
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Scalable and Effective Generative Information Retrieval
Anonymous Author(s)

ABSTRACT
Recent research has shown that transformer networks can be used
as differentiable search indexes by representing each document as a
sequences of document ID tokens. These generative retrieval models
cast the retrieval problem to a document ID generation problem for
each given query. Despite their elegant design, existing generative
retrieval models only perform well on artificially-constructed and
small-scale collections. This has led to serious skepticism in the
research community on their real-world impact. This paper repre-
sents an important milestone in generative retrieval research by
showing, for the first time, that generative retrieval models can
be trained to perform effectively on large-scale standard retrieval
benchmarks. For doing so, we propose RIPOR– an optimization
framework for generative retrieval that can be adopted by any
encoder-decoder architecture. RIPOR is designed based on two
often-overlooked fundamental design considerations in generative
retrieval. First, given the sequential decoding nature of document
ID generation, assigning accurate relevance scores to documents
based on the whole document ID sequence is not sufficient. To ad-
dress this issue, RIPOR introduces a novel prefix-oriented ranking
optimization algorithm. Second, initial document IDs should be
constructed based on relevance associations between queries and
documents, instead of the syntactic and semantic information in
the documents. RIPOR addresses this issue using a relevance-based
document ID construction approach that quantizes relevance-based
representations learned for documents. Evaluation on MSMARCO
and TREC Deep Learning Track reveals that RIPOR surpasses state-
of-the-art generative retrieval models by a large margin (e.g., 30.5%
MRR improvements on MS MARCO Dev Set), and perform better
on par with popular dense retrieval models.

KEYWORDS
Generative retrieval, neural ranking models, ranking optimization
ACM Reference Format:
Anonymous Author(s). 2024. Scalable and Effective Generative Information
Retrieval. In Proceedings of The 2024 ACMWeb Conference (WWW ’24).ACM,
New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Pre-trained foundation models have been employed in the develop-
ment of a range of retrieval models, including those that re-weight
terms within queries and documents for sparse retrieval [12, 13],
cross-encoder re-ranking models [31], and dual-encoder retrieval

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’24, MAY 13–17, 2024, Singapore, Singapore
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

models [19, 47, 50, 51]. Recently, Tay et al. [42] proposed an elegant
and innovative approach to information retrieval (IR) by leverag-
ing pre-trained encoder-decoder models as differentiable search
indexes (DSI). This has led to the development of a few generative
retrieval models in the past year, such as NCI [46], DSI-QG [54],
and DSI++ [29]. In these models, each document ID is a unique se-
quence of special document ID tokens and they are often generated
autoregressively using a constrained beam search algorithm [5] for
each given query.

A distinct advantages of generative retrieval over existing re-
trieval models includes obviating the need to retrieve based on the
external memory by encapsulating collection information within
the model’s parameters. This design promotes end-to-end training,
making it seamless to integrate with existing foundation model
(e.g., GPT-4) workflows for various tasks that benefit from retrieval,
such as open-domain question-answering, fact verification, and
conversational search [15, 43]. However, despite the theoretical
appeal, prior work has only been able to demonstrate the empirical
success of generative retrieval models on small-scale (and often
artificially-constructed) document collections. For example, a sim-
ple term matching model, such as BM25, achieves 300% higher
MRR than DSI [42] on MSMARCO, and this gap can be reduced
to 76% after data augmentation through query generation [54].1
These observations have recently led to serious skepticism in the re-
search community on the real-world impact of generative retrieval
models [33].

We argue that the poor performance of generative retrieval mod-
els is a result of two often-overlooked design considerations that are
vital to their efficacy. The first pertains to the sequential nature of
the beam search algorithm employed during document ID decoding.
For each given query, beam search [41] sustains a top 𝑘 candidate
list at each decoding step based on the cumulative scores of the
already-decoded tokens (i.e., prefix of document IDs). In order to
successfully generate the document ID of relevant documents, every
document ID prefix of the relevant documents should be among the
top 𝑘 candidate list in beam search decoding. This essential aspect
is not considered by existing generative retrieval models. To ad-
dress this issue, we advocate a prefix-oriented ranking optimization
method, introducing a novel margin-based pairwise loss function
that guides the model towards producing higher relevance score
for every prefix of the relevant document IDs verses non-relevant
document ID. This method also incorporates progressive training,
gradually refining the model’s prediction from the shortest prefix to
the full-length document ID. Multi-objective progressive learning
is applied to prevent the model from forgetting to emphasize on
document ID prefixes.

Secondly, existing methods do not consider relevance informa-
tion in constructing the initial document IDs. They instead use
syntactic and semantic information in the documents, represented
by pre-trained BERT [11] or sentence-T5 [30] to form the initial
document IDs using hierarchical clustering [42, 46], ngrams [3],

1For more information, see Table 1. Similar observations have been made in [46].
1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, MAY 13–17, 2024, Singapore, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

or approximation methods [36, 52]. However, as demonstrated by
relevance-based word embedding [48], relevance information can-
not simply be captured by models trained with syntactic, semantic,
and proximity based objectives. And since generative retrieval mod-
els conduct optimization with fixed document IDs, inappropriate
initial construction of document IDs leads to a bottleneck inherently
influencing the effectiveness of generative retrieval models. We ad-
dress this issue by presenting a novel pre-training phase for initial
document ID construction. Here, we transform the encoder-decoder
generative retrieval model to a special dense retrieval model, with
a relevance-based objective trained on the target task. The trained
document representations are then decomposed into multiple vec-
tors using residual quantization (RQ) [1, 6] that has proven to be a
successful approximation for relevance-based representations.

We conduct experiments on standard large-scale information
retrieval benchmarks, including MSAMRCO [4] and TREC 2019-20
Deep Learning Track data [9, 10], The retrieval collection consists
of 8.8 million passages. Our approach achieves substantial improve-
ments compared to state-of-the-art generative retrieval models in
all settings. For example, our RIPOR framework2 outperforms the
best performing generative retrieval model by 30.5% in terms of
MRR@10 on MSMARCO. In most settings, our model also shows
better performance compared to popular dense retrieval models,
such as DPR [19], ANCE [47], MarginMSE [16], and TAS-B [17].
Therefore, this paper sets an important milestone in generative re-
trieval research by demonstrating, for the first time, the feasibility
of developing generative retrieval models that perform effectively
at scale, and paving the path towards their implementation in real-
world applications. To foster research in this area, we open-source
our implementation and release the learned model parameters.3

2 INTRODUCTION TO GENERATIVE IR
In generative document retrieval, each document is symbolized
by a unique identifier, known as document ID or DocID for short.
Pre-trained encoder-decoder models, such as T5 [35], are employed
to generate a list of document IDs in response to a given query.
Let 𝑀 represent a generative retrieval model that represents a
document 𝑑 using the document ID 𝑐𝑑 = [𝑐𝑑1 , 𝑐

𝑑
2 , . . . , 𝑐

𝑑
𝐿
] of length

𝐿. Various methods are applied to the DocID construction [3, 42, 52].
For instance, DSI [42] employs the hierarchical k-means over the
document embeddings obtained from the pre-trained BERT model
[11]. Once the tree is built, each root-to-leaf path is used as a unique
document ID.

As depicted in Figure 1,𝑀 is trained to generate document IDs
autoregressively for any given query 𝑞, meaning that it generates
each DocID token 𝑐𝑑

𝑖
conditioned on previously generated tokens,

denoted by 𝑐𝑑
<𝑖
. Therefore, themodel generates a conditional hidden

representation for the 𝑖th DocID token as follows:

h𝑑𝑖 = Decoder(𝑐𝑑<𝑖 ;Encoder(𝑞)) ∈ R
𝐷 .

where 𝑐𝑑
<𝑖

= [𝑐𝑑1 , 𝑐
𝑑
2 , . . . , 𝑐

𝑑
𝑖−1] is fed to the decoder as its input and

the encoded query vector is used to compute cross-attentions to
the decoder. In generative retrieval, each DocID token is associated
with a 𝐷-dimensional representation. Let E𝑖 ∈ R𝑉 ×𝐷 denotes a
2RIPOR stands for relevance-based identifiers for prefix-oriented ranking.
3http://anonymized_url/

Encoder

query

Decoder

<latexit sha1_base64="WkdTU76ScpW4Z3wmhzWtwrOU3Jc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSA+u5vXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gDtX42U</latexit>c0
<latexit sha1_base64="a9RqMX/ZRIblv37VZh9gkjpxfBU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSA+t5vXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gDu442V</latexit>c1

<latexit sha1_base64="aEBbwqeT1jYbYcXX8Su8VtTa6sw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbArvo5BLx4jmAckS5id9CZDZmeXmVkhLPkILx4U8er3ePNvnCR70MSChqKqm+6uIBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3dRvPaHSPJaPZpygH9GB5CFn1FipxXoZP/MmvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9m5E3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeONnXCapQcnmi8JUEBOT6e+kzxUyI8aWUKa4vZWwIVWUGZtQyYbgLb68TJrnVe+qevlwUand5nEU4QiO4RQ8uIYa3EMdGsBgBM/wCm9O4rw4787HvLXg5DOH8AfO5w/kro9L</latexit>ci�1…

<latexit sha1_base64="uOKg92CrtTNnNIrBNM7LA8XIDQ0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6GPZ4r1xxq+4MZJl4OalAjnqv/NXtxyyNUBomqNYdz02Mn1FlOBM4KXVTjQllIzrAjqWSRqj9bHbqhJxYpU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTsiF4iy8vk+ZZ1busXtyfV2o3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AFLcI3S</latexit>

hi
<latexit sha1_base64="Gr21MG1dtYNsoBQfC2c22QF2bRI=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2VRBJcV7AM6Q8mkmTY0kwlJRihDf8ONC0Xc+jPu/Bsz7Sy09UDgcM693JMTSs60cd1vp7Syura+Ud6sbG3v7O5V9w/aOkkVoS2S8ER1Q6wpZ4K2DDOcdqWiOA457YTj29zvPFGlWSIezUTSIMZDwSJGsLGS78fYjMIou+uzab9ac+vuDGiZeAWpQYFmv/rlDxKSxlQYwrHWPc+VJsiwMoxwOq34qaYSkzEe0p6lAsdUB9ks8xSdWGWAokTZJwyaqb83MhxrPYlDO5ln1IteLv7n9VITXQcZEzI1VJD5oSjlyCQoLwANmKLE8IklmChmsyIywgoTY2uq2BK8xS8vk/ZZ3busXzyc1xo3RR1lOIJjOAUPrqAB99CEFhCQ8Ayv8Oakzovz7nzMR0tOsXMIf+B8/gA0aZHP</latexit>

Ei

<latexit sha1_base64="heHBfS7+4uQ950gVndUM0i7pKBE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HoxWMFYwttKJvNpl262Q27E6GU/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvygQ36HnfTmlldW19o7xZ2dre2d2r7h88GpVrygKqhNLtiBgmuGQBchSsnWlG0kiwVjS8nfqtJ6YNV/IBRxkLU9KXPOGUoJWCLo0V9qo1r+7N4C4TvyA1KNDsVb+6saJ5yiRSQYzp+F6G4Zho5FSwSaWbG5YROiR91rFUkpSZcDw7duKeWCV2E6VtSXRn6u+JMUmNGaWR7UwJDsyiNxX/8zo5JtfhmMssRybpfFGSCxeVO/3cjblmFMXIEkI1t7e6dEA0oWjzqdgQ/MWXl8njWd2/rF/cn9caN0UcZTiCYzgFH66gAXfQhAAocHiGV3hzpPPivDsf89aSU8wcwh84nz/cSo68</latexit>·

Figure 1: An illustration of generative retrieval models.

token embedding table for each position 𝑖 in the DocID sequence,
where 𝑉 is the vocabulary size for DocID tokens, i.e., the number
of distinct tokens for representing document IDs. Therefore, the
representation associated with each DocID token 𝑐𝑑

𝑖
is represented

as E𝑖 [𝑐𝑑𝑖] ∈ R𝐷 . Note that the DocID token embedding matrices
are distinct, thus E𝑖 ≠ E𝑗 : ∀𝑖 ≠ 𝑗 .

Inspired by seq2seq models[8, 32, 35], existing generative re-
trievalmodels estimate relevance scores based on log-conditional
probability as follows:

𝑆 (𝑞, 𝑐𝑑) = log𝑝 ([𝑐𝑑1 , 𝑐
𝑑
2 , . . . , 𝑐

𝑑
𝐿] |𝑞)

=

𝐿∑︁
𝑖=1

log𝑝 (𝑐𝑑𝑖 |𝑞, 𝑐
𝑑
<𝑖)

=

𝐿∑︁
𝑖=1

[
LogSoftmax(Ei · hdi) [𝑐

𝑑
𝑖]
]

where 𝑆 (𝑞, 𝑐𝑑) denotes the scoring function for a query-document
pair. In this paper, we instead adopt a conditional logit ap-
proach, due to its less expensive computation cost and better align-
ment with ourmargin-based pairwise loss.Wewill further elaborate
this choice in Section 3.1. This approach is inspired by dense re-
trieval models that use dot product similarity between query and
document representations, and computes dot product similarity
between the token embedding vectors corresponding to the DocID
and the hidden vectors learned for each decoding position given
the query and past decodings. In more detail, this approach can be
formulated as follows:

𝑆 (𝑞, 𝑐𝑑) = concat(E1 [𝑐𝑑1], . . . , EL [𝑐
𝑑
𝐿]) · concat(h

𝑑
1 , . . . , h

𝑑
𝐿)

=

𝐿∑︁
𝑖=1

Ei [𝑐𝑑𝑖] · h
d
i .

Employing these scoring functions, generative retrieval models
produce a ranked list of document using beam search with con-
strained decoding [5], where the top 𝐾 valid DocIDs are gener-
ated according to the scoring function. Each of the DocIDs is then
mapped back to its original document. This results in a ranked list
of 𝐾 documents.

3 METHODOLOGY
This paper proposes RIPOR, a generic framework for document ID
construction and prefix-oriented ranking optimization that can be
applied to any encoder-decoder architecture and enhances the per-
formance of generative retrieval models. The high-level overview
of the RIPOR framework is illustrated in Figure 2. Initially, the
generative model𝑀 is viewed as a dense encoder and is subjected

2

http://anonymized_url/

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Scalable and Effective Generative Information Retrieval WWW ’24, MAY 13–17, 2024, Singapore, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

>

>

>

…

>

179-150-49-111-100-143-85-252 179-72-101-26-95-100-132-220

179-150 179-72

179-150-49 179-72-101

179-150-49-111-100-143-85 179-72-101-26-95-100-132

……

Pos. DocID: Neg. DocID:

Pos. prefixes: Neg. prefixes:

Query: what happen when you use regular soap to wash your hair

Prefix-Oriented Ranking Optimization

Enc.

query

Dec.

<s>

dot product
(a) Generative retrieve model:

<latexit sha1_base64="aZQQTo6zPxye5k4UYGtf4O1cfGw=">AAAB73icbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPqAdSibNtKGZJCYZsQz9CTcuFHHr77jzb0zbWWjrgQuHc+7l3nsixZmxvv/tLS2vrK6tFzaKm1vbO7ulvf2GkakmtE4kl7oVYUM5E7RumeW0pTTFScRpMxreTPzmI9WGSXFvR4qGCe4LFjOCrZNaHayUlk/FbqnsV/wp0CIJclKGHLVu6avTkyRNqLCEY2Paga9smGFtGeF0XOykhipMhrhP244KnFATZtN7x+jYKT0US+1KWDRVf09kODFmlESuM8F2YOa9ifif105tfBVmTKjUUkFmi+KUIyvR5HnUY5oSy0eOYKKZuxWRAdaYWBfRJIRg/uVF0jitBBeV87uzcvU6j6MAh3AEJxDAJVThFmpQBwIcnuEV3rwH78V79z5mrUtePnMAf+B9/gDNsI/U</latexit>⇡ + + … +

(b) DocID construction via RQ

DocID Doc

Relevance-Based DocID Initialization

Enc. Dec.

Relevance-Based
DocID Initialization

Optimization Details

Seq2Seq Pretraining Initial
Fine-tuning

Prefix-Oriented
Ranking Optimization

Self-Negative
Fine-tuning

Rank-Oriented Fine-tuning

Generative Retrieval Model M:

<latexit sha1_base64="DfrYrhkdPw4iEqWoodFz8YyipqE=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68SJENAskY+jp1CRNenqG7h4hDPkELx4U8eoXefNv7CwHTXxQ8Hiviqp6QSK4Nq777eSWlldW1/LrhY3Nre2d4u5eXcepYlhjsYhVM6AaBZdYM9wIbCYKaRQIbASD67HfeEKleSwfzDBBP6I9yUPOqLHS/e2j2ymW3LI7AVkk3oyUYIZqp/jV7sYsjVAaJqjWLc9NjJ9RZTgTOCq0U40JZQPaw5alkkao/Wxy6ogcWaVLwljZkoZM1N8TGY20HkaB7Yyo6et5byz+57VSE176GZdJalCy6aIwFcTEZPw36XKFzIihJZQpbm8lrE8VZcamU7AhePMvL5L6Sdk7L5/dnZYqV7M48nAAh3AMHlxABW6gCjVg0INneIU3RzgvzrvzMW3NObOZffgD5/MHylaNfQ==</latexit>

M0
<latexit sha1_base64="dxXnQYlSyiYieZPQwn1kxnUIixU=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68SJENAskY+jp1CRNenqG7h4hDPkELx4U8eoXefNv7CwHTXxQ8Hiviqp6QSK4Nq777eSWlldW1/LrhY3Nre2d4u5eXcepYlhjsYhVM6AaBZdYM9wIbCYKaRQIbASD67HfeEKleSwfzDBBP6I9yUPOqLHS/e2j1ymW3LI7AVkk3oyUYIZqp/jV7sYsjVAaJqjWLc9NjJ9RZTgTOCq0U40JZQPaw5alkkao/Wxy6ogcWaVLwljZkoZM1N8TGY20HkaB7Yyo6et5byz+57VSE176GZdJalCy6aIwFcTEZPw36XKFzIihJZQpbm8lrE8VZcamU7AhePMvL5L6Sdk7L5/dnZYqV7M48nAAh3AMHlxABW6gCjVg0INneIU3RzgvzrvzMW3NObOZffgD5/MHy9qNfg==</latexit>

M1
<latexit sha1_base64="yQVSIJCaF5gLoWAyF+fCWfXTKpg=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04kWIaB6QrGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dpaWV1bX1nMb+c2t7Z3dwt5+3USJZrzGIhnpZkANl0LxGgqUvBlrTsNA8kYwvJ74jSeujYjUA45i7oe0r0RPMIpWur99LHcKRbfkTkEWiZeRImSodgpf7W7EkpArZJIa0/LcGP2UahRM8nG+nRgeUzakfd6yVNGQGz+dnjomx1bpkl6kbSkkU/X3REpDY0ZhYDtDigMz703E/7xWgr1LPxUqTpArNlvUSyTBiEz+Jl2hOUM5soQyLeythA2opgxtOnkbgjf/8iKpl0veeens7rRYucriyMEhHMEJeHABFbiBKtSAQR+e4RXeHOm8OO/Ox6x1yclmDuAPnM8fzV6Nfw==</latexit>

M2
<latexit sha1_base64="ozuvXhI8Taf4Q3TCM+FjB9vStKs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eBEimgcka5id9CZDZmeXmVkhhHyCFw+KePWLvPk3TpI9aLSgoajqprsrSATXxnW/nNzC4tLySn61sLa+sblV3N6p6zhVDGssFrFqBlSj4BJrhhuBzUQhjQKBjWBwNfEbj6g0j+W9GSboR7QnecgZNVa6u3k47hRLbtmdgvwlXkZKkKHaKX62uzFLI5SGCap1y3MT44+oMpwJHBfaqcaEsgHtYctSSSPU/mh66pgcWKVLwljZkoZM1Z8TIxppPYwC2xlR09fz3kT8z2ulJrzwR1wmqUHJZovCVBATk8nfpMsVMiOGllCmuL2VsD5VlBmbTsGG4M2//JfUj8reWfn09qRUucziyMMe7MMheHAOFbiGKtSAQQ+e4AVeHeE8O2/O+6w152Qzu/ALzsc3zuKNgA==</latexit>

M3
<latexit sha1_base64="GQxH0HjoOi/aL6Z6RZAjuHPq23s=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQixchonlAsobZySQZMju7zPQKYcknePGgiFe/yJt/4yTZgyYWNBRV3XR3BbEUBl3328ktLa+sruXXCxubW9s7xd29uokSzXiNRTLSzYAaLoXiNRQoeTPWnIaB5I1geD3xG09cGxGpBxzF3A9pX4meYBStdH/7eNopltyyOwVZJF5GSpCh2il+tbsRS0KukElqTMtzY/RTqlEwyceFdmJ4TNmQ9nnLUkVDbvx0euqYHFmlS3qRtqWQTNXfEykNjRmFge0MKQ7MvDcR//NaCfYu/VSoOEGu2GxRL5EEIzL5m3SF5gzlyBLKtLC3EjagmjK06RRsCN78y4ukflL2zstnd6elylUWRx4O4BCOwYMLqMANVKEGDPrwDK/w5kjnxXl3PmatOSeb2Yc/cD5/ANBmjYE=</latexit>

M4

progressive
training

Enc.

query

Dec.

<s>

weight:
<latexit sha1_base64="SFaSdWdG0PPHcxxu6QTFFqeMFzQ=">AAACEnicbVDLSsNAFJ34rPUVdelmsAjtwpKIr41QdOOygn1gE8rNdNIOnTyYmQgl5Bvc+CtuXCji1pU7/8Zpm4W2Hrhw5px7mXuPF3MmlWV9GwuLS8srq4W14vrG5ta2ubPblFEiCG2QiEei7YGknIW0oZjitB0LCoHHacsbXo/91gMVkkXhnRrF1A2gHzKfEVBa6poVB3g8gC7Dl9jxBZDUztL7rGwfTV+ORxVkKcsqXbNkVa0J8Dyxc1JCOepd88vpRSQJaKgIByk7thUrNwWhGOE0KzqJpDGQIfRpR9MQAirddHJShg+10sN+JHSFCk/U3xMpBFKOAk93BqAGctYbi/95nUT5F27KwjhRNCTTj/yEYxXhcT64xwQlio80ASKY3hWTAegolE6xqEOwZ0+eJ83jqn1WPb09KdWu8jgKaB8doDKy0TmqoRtURw1E0CN6Rq/ozXgyXox342PaumDkM3voD4zPH3eSnWE=</latexit>

↵i =
1

Z
(1 � �

i
)

Figure 2: The overview of the RIPOR framework

to fine-tuning with a relevance-based objective. Upon training, RI-
POR employs Residual Quantization (RQ) [6] to derive a unique
identifier for each document. Subsequently, following Pradeep et al.
[33], Wang et al. [46], Zhuang et al. [54], we leverage a seq2seq
pre-training approach for pre-training the model using pseudo
queries generated from the documents. Next, we introduce a novel
rank-oriented fine-tuning procedure for refining the parameters of
model 𝑀 . In the next two sections, we elucidate the motivations
and methodologies behind the two major novel components in
RIPOR: prefix-oriented ranking optimization and relevance-based
document ID construction. A detailed description of the entire
optimization pipeline in presented in Section 3.3.

3.1 Prefix-Oriented Ranking Optimization
State-of-the-art generative retrieval models, such as LTRGR [23],
adopt a learning-to-rank loss for optimization. The objective is to
ensure that 𝑆 (𝑞, 𝑐𝑑+) > 𝑆 (𝑞, 𝑐𝑑−) for a training triplet of query 𝑞,
relevant document 𝑑+ and irrelevant document 𝑑− . We posit that
this modeling is not optimal. A primary oversight is the intrinsic
nature of beam search that sequentially decodes document ID tokens
from left to right. Solely focusing on pairwise ranking for a full-
length document ID does not guarantee that relevant documents
can survive the beam search eliminations in earlier decoding steps.
Therefore, we aim at developing a model that produce accurate
scoring at every decoding step. Formally, we desire to satisfy the
following criterion: 𝑆𝑖prefix (𝑞, 𝑐𝑑+) ≥ 𝑆𝑖prefix (𝑞, 𝑐𝑑−), ∀𝑖 ∈ [1, 𝐿],
where 𝑆𝑖prefix (𝑞, 𝑑) denotes the relevance score produced by the
generative retrieval model for the first 𝑖 tokens in the document ID:
[𝑐𝑑1 , 𝑐

𝑑
2 , . . . , 𝑐

𝑑
𝑖
].

Margin Decomposed Pairwise Loss. Taking inspiration from
MarginMSE [16], a pairwise loss for knowledge distillation as fol-
lows:

L(𝑞, 𝑑+, 𝑑−) =
(
𝑆 (𝑞, 𝑑+) − 𝑆 (𝑞, 𝑑−) −𝑇(𝑞,𝑑+,𝑑−)

)2
,

where 𝑇(𝑞,𝑑+,𝑑−) denotes the golden margin, commonly predicted
by a teacher model derived from a cross-encoder [31]. Prior re-
search [16, 50] reveals that this loss function often outperforms
other pairwise losses [47] by addressing data sparsity issues in
large-scale retrieval benchmark [34], utilizing pseudo-labels for
unlabeled query-document pairs.

For generative retrieval, we extend the MarginMSE loss by mod-
eling pairwise ranking between prefixes of 𝑐𝑑+ and 𝑐𝑑− for each
decoding step 𝑖:

L𝑖
rank (𝑞, 𝑐𝑑+ , 𝑐𝑑−) =

(
𝑆𝑖prefix (𝑞, 𝑐𝑑+) − 𝑆𝑖prefix (𝑞, 𝑐𝑑−) − 𝛼𝑖𝑇(𝑞,𝑑+,𝑑−)

)2
.

Here, at each step 𝑖 we re-weight the golden margin by multiply-
ing with 𝛼𝑖 , which is a weight we assign to each prefix position. The
reason for this decision is that we emphasize on the early decoding
steps of the document IDs. With this motivation, 𝛼𝑖 should be a
monotonically increasing concave function w.r.t. 𝑖 . Formally, 𝛼𝑖 val-
ues should satisfy the following constraint: 𝛼𝑖 −𝛼𝑖−1 ≥ 𝛼𝑖+1−𝛼𝑖 for
every 𝑖 . In our experiments, we use 𝛼𝑖 = 1

𝑍
(1− 𝛽

𝑖), where 𝑍 = 1− 𝛽

𝐿
is a normalization factor and 𝛽 is a constant hyper-parameter. We
leave the exploration of other concave functions to future work.
For efficiency reasons, we only do prefix-oriented optimization for
𝑖 = 4, 8, 16, 32 and thus set 𝛽 = 2. This concave formulation of 𝛼𝑖 em-
phasizes larger sub-margins in early steps, ensuring for any query
𝑞 that 𝑆𝑖prefix (𝑞, 𝑐𝑑+) surpasses 𝑆𝑖prefix (𝑞, 𝑐𝑑−). Moreover, as 𝛼𝐿 = 1,
the predicted margin for full-length DocID sequences aligns with
the real margin, maintaining the fidelity of ranking knowledge.

Progressive Training. To better learn representations aligned
with the left-to-right decoding characteristic of the beam search,
we draw inspiration from curriculum learning [2, 26, 28, 50] and
implement a progressive training strategy. The training process
is initialized with the shortest prefix. This allows the model to
first focus on basic sequence representations and build adequate
capacity for the subsequent stages. As the training advances, the
scope is systematically extended to the longer prefixes, culminating
in training on the full-length sequence with length 𝐿.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, MAY 13–17, 2024, Singapore, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

During training on longer prefixes, we empirically found that
the model tends to overlook previously acquired knowledge related
to shorter prefixes. To mitigate this catastrophic forgetting issue,
we employ multi-objective learning at each time step to ensure the
retention of knowledge acquired in earlier stages. Given the training
dataD = {(𝑞 𝑗 , 𝑑+𝑗 , 𝑑

−
𝑗
,𝑇(𝑞 𝑗 ,𝑑

+
𝑗
,𝑑−

𝑗
))}

|D |
𝑗=1 , we use the following multi-

objective loss function:∑︁
(𝑞,𝑑+

𝑗
,𝑑−

𝑗
) ∈D

(
L𝑖
rank (𝑞, 𝑑

+
𝑗 , 𝑑

−
𝑗)︸ ︷︷ ︸

(1)

+
𝑖−1∑︁
𝑘=1

L𝑘
rank (𝑞, 𝑑

+
𝑗 , 𝑑

−
𝑗)︸ ︷︷ ︸

(2)

)

In this loss function, term (1) is responsible for acquiring the pair-
wise rankings specific to the current step 𝑖 , while term (2) ensures
the model retains the ranking knowledge from previous prefixes. As
mentioned earlier, for efficiency reasons, without loss of generality,
we only repeat this training process for 𝑖 = 4, 8, 16, 32.

3.2 Relevance-Based DocID Construction
Generative retrieval models predominantly adopt a two-step opti-
mization approach. First, they initialize the document IDs by em-
ploying various methods such as hierarchical k-means [42, 46]
or discriminative textual descriptions extracted from documents
[3, 23, 24]. In the subsequent step, they optimize the model leverag-
ing either cross-entropy loss [3, 42] or learning-to-rank loss [23],
with fixed DocIDs obtained in the first step. Given that the Do-
cIDs remain immutable in this phase, they potentially become a
significant bottleneck, influencing the overall efficacy of generative
retrieval models.

We argue that the design of DocIDs is crucial in two specific
ways: First, it must ensure the documents with inherent similar-
ity possess correspondingly similar DocIDs. Second, due to the
characteristics of beam search for decoding in generative retrieval,
these DocIDs should encapsulate a hierarchical structure. Notably,
the conception of similarity in this context is nuanced; it is tied
intricately to specific queries and deviates from standard linguistic
similarities observed in natural language processing. Addressing
these challenges, we introduce a relevance-based method for ini-
tializing DocIDs. This approach is crafted to encapsulate both the
query-document relevance nuances and the necessary hierarchical
structure, ensuring effective performance in generative retrieval
tasks.

Generative retrieval model as dense encoder. To capture the
relevance-based similarities among documents, we design an opti-
mization process inspired by dense retrieval models, but by utilizing
the encoder-decoder architecture in𝑀 . Specifically, we input docu-
ment content into the encoder and a special start token as input to
the decoder. The document representation is then derived from the
first contextualized output embedding of the decoder:

d = Decoder(𝑠0;Encoder(𝑑)) ∈ R𝐷 .

Where 𝑠0 is the start token. Adopting a similar approach for queries,
we determine their representations. To optimize model𝑀 , we em-
ploy the MarginMSE loss [16] with multi-stage negative sampling
introduced in Sec 3.3.1 in details.

Residual Quantization. Hierarchical k-means, which is used
in [33, 42, 46, 54] for document ID construction, does not explicitly
minimize the distortion error between original and approximated
representations. As highlighted by Ge et al. [14], there is a notable
inverse correlation between information retrieval metrics like MAP
and the distortion error, particularly for large-scale datasets. Moti-
vated by this observation, we adopt quantization-based techniques
[1, 6, 14, 45] explicitly designed to minimize this distortion error.
Among a myriad of quantization algorithms, we select Residual
Quantization (RQ) [1, 6] due to its inherent advantages. Specifically,
(1) its recursive procedure captures the hierarchical document struc-
ture, aligning with the beam search strategy inherent to generative
retrieval, and (2) compared to methods like product quantization
(PQ) [14, 45], it requires a shorter length of DocID to achieve a
strong performance, leading to memory and time savings during
inference. Using 𝑀 as our dense encoder, we calculate the repre-
sentation d for each document 𝑑 . Subsequently, employing RQ,
we optimize the token embedding table {E𝑖 }𝐿𝑖=1 to determine the
optimal DocID 𝑐𝑑 = [𝑐𝑑1 , . . . , 𝑐

𝑑
𝐿
] for every document 𝑑 . Upon opti-

mization, each d can be approximated using a sequence of token
embeddings as:

d ≈
𝐿∑︁
𝑖=1

E𝑖 [𝑐𝑑𝑖] .

The trained model𝑀 alongside the embedding tables {E𝑖 }𝐿𝑖=1 will
serve as the initial weights for subsequent optimization phases
within generative retrieval.

3.3 Optimization Details
Our optimization process can be delineated into three distinct
phases: (1) DocID initialization (2) Seq2seq Pre-training, and (3)
Rank-oriented Fine-tuning.

3.3.1 DocID Initialization. As described in Section 3.2, we treat
𝑀 as a dense encoder. To optimize the dense encoder 𝑀 , we use
the recent advance of multi-stage training strategy [47]. Here’s the
tailed steps of the multi-stage training: In the initial stage, we use
BM25 [38] to sample the top 𝐾 (We choose 𝐾 = 100 in our work)
documents for each query and train themodel using theMarginMSE
[16] loss function. Once the model is trained, we obtain the dense
representation d from our model𝑀 for each document and store
them in an index. For each query 𝑞, we apply nearest neighbor
search to retrieve the top 𝐾 documents. Then, we train the model
using the same loss function with the retrieved documents. After
training, we then apply residual quantization (RQ) to obtain the
DocID for each document. The trained model is denoted as𝑀0, and
the embedding tables {E𝑖 }𝐿𝑖=1 will be used as the initial weights for
the next phase.

3.3.2 Seq2seq Pre-training. To equip our model𝑀 with a compre-
hensive understanding of the corpus, we incorporate a seq2seq
pre-training phase. Instead of using the document 𝑑 as input and
predicting its corresponding semantic tokens [𝑐𝑑1 , . . . , 𝑐

𝑑
𝐿
], we align

with prior work [46] and utilize pseudo queries associated with each
document as input proxies for DocID prediction. Specifically, by
leveraging the doc2query model [7], we generate 𝑁𝑝𝑠𝑒𝑢𝑑𝑜 pseudo
queries for every document. We then optimize the model using

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Scalable and Effective Generative Information Retrieval WWW ’24, MAY 13–17, 2024, Singapore, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

a cross-entropy loss, with the tokens from the relevant DocIDs
serving as the ground-truth labels. We denote the trained model in
this phase as𝑀1.

3.3.3 Rank-oriented Fine-tuning. To optimize our model, we lever-
age the pairwise loss as described in Sec 3.1. Literature suggests
the pivotal roles of negative sampling [47] and the quality of the
supervision signal [16, 17, 50] in enhancing the performance of
ranking models. Following this, we incorporate a multi-stage train-
ing strategy [47, 51] to incrementally enhance the model’s capacity
and extract improved negatives for subsequent stages.

Initial Fine-tuning: This stage is primarily geared towards further
preparing the generative retrieval model for the ranking task and
sourcing high-quality negative samples for ensuing stages. Utilizing
the model 𝑀0 from Sec 3.3.1 as a dense encoder, we index each
document via its embedded representation. We apply the Nearest
Neighborhood search to retrieve the top 100 documents. The train-
ing data D𝑅 can be constructed based on the negative samples and
ground-truth query-document positive pairs. Unlike our approach
in subsequent stages, we directly utilize the full-sequence ranking
loss L𝐿

𝑟𝑎𝑛𝑘
. Starting from 𝑀1 as an initial model, after training,

the model is represented as𝑀2. This is intentional, as the primary
objective here is to curate quality negative samples for later stages
rather than perfecting the model.

Prefix-Oriented Ranking Optimization: Given a query 𝑞, we de-
ploy beam search on the model𝑀2 to retrieve the top 100 DocIDs,
each of which is mapped back to corresponding documents. The
documents serve as an augmented source of negative samples, and
we subsequently construct a training set D𝐵 in a manner analo-
gous to the previous section. The comprehensive training set for
this stage consolidates data both from the Nearest Neighborhood
Search and Beam Search, represented asD = D𝑅∪D𝐵 . To optimize
the model, we utilize the progressive training described in Section
3.1. For each optimization step 𝑖 , we employ the multi-objective
loss function described in Section 3.1. After training, the model is
denoted as𝑀3.

Self-Negative Fine-tuning: To enhance the model’s effectiveness,
we employ beam search on the most recently optimized model𝑀3

to establish a training dataset D𝐵
𝑠𝑒𝑙 𝑓

. Then the model is trained
on the same multi-objective loss function in the full-length setting
(𝑖 = 𝐿), and denoted as𝑀4.

4 EXPERIMENTS
4.1 Experiments Settings
4.1.1 Dataset. We assess our information retrieval models on the
MSMARCO dataset [4], comprising 8.8M passages and 532K train-
ing queries with shallow annotations (averaging about 1.1 relevant
passages per query). We evaluate our models using three datasets:
(1) MSMARCO-Dev, with 7K queries and shallow annotations, (2)
TREC DL 2019: the passage retrieval dataset used in 2019 TREC
Deep Learning Track [9] with 43 queries and (3) TREC DL 2020: the
passage retrieval dataset of TREC Deep Learning Track 2020 [10]
with 54 queries. For evaluation, we report recall@10 for all datasets,
as well as the official metric MRR@10 for the MSMARCO-Dev set
and NDCG@10 for the TREC DL 2019 and 2020.

4.1.2 Implementation Details. We employ the pre-trained T5-
base [35] as the backbone for our generative retrieval model. For
DocID initialization, we adopt the residual quantization (RQ) im-
plementation from Faiss [18]. The length of DocID 𝐿 is 32 and the
table size 𝑉 is 256. For Seq2seq pre-training, the doc2query model
[7] with t5-large as the backbone generates 10 pseudo queries for
each document. For progressive training, we sample 4 prefixes with
lengths 4, 8, 16, 32. The optimization is done using Adam [21], fea-
turing linear scheduling and a warmup ratio of 4.5% of total learn-
ing steps. For DocID initialization and rank-oriented fine-tuning
phases, we set the learning rate as 0.0001 with 120 epochs and
batch size of 64 For Seq2seq pre-training, we set the learning rate
as 0.001 with 250,000 steps and batch size of 256 We conducted all
the experiments using 8 A100 GPUs.

4.1.3 Baselines. We select a wide range of document retrieval
models from generative retrieval to dense retrieval as the baselines
for comparison:

• DSI [42]: DSI is one of the earliest generative retrieval models
that apply the hierarchical k-means over document representa-
tions obtained from pre-trained BERT for DocID construction.
The model utilizes cross-entropy loss for fine-tuning on the re-
trieval task.

• DSI-QG [54]: DSI-QG generates pseudo queries for each docu-
ment and uses them as the augmented data for training.

• NCI-QG [46]: NCI-QG invents a prefix-aware weight-adaptive
decoder architecture to capture position information of docu-
ment identifiers, and like DSI-QG, uses the doc2query model for
data augmentation.

• SEAL [3]: SEAL employs document n-grams as identifiers, ap-
plying the FM-index to ensure valid document identifiers are
decoded in response to specific queries.

• MINDER [24]: An extension of SEAL, MINDER constructs doc-
ument identifiers from multiple document views, such as titles,
pseudo-queries, and n-grams.

• LTRGR [23]: LTRGR utilizes multi-view document identifiers,
akin to MINDER, but shifts the loss function to a pairwise-based
learning-to-rank algorithm.

• BM25 [38]: the simple yet effective bag-of-word retrieval model
that uses term-frequency, inverse document frequency, and doc-
ument length for computing the relevant scores

• DPR [19]: DPR is a dual-encoder based dense retrieval models.
It incorporates the in-batch negative and BM25 negatives for
training.

• ANCE [47]: ANCE selects hard training negatives from the entire
corpus by using an asynchronously updated ANN index.

• MarginMSE [16]: MarginMSE develops a distinctive loss func-
tion based on the konwledge distillation. It aims to minimize the
discrepancy between the predicted margin from dense retrieval
models and the golden margin from the teacher model.

• TAS-B [17]: Building upon MarginMSE, TAS-B designs a topic-
aware sampling algorithm to enhance the model’s effectiveness.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, MAY 13–17, 2024, Singapore, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Experimental results on MSMARCO and TREC Deep Learning Track Data. Highest generative retrieval performances
are boldfaced. Superscript ∗ denotes statistically significant improvement compared to all generative retrieval baselines.
Superscripts △ and ▽ denote significantly higher and lower performance compared to RIPOR. (t-test with Bonferroni correction,
p_value < 0.01). For dense retrieval models, HNSW [27] index is used for ANN search.

Model MSMARCO Dev TREC DL 2019 TREC DL 2020
MRR@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10

Generative Retrieval
DSI .045 .138 .163 .076 .150 .070
DSI-QG .105 .292 .320 .138 .328 .120
NCI-QG .153 .352 .403 .167 .394 .159
SEAL .127 - - - - -
MINDER .186 .383 .506 .201 .392 .144
LTRGR .255 .531 - - - -
RIPOR (ours) .333∗ .562∗ .628∗ .205∗ .631∗ .191∗

Sparse and Dense Retrieval Models (For Reference)
BM25 .185▽ .381▽ .512▽ .178▽ .477▽ .164▽
DPR .287▽ .539▽ .588▽ .195▽ .581▽ .182▽
ANCE .301▽ .545▽ .600▽ .262▽ .587▽ .174▽
MarginMSE .312▽ .552▽ .634△ .250△ .614▽ .193
TAS-B .323▽ .557▽ .629 .200 .633 .227△

Table 2: Ablation study results on MSMARCO Dev. Super-
script ▽ denotes significantly lower performance compared
to RIPOR (t-test with Bonferroni correction, p_value < 0.01).

MRR@10 Recall@10
-. RIPOR .333 .562
1. w/o prefix optimization .280▽ .475▽
2. w/o multi-objective learning .317▽ .532▽
3. w/o self-neg. fine-tuning .325▽ .543▽
4. w/o seq2seq pre-training .319▽ .539▽
5. replace with sentence t5 .192▽ .287▽
6. replace with PQ .112▽ .155▽

4.2 Experiment Results
4.2.1 Main Results. We report the performance of RIPOR and
other baselines MSMARCO in Table 1. First, most generative re-
trieval models, including DSI, DSI-QG, NCI-QG, SEAL, and MIN-
DER, consistently lag behind BM25 across all three evaluation sets.
In contrast, the LTRGR model, which incorporates a learning-to-
rank algorithm, manages to surpass BM25. These observations un-
derscore the importance of integrating learning-to-rank methodolo-
gies when designing generative retrieval models. Second, our pro-
posed RIPOR consistently outperforms other generative retrieval
baselines, demonstrating a significant advantage. Notably, when
compared to the top-performing baseline LTRGR, RIPOR achieves
a 30.5% improvement in MRR@10 on the MSMARCO Dev set and
a remarkable 94% enhancement in NDCG@10 on the TREC-20 test
set. Third, our RIPOR can obtain comparable results to state-of-
the-art dense retrieval models, particularly in precision-oriented
metrics. For instance, compared to ANCE, our model achieves a
16% improvement in terms of MRR@10 on MSMARCO Dev and

Table 3: The retrieval performance for various DocID combi-
nations on MSMARCO Dev set.

Extra
Param.(M)L × V MRR@10 Recall@10

32 × 256 .333 .562 6.29
16 × 512 .307 .520 6.29
8 × 1024 .306 .535 6.29
4 × 2048 .273 .493 6.29
16 × 1024 .324 .554 12.58
8 × 2048 .319 .550 12.58
4 × 4096 .291 .528 12.58

a 6.6% improvement on the two TREC DL evaluation sets in total
NDCG@104. Additionally, we provide the experimental results on
the small-scale dataset MSMARCO-1M, in line with previous work
[33]. These results can be found in Appendix Table 4.

4.2.2 Ablation Studies. We conduct a thorough ablation stud-
ies on the MSMARCO dataset to investigate the impact of each
component in RIPOR. We report our study in Table 2.

Beginning with Row 1, we can see the significance of incorpo-
rating prefix-oriented ranking optimization. The absence of this
optimization results in a pronounced 19% degradation in MRR@10.
Without employing the optimization approach, the model fails to ex-
plicitly ensure that every prefix of relevant DocIDs receives higher
scores than those of relevant DocIDs in response to a query. This
increases the risk of discarding these relevant DocIDs in the early
steps of beam search, which, in turn, negatively impacts informa-
tion performance.
4HNSW index might slightly impact the performance compared to DR models using a
flat index [27, 47]

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Scalable and Effective Generative Information Retrieval WWW ’24, MAY 13–17, 2024, Singapore, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 3: Clusters of the relevant documents to 20 queries sampled from TREC DL. The color indicates the query ID.

In Row 2, we infer the significance of incorporatingmulti-objective
learning within the prefix optimization. This inclusion results in a
further improvement of 5% in MRR@10. The enhancement can be
credited to the approach’s efficacy in mitigating the forgetting issue
encountered during the progressive training’s latter stages. Notably,
this methodology introduces only a minimal addition to the loss
computation, ensuring that there is no increase in computational
overhead during training.

Row 3 reports the results for RIPOR when self-negative fine-
tuning is not used in the final training stage. Incorporating this
strategy yields a 2.5% enhancement in MRR@10 and a 3.5% boost
in Recall@10. This improvement stems primarily from the fact that
hard negative samples would increae the efficacy of the retrieval
model as shown in previous dense retrieval models[47]. By strategi-
cally leveraging these hard negative samples, we bolster the model’s
capability, ensuring relevant DocIDs consistently be ranked higher
than potential high-scoring hard negatives, which subsequently
elevates the model’s overall effectiveness.

From Row 4, we note that by integrating seq2seq pre-training,
RIPOR achieves a 4% improvement in MRR@10. This method allows
the model to encapsulate document information across the entire
corpus, mirroring the indexing phase in dense retrieval models, and
subsequently driving the observed performance improvement.

From Row 5, when we treat the generative retrieval model as
a dense encoder and instead use the sentence-T5 [30] to derive
the hidden representation for each document, a substantial perfor-
mance degradation would happen, with a 73% drop in MRR@10,
for instance. The rationale behind this decline is that sentence-T5,

being pre-trained on NLP tasks, is not optimized to discern query-
dependent semantic similarities between documents. Leveraging
it to initialize the DocIDs disrupts the inherent semantic linkages
among documents in relation to queries.

Finally, in Row 6, substituting RQwith PQ results in a substantial
performance decline, evidenced by a 197% decrease in MRR@10.
While PQ is recognized as a potent quantization algorithm in the
dense retrieval domain, our results suggest its unsuitability for
generative retrieval. This limitation may stem from PQ’s inability
to encapsulate the hierarchical structure among documents, an
attribute that has been shown to be crucial in generative retrieval,
especially when employing beam search.
4.3 Analysis and Discussion
4.3.1 The impact of DocID combination. The configuration
of the Document Identifier (DocID), specifically its length 𝐿 and
vocabulary size 𝑉 , influences the effectiveness of model𝑀 . We ex-
amine this relationship by evaluating various performance metrics
on the MSMARCO Dev set, as detailed in Table 3. Firstly, when
holding the extra parameters constant (quantified by 𝐿 ×𝑉 × 𝐷),
we observe that an elongation in DocID length 𝐿 corresponds to
enhanced performance in both MRR@10 and Recall@10. Secondly,
while maintaining a fixed DocID length 𝐿 and incrementing the vo-
cabulary size 𝑉 , there’s a noticeable improvement in performance
metrics. For instance, when 𝐿 = 16, increasing the vocabulary size
from 512 to 1024 leads to the 5.5% improvement in MRR@10.

4.3.2 The quality of document approximated representation.
In Section 3.2, we emphasized the importance of the relevance-based

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, MAY 13–17, 2024, Singapore, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 4: The retrieval performance for different prefix lengths in MSMARO Dev.
document similarities, in influencing model performance. To prove
that our model can capture these signals. We randomly selected 20
queries from TREC DL 19 and TREC DL 20, along with their corre-
sponding relevant documents. We utilize the approximated vector
representation d̂ =

∑𝐿
𝑖=1 E𝑖 [𝑐𝑑𝑖] and apply T-SNE [44] to project the

approximated representations of each document into a 2D space
for visualization. We studied clustering quality for different prefix
lengths, specifically 𝐿 = 1, 2, 4, 8, 16, and 32, as illustrated in Figure 3.
First, when 𝐿 ≥ 8, those documents with the same relevant query
are located in their corresponding cluster nicely, which indicates
that our RIPOR effectively draws relevant documents nearer while
distancing the irrelevant ones. Second, the clustering quality is
progressively improved when 𝐿 increases. This might be because
when 𝐿 increases, the distance between approximated vector d̂ and
original vector d diminishes, enabling the approximation to capture
finer-grained ranking information.

4.3.3 The influence of prefix-length. The prefix length plays
a pivotal role in the RIPOR framework due to its influence on the
distortion error between the original and approximated vectors.
While Section 4.3.2 provides a qualitative perspective on its effects
in terms of document similarities in a low-dimensional space, this
section delves into its quantitative impact on retrieval performance,
as depicted in Figure 4. Referring to the left figure, which displays
different DocID combinations from RIPOR, several trends emerge.
First, as the prefix length 𝐿 grows, there’s a consistent improvement
in performance. Second, the rate of this performance gain is more
pronounced for shorter prefix lengths, since we observe that the
boost is more substantial when 𝐿 ≤ 8 than when 𝐿 > 8. Third,
given an equal prefix length, variants with a larger vocabulary
size tend to perform better. From the right figure, which contrasts
RIPOR with three other selected variants from the ablation study
in Section 4.3.3: First, excluding the prefix-oriented optimization
invariably results in reduced performance. Second, the performance
curve of the "replace with sentence-T5" variant emphasizes the criti-
cal role of DocID initialization. Its subpar performance suggests that
not employing relevance-based DocID initialization is detrimental,
rendering it less effective than the variant excluding prefix-oriented
optimization. Third, Product Quantization (PQ) seems less compat-
ible with generative retrieval, given its stagnant performance for
𝐿 ≥ 8. This stagnation might be due to PQ’s shortcomings in cap-
turing the hierarchical nuances among documents, subsequently
impacting the benefits drawn from longer prefix lengths.

5 RELATEDWORK
Pre-trained language models (LMs) [11, 25, 35, 40] have become
foundational in the field of information retrieval (IR). The integra-
tion of these LMs into neural IR models can be broadly categorized
into four main streams:

Neural Sparse Retrieval models, inspired by conventional bag-of-
words approaches like TF-IDF [37] and BM25 [38], adapt BERT to re-
weight subwords, thereby enhancing IR performance. To maintain
the sparsity of high-dimensional vectors, they utilize L1 [49] or
Flop [13] regularizers. This characteristic sparsity allows them to
be incorporated into fast search frameworks based on the inverted
index [39].

Re-ranking with LMs is another approach where LMs serve as
re-rankers [31, 53]. By feeding a concatenated query and document,
these models produce a relevance score. Despite their often superior
performance, they are better suited for document re-ranking due
to efficiency constraints, rather than retrieval.

Dense Retrieval models, a more recent advancement, are dual-
encoder-based [16, 17, 19, 20, 34, 47, 50, 51]. Notably, they have ex-
hibited standout performance on large-scale datasets [4, 22]. These
models, typically leveraging BERT, encode each document and
query into dense representations. For efficient retrieval, they em-
ploy approximated nearest neighbor search (ANN) [27, 47].

Lastly, the Generative Retrieval paradigm is an innovative ap-
proach drawing inspiration from successful generative LMs [8, 32,
35]. In this paradigm, models like T5 are treated as retrievers. Each
document is mapped to a distinct sequence, often denoted as a
DocID. At inference, given a specific query, a constrained beam
search [42, 52] retrieves a list of the most probable DocIDs.

6 CONCLUSIONS AND FUTUREWORK
We introduced the RIPOR framework, designed to generalize gen-
erative retrieval models for large-scale datasets. We employ a novel
prefix-oriented ranking optimization method to harness the sequen-
tial nature of DocID generation. By viewing generative retrieval as
a dense encoder, we fine-tune it for the target task, and apply RQ
for DocID construction. Our experimental results demonstrate that
this DocID construction captures the relevance-based similarity
among documents, thereby improving the effectiveness of the IR
task. Looking ahead, we aim to further optimize the model’s effi-
ciency and integrate the framework into other knowledge-intensive
NLP tasks, such as Open-domain QA.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Scalable and Effective Generative Information Retrieval WWW ’24, MAY 13–17, 2024, Singapore, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Artem Babenko and Victor S. Lempitsky. 2014. Additive Quantization for Extreme

Vector Compression. 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition (2014), 931–938. https://api.semanticscholar.org/CorpusID:125463275

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In International Conference on Machine Learning. https:
//api.semanticscholar.org/CorpusID:873046

[3] Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Wen tau Yih, Sebastian
Riedel, and Fabio Petroni. 2022. Autoregressive Search Engines: Generating
Substrings as Document Identifiers. ArXiv abs/2204.10628 (2022). https://api.
semanticscholar.org/CorpusID:248366293

[4] Daniel Fernando Campos, Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, Li Deng, and Bhaskar Mitra. 2016. MS
MARCO: A Human Generated MAchine Reading COmprehension Dataset. ArXiv
abs/1611.09268 (2016). https://api.semanticscholar.org/CorpusID:1289517

[5] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. 2020.
Autoregressive Entity Retrieval. ArXiv abs/2010.00904 (2020). https://api.
semanticscholar.org/CorpusID:222125277

[6] Yongjian Chen, Tao Guan, and Cheng Wang. 2010. Approximate Nearest Neigh-
bor Search by Residual Vector Quantization. Sensors (Basel, Switzerland) 10
(2010), 11259 – 11273. https://api.semanticscholar.org/CorpusID:33774240

[7] David R. Cheriton. 2019. From doc2query to docTTTTTquery. https://api.
semanticscholar.org/CorpusID:208612557

[8] HyungWon Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixi-
ang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Wei Yu, Vincent Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed Huai hsin Chi,
Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling Instruction-Finetuned Language Models. ArXiv abs/2210.11416
(2022). https://api.semanticscholar.org/CorpusID:253018554

[9] Nick Craswell, BhaskarMitra, Emine Yilmaz, and Daniel Campos. 2019. Overview
of the TREC 2019 Deep Learning Track. In TREC.

[10] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Fernando Campos, and
Ellen M. Voorhees. 2021. Overview of the TREC 2020 Deep Learning Track. ArXiv
abs/2102.07662 (2021). https://api.semanticscholar.org/CorpusID:212737158

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
North American Chapter of the Association for Computational Linguistics. https:
//api.semanticscholar.org/CorpusID:52967399

[12] Thibault Formal, C. Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2021. SPLADE v2: Sparse Lexical and Expansion Model for Information Re-
trieval. ArXiv abs/2109.10086 (2021). https://api.semanticscholar.org/CorpusID:
237581550

[13] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking. Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (2021). https://api.semanticscholar.org/CorpusID:235792467

[14] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product
Quantization. IEEE Transactions on Pattern Analysis and Machine Intelligence 36
(2014), 744–755. https://api.semanticscholar.org/CorpusID:6033212

[15] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang.
2020. Retrieval augmented language model pre-training. In International confer-
ence on machine learning. PMLR, 3929–3938.

[16] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2020. Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation. ArXiv abs/2010.02666 (2020). https://api.
semanticscholar.org/CorpusID:222141041

[17] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy J. Lin, and
Allan Hanbury. 2021. Efficiently Teaching an Effective Dense Retriever with
Balanced Topic Aware Sampling. Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval (2021).
https://api.semanticscholar.org/CorpusID:233231706

[18] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[19] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Yu Wu,
Sergey Edunov, Danqi Chen, and Wen tau Yih. 2020. Dense Passage Retrieval for
Open-Domain Question Answering. In Conference on Empirical Methods in Natu-
ral Language Processing. https://api.semanticscholar.org/CorpusID:215737187

[20] O. Khattab and Matei A. Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (2020). https://api.semanticscholar.org/CorpusID:216553223

[21] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014). https://api.semanticscholar.org/CorpusID:
6628106

[22] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins,
Ankur P. Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-
Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc V. Le, and Slav Petrov.
2019. Natural Questions: A Benchmark for Question Answering Research.
Transactions of the Association for Computational Linguistics 7 (2019), 453–466.
https://api.semanticscholar.org/CorpusID:86611921

[23] Yongqing Li, Nan Yang, Liang Wang, Furu Wei, and Wenjie Li. 2023. Learning
to Rank in Generative Retrieval. ArXiv abs/2306.15222 (2023). https://api.
semanticscholar.org/CorpusID:259262395

[24] Yongqing Li, Nan Yang, Liang Wang, Furu Wei, and Wenjie Li. 2023. Multiview
Identifiers Enhanced Generative Retrieval. In Annual Meeting of the Associa-
tion for Computational Linguistics. https://api.semanticscholar.org/CorpusID:
258947148

[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. ArXiv abs/1907.11692 (2019).
https://api.semanticscholar.org/CorpusID:198953378

[26] Sean MacAvaney, Franco Maria Nardini, R. Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Training Curricula for Open Domain
Answer Re-Ranking. Proceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (2020). https:
//api.semanticscholar.org/CorpusID:216641819

[27] Yury Malkov and Dmitry A. Yashunin. 2016. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (2016), 824–836.
https://api.semanticscholar.org/CorpusID:8915893

[28] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. 2017.
Teacher–Student Curriculum Learning. IEEE Transactions on Neural Networks
and Learning Systems 31 (2017), 3732–3740. https://api.semanticscholar.org/
CorpusID:8432394

[29] Sanket Vaibhav Mehta, Jai Gupta, Yi Tay, Mostafa Dehghani, Vinh Q. Tran,
Jinfeng Rao, Marc Najork, Emma Strubell, and Donald Metzler. 2022. DSI++:
Updating Transformer Memory with New Documents. ArXiv abs/2212.09744
(2022). https://api.semanticscholar.org/CorpusID:254854290

[30] Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith B. Hall,
Daniel Matthew Cer, and Yinfei Yang. 2021. Sentence-T5: Scalable Sentence
Encoders from Pre-trained Text-to-Text Models. ArXiv abs/2108.08877 (2021).
https://api.semanticscholar.org/CorpusID:237260023

[31] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
ArXiv abs/1901.04085 (2019). https://api.semanticscholar.org/CorpusID:58004692

[32] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Francis Christiano, Jan Leike, and Ryan J. Lowe. 2022.
Training language models to follow instructions with human feedback. ArXiv
abs/2203.02155 (2022). https://api.semanticscholar.org/CorpusID:246426909

[33] Ronak Pradeep, Kai Hui, Jai Gupta, Ádám Dániel Lelkes, Honglei Zhuang,
Jimmy Lin, Donald Metzler, and Vinh Q. Tran. 2023. How Does Genera-
tive Retrieval Scale to Millions of Passages? ArXiv abs/2305.11841 (2023).
https://api.semanticscholar.org/CorpusID:258822999

[34] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Xin Zhao, Daxiang
Dong, Hua Wu, and Haifeng Wang. 2020. RocketQA: An Optimized Training
Approach to Dense Passage Retrieval for Open-Domain Question Answering. In
North American Chapter of the Association for Computational Linguistics. https:
//api.semanticscholar.org/CorpusID:231815627

[35] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res.
21 (2019), 140:1–140:67. https://api.semanticscholar.org/CorpusID:204838007

[36] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan H. Keshavan,
Trung Hieu Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah
Samost, Maciej Kula, Ed H. Chi, and Maheswaran Sathiamoorthy. 2023. Rec-
ommender Systems with Generative Retrieval. ArXiv abs/2305.05065 (2023).
https://api.semanticscholar.org/CorpusID:258564854

[37] Stephen E. Robertson and Steve Walker. 1997. On relevance weights with little
relevance information. In Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval. https://api.semanticscholar.
org/CorpusID:16829071

[38] Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Found. Trends Inf. Retr. 3 (2009), 333–389. https:
//api.semanticscholar.org/CorpusID:207178704

[39] Gerard Salton and Michael McGill. 1983. Introduction to Modern Information
Retrieval. https://api.semanticscholar.org/CorpusID:43685115

[40] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv
abs/1910.01108 (2019). https://api.semanticscholar.org/CorpusID:203626972

[41] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence
Learning with Neural Networks. ArXiv abs/1409.3215 (2014). https://api.9

https://api.semanticscholar.org/CorpusID:125463275
https://api.semanticscholar.org/CorpusID:873046
https://api.semanticscholar.org/CorpusID:873046
https://api.semanticscholar.org/CorpusID:248366293
https://api.semanticscholar.org/CorpusID:248366293
https://api.semanticscholar.org/CorpusID:1289517
https://api.semanticscholar.org/CorpusID:222125277
https://api.semanticscholar.org/CorpusID:222125277
https://api.semanticscholar.org/CorpusID:33774240
https://api.semanticscholar.org/CorpusID:208612557
https://api.semanticscholar.org/CorpusID:208612557
https://api.semanticscholar.org/CorpusID:253018554
https://api.semanticscholar.org/CorpusID:212737158
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:237581550
https://api.semanticscholar.org/CorpusID:237581550
https://api.semanticscholar.org/CorpusID:235792467
https://api.semanticscholar.org/CorpusID:6033212
https://api.semanticscholar.org/CorpusID:222141041
https://api.semanticscholar.org/CorpusID:222141041
https://api.semanticscholar.org/CorpusID:233231706
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:216553223
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:86611921
https://api.semanticscholar.org/CorpusID:259262395
https://api.semanticscholar.org/CorpusID:259262395
https://api.semanticscholar.org/CorpusID:258947148
https://api.semanticscholar.org/CorpusID:258947148
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:216641819
https://api.semanticscholar.org/CorpusID:216641819
https://api.semanticscholar.org/CorpusID:8915893
https://api.semanticscholar.org/CorpusID:8432394
https://api.semanticscholar.org/CorpusID:8432394
https://api.semanticscholar.org/CorpusID:254854290
https://api.semanticscholar.org/CorpusID:237260023
https://api.semanticscholar.org/CorpusID:58004692
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:258822999
https://api.semanticscholar.org/CorpusID:231815627
https://api.semanticscholar.org/CorpusID:231815627
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:258564854
https://api.semanticscholar.org/CorpusID:16829071
https://api.semanticscholar.org/CorpusID:16829071
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:43685115
https://api.semanticscholar.org/CorpusID:203626972
https://api.semanticscholar.org/CorpusID:7961699
https://api.semanticscholar.org/CorpusID:7961699

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, MAY 13–17, 2024, Singapore, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

semanticscholar.org/CorpusID:7961699
[42] Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta,

ZhenQin, Kai Hui, Zhe Zhao, Jai Gupta, Tal Schuster,WilliamW. Cohen, and Don-
ald Metzler. 2022. Transformer Memory as a Differentiable Search Index. ArXiv
abs/2202.06991 (2022). https://api.semanticscholar.org/CorpusID:246863488

[43] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-
shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. 2022.
Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239
(2022).

[44] Laurens van der Maaten and Geoffrey E. Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605. https://api.
semanticscholar.org/CorpusID:5855042

[45] Jianfeng Wang, Jingdong Wang, Jingkuan Song, Xin-Shun Xu, Heng Tao Shen,
and Shipeng Li. 2014. Optimized Cartesian K-Means. IEEE Transactions on
Knowledge and Data Engineering 27 (2014), 180–192. https://api.semanticscholar.
org/CorpusID:1402726

[46] Yujing Wang, Ying Hou, Hong Wang, Ziming Miao, Shibin Wu, Hao Sun, Qi
Chen, Yuqing Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao
Sun, Weiwei Deng, Qi Zhang, and Mao Yang. 2022. A Neural Corpus Indexer for
Document Retrieval. ArXiv abs/2206.02743 (2022). https://api.semanticscholar.
org/CorpusID:249395549

[47] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. ArXiv abs/2007.00808
(2020). https://api.semanticscholar.org/CorpusID:220302524

[48] Hamed Zamani and W. Bruce Croft. 2017. Relevance-Based Word Embedding. In
Proceedings of the 40th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR ’17). 505–514.

[49] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik G. Learned-Miller,
and J. Kamps. 2018. From Neural Re-Ranking to Neural Ranking: Learning
a Sparse Representation for Inverted Indexing. Proceedings of the 27th ACM
International Conference on Information and KnowledgeManagement (2018). https:
//api.semanticscholar.org/CorpusID:52229883

[50] Hansi Zeng, Hamed Zamani, and Vishwa Vinay. 2022. Curriculum Learning for
Dense Retrieval Distillation. Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval (2022). https:
//api.semanticscholar.org/CorpusID:248426770

[51] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, M. Zhang, and Shaoping
Ma. 2021. Optimizing Dense Retrieval Model Training with Hard Negatives.
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval (2021). https://api.semanticscholar.org/
CorpusID:233289894

[52] Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Yu Wu, Peitian Zhang, and Ji rong
Wen. 2022. Ultron: An Ultimate Retriever on Corpus with a Model-based In-
dexer. ArXiv abs/2208.09257 (2022). https://api.semanticscholar.org/CorpusID:
251710261

[53] Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni,
Xuanhui Wang, and Michael Bendersky. 2022. RankT5: Fine-Tuning T5 for
Text Ranking with Ranking Losses. Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval (2022).
https://api.semanticscholar.org/CorpusID:252993059

[54] Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, Ming Gong, G. Zuccon,
and Daxin Jiang. 2022. Bridging the Gap Between Indexing and Retrieval for
Differentiable Search Index with Query Generation. ArXiv abs/2206.10128 (2022).
https://api.semanticscholar.org/CorpusID:249890267

10

https://api.semanticscholar.org/CorpusID:7961699
https://api.semanticscholar.org/CorpusID:246863488
https://api.semanticscholar.org/CorpusID:5855042
https://api.semanticscholar.org/CorpusID:5855042
https://api.semanticscholar.org/CorpusID:1402726
https://api.semanticscholar.org/CorpusID:1402726
https://api.semanticscholar.org/CorpusID:249395549
https://api.semanticscholar.org/CorpusID:249395549
https://api.semanticscholar.org/CorpusID:220302524
https://api.semanticscholar.org/CorpusID:52229883
https://api.semanticscholar.org/CorpusID:52229883
https://api.semanticscholar.org/CorpusID:248426770
https://api.semanticscholar.org/CorpusID:248426770
https://api.semanticscholar.org/CorpusID:233289894
https://api.semanticscholar.org/CorpusID:233289894
https://api.semanticscholar.org/CorpusID:251710261
https://api.semanticscholar.org/CorpusID:251710261
https://api.semanticscholar.org/CorpusID:252993059
https://api.semanticscholar.org/CorpusID:249890267

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Scalable and Effective Generative Information Retrieval WWW ’24, MAY 13–17, 2024, Singapore, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A PERFORMANCE ON SMALLER-SCALE
DATASET.

Following the methodology in [33], we also create a scaled-down
version encompassing 1M passages. Initially, we include all passages
relevant to the 532K training queries and the 7K Dev set queries,
summing to 522K passages. The rest are selected at random from the
main collection, totaling 1M passages. We merge the TREC DL 19
and TREC DL 20 to form the TREC DL. The results for MSMARCO
Dev and TREC DL are shown in the Table 4

Table 4: The performance comparison on MSMARCO-1M.
Highest performance models are boldfaced (p_value < 0.01)

Model
MSMARCO Dev TREC DL

MRR@10 Recall@10 NDCG@10 Recall@10
BM25 .418 .625 .275 .054
DSI-QG .508 .726 .429 .339
NCI-QG .511 .720 .441 .340
DPR .542 .775 .505 .340
ANCE .547 .779 .514 .338
MarginMSE .556 .781 .537 .399
TAS-B .573 .789 .542 .418
RIPOR .580 .793 .530 .425

11

	Abstract
	1 Introduction
	2 Introduction to Generative IR
	3 Methodology
	3.1 Prefix-Oriented Ranking Optimization
	3.2 Relevance-Based DocID Construction
	3.3 Optimization Details

	4 Experiments
	4.1 Experiments Settings
	4.2 Experiment Results
	4.3 Analysis and Discussion

	5 Related Work
	6 Conclusions and Future Work
	References
	A performance on smaller-scale dataset.

