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Abstract

Large Language Models have been extensively
studied as neural knowledge bases for their
knowledge access, editability, reasoning, and
explainability. However, few works focus on
structural patterns of their knowledge. Moti-
vated by this gap, we investigate these struc-
tural patterns from a graph perspective. We in-
troduce triplet/entity knowledgeability to quan-
tify the knowledge of LLMs at both the triplet
and entity levels, and analyze how it relates to
graph structural properties such as node degree.
Furthermore, we uncover the knowledge ho-
mophily, where topologically close entities ex-
hibit similar levels of knowledgeability, which
further motivates us to develop graph machine
learning models to estimate entity knowledge
based on its local neighbors. This model further
enables more valuable knowledge checking by
selecting triplets less known to LLMs. Empiri-
cal results show that using selected triplets for
fine-tuning leads to superior performance. Our
code is publicly available here.

1 Introduction

Large Language Models (LLMs) have emerged
as powerful knowledge bases by encoding world
knowledge within their neural parameters (Kada-
vath et al., 2022; Pezeshkpour, 2023; Yin et al.,
2023). This world knowledge allows LLMs to
generate contextually relevant and factually rich re-
sponses to natural language prompts that serve real-
world applications. To more wisely leverage this
capability, researchers have been probing LLMs’
knowledge from various aspects (AlKhamissi et al.,
2022; Zheng et al., 2023), including consistency,
editability, reasoning, and explainability. These
probing efforts have inspired adaptive retrieval,
LLM unlearning, confidence calibration, and hallu-
cination detection (Si et al., 2023; Farquhar et al.,
2024; Ahdritz et al., 2024).

Despite the above progress (Kadavath et al.,
2022; Pezeshkpour, 2023; Zheng et al., 2024), few
have examined structural patterns of LLMs’ knowl-
edge. Inspired by cognitive neuroscience (Liu et al.,
2025), which has uncovered structured patterns in
human knowledge organization, such as semantic
networks that cluster related concepts (Huth et al.,
2016; Hoedemaker and Gordon, 2017), specialized
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Figure 1: (a) Prompting LLMs to check their knowledge
about each triplet and aggregate them to obtain entity
knowledgeabilty; (b) These scores are assigned to graph
nodes, enabling analysis of structural patterns such as
knowledge imbalance (depicted in darker/lighter color),
and knowledge homophly where topologically close
entities possess similar levels of knowledgeability.

brain regions for specific categories of informa-
tion (Kanwisher et al., 1997; Binder et al., 2009),
and spatial or topographic maps for sensory in-
puts (Garvert et al., 2017), we hypothesize that sim-
ilar structured patterns exist within LLMs. Probing
these structural patterns provides critical insights
into how knowledge is stored, retrieved, and rea-
soned in LLMs. For example, such understanding
could support more flexible retrieval by leveraging
structured knowledge organization.

Given the criticality of understanding the struc-
tural patterns of knowledge in LLMs and the lim-
ited exploration in this field, we take a fresh graph-
based perspective to uncover the structural patterns
of knowledge encoded in LLMs. Building on these
derived structural patterns, we develop graph ma-
chine learning models to identify more informative
knowledge for fine-tuning LLLMs. Our key contri-
butions are as follows:

* Novel Graph Perspective to Probe Structural
Patterns of LLLM Knowledge: We introduce a
novel graph-based approach to analyze structural
patterns of knowledge in LLMs. Specifically, we
define two knowledgeability metrics to quantify
LLMs’ knowledge at the triplet and entity levels.

* Discovery of Novel Structural Patterns: Sev-
eral novel patterns are revealed, including entity
knowledge imbalance, positive correlations be-
tween entity degree and knowledgeability, and
knowledge homophily, where topologically prox-
imate entities exhibit similar knowledgeability.
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¢ Graph Learning for Knowledge Prediction
and Checking: We design graph-based regres-
sion models to estimate LLM knowledgeability
scores for each entity by leveraging its local
neighborhood context. These predicted scores
are then used to prioritize high-value triplet facts
for more effective LLM fine-tuning.

2 Method

Given a graph G = (V, R, F) with V/R/F being
the set of entities/relations/facts. Each fact is rep-
resented as a triplet (v;, 735, v;) with v;/v; € V
being the head/tail entities, and r;; € R be-
ing their relation. We define the LLMs’ knowl-
edgeability for a given triplet (v;, r;;, v;)/entity v;
as K(v;,rij,v5)/K(v;), measuring the extent to
which the LLM is aware of the triplet fact or entity.
Regarding graph structural properties, the degree
and clustering coefficient of an entity v; are denoted
as d,,; and c,;. We define the neighbor entity set
N (v;) of v; as the set of entities directly connected
to v; and the neighbor triplet set 7 (v;) of v; as the
set of triplets in which v; appears as either the head-
/tail entity. Next, we introduce knowledgeability
measurement at the triplet/entity levels.

2.1 Triplet Knowledgeability

Inspired by prior work (Kadavath et al., 2022;
AlKhamissi et al., 2022; Pezeshkpour, 2023), we
transform each triplet (v;,7;;,v;) into a natural
language statement and prompt LLMs to assess
whether they recognize the fact. The response
of LLMs is recorded as a binary value with
True/False mapped to 1/0, indicating the knowl-
edgeability of LLM about the triplet Ky, . .)-

To handle temporal triplets with time informa-
tion (v;, 745, v4,t) (e.g., “Donald Trump made a
visit to China on 2017-11-08.”), we extend the
prompt to explicitly incorporate timestamps, al-
lowing us to consider the temporal impact on
LLM knowledgeability. The template of the ini-
tial prompt is shown as below with its temporal
variation attached in Appendix G:

Prompt 1: LLM-based Triplet Evaluation

System Message: Evaluate the statement based on your knowledge and
respond with True or False.
Given: Triplet 7 = (sub, rel, obj).
Relational Template Map: 7" : rel — “{sub} ... {obj}”.
Procedure:

1. Retrieve relation-based template ¢ = T'(relation).

2. Instantiate statement S = t[{sub} — sub, {obj} — obj].

3. Prompt System Msg + User Msg: S to the LLM.

4. Return “True” or “False.”

.

2.2 Entity Knowledgeability and Homophily

Given the above triplet knowledgeability, we obtain
the entity v;’s knowledgeability score by aggregat-
ing the knowledgeability of all triplets in which v;
is involved (Jia et al., 2019; Rings et al., 2022):

K(vi) = [T (vi)| Z

(v5,745,v5)ET (v4)

K(vi,rij,v5) (1)

Note that the above neighborhood aggregation to
obtain the knowledgeability score for each entity
also applies to temporal triplets (v;, 7i;,v5,t) €
T (v;), allowing us to account for the temporal im-
pact when assessing an entity’s knowledgeability.
The change of knowledgeability after incorporating
temporal information is shown in Figure 2(a).

Furthermore, we evaluate whether topologically
close entities share similar knowledgeability, i.e.,
the homophily of entity knowledgeability #,,. In-
spired by existing homophily computation (Zhu
et al., 2020; Wang and Derr, 2021; Ma et al., 2021),
we compute knowledgeability homophily as one
minus the average absolute difference in knowl-
edgeability between central node v; and its neigh-
bors NV (v;) in the knowledge graph:
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2.3 Knowledgeability Regression with GNNs.

Given the observed high homophily of entity
knowledgeability scores in Figure 2(b), we fur-
ther design GNN-based graph regression models
to approximate the knowledgeability of unknown
entities based on known ones. Specifically, given
a fixed set of entities VT™" with known knowl-
edgeability, our goal is to train a GNN model to
estimate the entity knowledgeability with unknown
scores. We perform message-passing (MP) and fea-
ture transformation (TR) followed by regression:

Ki = MP'({K! o; € N(vi) U {vi}}),Ki = TR'(K}),

) 3)
EZ|vTrain| Z ‘

~ 2

l
Ki—Ki|,> “)
v; € Train

The initial node feature matrix is defined as K0 =
[X(v1),...,X(vjy))]", where each node feature
X (v;) is either a one-hot encoding or a dense text
embedding obtained from pretrained language mod-
els. By training a regression model on a subset of
entities V™" we manage to estimate the knowl-
edgeability of all entities without the need for re-
source and time-intensive knowledge probing via
prompting LLMs across the entire entity set.
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Figure 2: (a)/(b): Distribution of node knowledgeability/homophily for each dataset; (¢): Node knowledgeability
increases as node degree increases. The results here are based on GPT3.5, and results for other LLMs hold similar
observations in Appendix E. (d): Average homophily for all datasets given by different LLMs exceeds 0.6.

3 Experiment

In this section, we quantify triplet/entity knowl-
edgeability, analyze its correlation with struc-
tural properties of the underlying graphs, es-
timate knowledgeability using GNNs, and ex-
plore active selection strategies to identify high-
valuable triplets for fine-tuning. We evaluate five
representative LLMs: commercial ones such as
GPT-3.5, 40, Gemini-2.5 Flash, and two open-
source models, LLaMA3.3-70B and DeepSeek-V3.
These models are assessed across five knowledge
graphs: MVPKG (Mou et al., 2024), T-Rex (EI-
sahar et al., 2018), PharmKG8K (Zheng et al.,
2021), WD50K (Galkin et al., 2020), and CoDEx-
S (Safavi and Koutra, 2020). Among them, T-Rex,
WD50K, and CoDEx-S represent general factual
Wikipedia knowledge, whereas PharmKG8K and
MVPKG focus on specialized pharmaceutical and
political science. Further details on datasets and
experimental configurations are in Appendix D. We
now present our key experimental findings.
Finding 1 - Figure 2(a) presents the distribu-
tion of entity knowledgeability scores across vari-
ous datasets. The scores exhibit a trimodal pattern
with peaks at 0.0, 0.5, 1.0, corresponding to cases
where none, some, or all of an entity’s triplets are
recognized. These patterns exhibit clear domain-
specific variation. Specialized datasets such as
PharmKG8K and MVPKG are left-skewed, with
a dominant peak at 0.0 reflecting LLM’s limited
knowledge coverage in domains like pharmaceu-
ticals and political science. In contrast, general-
purpose datasets like T-Rex and WDS50K are right-
skewed, with most entities scoring 1.0, indicat-
ing substantial knowledge coverage in Wikipedia-
based knowledge. Comparing MVPKG and its tem-
poral variant, MVPKG w/o time, we observe an in-
crease in the proportion of entities with zero knowl-
edgeability and a decrease in those scoring 1.0.
This indicates challenges of LLMs in understand-
ing time-sensitive knowledge (Yuan et al., 2024).

Finding 2 - Figure 2(b)/(c) presents the node
homophily distribution and the average graph ho-
mophily across several knowledge graphs. In Fig-
ure 2(b), these distributions are all right-skewed,
with a peak around 0.8, suggesting that nodes and
their neighbors tend to share similar knowledge-
ability scores. This high homophily property has
enhanced graph machine learning in node-level pre-
diction, such as node classification, and inspires our
regression to predict entities’ knowledge scores in
Finding 3. Furthermore, incorporating temporal
information into MVPKG results in a slight shift to
the left, indicating decreased neighbor score simi-
larity. This shift indicates that the temporal dimen-
sion introduces greater complexity and finer knowl-
edgeability distinctions between the nodes and their
neighbors. In addition, we compute the average
graph homophily by averaging across all nodes and
find that it consistently remains above 0.5 across
different datasets and LLLMs. This exhibits a gen-
eral tendency for entities to be connected to others
with similar knowledgeability scores. This finding
reinforces the notion that the LLM’s factual recog-
nition is not randomly distributed in the graph but
is instead correlated among connected entities.

Finding 3 - Figure 2(d) illustrates the relation
between entity degree and knowledgeability. We
observe a clear positive correlation, indicating that
entities with higher degrees tend to exhibit greater
knowledgeability in LLMs. This trend likely arises
because high-degree entities are associated with
more factual content and appear more frequently
in pre-training corpora, increasing their likelihood
of being learned during the LLLM pre-training pro-
cess. This observation aligns with findings showing
accuracy disparities between popular and less pop-
ular entities (Sun et al., 2024). Notably, on the
T-Rex dataset, the positive relationship remains but
is much less pronounced. This is likely because T-
Rex exclusively contains Wikipedia entities, which
are generally well represented in LLM training cor-
pora, even for less popular or low-degree entities.



Table 1: Regression of predicting node knowledgeability
calculated by (1 - Mean Absolute Error between ground-
truth and estimated knowledgeability scores). N/T-X
represents the model X with input features being one-hot
encoding (N)/textual embedding (T). The best perfor-
mance is bolded and the second best is underlined.

Table 2: Performance comparison between fine-tuning
with random triplet selection (Random-FT) and with
knowledgeability-based selection (Graph-FT), where
triplets are ranked from high to low based on estimated
knowledgeability. The best performance is bolded and
the second best is underlined.

Model |T-Rex|WD50K |Pharm|MVPKG(w/o t)| CoDEx Dataset Model | Base Random-FT Graph-FT
N-MLP | 81% | 78% 82% 72% (70%) 84% Llama3 8B | 63.25 86.40 89.05
N-GCN | 84% | 82% 84 % 76% (76%) 87% T-Rex Mistral 7B 63.95 81.85 91.90
N-SAGE| 84% | 82% 84% 76% (77%) 87 % Qwen2.5 7B | 56.05 84.80 83.25
T-MLP | 83% | 78% 83% 76% (77%) 86% Llama3 8B | 17.80 34.85 36.95
T-GCN | 84% | 81% 84% 78% (80%) 87% Pharm  Mistral 7B | 55.30 41.30 60.70
T-SAGE | 84% | 81% 84% 78% (719%) 87% Qwen2.5 7B | 39.50 70.20 74.40
os ) Llama3 8B | 54.75 57.75 58.75
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Homophily (Sorted by Dataset) Node Homophily Average Performance | 49.64 62.09 69.04
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Figure 3: Relation between regression performance and
homophily at (a) graph and (b) node level.

Finding 4 - Table 1 demonstrates strong re-
gression in predicting node knowledgeability, with
absolute errors between 0.15 and 0.25. Compar-
ing models using textual embeddings versus one-
hot encodings reveals no consistent performance
advantage, indicating that textual similarity be-
tween entities does not reliably reflect similarity in
knowledgeability. In contrast, GNN-based models
consistently outperform their MLP-based counter-
parts, underscoring the importance of incorporating
neighborhood context for knowledgeability predic-
tion. This result aligns with previous findings on
the benefits of homophily in relational learning (Ma
et al., 2021; Mao et al., 2023). Figure 3(a) visu-
alizes a positive correlation between average re-
gression performance and global graph homophily.
However, in Figure 3(b), while this trend holds for
T-Rex, WD50K, and CoDEx-S, it is less apparent
for PharmKG and MVPKG, suggesting that the
effect of homophily may be dataset-dependent.

Application - We demonstrate a practical appli-
cation of GNN-predicted knowledgeability scores
to guide the selection of informative triplets for
more effective LLM fine-tuning. Specifically, we
fine-tune three LLMs, LLaMA 3 8B, Mistral 7B,
and Qwen 2.5 7B, across five datasets using two
triplet selection strategies: Random-FT and Graph-
FT. Both start by selecting the same initial 20%

of triplets for knowledge probing. Random-FT
then randomly selects the remaining 80%, while
Graph-FT trains a GNN on the initial 20% to es-
timate entity-level knowledgeability and selects
additional triplets involving entities predicted to
be less known (i.e., with lower knowledgeability
scores). All experiments use identical hyperpa-
rameters within each dataset, differing only in the
triplet selection strategy.

In Table 2, both Random-FT and Graph-FT out-
perform the base models across all datasets. No-
tably, graph-FT consistently outperforms random-
FT, underscoring the benefit of checking triplets
with which the model is less familiar rather than
redundantly reinforcing known knowledge.

4 Conclusion

This work introduces a novel graph-centric per-
spective by quantifying LLM knowledge at the
triplet/entity levels and examining its relationship
with graph structural properties. We uncover key in-
sights, including a strong correlation between node
degree and knowledgeability, and a high degree
of homophily, where topologically close nodes ex-
hibit similar knowledgeability. These observations
motivate the design of a graph machine learning
model utilizing neighborhood information to pre-
dict entity-level knowledgeability. The predicted
scores are then used to actively select more infor-
mative triplets for effective fine-tuning LLMs.



5 Limitations

The limitations of this paper are as follows:

* More applications: The derived structural pat-
terns are used solely to guide triplet selection for
fine-tuning. However, these patterns hold broader
potential. For instance, they could inform knowl-
edge graph retrieval by identifying poor knowl-
edge regions and prioritizing retrieving triplets
there. Furthermore, this technique can also ef-
ficiently identify knowledge deficiency through
structural correlations (Song et al., 2025).

e Limited to knowledge graphs: The derived
structural patterns currently apply only to knowl-
edge graphs with explicitly defined entities and
relations. However, real-world networks, such as
social or citation networks, are often more com-
plex and rich in textual information. Extending
the entity/triplet-level knowledgeability estima-
tion to these text-attributed graphs (Wu et al.,
2024) would broaden real-world applications.
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A Appendix
B Related Work
B.1 LLM as Knowledge Base (KB)

(Petroni et al., 2019) was among the first works to
propose that pretrained LMs encode factual knowl-
edge retrievable via cloze prompts. Subsequent
work such as (Roberts et al., 2020) fine-tuned LLM
for closed-book QA to match external knowledge
systems, (Heinzerling and Inui, 2020) supported
LMs as KBs by examining entity representations
and paraphrase robustness, and (He et al., 2024)
demonstrated that LLMs trained on large-scale data
could flexibly retrieve information, further bolster-
ing the concept of LLMs as knowledge bases. This
motivates the research on checking knowledge of
LLMs as follows.

B.2 Knowledge Checking

To further evaluate this paradigm of LLM as KB,
various knowledge checking methods have been
developed, such as, factuality testing with Truth-
fulQA benchmark (Lin et al., 2021), consistency
and reliability (Zheng et al., 2024), calibration
with self-assessed P(True) and P(I Know) (Kada-
vath et al., 2022), information-theoretic probing
using entropy and KL-divergence (Pezeshkpour,
2023), systematic KG-based evaluation via auto-
generated QA from graphs (Luo et al., 2023), and
evaluating factuality hallucinations by using false
premise questions (Zhu et al., 2024). These ap-
proaches look into knowledge and trustworthiness
checking but treat the model as a black box, leaving
its underlying structural patterns unexplored.

B.3 Topological Understanding of LLM-KB

Some important initial work has looked into local
structures of LLMs. (Geva et al., 2020) presented
that feed-forward layers act like key—value mem-
ories for specific facts. Then (Meng et al., 2022)
presented that factual associations are often local-
ized and editable within mid-layer feed-forward
modules. (Dai et al., 2021) proposed that factual
knowledge is stored in pretrained Transformers in
form of knowledge neurons. (Mruthyunjaya et al.,
2023) evaluated LLMs on structural indicators such
as, symmetry, hierarchy and path among others and
show that they often fail on relational tests. These
studies demonstrate that some implicit structure ex-
ists and yet none characterizes the graph topology
or structural patterns of an LLM’s knowledge base.

C Dataset Statistics

Our experiments are designed to evaluate and com-
pare the knowledgeability of the LLM across mul-
tiple datasets. We illustrate our process on five
datasets: MVPKG (covering U.S. legislative, elec-
tion, diplomatic data, etc.), T-Rex (containing
large-scale high-quality alignments between DBpe-
dia abstracts and Wikidata triples), PharmKG8K
(biomedical knowledge graph), WDSO0K (dataset
derived from Wikidata statements), and CoDEx-S
(extracted from Wikidata and Wikipedia).

* MVPKG (Mou et al., 2024): The MVPKG
dataset encompasses U.S. legislative, election,
and diplomatic data as well as conceptual knowl-
edge from Wikidata. It originally contains
1,857,410 triplets, 137,117 entities, and 602 re-
lations. Due to scale considerations, we extract
the largest strongly connected component, which
comprises 255,697 triplets, 9,055 entities, and
602 relations. The MVPKG dataset had a tem-
poral attribute and was evaluated with the tem-
poral component included and excluded. For
each triplet, two prompts are generated (with
time and without time). Consequently, each en-
tity in MVPKG is assigned two knowledgeability
scores corresponding to the two prompt variants
for further analysis of the effect of inclusion of
temporal information. All other datasets have
only one knowledgeability score due to lack of
temporal attributes.

¢ T-Rex (Elsahar et al., 2018): The T-Rex dataset
is constructed from Wikipedia abstracts aligned
with Wikidata entities in English. It contains
6,566,790 unique triplets; the largest connected
component comprises 193,781 triplets, 46,891
entities, and 423 relations.

* PharmKGS8K (Zheng et al.,, 2021): The
PharmKGS8K multi-relational, attributed biomed-
ical KG, composed of around 500,000 individual
interconnections between genes, drugs, and dis-
eases, with 29 relation types over a vocabulary
of around 8000 disambiguated entities. Given
the scope of the dataset, we used a strongly con-
nected component of 98,537 edges, 6,877 enti-
ties, and 29 relations.

* WD50k (Galkin et al., 2020): The WD50K
dataset was created using the Wikidata RDF
dump of August 2019. It has 233,838 edges and



Table 3: Statistics of the original knowledge graph and the sampled largest connected component.

Dataset # Nodes # Triplets # Avg. Deg # Avg. CC
Original Sampled | Original Sampled | Original Sampled | Original Sampled

T-Rex 3153568 46891 | 6566790 193781 4.16 8.26 0.1473  0.5170
WDS0K 41334 5140 | 233838 34208 11.31 13.31 0.0996  0.1332
PharmKGS8K | 7262 6877 | 479902 98537 | 132.16  28.65 | 0.2512 0.0824
MVPKG 137117 9055 | 1857410 255697 | 12.46 28.24 | 0.0013  0.0140
MVPKG w/o t| 137117 9055 |1857410 116127 | 12.46 12.82 | 0.0013  0.0140
CoDEx-S 2034 36543 35.93 0.0952

41,334 entities. Since being extracted from Wiki-
data, there were 14,858 triplets common between
the WDS50K dataset and the T-Rex largest con-
nected component selected. These were removed
to make sure that common triplets were not over-
shadowing the result comparison between these
datasets. Following that, the largest strongly con-
nected component was selected for experimental
purposes. This LCC had 34,208 edges, 5,140
entities, and 193 relations.

CoDEXx-S (Safavi and Koutra, 2020): CoDEx
is a collection of knowledge graph comple-
tion datasets extracted from Wikidata/Wikipedia,
comprising three subsets of varying sizes. We
select CoDEx-S due to its high proportion
of triplets involving the “occupation” rela-
tion, which poses greater challenges for LLMs,
since individuals may hold multiple occupations.
CoDEXx-S contains 36,543 triplets, 2,034 entities,
and 42 relations.

D Experimental Setting

We describe the experimental setup for (1) mea-

suring the triplet and entity knowledgeability, (2)
training GNNs to predict knowledgeability scores,
and adaptively selecting informative triplets to fine-
tune LLMs.

D.1 Measuring Knowledgeability Score

Prompt Generation: Each triplet is converted
into a natural language prompt using predefined
templates based on the relation type, follow-
ing (Petroni et al., 2019). These templates were
first generated by GPT o-1 mini using the re-
lation and a few of its triplet examples to pro-
vide context, and then evaluated to make sure
the template made semantic sense. (Luo et al.,
2023) used GPT3.5 for generating natural lan-
guage prompts for triplets, validating that LLMs
like GPT3.5 can be used for template or prompt

generation. For MVPKG, both time-specific and
non-time-specific prompts are created.

* LLM Evaluation: The prompts are fed to the
LLM, and responses are recorded as binary val-
ues (1 for true, O for false). This step enables
us to quantify the LLM’s internalized knowledge
regarding each triplet in a way that’s scalable.

* Aggregation to Entity-Level Scores: For ev-
ery entity, triplet-level scores are aggregated to
form the entity-level knowledgeability metric. In
MVPKG, separate aggregations are performed
for the two prompt types, giving two knowledge-
ability values for each entity.

D.2 Fine-Tuning: Random VS Graph

The goal of this experiment is to evaluate whether
fine-tuning LL.Ms on entities for which the model
has low prior knowledge results in greater perfor-
mance improvements than fine-tuning on randomly
selected entities. We hypothesize that targeting
entities about which the model knows less will pro-
duce a larger marginal improvement per example
than fine-tuning on entities already well encoded
in LLM’s internal knowledge inherited during the
pre-training phase.

* Model and Evaluation Set: To test this, we se-
lect three open source models: Llama 3.1 8B,
Mistral v0.3 7B, and Qwen 2.5 7B, and con-
structed an evaluation set for each dataset by
randomly sampling a fixed number of triplets.
Each triplet is converted into a natural language
prompt and is asked to LLM as a True/False eval-
uation task. Baseline performance is measured
by querying each base model on this evaluation
set prior to any fine-tuning. The performance
metric is the percentage of correct responses by
the model on the evaluation set.

* Fine-Tuning Budget and Initial Query: We
then set a budget that the LLM can be fine-tuned



on, and the size of this budget is adjusted accord-
ing to the domain and size of the dataset. Twenty
percent of the budget is reserved for an initial
query set. To set up this initial set, we shuffle the
entity list and iterate through it, adding all triples
associated with the current entity until the 20%
quota is met and if an entity would overshoot the
quota, we randomly subsample just enough of its
triples to fill the gap.

* Graph Fine-Tuning: The triplets in this initial
query set are posed to the base model, allowing
us to calculate an entity-level knowledgeability
score for the selected entities in the initial query.
These entity scores are used to train a Graph-
SAGE model. The model takes text embeddings
of entity names generated using the MiniLM-L6-
v2 sentence transformer as input to predict knowl-
edgeability scores for all the entities across the
dataset. Further, we define an entity’s “ignorance’
as one minus its predicted knowledgeability. En-
tities with the highest ignorance are preferred for
fine-tuning, and ties are broken first by choosing
the entity with the lowest graph degree, to en-
courage topical diversity, and finally at random.
We iteratively add entities and their associated
triplets until 80% of the budget is filled. In case
an entity’s full triplet set would overshoot the
remaining slots, we randomly sample within that
set to exactly meet the quota. The full Targeted
training set thus comprises the initial 20% query
triples plus the 80% ignorance-weighted triplets.

’

* Random Fine-Tuning: For the Random Fine-
Tuning, we retain the initial 20% query set and
additionally randomly sample the remaining 80%
of triplets from all unprobed triplets without re-
placement. This yields a direct random selection
comparison to the targeted method.

E Results across different LLMs
E.1 Llama 3.3 70B

See Figure 4 for an overview of model behavior.

* Knowledgeability Distribution: Similar to
GPT3.5 results, Llama 3.3 70B has a trimodal
pattern in the knowledgeability distribution, with
domain-specific datasets having higher peaks at
0 while general datasets like T-Rex, which are
extracted from Wikipedia, have higher peaks at
1. Peak at 0.5 is largely made of entities with
degree 2 where one triplet is evaluated as true
while the other one as false.

* Homophily Distribution: All datasets have ho-
mophily peak at 0.8 and above indicating that
nodes and their neighbors tend to share similar
knowledgeability scores. We observe overall a
higher homophily on the general domain datasets
than domain specific ones.

* Degree vs Knowledgeability: We observe that
all datasets overall have a positive trend between
the mean knowledgeability value and mean log
degree. Biomedical dataset PharmKGS8K has a
higher upward trend, while MVPKG has a much
shallower trend. This might be attributed to the
T-Rex dataset’s origin from Wikipedia entities
which are well covered by pre-training corpora.

E.2 Deepseek V3

See Figure 5 for an overview of model behavior.

¢ Knowledgeability Distribution: We observe a
trimodel pattern with a relatively small peak at
0.5. Entities with a knowledge value of O are
more common than those with a value of 1, es-
pecially in domain-specific datasets. For general
datasets like T-Rex, WD50K, and CoDEX-S, a
larger proportion of their entities are still recog-
nized by Deepseek, resulting in a higher peak in
the number of entities with full knowledgeability.

* Homophily Distribution: Homophily for enti-
ties across datasets has the highest density at
around 0.8, indicating that entities and their
neighbors tend to share similar knowledgeability
scores. Here, no specific datasets appear to have
a clear advantage over others.

* Degree vs Knowledgeability: All datasets show
a clear positive trend between the degree of en-
tity and their Knowledgeability. T-Rex here has
a slightly steeper trend than both GPT 3.5 and
Llama 3.3 70 B.

E.3 Gemini 2.5 Flash

See Figure 6 for an overview of model behavior.

* Knowledgeability Distribution: The general-
domain datasets continue to have a higher pro-
portion of entities with a knowledgeability score
of 1, resulting in a right-skewed distribution. In
contrast, domain-specific datasets show a higher
proportion of entities with a knowledgeability
score of 0. A notable improvement of Gemini is
that PharmKG8K has a more balanced distribu-
tion compared to the other models, like Llama 3.3



70B, GPT3.5, and Deepseek V3. This indicates
that it has better knowledge about biomedical-
related entities. Although there is still some left
skew, it is significantly less pronounced.

* Homophily Distribution: Similar to other mod-
els, highest homophily density stays around 0.8,
suggesting that nodes tend to have similar knowl-
edgeability scores as their neighbors. T-Rex has a
homophily to the furthest right, further indicating
the nodes have very similar knowledge values to
their neighbors.

* Degree vs Knowledgeability: A positive trend is
observed across all datasets, with each showing
an upward-sloping pattern. T-Rex, while follow-
ing this trend, displays a relatively shallow slope,
consistent with the behavior seen in other models,
due to it being derived from Wikipedia.

E4 GPT 4o

See Figure 7 for an overview of model behavior.

* Knowledgeability Distribution: GPT-40
demonstrates a higher level of entity knowl-
edgeability across all domains compared to
other models. Even in domain-specific datasets
like PharmKG8K, GPT-40 recognizes a larger
proportion of entities than it does not.

* Homophily Distribution: Here, datasets dis-
play a high level of homophily, with the highest
density peaks being greater than 0.8. Following
the pattern across the models, the T-Rex dataset
presents the highest homophily among all the
other datasets.

* Degree vs Knowledgeability: All datasets ex-
hibit an upward trend, suggesting that as the de-
gree associated with an entity increases, so does
its knowledgeability.

F KG vs Topology Analysis across models

For each node, we calculate its corresponding
graph structural properties and group them based
on these properties. For each group, we further
calculate the average knowledge and visualize its
relation with structural properties. See Figure 8 for
GPT-4o0; Figure 9 for Llama 3.3 70B; Figure 10 for
Gemini 2.5; and Figure 11 for DeepSeek V3 for an
overview; Figure 12 for GPT3.5.

* Degree Centrality: We observe a general pos-
itive upward trend among the mean knowledge

10

value and degree centrality across the models. A
high degree node would appear in many facts and
would appear in large amount of training corpus.
Therefore, if sample those corpus for training the
model, that entity would show up at more places
and the model would get more examples of the
entity, and thus learning about it better.

PageRank Centrality: Here, across the models
we observe a positive trend. WDS50K displays a
large variance towards the top. Since, the bins
there contain few entities, variance is presented
as large in case of any outlier.

Katz Centrality: We observe a positive trend
among 4 out of 5 datasets. WDS50K creates a
upside down u shape slope with some outliers,
along with high variance. This can potentially
be attributed to a few entities in the last few bins
presenting an increased variance and unexpected
behavior.

Cluster Centrality: Across the models we see
a positive trend between the mean knowledge-
ability value and the cluster centrality. This can
potentially be caused by the fact that a higher
clustering would mean that entity is part of a
dense group and would be mentioned over and
over whenever the context of that group comes up.
However, the rate is less pronounced in some than
in others. For example, GPT 40 has a stronger
relationship trend than Deepseek V3. T-Rex, for
all the models has a very slight but positive trend,
mostly staying relatively flat.

Closeness Centrality: Here, the results vary the
most. For GPT 4o, almost all datasets have a
U-shape, indicating that both peripheral and cen-
tral nodes get higher knowledgeability values. In
contrast, the Llama model has a relatively minor
U-shape effect, with some datasets broadly stay-
ing flat, and for example, PharmKG8K showing
an upward trend.

Between Centrality: Here, datasets with a gen-
eral domain like WD50K and T-Rex stay rel-
atively flat, whereas domain-specific datasets,
such as PharmKG8K, display a strong positive
relation, indicating that entities that serve as hubs
or bridges tend to have a higher knowledgeability
score than nodes on the periphery.
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Figure 4: LLaMa (a): Distribution of node knowledgeability for each dataset; (b): Distribution of node homophily
for each dataset; (¢): Node knowledgeability increases as node degree increases.
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Figure 5: Deepseek (a): Distribution of node knowledgeability for each dataset; (b): Distribution of node homophily
for each dataset; (¢): Node knowledgeability increases as node degree increases.
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Figure 6: Gemini (a): Distribution of node knowledgeability for each dataset; (b): Distribution of node homophily
for each dataset; (c): Node knowledgeability increases as node degree increases.
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Figure 7: GPT4o (a): Distribution of node knowledgeability for each dataset; (b): Distribution of node homophily
for each dataset; (c¢): Node knowledgeability increases as node degree increases.

We observe that across the models and datasets,  edgeability. In addition, pattern of high homophily
some patterns persist. For instance, positive re-  showcase that nodes and their neighbors tend to
lationship between node degree and their knowl-  have similar knowledgeability.
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Figure 8: GPT4o - Relationship between Mean Knowledgeability and (a): Degree Centrality; (b): PageRank

Centrality; (c¢): Katz Centrality; (d): Cluster Centrality; (e): Closeness Centrality; (f): Betweeness Centrality.
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Figure 9: LLaMa - Relationship between Mean Knowledgeability and (a): Degree Centrality; (b): PageRank

Centrality; (c): Katz Centrality; (d): Cluster Centrality; (e): Closeness Centrality; (f): Betweeness Centrality.
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Figure 10: Gemini - Relationship between Mean Knowledgeability and (a): Degree Centrality; (b): PageRank

Centrality; (¢): Katz Centrality; (d): Cluster Centrality; (e): Closeness Centrality; (f): Betweeness Centrality.
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Figure 11: Deepseek - Relationship between Mean Knowledgeability and (a): Degree Centrality; (b): PageRank
Centrality; (¢): Katz Centrality; (d): Cluster Centrality; (e): Closeness Centrality; (f): Betweeness Centrality.
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Figure 12: GPT3.5 - Relationship between Mean Knowledgeability and (a): Degree Centrality; (b): PageRank
Centrality; (¢): Katz Centrality; (d): Cluster Centrality; (e): Closeness Centrality; (f): Betweeness Centrality.

G Temporal LLM-based Triplet
Evaluation Prompt

Prompt 2: LLM-based Triplet Evaluation (Temporal Variation)

System Message: Evaluate the statement below; reply only True or False.
Given: Triplet 7 = (sub, rel, obj), Date D.
Relational Template Map: 7" : rel — “{sub} ... {obj}”.
Procedure:
1. Retrieve template ¢ = T'(rel).
2. Instantiate base statement So = t[{sub} — sub, {obj} — obj].
3. Append date: S = Sp on D.
4. Send System Msg + User Msg: S to LLM.
5. Return “True” or “False.”
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