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ABSTRACT

Climate models serve as critical tools for evaluating the effects of climate change
and projecting future climate scenarios. However, the reliance on numerical sim-
ulations of physical equations renders them computationally intensive and inef-
ficient. While deep learning methodologies have made significant progress in
weather forecasting, they are still unstable for climate emulation tasks. Here,
we propose PACE, a lightweight 684K parameter Physics Informed Uncertainty
Aware Climate Emulator. PACE emulates temperature and precipitation stably
for 86 years while only being trained on greenhouse gas emissions data. We in-
corporate a fundamental physical law of advection-diffusion in PACE accounting
for boundary conditions and empirically estimating the diffusion co-efficient and
flow velocities from emissions data. PACE has been trained on 15 climate models
provided by ClimateSet outperforming baselines across most of the climate mod-
els and advancing a new state of the art in a climate diagnostic task. Our code is
available at https://anonymous.4open.science/r/PACE-6874/

1 INTRODUCTION

The past decade has seen superior performing data-driven weather forecasting models Kochkov
et al. (2024); Lam et al. (2023); Nguyen et al. (2023b) as compared to numerical weather prediction
models (ECMWF, 2023). However, the medium range forecasting ability makes them unstable for
climate modelling several years into the future (Chattopadhyay & Hassanzadeh, 2023).

Climate models are governed by temporal partial differential equations (PDEs) to describe complex
physical processes Gupta & Brandstetter (2022), enabling simulations of climate behavior under
various forcing scenarios, such as fluctuating greenhouse gas (GHG) emissions. The computational
expense associated with solving these PDEs involves, executing these climate model simulations
typically for several months (Balaji et al., 2017).

In order to faithfully emulate the reference climate model, a Machine Learning (ML) based climate
emulator should follow the fundamental physical laws that govern the dynamics of the atmosphere
(Watt-Meyer et al., 2023). Additionally, accurately capturing the influence of GHG and aerosols is
essential for simulating realistic climate responses to different emission scenarios (Bloch-Johnson
et al., 2024).

The few existing climate emulators that incorporate GHG concentrations typically rely on auto-
regressive training regimes. These models predict climate variables at future time steps based on past
states, but often fail to account for the projected emissions at those future times. This limitation leads
to significant inaccuracies in predicting future climate states, especially under varying anthropogenic
emission scenarios, highlighting a critical gap in current climate modeling approaches.

To address this gap, we propose PACE, which treats climate emulation as a diagnostic-type predic-
tion and integrate emissions data directly into the model’s training framework, to predict climate
variables from a given parallel time-series of climate forcer emission maps (GHG and aerosols) al-
lowing for more accurate simulation of future climate states under varying concentration scenarios.

Furthermore, we focus on two key phenomenon observed by our climate system i.e. advection and
diffusion. In climate modeling, the advection-diffusion equation is fundamental for simulating the
transport and dispersion of climate variables, such as temperature and moisture (Choi et al., 2023).
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PACE proves to be compute-efficient by modelling key physical law which reduces its dependence
on large datasets making it data-efficient as shown in Table 1. Additionally, with generalizability
inherent in the advection-diffusion equation, PACE generalizes across 15 climate models emulating
surface temperature and precipitation stably for 86 years solely from emissions data (see Figure 1).
Our contributions are as follows:

1. We propose PACE, a Neural ODE based climate emulator which models the advection-
diffusion phenomenon by dynamically estimating the diffusion coefficient and flow veloc-
ities based on the input greenhouse gas concentrations.

2. We introduce Gaussian noise as a stochastic term in advection-diffusion equation to account
for uncertainty in climate modelling.

3. We encode periodic boundary conditions by considering the Earth’s atmosphere as a spher-
ical domain to faithfully emulate reference climate models.

4. Finally, we perform extensive experiments to show the generalization capabilities of PACE
for emulating 15 climate models for 86 years at one time.
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Figure 1: Global averaged Surface Air Temperature (TAS) emulation for 86 years (2015-2100) of
Climate Models Left: FGOALS-f3-L, Right TaiESM1

Table 1: Computational Efficiency of PACE vs several Climate Emulators

Emulator Physics Informed Multi-Model Emulation Training Resources Parameters
ClimaX × ✓ 32GB NVIDIA V100 107M

ACE ✓ × N/A 200M
LUCIE ✓ × A100 GPU (2.4hrs) N/A
PACE ✓ ✓ 24GB RTX A5000 684K

2 RELATED WORK

2.1 MACHINE LEARNING (ML) AND PHYSICS BASED CLIMATE EMULATORS

Recently, ML based and Physics Informed climate emulators have been successful in emulating
several climate variables. Watt-Meyer et al. (2023) proposed ACE (AI2 Climate Emulator) based
on Spherical Neural Operator (SFNO) architecture for effective physics informed emulation. Guan
et al. (2024) proposed LUCIE, also based on SFNO to account for the computational complexity
of ACE. Choi et al. (2023) proposed climate modelling using Graph Neural Network (GNN) and
Neural ODE, but do not account for GHG emissions or show any long term stability. Additionally,
there are several climate emulators which are trained on only one climate model unknown for their
generalizability across different climate models (Scher, 2018; Mansfield et al., 2020; Beusch et al.,
2020; Cachay et al., 2021; Watson-Parris et al., 2022). Bassetti et al. (2024) use diffusion models
for climate emulation, however their primary goal is temporal downscaling. Nguyen et al. (2023a)
accounts for multi-model training, however it is limited to medium range forecasting.
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2.2 MODELLING PHYSICAL SYSTEMS USING NEURAL NETWORKS

The neural ordinary differential equation(ODE) model proposed by Chen et al. (2018) has demon-
strated significant potential for solving partial differential equations (PDEs) that govern the complex
physical systems, opening up numerous new research avenues in the field (Mattheakis et al., 2022;
Dandekar et al., 2020; Finzi et al., 2020; Lutter et al., 2019). Further, physics-informed neural net-
works (PINNs) were used to to solve the advection-dispersion equation using discretization-free and
reduced-order methods (Vadyala et al., 2022; He & Tartakovsky, 2021). Neural Networks (NN) have
also been used as surrogate models for obtaining PDE solutions in fluid dynamics and forecasting
(Lu et al., 2021; Li et al., 2020; Brandstetter et al., 2022; Sønderby et al., 2020; Keisler, 2022).

3 MODELLING CLIMATE VARIABILITY THROUGH NEURAL
ADVECTION-DIFFUSION PROCESS

3.1 PROBLEM FORMULATION

We model climate emulation as a continuous sequence to sequence (seq-to-seq) task where the goal
is to predict mapping of climate variables from a given time-series of climate forcer emission maps.
Considering that climate system evolves according to a 2D advection-diffusion process, described
by the following partial differential equation (PDE):

∂u

∂t
+ v · ∇u = D∇2u (1)

where u(x, y, t) represents the climate variables (temperature and precipitation) at time t and spatial
coordinates (x, y), v is the velocity field representing advection and D is the diffusion coefficient.
Formally, let F(t) ∈ Rx×y represent the input fields of greenhouse gas concentrations at time t and
x and y denote the latitude-longitude spatial grid ∈ Ω = [−90◦, 90◦] × [−180◦, 180◦] ⊂ R2. The
output U(t) ∈ Rx×y corresponds to the predicted climate variables at the parallel time step. The
neural network is trained to solve the following mapping:

U(t) = M(F(t); θ) (2)

where M is the neural network model parameterized by θ, which approximates the solution to
the advection-diffusion equation given the input emissions F. The model is designed to learn the
spatiotemporal patterns of our climate system dictated by the underlying physical processes modeled
by the PDE. The complete architectural pipeline of PACE is shown in Figure 2

3.2 ADVECTION DIFFUSION PROCESS

We model climate emulation as a continuous spatio-temporal process which captures two funda-
mental physical processes: advection and diffusion, which together dictate how substances are trans-
ported and spread out throughout the climate system. The general form of the advection-diffusion
equation in a climate system is defined in equation 1.

To faithfully emulate the climate’s chaotic nature, it is essential to determine the path and rate
at which the physical quantities are transported given by v · ∇u where v is the velocity vector
of the fluid (e.g., wind velocity) and ∇u is the gradient of the quantity being transported (e.g.,
temperature or concentration). On the other hand, diffusion models the distribution of physical
quantities such as heat, moisture, and other properties within the atmosphere D∇2u where D is the
diffusion coefficient, indicating how the scalar field spreads out due to molecular diffusion.

We employ Neural ODE presented by Chen et al. (2018) to solve the 2D advection diffusion equa-
tion 3 by discretizing the spatial domain using Finite Difference Method (FDM) Fiadeiro & Veronis
(1977) considering the earth is divided into spatially uniform grid points in x and y directions (lon-
gitude x latitude). FDM employ spatial discretization to approximate derivatives using the values at
grid points. We explain the spatail discretization and show it’s effect visually in section 4.

∂u

∂t
+ vx

∂u

∂x
+ vy

∂u

∂y
= D(

∂2u

∂x2
+

∂2u

∂y2
) (3)
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The spatial derivatives are therefore descritized as equation 4, equation 5:

∂u

∂x
≈ u(x+∆x, y, t)− u(x−∆x, y, t)

2∆x
(4)

∂2u

∂x2
≈ u(x+∆x, y, t)− 2u(x, y, t) + u(x−∆x, y, t)

∆x2
(5)

Similarly for ∂u
∂y and ∂2u

∂y2 . The discretized spatial dimensions are substituted in the equation 3, while
time t remains continuous. We used dopri5 (Dormand & Prince, 1980) solver to integrate the learned
dynamics over time, predicting the evolution of the system as shown in equation 6.

du

dt
= fθ(u, vx, vy, D,∆x,∆y) (6)

u(t) = dopri5(fθ, u0, t) (7)

3.2.1 ESTIMATING DIFFUSION COEFFICIENT AND VELOCITY FIELD OF CLIMATE FORCER
EMISSIONS

We initialize the model with the empirical estimation of diffusion coefficient D from green house
gas emissions data. We calculate the spatial variance across the latitude and longitude dimensions to
analyze how greenhouse gas concentrations spread from regions of high emissions over time. The
diffusion co-efficient is calculated as equation 8.

Destimate =
1

M

M∑
i=1

V ar(Ci) (8)

where M is the number of gas types and V ar(C) = spatial variance calculated as:

V ar(C) =
1

NxNy

Nx∑
x=1

Ny∑
y=1

(C(t, x, y)− C̄(t))2 (9)

where C(t, x, y) is the concentration at time t at point (x, y), C̄(t) is the mean concentration across
the spatial domain and Nx, Ny are the number of grid points in the longitude and latitude dimen-
sions.

We empirically estimate the initial velocity from GHG concentration fields. The velocity fields vx
and vy are inferred using spatial gradients of the concentration field as shown in equation 10. These
gradients indicate the direction and rate of concentration change, allowing the model to simulate
advection accurately. Estimating velocity this way integrates spatial transport dynamics into the
advection-diffusion solver, crucial for realistic climate modeling.

vx ≈ ∂C

∂x
, vy ≈ ∂C

∂y
(10)

∂C

∂x
≈ C(x+∆x, y, t)− C(x−∆x, y, t)

2∆x
(11)

∂C

∂y
≈ C(x, y +∆y, t)− C(x, y −∆y, t)

2∆y
(12)

3.2.2 UNCERTAINTY ESTIMATION

To account for uncertainty in our climate model, we integrate a stochastic term into the advection-
diffusion as show in equation 13. Here, the stochasticity refers to a noise term which represents
random fluctuations or uncertainties.

∂u

∂t
+ v · ∇u = D∇2u+ αη(x, y, t) (13)

4
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where η(x, y, t) is a stochastic process, modeled as Gaussian noise with mean zero and variance
σ2. We control the intensity of the stochastic perturbations with α ass a scaling factor and optimize
the Negative Log-Likelihood (NLL) loss which penalizes low probability assignments to observed
outcomes. Assuming y ∼ N (µ, σ2), the loss is given in equation 14

NLL = − 1

N

N∑
i=1

[− (yi − µi)
2

2σ2
i

− log(σ2
i )−

1

2
log(2π)] (14)

where y is the target data and N = H.W product of the height (latitude) and width (longitude) of
the spatial grid.

3.2.3 PERIODIC BOUNDARY CONDITIONS AND HARMONICS SPATIO-TEMPORAL
EMBEDDINGS

We implement periodic boundary condition (PBC) to simulate the entire planet. Considering Earth
as roughly spherical, PBC ensure that the boundary at one edge of the domain connects seamlessly
to the opposite edge, avoiding artificial edge effects and ensuring continuity. Mathematically, if
f(x, y) is the state variable, periodic conditions imply f(x, y) = f(x + Lx, y) = f(x, y + Ly)
where Lx and Ly are the domain lengths in the x and y directions, respectively.

We implement harmonic embeddings to learn seasonal variations and cyclical changes in climate
data. By employing a series of sine and cosine functions of varying frequencies, these embeddings
introduce features that help the model learn and represent periodic behaviors in the data effectively.

embedding(t) = [sin(2i · t), cos(2i · t), ........., sin(2n−1 · t), cos(2n−1 · t)] (15)

where n is the number of bands and 2i is the frequency factor for each band, where i ranges from 0
to n− 1 (determined by maximum frequency).

3.3 CONVOLUTION BLOCK ATTENTION MODULE (CBAM)

We implement a CBAM to handle the global spatial dependencies, as a parameterized network
equation 16. The Neural ODE models the advection diffusion dynamics and extract features that
are then fed into the CBAM which applies both Channel Attention Module (CAM) equation 17 and
Spatial Attention Module (SAM) equation 18.

fθ(u(x, y)) = Mc(F ) +Ms(F ) (16)

Mc(F ) = σ(MLP (AvgPool(F )) +MLP (MaxPool(F ))) (17)

where Mc(F ) is the channel attention map, σis the sigmoid function, and MLP denotes the multi-
layer perceptron.

Ms(F ) = σ(f7×7([AvgPool(F );MaxPool(F )])) (18)

where Ms(F ) is the spatial attention map, and f7×7is the convolutional layer with a 7x7 filter.

4 EXPERIMENTS AND RESULTS

4.1 TASK

The goal of PACE is to emulate surface air temperature (TAS) and precipitation (PR) from climate
forcer emission maps (CO2, CH4, SO2, BC) for a parallel time series of 2015-2100. We simulate
the output of each climate model as single and super emulator, and also validate the generalisation
of our methodology using zero-shot learning. We compare PACE against all baselines provided by
ClimateSet under the same hyperparameter settings. We also compare against ACE (Watt-Meyer
et al., 2023) and LUCIE Guan et al. (2024), two recent climate emulators. Since, they both are
developed for different emulation task, we adopt their base architecture SFNO Bonev et al. (2023)
and train it for the same task as ours. The details for adaptation of SFNO are given in Appendix A.2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Input Emissions Map
CO2, CH4, BC, SO4

Initial Velocity
Inference

Diffusion
Estimation

Neural ODE solver inputs

Spatial
Attention

Map

M
ax

Po
ol

Av
er

ag
e

Po
ol

Channel
Attention Map Surface Air

Temperature

Precipitation

Adaptive
Pooling

Advection-Diffusion equation Solver using dopri5 ode solver

Figure 2: Complete architectural pipeline of PACE. The model initializes the velocity fields and
diffusion co-efficient from the input data of four gases i.e. C02, CH4, BC, SO2. After solving
the advection-diffusion equation, channel and spatial attention extracts important spatial features to
generate output maps of Temperature and Precipitation

4.2 DATASET

We train PACE on a total of 15 climate models provided by ClimateSet Kaltenborn et al. (2023). Cli-
mateSet compiles climate data from the Coupled Model Intercomparison Project Phase 6 (CMIP6)
(Eyring et al., 2016) , incorporating climate model outputs from ScenarioMIP (O’Neill et al., 2016)
and future emission trajectories of climate forcing agents from Input Datasets for Model Intercom-
parison Projects (Input4MIPs) (Durack et al., 2017). Each climate model has been standardized to a
spatial resolution of 250km i.e. 96 × 144 grid points (latitude × longitude) with a monthly temporal
resolution. Both input and output datasets consist of 86-year time-series data spanning four SSP
scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) from 2015 to 2100. We use three scenarios
namely SSP1-2.6, SSP3-7.0, SSP5-8.5 for training with a validation split of 0.1 and SSP2-4.5 for
testing.

4.3 EVALUATION METRICS

We evaluate PACE and all benchmarks using latitude-weighted Root Mean Square Error (RMSE)
given in equation 19.

RMSE =
1

N

N∑
t

√√√√ 1

HW

H∑
h

W∑
w

L(i)(ythw − predthw) (19)

where L(i) accounts for latitude weights.

L(i) =
cos(lat(i))

1
H

∑H

i′=1
cos(lat(i′))

where lat(i) represents the latitude of the i-th row within the grid. The latitude weighting factor is
introduced to address the uneven distribution of areas when mapping the spherical Earth’s surface
onto a regular grid.

4.4 SINGLE EMULATOR

For single emulator experiments, we trained all models for 25 epochs. We report RMSE for UNet,
ConvLSTM, ClimaX, ClimaX Frozen and SFNO. The training hyperparameters are all kept similar
to those used in the original paper. PACE outperforms all models for emulating temperature across

6
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13 climate models whereas ClimaX performs better on EC-Earth3 and TaiESM1 with lowest RMSE.
For precipitation emulation, all models perform slightly worse with SFNO having lowest RMSE
for simulating BCC-CSM2-MR and TaiESM1, ClimaX for AWI-CM-1-1-MR and CAS-ESM2-0,
UNet performs best for INM-CM4-8 while PACE performs best for simulating remaining 10 climate
models. Figure 3 shows the overall distribution of how each ML model performs across all 15
climate models in emulating temperature and precipitation. Detailed RMSE results for all 15 climate
models for temperature and precipitation emulation are given in Appendix B in Figures 6 and 7.

UNet ConvLSTM ClimaX ClimaX-
Frozen

SFNO PACE
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Figure 3: RMSE distribution for climate variable predictions ccross different models. Each box
represents the interquartile range (IQR) of RMSE values, capturing the spread and variability in
prediction accuracy for key climate variables Temperature and Precipitation. The plot shows the
consistent performance of PACE across all 15 climate models.

4.5 SUPER EMULATOR

Here, the term super emulator is used to train a single ML model on all of 15 climate models.
This leads to the rich feature learning resulting in better generalization capabilities across different
climate models. We use the same multihead decoder proposed in ClimateSet to train all ML models
including PACE. We train all ML models for 100 epochs to keep the training regime computationally
efficient with 2 convolutional layers and and 32 units decoder head. For super-emulator experiments
we use a batch size of 1 for all models due to computational constraints.

For super emulation PACE outperforms all ML models on 13 climate models while ConvLSTM per-
forms best for emulating EC-Earth3-Veg-LR and TaiESM1. The authors of ClimateSet Kaltenborn
et al. (2023) suggest that during super emulation, smaller models demonstrate superior learning
efficiency compared to larger models. This is because smaller models converge faster, allowing the
model to learn patterns and relationships in the data more rapidly. We believe PACE being phys-
ically consistent and compute-efficient is able to learn complex climate features and outperform
computationally intensive climate emulators.

4.6 GENERALIZATION CAPABILITIES OF PACE AS A SINGLE EMULATOR

We test the generalization capabilities of ML models on three climate models: AWI-CM-1-1-MR,
MPI-ESM1-2-HR and FGOALS-f3-L. The RMSE results are shown in Tables 3, 4 and 5 for TAS
(surface air temperature) and PR (precipitation) pre-trained on different climate models and tested
on these three climate models. The metric for best performing model is emboldened and second
best is highlighted in red. The pretrained climate model column shows which dataset the model was
initially trained on before being tested on the either of the three climate models. Overall PACE,
SFNO and ClimaX generalize well over different climate models with PACE outperforming on
majority of the models.

While ClimaX benefits from pre-training on multiple climate models, PACE demonstrates superior
computational efficiency and generalization. ClimaX required up to 80 GPUs and a large-scale
dataset for pre-training Nguyen et al. (2023a), whereas PACE, pre-trained on a single climate model
using just one GPU, achieves superior generalization across diverse climate models. This highlights
the resource efficiency of our approach without compromising performance.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Super-emulator results on 15 climate models datasets which are a subset of ClimateSet. We
report the RMSE for TAS (surface air temperature). The best performing models are emboldened.

Climate Models PACE UNet ConvLSTM SFNO ClimaX ClimaXfrozen

AWI-CM-1-1-MR 0.259 0.406 0.322 0.666 0.896 0.780
BCC-CSM2-MR 0.291 0.464 0.312 0.679 0.764 0.624
CAMS-CSM1-0 0.263 0.470 0.325 0.610 0.732 0.721
CAS-ESM2-0 0.254 0.495 0.351 0.671 0.867 0.724
CNRM-CM6-1-HR 0.222 0.441 0.307 0.599 0.742 0.631
EC-Earth3 0.229 0.418 0.349 0.651 0.799 0.686
EC-Earth3-Veg-LR 0.297 0.398 0.278 0.589 0.756 0.701
FGOALS-f3-L 0.276 0.481 0.399 0.629 0.877 0.711
GFDL-ESM4 0.256 0.424 0.394 0.595 0.876 0.697
INM-CM4-8 0.247 0.482 0.342 0.611 0.743 0.623
INM-CM5-0 0.204 0.394 0.300 0.570 0.799 0.656
MPI-ESM1-2-HR 0.245 0.430 0.337 0.673 0.801 0.767
MRI-ESM2-0 0.285 0.464 0.371 0.692 0.821 0.714
NorESM2-MM 0.278 0.452 0.350 0.584 0.720 0.695
TaiESM1 0.311 0.408 0.309 0.587 0.699 0.617

Table 3: Generalization results on AWI-CM-1-1-MR. The first row shows the results from training
on AWI-CM-1-1-MR from scratch.

Pre-Trained
Climate Model

PACE UNet ConvLSTM SFNO ClimaX ClimaXfrozen

TAS PR TAS PR TAS PR TAS PR TAS PR TAS PR

AWI-CM-1-1-MR 0.184 0.499 0.289 0.571 0.451 0.622 0.200 0.501 0.207 0.498 0.412 0.707
BCC-CSM2-MR 0.247 0.620 0.275 0.653 0.466 0.696 0.230 0.599 0.232 0.617 0.432 0.753
CAS-ESM2-0 0.275 0.641 0.273 0.694 0.477 0.714 0.278 0.656 0.250 0.654 0.461 0.763
MRI-ESM2-0 0.205 0.620 0.276 0.656 0.456 0.697 0.218 0.635 0.223 0.643 0.410 0.756
NorESM2-MM 0.231 0.582 0.301 0.562 0.459 0.674 0.245 0.591 0.286 0.551 0.441 0.754

Table 4: Finetuning results on MPI-ESM1-2-HR. The first row shows the results from training on
MPI-ESM1-2-HR from scratch.

Pre-Trained
Climate Model

PACE UNet ConvLSTM SFNO ClimaX ClimaXfrozen

TAS PR TAS PR TAS PR TAS PR TAS PR TAS PR

MPI-ESM1-2-HR 0.193 0.477 0.234 0.410 0.449 0.636 0.198 0.586 0.214 0.509 0.411 0.716
CNRM-CM6-1-HR 0.221 0.580 0.268 0.657 0.482 0.714 0.234 0.601 0.225 0.599 0.453 0.756
EC-Earth3 0.228 0.544 0.262 0.558 0.465 0.667 0.259 0.551 0.220 0.567 0.443 0.744
EC-Earth3-Veg-LR 0.241 0.554 0.270 0.560 0.471 0.660 0.244 0.565 0.233 0.551 0.456 0.744
TaiESM1 0.208 0.602 0.294 0.711 0.461 0.692 0.248 0.645 0.268 0.682 0.427 0.757

Table 5: Finetuning results on FGOALS-f3-L. The first row shows the results from training on
FGOALS-f3-L from scratch.

Pre-Trained
Climate Model

PACE UNet ConvLSTM SFNO ClimaX ClimaXfrozen

TAS PR TAS PR TAS PR TAS PR TAS PR TAS PR

FGOALS-f3-L 0.184 0.559 0.241 0.562 0.485 0.652 0.253 0.561 0.218 0.573 0.456 0.729
GFDL-ESM4 0.207 0.563 0.321 0.716 0.484 0.697 0.271 0.600 0.330 0.708 0.468 0.762
INM-CM4-8 0.232 0.722 0.296 0.776 0.491 0.744 0.259 0.737 0.245 0.745 0.468 0.790
INM-CM5-0 0.212 0.574 0.277 0.756 0.488 0.739 0.261 0.730 0.250 0.725 0.459 0.785
MPI-ESM1-2-HR 0.209 0.696 0.283 0.701 0.482 0.714 0.257 0.701 0.250 0.691 0.445 0.760
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5 NUMERICAL DISCRETIZATION AND GRID REPRESENTATION: IMPACT OF
FINITE DIFFERENCE METHODS (FDM) ON EARTH’S SPATIAL GRIDDING
IN CLIMATE MODELS

We utilize FDM for spatial discretization in PACE which divides the the physical space (in this case
Earth atmosphere) into a grid of discrete points. Each grid point represents a specific location, and
the value of the physical quantity (e.g., temperature) is computed at each point. The gridding at a
lower resolution does induce additional errors. In future, we aim to test FVM and FEM to test if
they results in smoother outputs and reduce errors.
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Figure 4: Numerical descrization effect on emulation of Temperature and Precipitation. In FDM,
continuous differential equations (like the equations governing temperature, pressure, or velocity)
are approximated using discrete differences between values at specific grid points. The process of
discretization converts the continuous space into a finite grid, and the differential operators (like
derivatives) are approximated using differences between the values at neighboring grid points.

6 ABLATION STUDIES

To understand the importance of each component of PACE, we perform ablation studies across four
climate models namely AWI-CM-1-1-MR, TaiESM1, EC-Earth3 and NorESM2-MM.

Advection-Only: For this study, we remove the empirical estimated diffusion term from PACE and
only model the advection process using Neural ODE. The resulting RMSE for surface air tempera-
ture and precipitation increases deteriorating the model’s overall performance. The results show that
missing approximation of diffusion has a greater effect on temperature as compared to precipita-
tion, therefore determining that diffusion is critical in accurately simulating the transport of physical
quantities like heat, moisture, and momentum.

Diffusion-Only: In order to understand the importance of advection process, we initialised the
model with constant velocities i.e. (vx = 1.0, vy = 1.0) rather than estimating their values from
GHG emissions. This resulted in a much greater impact on emulating precipitation as compared to
the previous study.

Neural ODE: For this study, we remove the advection diffusion process and only parameterize the
Convolution Attention Module using Neural ODE. Our results demonstrate that accurately capturing
advection-diffusion process is essential to simulate how energy and moisture are distributed, which
directly impacts predictions of temperature, precipitation, and long-term climate changes, highlight-
ing the critical contribution of each element to optimizing the model’s emulating performance.

7 CONCLUSION AND FUTURE WORK

In this work, we present PACE, a physics and uncertainty aware climate emulator which accounts for
Earth’s atmospheric advection-diffusion phenomenon. We incorporate a key physical law in PACE
by solving a time-dependent partial different equation (PDE) using Neural ODE. Additionally, we
encode periodic boundary conditions to avoid artificial edge effects that arise from rigid boundaries.
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Figure 5: Ablation studies for TAS and PR emulation. Advection (red), diffusion (blue) and NODE
(purple). We can see that advection plays the most important role in emulation followed by diffusion.

However, there are a few potential limitations of PACE which will be addressed as a possible future
work. Our training regime only includes climate model data which is based on simulations and
not considered entirely accurate. As a future work, we aim to extend training mechanism of PACE
on both ERA5 weather and ClimateSet’s extensive climate data to enhance emulation accuracy.
Additionally, PACE is trained on coarse resolution data which does not fully account for extreme
events at regional level. Further, PACE is still limited in its ability to emulate precipitation stably
for 86 years. These limitations can be addressed by training on high resolution data and encoding
physical constraints such as energy, mass and water conservation in a loss function.

ETHICAL STATEMENT

Our research aims to emulate temperature and precipitation for multiple climate models by solving
an atmospheric advection-diffusion equation using ML based approach while being computationally
efficient. The findings demonstrate that data-driven approaches can substantially enhance forecast
accuracy while utilizing computational resources more efficiently. The environmental impact of op-
timizing computational efficiency in forecasting is notable, as it reduces the carbon footprint asso-
ciated with large-scale computational processes, aligning with global initiatives to mitigate climate
change. By combining machine learning (ML) techniques to both improve predictive accuracy and
reduce computational overhead, we propose a sustainable and scalable solution for climate emula-
tion that can better serve the global population.
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A EXPERIMENT DETAILS

A.1 HYPERPARAMETERS

Table 6: Training Hyperparameters for PACE

Hyperparameters Meaning Value
in var Number of input variables 4
out var Number of output variables 2
solver method Numerical integration dopri5
rtol Relative tolerance 1e-3
atol Absolute tolerance 1e-6
num bands Number of frequency bands 4
max freq Maximum frequency for harmonic embeddings 6
batch size Batch size 4
optim Optimizer Adam
lr Learning rate 2e-4
lrscheduler Learning Rate Scheduler Exponential
decay Weight decay value 1e-4
ϵ epsilon value 1e-8
norm Data Normalization z-score

Table 7: Hyperparameters for Convolutional Block

Hyperparameters Meaning Value
conv2d Number of convolutional layers 4
hidden channels Number of hidden layers 64
channel increment Multiplication factor for hidden layers [1,2,2,4]
kernel size Convolution filter size 3
stride Stride of each convolution layer 1
padding Padding of each convolution layer 1
cbam Number of CBAM layers 3
activation Activation Function ReLU
dropout Dropout rate 0.1

A.2 SFNO TRAINING DETAILS

We maintain the hyperparameters of the SFNO consistent with the configuration proposed in LUCIE
(Guan et al., 2024). To adapt SFNO for our specific task, we incorporate a 2D convolutional layer
designed to handle inputs with 4 channels and produce outputs with 2 channels. This modification
ensures compatibility between the original model architecture and the dimensional requirements of
our data, allowing effective processing of our input-output pair while maintaining the integrity of
the model’s core hyperparameters.

Table 8: Hyperparameters for SFNO

Hyperparameters Value
SFNO blocks 6
Encoder and Decoder Layers 1
Units per Layer 32
Optimizer Adam
Learning Rate 1 x 10−4

Activation Function GELU

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 HARDWARE AND SOFTWARE REQUIREMENTS

We use PyTorch Paszke et al. (2019), Pytorch Lightning Falcon (2019), torchdiffeq Chen et al.
(2018) for implementation of PACE. We train PACE on a single RTXA5000 with 24GB RAM. We
perform all super emulator training experiments on a single NVIDIA DGX A100 with 80 GB RAM.

B RESULTS
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Figure 6: RMSE results for Surface Air Temperature (TAS) Emulation for the projection of SSP2-
4.5 (2015 – 2100). PACE outperforms all other ML models on 13 out of 15 Climate models namely:
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Figure 7: RMSE results for Precipitation (PR) Emulation for the projection of SSP2-4.5 (2015 –
2100). PACE outperforms all other ML models on 9 out of 15 Climate models namely:
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Figure 8: Temperature emulation of the year 2015-2026 for Climate Model AWI-CM-1-1-MR
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