (Kanwisher et al., 1997; Binder et al., 2009), 049

and spatial or topographic maps for sensory in- 050

puts (Garvert et al., 2017), we hypothesize that sim- 051

ilar structured patterns exist within LLMs. Probing 052

these structural patterns provides critical insights 053

into how knowledge is stored, retrieved, and rea- 054

soned in LLMs. For example, such understanding 055

could support more flexible retrieval by leveraging 056

structured knowledge organization. 057

Given the criticality of understanding the struc- 058

tural patterns of knowledge in LLMs and the lim- 059

ited exploration in this field, we take a fresh graph- 060

based perspective to uncover the structural patterns 061

of knowledge encoded in LLMs. Building on these 062

derived structural patterns, we develop graph ma- 063

chine learning models to identify more informative 064

knowledge for fine-tuning LLMs. Our key contri- 065

butions are as follows: 066

• Novel Graph Perspective to Probe Structural 067

Patterns of LLM Knowledge: We introduce a 068

novel graph-based approach to analyze structural 069

patterns of knowledge in LLMs. Specifically, we 070

define two knowledgeability metrics to quantify 071

LLMs’ knowledge at the triplet and entity levels. 072

• Discovery of Novel Structural Patterns: Sev- 073

eral novel patterns are revealed, including entity 074

knowledge imbalance, positive correlations be- 075

tween entity degree and knowledgeability, and 076

knowledge homophily, where topologically prox- 077

imate entities exhibit similar knowledgeability. 078
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• Graph Learning for Knowledge Prediction079

and Checking: We design graph-based regres-080

sion models to estimate LLM knowledgeability081

scores for each entity by leveraging its local082

neighborhood context. These predicted scores083

are then used to prioritize high-value triplet facts084

for more effective LLM fine-tuning.085

2 Method086

Given a graph G = (V,R,F) with V/R/F being087

the set of entities/relations/facts. Each fact is rep-088

resented as a triplet (vi, rij , vj) with vi/vj ∈ V089

being the head/tail entities, and rij ∈ R be-090

ing their relation. We define the LLMs’ knowl-091

edgeability for a given triplet (vi, rij , vj)/entity vi092

as K(vi, rij , vj)/K(vi), measuring the extent to093

which the LLM is aware of the triplet fact or entity.094

Regarding graph structural properties, the degree095

and clustering coefficient of an entity vi are denoted096

as dvi and cvi . We define the neighbor entity set097

N (vi) of vi as the set of entities directly connected098

to vi and the neighbor triplet set T (vi) of vi as the099

set of triplets in which vi appears as either the head-100

/tail entity. Next, we introduce knowledgeability101

measurement at the triplet/entity levels.102

2.1 Triplet Knowledgeability103

Inspired by prior work (Kadavath et al., 2022;104

AlKhamissi et al., 2022; Pezeshkpour, 2023), we105

transform each triplet (vi, rij , vj) into a natural106

language statement and prompt LLMs to assess107

whether they recognize the fact. The response108

of LLMs is recorded as a binary value with109

True/False mapped to 1/0, indicating the knowl-110

edgeability of LLM about the triplet K(vi,rij ,vj).111

To handle temporal triplets with time informa-112

tion (vi, rij , vj , t) (e.g., “Donald Trump made a113

visit to China on 2017-11-08.”), we extend the114

prompt to explicitly incorporate timestamps, al-115

lowing us to consider the temporal impact on116

LLM knowledgeability. The template of the ini-117

tial prompt is shown as below with its temporal118

variation attached in Appendix G:119

Prompt 1: LLM-based Triplet Evaluation
System Message: Evaluate the statement based on your knowledge and
respond with True or False.
Given: Triplet T = (sub, rel, obj ).
Relational Template Map: T : rel 7→ “{sub} . . . {obj}”.
Procedure:

1. Retrieve relation-based template t = T (relation).
2. Instantiate statement S = t[{sub}→sub, {obj}→obj ].
3. Prompt System Msg + User Msg: S to the LLM.
4. Return “True” or “False.”

2.2 Entity Knowledgeability and Homophily 120

Given the above triplet knowledgeability, we obtain 121

the entity vi’s knowledgeability score by aggregat- 122

ing the knowledgeability of all triplets in which vi 123

is involved (Jia et al., 2019; Rings et al., 2022): 124

K(vi) = |T (vi)|−1
∑

(vi,rij ,vj)∈T (vi)

K(vi, rij , vj) (1) 125

Note that the above neighborhood aggregation to 126

obtain the knowledgeability score for each entity 127

also applies to temporal triplets (vi, rij , vj , t) ∈ 128

T (vi), allowing us to account for the temporal im- 129

pact when assessing an entity’s knowledgeability. 130

The change of knowledgeability after incorporating 131

temporal information is shown in Figure 2(a). 132

Furthermore, we evaluate whether topologically 133

close entities share similar knowledgeability, i.e., 134

the homophily of entity knowledgeability Hvi . In- 135

spired by existing homophily computation (Zhu 136

et al., 2020; Wang and Derr, 2021; Ma et al., 2021), 137

we compute knowledgeability homophily as one 138

minus the average absolute difference in knowl- 139

edgeability between central node vi and its neigh- 140

bors N (vj) in the knowledge graph: 141

Hvi = 1− 1

|N (vi)|
∑

vj∈N (vi)

|K(vi)−K(vj)|, (2) 142

2.3 Knowledgeability Regression with GNNs. 143

Given the observed high homophily of entity 144

knowledgeability scores in Figure 2(b), we fur- 145

ther design GNN-based graph regression models 146

to approximate the knowledgeability of unknown 147

entities based on known ones. Specifically, given 148

a fixed set of entities VTrain with known knowl- 149

edgeability, our goal is to train a GNN model to 150

estimate the entity knowledgeability with unknown 151

scores. We perform message-passing (MP) and fea- 152

ture transformation (TR) followed by regression: 153

K̂l
i = MPl({K̃l−1

j |vj ∈ N (vi) ∪ {vi}}), K̃l
i = TRl(K̂l

i),
(3) 154155

L =
1

|VTrain|

∑
vi∈VTrain

∥∥∥K̃l
i −Ki

∥∥∥2

2
, (4) 156

The initial node feature matrix is defined as K̃0 = 157

[X (v1), . . . ,X (v|V|)]
⊤, where each node feature 158

X (vi) is either a one-hot encoding or a dense text 159

embedding obtained from pretrained language mod- 160

els. By training a regression model on a subset of 161

entities VTrain, we manage to estimate the knowl- 162

edgeability of all entities without the need for re- 163

source and time-intensive knowledge probing via 164

prompting LLMs across the entire entity set. 165
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Figure 2: (a)/(b): Distribution of node knowledgeability/homophily for each dataset; (c): Node knowledgeability
increases as node degree increases. The results here are based on GPT3.5, and results for other LLMs hold similar
observations in Appendix E. (d): Average homophily for all datasets given by different LLMs exceeds 0.6.

3 Experiment166

In this section, we quantify triplet/entity knowl-167

edgeability, analyze its correlation with struc-168

tural properties of the underlying graphs, es-169

timate knowledgeability using GNNs, and ex-170

plore active selection strategies to identify high-171

valuable triplets for fine-tuning. We evaluate five172

representative LLMs: commercial ones such as173

GPT-3.5, 4o, Gemini-2.5 Flash, and two open-174

source models, LLaMA3.3-70B and DeepSeek-V3.175

These models are assessed across five knowledge176

graphs: MVPKG (Mou et al., 2024), T-Rex (El-177

sahar et al., 2018), PharmKG8K (Zheng et al.,178

2021), WD50K (Galkin et al., 2020), and CoDEx-179

S (Safavi and Koutra, 2020). Among them, T-Rex,180

WD50K, and CoDEx-S represent general factual181

Wikipedia knowledge, whereas PharmKG8K and182

MVPKG focus on specialized pharmaceutical and183

political science. Further details on datasets and184

experimental configurations are in Appendix D. We185

now present our key experimental findings.186

Finding 1 - Figure 2(a) presents the distribu-187

tion of entity knowledgeability scores across vari-188

ous datasets. The scores exhibit a trimodal pattern189

with peaks at 0.0, 0.5, 1.0, corresponding to cases190

where none, some, or all of an entity’s triplets are191

recognized. These patterns exhibit clear domain-192

specific variation. Specialized datasets such as193

PharmKG8K and MVPKG are left-skewed, with194

a dominant peak at 0.0 reflecting LLM’s limited195

knowledge coverage in domains like pharmaceu-196

ticals and political science. In contrast, general-197

purpose datasets like T-Rex and WD50K are right-198

skewed, with most entities scoring 1.0, indicat-199

ing substantial knowledge coverage in Wikipedia-200

based knowledge. Comparing MVPKG and its tem-201

poral variant, MVPKG w/o time, we observe an in-202

crease in the proportion of entities with zero knowl-203

edgeability and a decrease in those scoring 1.0.204

This indicates challenges of LLMs in understand-205

ing time-sensitive knowledge (Yuan et al., 2024).206

Finding 2 - Figure 2(b)/(c) presents the node 207

homophily distribution and the average graph ho- 208

mophily across several knowledge graphs. In Fig- 209

ure 2(b), these distributions are all right-skewed, 210

with a peak around 0.8, suggesting that nodes and 211

their neighbors tend to share similar knowledge- 212

ability scores. This high homophily property has 213

enhanced graph machine learning in node-level pre- 214

diction, such as node classification, and inspires our 215

regression to predict entities’ knowledge scores in 216

Finding 3. Furthermore, incorporating temporal 217

information into MVPKG results in a slight shift to 218

the left, indicating decreased neighbor score simi- 219

larity. This shift indicates that the temporal dimen- 220

sion introduces greater complexity and finer knowl- 221

edgeability distinctions between the nodes and their 222

neighbors. In addition, we compute the average 223

graph homophily by averaging across all nodes and 224

find that it consistently remains above 0.5 across 225

different datasets and LLMs. This exhibits a gen- 226

eral tendency for entities to be connected to others 227

with similar knowledgeability scores. This finding 228

reinforces the notion that the LLM’s factual recog- 229

nition is not randomly distributed in the graph but 230

is instead correlated among connected entities. 231

Finding 3 - Figure 2(d) illustrates the relation 232

between entity degree and knowledgeability. We 233

observe a clear positive correlation, indicating that 234

entities with higher degrees tend to exhibit greater 235

knowledgeability in LLMs. This trend likely arises 236

because high-degree entities are associated with 237

more factual content and appear more frequently 238

in pre-training corpora, increasing their likelihood 239

of being learned during the LLM pre-training pro- 240

cess. This observation aligns with findings showing 241

accuracy disparities between popular and less pop- 242

ular entities (Sun et al., 2024). Notably, on the 243

T-Rex dataset, the positive relationship remains but 244

is much less pronounced. This is likely because T- 245

Rex exclusively contains Wikipedia entities, which 246

are generally well represented in LLM training cor- 247

pora, even for less popular or low-degree entities. 248
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Table 1: Regression of predicting node knowledgeability
calculated by (1 - Mean Absolute Error between ground-
truth and estimated knowledgeability scores). N/T-X
represents the model X with input features being one-hot
encoding (N)/textual embedding (T). The best perfor-
mance is bolded and the second best is underlined.

Model T-Rex WD50K Pharm MVPKG(w/o t) CoDEx

N-MLP 81% 78% 82% 72% (70%) 84%
N-GCN 84% 82% 84% 76% (76%) 87%
N-SAGE 84% 82% 84% 76% (77%) 87%

T-MLP 83% 78% 83% 76% (77%) 86%
T-GCN 84% 81% 84% 78% (80%) 87%
T-SAGE 84% 81% 84% 78% (79%) 87%

Figure 3: Relation between regression performance and
homophily at (a) graph and (b) node level.

Finding 4 - Table 1 demonstrates strong re-249

gression in predicting node knowledgeability, with250

absolute errors between 0.15 and 0.25. Compar-251

ing models using textual embeddings versus one-252

hot encodings reveals no consistent performance253

advantage, indicating that textual similarity be-254

tween entities does not reliably reflect similarity in255

knowledgeability. In contrast, GNN-based models256

consistently outperform their MLP-based counter-257

parts, underscoring the importance of incorporating258

neighborhood context for knowledgeability predic-259

tion. This result aligns with previous findings on260

the benefits of homophily in relational learning (Ma261

et al., 2021; Mao et al., 2023). Figure 3(a) visu-262

alizes a positive correlation between average re-263

gression performance and global graph homophily.264

However, in Figure 3(b), while this trend holds for265

T-Rex, WD50K, and CoDEx-S, it is less apparent266

for PharmKG and MVPKG, suggesting that the267

effect of homophily may be dataset-dependent.268

Application - We demonstrate a practical appli-269

cation of GNN-predicted knowledgeability scores270

to guide the selection of informative triplets for271

more effective LLM fine-tuning. Specifically, we272

fine-tune three LLMs, LLaMA 3 8B, Mistral 7B,273

and Qwen 2.5 7B, across five datasets using two274

triplet selection strategies: Random-FT and Graph-275

FT. Both start by selecting the same initial 20%276

Table 2: Performance comparison between fine-tuning
with random triplet selection (Random-FT) and with
knowledgeability-based selection (Graph-FT), where
triplets are ranked from high to low based on estimated
knowledgeability. The best performance is bolded and
the second best is underlined.

Dataset Model Base Random-FT Graph-FT

T-Rex
Llama3 8B 63.25 86.40 89.05
Mistral 7B 63.95 81.85 91.90
Qwen2.5 7B 56.05 84.80 83.25

Pharm
Llama3 8B 17.80 34.85 36.95
Mistral 7B 55.30 41.30 60.70
Qwen2.5 7B 39.50 70.20 74.40

WD50
Llama3 8B 54.75 57.75 58.75
Mistral 7B 42.87 56.25 55.12
Qwen2.5 7B 49.37 63.00 64.75

MVPKG
w/o t

Llama3 8B 26.10 30.70 44.50
Mistral 7B 52.30 65.10 76.70
Qwen2.5 7B 37.60 41.30 65.10

CoDEx
Llama3 8B 64.87 78.75 75.62
Mistral 7B 58.50 72.12 88.00
Qwen2.5 7B 62.37 67.00 70.87

Average Performance 49.64 62.09 69.04

of triplets for knowledge probing. Random-FT 277

then randomly selects the remaining 80%, while 278

Graph-FT trains a GNN on the initial 20% to es- 279

timate entity-level knowledgeability and selects 280

additional triplets involving entities predicted to 281

be less known (i.e., with lower knowledgeability 282

scores). All experiments use identical hyperpa- 283

rameters within each dataset, differing only in the 284

triplet selection strategy. 285

In Table 2, both Random-FT and Graph-FT out- 286

perform the base models across all datasets. No- 287

tably, graph-FT consistently outperforms random- 288

FT, underscoring the benefit of checking triplets 289

with which the model is less familiar rather than 290

redundantly reinforcing known knowledge. 291

4 Conclusion 292

This work introduces a novel graph-centric per- 293

spective by quantifying LLM knowledge at the 294

triplet/entity levels and examining its relationship 295

with graph structural properties. We uncover key in- 296

sights, including a strong correlation between node 297

degree and knowledgeability, and a high degree 298

of homophily, where topologically close nodes ex- 299

hibit similar knowledgeability. These observations 300

motivate the design of a graph machine learning 301

model utilizing neighborhood information to pre- 302

dict entity-level knowledgeability. The predicted 303

scores are then used to actively select more infor- 304

mative triplets for effective fine-tuning LLMs. 305

4



5 Limitations306

The limitations of this paper are as follows:307

• More applications: The derived structural pat-308

terns are used solely to guide triplet selection for309

fine-tuning. However, these patterns hold broader310

potential. For instance, they could inform knowl-311

edge graph retrieval by identifying poor knowl-312

edge regions and prioritizing retrieving triplets313

there. Furthermore, this technique can also ef-314

ficiently identify knowledge deficiency through315

structural correlations (Song et al., 2025).316

• Limited to knowledge graphs: The derived317

structural patterns currently apply only to knowl-318

edge graphs with explicitly defined entities and319

relations. However, real-world networks, such as320

social or citation networks, are often more com-321

plex and rich in textual information. Extending322

the entity/triplet-level knowledgeability estima-323

tion to these text-attributed graphs (Wu et al.,324

2024) would broaden real-world applications.325
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A Appendix516

B Related Work517

B.1 LLM as Knowledge Base (KB)518

(Petroni et al., 2019) was among the first works to519

propose that pretrained LMs encode factual knowl-520

edge retrievable via cloze prompts. Subsequent521

work such as (Roberts et al., 2020) fine-tuned LLM522

for closed-book QA to match external knowledge523

systems, (Heinzerling and Inui, 2020) supported524

LMs as KBs by examining entity representations525

and paraphrase robustness, and (He et al., 2024)526

demonstrated that LLMs trained on large-scale data527

could flexibly retrieve information, further bolster-528

ing the concept of LLMs as knowledge bases. This529

motivates the research on checking knowledge of530

LLMs as follows.531

B.2 Knowledge Checking532

To further evaluate this paradigm of LLM as KB,533

various knowledge checking methods have been534

developed, such as, factuality testing with Truth-535

fulQA benchmark (Lin et al., 2021), consistency536

and reliability (Zheng et al., 2024), calibration537

with self-assessed P(True) and P(I Know) (Kada-538

vath et al., 2022), information-theoretic probing539

using entropy and KL-divergence (Pezeshkpour,540

2023), systematic KG-based evaluation via auto-541

generated QA from graphs (Luo et al., 2023), and542

evaluating factuality hallucinations by using false543

premise questions (Zhu et al., 2024). These ap-544

proaches look into knowledge and trustworthiness545

checking but treat the model as a black box, leaving546

its underlying structural patterns unexplored.547

B.3 Topological Understanding of LLM-KB548

Some important initial work has looked into local549

structures of LLMs. (Geva et al., 2020) presented550

that feed-forward layers act like key–value mem-551

ories for specific facts. Then (Meng et al., 2022)552

presented that factual associations are often local-553

ized and editable within mid-layer feed-forward554

modules. (Dai et al., 2021) proposed that factual555

knowledge is stored in pretrained Transformers in556

form of knowledge neurons. (Mruthyunjaya et al.,557

2023) evaluated LLMs on structural indicators such558

as, symmetry, hierarchy and path among others and559

show that they often fail on relational tests. These560

studies demonstrate that some implicit structure ex-561

ists and yet none characterizes the graph topology562

or structural patterns of an LLM’s knowledge base.563

C Dataset Statistics 564

Our experiments are designed to evaluate and com- 565

pare the knowledgeability of the LLM across mul- 566

tiple datasets. We illustrate our process on five 567

datasets: MVPKG (covering U.S. legislative, elec- 568

tion, diplomatic data, etc.), T-Rex (containing 569

large-scale high-quality alignments between DBpe- 570

dia abstracts and Wikidata triples), PharmKG8K 571

(biomedical knowledge graph), WD50K (dataset 572

derived from Wikidata statements), and CoDEx-S 573

(extracted from Wikidata and Wikipedia). 574

• MVPKG (Mou et al., 2024): The MVPKG 575

dataset encompasses U.S. legislative, election, 576

and diplomatic data as well as conceptual knowl- 577

edge from Wikidata. It originally contains 578

1,857,410 triplets, 137,117 entities, and 602 re- 579

lations. Due to scale considerations, we extract 580

the largest strongly connected component, which 581

comprises 255,697 triplets, 9,055 entities, and 582

602 relations. The MVPKG dataset had a tem- 583

poral attribute and was evaluated with the tem- 584

poral component included and excluded. For 585

each triplet, two prompts are generated (with 586

time and without time). Consequently, each en- 587

tity in MVPKG is assigned two knowledgeability 588

scores corresponding to the two prompt variants 589

for further analysis of the effect of inclusion of 590

temporal information. All other datasets have 591

only one knowledgeability score due to lack of 592

temporal attributes. 593

• T-Rex (Elsahar et al., 2018): The T-Rex dataset 594

is constructed from Wikipedia abstracts aligned 595

with Wikidata entities in English. It contains 596

6,566,790 unique triplets; the largest connected 597

component comprises 193,781 triplets, 46,891 598

entities, and 423 relations. 599

• PharmKG8K (Zheng et al., 2021): The 600

PharmKG8K multi-relational, attributed biomed- 601

ical KG, composed of around 500,000 individual 602

interconnections between genes, drugs, and dis- 603

eases, with 29 relation types over a vocabulary 604

of around 8000 disambiguated entities. Given 605

the scope of the dataset, we used a strongly con- 606

nected component of 98,537 edges, 6,877 enti- 607

ties, and 29 relations. 608

• WD50k (Galkin et al., 2020): The WD50K 609

dataset was created using the Wikidata RDF 610

dump of August 2019. It has 233,838 edges and 611
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Table 3: Statistics of the original knowledge graph and the sampled largest connected component.

Dataset # Nodes # Triplets # Avg. Deg # Avg. CC
Original Sampled Original Sampled Original Sampled Original Sampled

T-Rex 3153568 46891 6566790 193781 4.16 8.26 0.1473 0.5170
WD50K 41334 5140 233838 34208 11.31 13.31 0.0996 0.1332
PharmKG8K 7262 6877 479902 98537 132.16 28.65 0.2512 0.0824
MVPKG 137117 9055 1857410 255697 12.46 28.24 0.0013 0.0140
MVPKG w/o t 137117 9055 1857410 116127 12.46 12.82 0.0013 0.0140
CoDEx-S 2034 36543 35.93 0.0952

41,334 entities. Since being extracted from Wiki-612

data, there were 14,858 triplets common between613

the WD50K dataset and the T-Rex largest con-614

nected component selected. These were removed615

to make sure that common triplets were not over-616

shadowing the result comparison between these617

datasets. Following that, the largest strongly con-618

nected component was selected for experimental619

purposes. This LCC had 34,208 edges, 5,140620

entities, and 193 relations.621

• CoDEx-S (Safavi and Koutra, 2020): CoDEx622

is a collection of knowledge graph comple-623

tion datasets extracted from Wikidata/Wikipedia,624

comprising three subsets of varying sizes. We625

select CoDEx-S due to its high proportion626

of triplets involving the “occupation" rela-627

tion, which poses greater challenges for LLMs,628

since individuals may hold multiple occupations.629

CoDEx-S contains 36,543 triplets, 2,034 entities,630

and 42 relations.631

D Experimental Setting632

We describe the experimental setup for (1) mea-633

suring the triplet and entity knowledgeability, (2)634

training GNNs to predict knowledgeability scores,635

and adaptively selecting informative triplets to fine-636

tune LLMs.637

D.1 Measuring Knowledgeability Score638

• Prompt Generation: Each triplet is converted639

into a natural language prompt using predefined640

templates based on the relation type, follow-641

ing (Petroni et al., 2019). These templates were642

first generated by GPT o-1 mini using the re-643

lation and a few of its triplet examples to pro-644

vide context, and then evaluated to make sure645

the template made semantic sense. (Luo et al.,646

2023) used GPT3.5 for generating natural lan-647

guage prompts for triplets, validating that LLMs648

like GPT3.5 can be used for template or prompt649

generation. For MVPKG, both time-specific and 650

non-time-specific prompts are created. 651

• LLM Evaluation: The prompts are fed to the 652

LLM, and responses are recorded as binary val- 653

ues (1 for true, 0 for false). This step enables 654

us to quantify the LLM’s internalized knowledge 655

regarding each triplet in a way that’s scalable. 656

• Aggregation to Entity-Level Scores: For ev- 657

ery entity, triplet-level scores are aggregated to 658

form the entity-level knowledgeability metric. In 659

MVPKG, separate aggregations are performed 660

for the two prompt types, giving two knowledge- 661

ability values for each entity. 662

D.2 Fine-Tuning: Random VS Graph 663

The goal of this experiment is to evaluate whether 664

fine-tuning LLMs on entities for which the model 665

has low prior knowledge results in greater perfor- 666

mance improvements than fine-tuning on randomly 667

selected entities. We hypothesize that targeting 668

entities about which the model knows less will pro- 669

duce a larger marginal improvement per example 670

than fine-tuning on entities already well encoded 671

in LLM’s internal knowledge inherited during the 672

pre-training phase. 673

• Model and Evaluation Set: To test this, we se- 674

lect three open source models: Llama 3.1 8B, 675

Mistral v0.3 7B, and Qwen 2.5 7B, and con- 676

structed an evaluation set for each dataset by 677

randomly sampling a fixed number of triplets. 678

Each triplet is converted into a natural language 679

prompt and is asked to LLM as a True/False eval- 680

uation task. Baseline performance is measured 681

by querying each base model on this evaluation 682

set prior to any fine-tuning. The performance 683

metric is the percentage of correct responses by 684

the model on the evaluation set. 685

• Fine-Tuning Budget and Initial Query: We 686

then set a budget that the LLM can be fine-tuned 687
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on, and the size of this budget is adjusted accord-688

ing to the domain and size of the dataset. Twenty689

percent of the budget is reserved for an initial690

query set. To set up this initial set, we shuffle the691

entity list and iterate through it, adding all triples692

associated with the current entity until the 20%693

quota is met and if an entity would overshoot the694

quota, we randomly subsample just enough of its695

triples to fill the gap.696

• Graph Fine-Tuning: The triplets in this initial697

query set are posed to the base model, allowing698

us to calculate an entity-level knowledgeability699

score for the selected entities in the initial query.700

These entity scores are used to train a Graph-701

SAGE model. The model takes text embeddings702

of entity names generated using the MiniLM-L6-703

v2 sentence transformer as input to predict knowl-704

edgeability scores for all the entities across the705

dataset. Further, we define an entity’s “ignorance”706

as one minus its predicted knowledgeability. En-707

tities with the highest ignorance are preferred for708

fine-tuning, and ties are broken first by choosing709

the entity with the lowest graph degree, to en-710

courage topical diversity, and finally at random.711

We iteratively add entities and their associated712

triplets until 80% of the budget is filled. In case713

an entity’s full triplet set would overshoot the714

remaining slots, we randomly sample within that715

set to exactly meet the quota. The full Targeted716

training set thus comprises the initial 20% query717

triples plus the 80% ignorance-weighted triplets.718

• Random Fine-Tuning: For the Random Fine-719

Tuning, we retain the initial 20% query set and720

additionally randomly sample the remaining 80%721

of triplets from all unprobed triplets without re-722

placement. This yields a direct random selection723

comparison to the targeted method.724

E Results across different LLMs725

E.1 Llama 3.3 70B726

See Figure 4 for an overview of model behavior.727

• Knowledgeability Distribution: Similar to728

GPT3.5 results, Llama 3.3 70B has a trimodal729

pattern in the knowledgeability distribution, with730

domain-specific datasets having higher peaks at731

0 while general datasets like T-Rex, which are732

extracted from Wikipedia, have higher peaks at733

1. Peak at 0.5 is largely made of entities with734

degree 2 where one triplet is evaluated as true735

while the other one as false.736

• Homophily Distribution: All datasets have ho- 737

mophily peak at 0.8 and above indicating that 738

nodes and their neighbors tend to share similar 739

knowledgeability scores. We observe overall a 740

higher homophily on the general domain datasets 741

than domain specific ones. 742

• Degree vs Knowledgeability: We observe that 743

all datasets overall have a positive trend between 744

the mean knowledgeability value and mean log 745

degree. Biomedical dataset PharmKG8K has a 746

higher upward trend, while MVPKG has a much 747

shallower trend. This might be attributed to the 748

T-Rex dataset’s origin from Wikipedia entities 749

which are well covered by pre-training corpora. 750

E.2 Deepseek V3 751

See Figure 5 for an overview of model behavior. 752

• Knowledgeability Distribution: We observe a 753

trimodel pattern with a relatively small peak at 754

0.5. Entities with a knowledge value of 0 are 755

more common than those with a value of 1, es- 756

pecially in domain-specific datasets. For general 757

datasets like T-Rex, WD50K, and CoDEx-S, a 758

larger proportion of their entities are still recog- 759

nized by Deepseek, resulting in a higher peak in 760

the number of entities with full knowledgeability. 761

• Homophily Distribution: Homophily for enti- 762

ties across datasets has the highest density at 763

around 0.8, indicating that entities and their 764

neighbors tend to share similar knowledgeability 765

scores. Here, no specific datasets appear to have 766

a clear advantage over others. 767

• Degree vs Knowledgeability: All datasets show 768

a clear positive trend between the degree of en- 769

tity and their Knowledgeability. T-Rex here has 770

a slightly steeper trend than both GPT 3.5 and 771

Llama 3.3 70 B. 772

E.3 Gemini 2.5 Flash 773

See Figure 6 for an overview of model behavior. 774

• Knowledgeability Distribution: The general- 775

domain datasets continue to have a higher pro- 776

portion of entities with a knowledgeability score 777

of 1, resulting in a right-skewed distribution. In 778

contrast, domain-specific datasets show a higher 779

proportion of entities with a knowledgeability 780

score of 0. A notable improvement of Gemini is 781

that PharmKG8K has a more balanced distribu- 782

tion compared to the other models, like Llama 3.3 783
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70B, GPT3.5, and Deepseek V3. This indicates784

that it has better knowledge about biomedical-785

related entities. Although there is still some left786

skew, it is significantly less pronounced.787

• Homophily Distribution: Similar to other mod-788

els, highest homophily density stays around 0.8,789

suggesting that nodes tend to have similar knowl-790

edgeability scores as their neighbors. T-Rex has a791

homophily to the furthest right, further indicating792

the nodes have very similar knowledge values to793

their neighbors.794

• Degree vs Knowledgeability: A positive trend is795

observed across all datasets, with each showing796

an upward-sloping pattern. T-Rex, while follow-797

ing this trend, displays a relatively shallow slope,798

consistent with the behavior seen in other models,799

due to it being derived from Wikipedia.800

E.4 GPT 4o801

See Figure 7 for an overview of model behavior.802

• Knowledgeability Distribution: GPT-4o803

demonstrates a higher level of entity knowl-804

edgeability across all domains compared to805

other models. Even in domain-specific datasets806

like PharmKG8K, GPT-4o recognizes a larger807

proportion of entities than it does not.808

• Homophily Distribution: Here, datasets dis-809

play a high level of homophily, with the highest810

density peaks being greater than 0.8. Following811

the pattern across the models, the T-Rex dataset812

presents the highest homophily among all the813

other datasets.814

• Degree vs Knowledgeability: All datasets ex-815

hibit an upward trend, suggesting that as the de-816

gree associated with an entity increases, so does817

its knowledgeability.818

F KG vs Topology Analysis across models819

For each node, we calculate its corresponding820

graph structural properties and group them based821

on these properties. For each group, we further822

calculate the average knowledge and visualize its823

relation with structural properties. See Figure 8 for824

GPT-4o; Figure 9 for Llama 3.3 70B; Figure 10 for825

Gemini 2.5; and Figure 11 for DeepSeek V3 for an826

overview; Figure 12 for GPT3.5.827

• Degree Centrality: We observe a general pos-828

itive upward trend among the mean knowledge829

value and degree centrality across the models. A 830

high degree node would appear in many facts and 831

would appear in large amount of training corpus. 832

Therefore, if sample those corpus for training the 833

model, that entity would show up at more places 834

and the model would get more examples of the 835

entity, and thus learning about it better. 836

• PageRank Centrality: Here, across the models 837

we observe a positive trend. WD50K displays a 838

large variance towards the top. Since, the bins 839

there contain few entities, variance is presented 840

as large in case of any outlier. 841

• Katz Centrality: We observe a positive trend 842

among 4 out of 5 datasets. WD50K creates a 843

upside down u shape slope with some outliers, 844

along with high variance. This can potentially 845

be attributed to a few entities in the last few bins 846

presenting an increased variance and unexpected 847

behavior. 848

• Cluster Centrality: Across the models we see 849

a positive trend between the mean knowledge- 850

ability value and the cluster centrality. This can 851

potentially be caused by the fact that a higher 852

clustering would mean that entity is part of a 853

dense group and would be mentioned over and 854

over whenever the context of that group comes up. 855

However, the rate is less pronounced in some than 856

in others. For example, GPT 4o has a stronger 857

relationship trend than Deepseek V3. T-Rex, for 858

all the models has a very slight but positive trend, 859

mostly staying relatively flat. 860

• Closeness Centrality: Here, the results vary the 861

most. For GPT 4o, almost all datasets have a 862

U-shape, indicating that both peripheral and cen- 863

tral nodes get higher knowledgeability values. In 864

contrast, the Llama model has a relatively minor 865

U-shape effect, with some datasets broadly stay- 866

ing flat, and for example, PharmKG8K showing 867

an upward trend. 868

• Between Centrality: Here, datasets with a gen- 869

eral domain like WD50K and T-Rex stay rel- 870

atively flat, whereas domain-specific datasets, 871

such as PharmKG8K, display a strong positive 872

relation, indicating that entities that serve as hubs 873

or bridges tend to have a higher knowledgeability 874

score than nodes on the periphery. 875
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Figure 4: LLaMa (a): Distribution of node knowledgeability for each dataset; (b): Distribution of node homophily
for each dataset; (c): Node knowledgeability increases as node degree increases.

Figure 5: Deepseek (a): Distribution of node knowledgeability for each dataset; (b): Distribution of node homophily
for each dataset; (c): Node knowledgeability increases as node degree increases.

Figure 6: Gemini (a): Distribution of node knowledgeability for each dataset; (b): Distribution of node homophily
for each dataset; (c): Node knowledgeability increases as node degree increases.

Figure 7: GPT4o (a): Distribution of node knowledgeability for each dataset; (b): Distribution of node homophily
for each dataset; (c): Node knowledgeability increases as node degree increases.

We observe that across the models and datasets,876

some patterns persist. For instance, positive re-877

lationship between node degree and their knowl-878

edgeability. In addition, pattern of high homophily 879

showcase that nodes and their neighbors tend to 880

have similar knowledgeability. 881
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Figure 8: GPT4o - Relationship between Mean Knowledgeability and (a): Degree Centrality; (b): PageRank
Centrality; (c): Katz Centrality; (d): Cluster Centrality; (e): Closeness Centrality; (f): Betweeness Centrality.

Figure 9: LLaMa - Relationship between Mean Knowledgeability and (a): Degree Centrality; (b): PageRank
Centrality; (c): Katz Centrality; (d): Cluster Centrality; (e): Closeness Centrality; (f): Betweeness Centrality.

Figure 10: Gemini - Relationship between Mean Knowledgeability and (a): Degree Centrality; (b): PageRank
Centrality; (c): Katz Centrality; (d): Cluster Centrality; (e): Closeness Centrality; (f): Betweeness Centrality.
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Figure 11: Deepseek - Relationship between Mean Knowledgeability and (a): Degree Centrality; (b): PageRank
Centrality; (c): Katz Centrality; (d): Cluster Centrality; (e): Closeness Centrality; (f): Betweeness Centrality.

Figure 12: GPT3.5 - Relationship between Mean Knowledgeability and (a): Degree Centrality; (b): PageRank
Centrality; (c): Katz Centrality; (d): Cluster Centrality; (e): Closeness Centrality; (f): Betweeness Centrality.

G Temporal LLM-based Triplet882

Evaluation Prompt883

Prompt 2: LLM-based Triplet Evaluation (Temporal Variation)
System Message: Evaluate the statement below; reply only True or False.
Given: Triplet T = (sub, rel , obj ), Date D.
Relational Template Map: T : rel 7→ “{sub} . . . {obj}”.
Procedure:

1. Retrieve template t = T (rel).
2. Instantiate base statement S0 = t[{sub}→sub, {obj}→obj ].
3. Append date: S = S0 on D.
4. Send System Msg + User Msg: S to LLM.
5. Return “True” or “False.”
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