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Scalable and Effective Generative Information Retrieval
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ABSTRACT
Recent research has shown that transformer networks can be used
as differentiable search indexes by representing each document as a
sequences of document ID tokens. These generative retrieval models
cast the retrieval problem to a document ID generation problem for
each given query. Despite their elegant design, existing generative
retrieval models only perform well on artificially-constructed and
small-scale collections. This has led to serious skepticism in the
research community on their real-world impact. This paper repre-
sents an important milestone in generative retrieval research by
showing, for the first time, that generative retrieval models can
be trained to perform effectively on large-scale standard retrieval
benchmarks. For doing so, we propose RIPOR– an optimization
framework for generative retrieval that can be adopted by any
encoder-decoder architecture. RIPOR is designed based on two
often-overlooked fundamental design considerations in generative
retrieval. First, given the sequential decoding nature of document
ID generation, assigning accurate relevance scores to documents
based on the whole document ID sequence is not sufficient. To ad-
dress this issue, RIPOR introduces a novel prefix-oriented ranking
optimization algorithm. Second, initial document IDs should be
constructed based on relevance associations between queries and
documents, instead of the syntactic and semantic information in
the documents. RIPOR addresses this issue using a relevance-based
document ID construction approach that quantizes relevance-based
representations learned for documents. Evaluation on MSMARCO
and TREC Deep Learning Track reveals that RIPOR surpasses state-
of-the-art generative retrieval models by a large margin (e.g., 30.5%
MRR improvements on MS MARCO Dev Set), and perform better
on par with popular dense retrieval models.
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Generative retrieval, neural ranking models, ranking optimization
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1 INTRODUCTION
Pre-trained foundation models have been employed in the develop-
ment of a range of retrieval models, including those that re-weight
terms within queries and documents for sparse retrieval [12, 13],
cross-encoder re-ranking models [31], and dual-encoder retrieval
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models [19, 47, 50, 51]. Recently, Tay et al. [42] proposed an elegant
and innovative approach to information retrieval (IR) by leverag-
ing pre-trained encoder-decoder models as differentiable search
indexes (DSI). This has led to the development of a few generative
retrieval models in the past year, such as NCI [46], DSI-QG [54],
and DSI++ [29]. In these models, each document ID is a unique se-
quence of special document ID tokens and they are often generated
autoregressively using a constrained beam search algorithm [5] for
each given query.

A distinct advantages of generative retrieval over existing re-
trieval models includes obviating the need to retrieve based on the
external memory by encapsulating collection information within
the model’s parameters. This design promotes end-to-end training,
making it seamless to integrate with existing foundation model
(e.g., GPT-4) workflows for various tasks that benefit from retrieval,
such as open-domain question-answering, fact verification, and
conversational search [15, 43]. However, despite the theoretical
appeal, prior work has only been able to demonstrate the empirical
success of generative retrieval models on small-scale (and often
artificially-constructed) document collections. For example, a sim-
ple term matching model, such as BM25, achieves 300% higher
MRR than DSI [42] on MSMARCO, and this gap can be reduced
to 76% after data augmentation through query generation [54].1
These observations have recently led to serious skepticism in the re-
search community on the real-world impact of generative retrieval
models [33].

We argue that the poor performance of generative retrieval mod-
els is a result of two often-overlooked design considerations that are
vital to their efficacy. The first pertains to the sequential nature of
the beam search algorithm employed during document ID decoding.
For each given query, beam search [41] sustains a top 𝑘 candidate
list at each decoding step based on the cumulative scores of the
already-decoded tokens (i.e., prefix of document IDs). In order to
successfully generate the document ID of relevant documents, every
document ID prefix of the relevant documents should be among the
top 𝑘 candidate list in beam search decoding. This essential aspect
is not considered by existing generative retrieval models. To ad-
dress this issue, we advocate a prefix-oriented ranking optimization
method, introducing a novel margin-based pairwise loss function
that guides the model towards producing higher relevance score
for every prefix of the relevant document IDs verses non-relevant
document ID. This method also incorporates progressive training,
gradually refining the model’s prediction from the shortest prefix to
the full-length document ID. Multi-objective progressive learning
is applied to prevent the model from forgetting to emphasize on
document ID prefixes.

Secondly, existing methods do not consider relevance informa-
tion in constructing the initial document IDs. They instead use
syntactic and semantic information in the documents, represented
by pre-trained BERT [11] or sentence-T5 [30] to form the initial
document IDs using hierarchical clustering [42, 46], ngrams [3],

1For more information, see Table 1. Similar observations have been made in [46].
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or approximation methods [36, 52]. However, as demonstrated by
relevance-based word embedding [48], relevance information can-
not simply be captured by models trained with syntactic, semantic,
and proximity based objectives. And since generative retrieval mod-
els conduct optimization with fixed document IDs, inappropriate
initial construction of document IDs leads to a bottleneck inherently
influencing the effectiveness of generative retrieval models. We ad-
dress this issue by presenting a novel pre-training phase for initial
document ID construction. Here, we transform the encoder-decoder
generative retrieval model to a special dense retrieval model, with
a relevance-based objective trained on the target task. The trained
document representations are then decomposed into multiple vec-
tors using residual quantization (RQ) [1, 6] that has proven to be a
successful approximation for relevance-based representations.

We conduct experiments on standard large-scale information
retrieval benchmarks, including MSAMRCO [4] and TREC 2019-20
Deep Learning Track data [9, 10], The retrieval collection consists
of 8.8 million passages. Our approach achieves substantial improve-
ments compared to state-of-the-art generative retrieval models in
all settings. For example, our RIPOR framework2 outperforms the
best performing generative retrieval model by 30.5% in terms of
MRR@10 on MSMARCO. In most settings, our model also shows
better performance compared to popular dense retrieval models,
such as DPR [19], ANCE [47], MarginMSE [16], and TAS-B [17].
Therefore, this paper sets an important milestone in generative re-
trieval research by demonstrating, for the first time, the feasibility
of developing generative retrieval models that perform effectively
at scale, and paving the path towards their implementation in real-
world applications. To foster research in this area, we open-source
our implementation and release the learned model parameters.3

2 INTRODUCTION TO GENERATIVE IR
In generative document retrieval, each document is symbolized
by a unique identifier, known as document ID or DocID for short.
Pre-trained encoder-decoder models, such as T5 [35], are employed
to generate a list of document IDs in response to a given query.
Let 𝑀 represent a generative retrieval model that represents a
document 𝑑 using the document ID 𝑐𝑑 = [𝑐𝑑1 , 𝑐

𝑑
2 , . . . , 𝑐

𝑑
𝐿
] of length

𝐿. Various methods are applied to the DocID construction [3, 42, 52].
For instance, DSI [42] employs the hierarchical k-means over the
document embeddings obtained from the pre-trained BERT model
[11]. Once the tree is built, each root-to-leaf path is used as a unique
document ID.

As depicted in Figure 1,𝑀 is trained to generate document IDs
autoregressively for any given query 𝑞, meaning that it generates
each DocID token 𝑐𝑑

𝑖
conditioned on previously generated tokens,

denoted by 𝑐𝑑
<𝑖
. Therefore, themodel generates a conditional hidden

representation for the 𝑖th DocID token as follows:

h𝑑𝑖 = Decoder(𝑐𝑑<𝑖 ;Encoder(𝑞)) ∈ R
𝐷 .

where 𝑐𝑑
<𝑖

= [𝑐𝑑1 , 𝑐
𝑑
2 , . . . , 𝑐

𝑑
𝑖−1] is fed to the decoder as its input and

the encoded query vector is used to compute cross-attentions to
the decoder. In generative retrieval, each DocID token is associated
with a 𝐷-dimensional representation. Let E𝑖 ∈ R𝑉 ×𝐷 denotes a
2RIPOR stands for relevance-based identifiers for prefix-oriented ranking.
3http://anonymized_url/
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Figure 1: An illustration of generative retrieval models.

token embedding table for each position 𝑖 in the DocID sequence,
where 𝑉 is the vocabulary size for DocID tokens, i.e., the number
of distinct tokens for representing document IDs. Therefore, the
representation associated with each DocID token 𝑐𝑑

𝑖
is represented

as E𝑖 [𝑐𝑑𝑖 ] ∈ R𝐷 . Note that the DocID token embedding matrices
are distinct, thus E𝑖 ≠ E𝑗 : ∀𝑖 ≠ 𝑗 .

Inspired by seq2seq models[8, 32, 35], existing generative re-
trievalmodels estimate relevance scores based on log-conditional
probability as follows:

𝑆 (𝑞, 𝑐𝑑 ) = log𝑝 ( [𝑐𝑑1 , 𝑐
𝑑
2 , . . . , 𝑐

𝑑
𝐿] |𝑞)

=

𝐿∑︁
𝑖=1

log𝑝 (𝑐𝑑𝑖 |𝑞, 𝑐
𝑑
<𝑖 )

=

𝐿∑︁
𝑖=1

[
LogSoftmax(Ei · hdi ) [𝑐

𝑑
𝑖 ]
]

where 𝑆 (𝑞, 𝑐𝑑 ) denotes the scoring function for a query-document
pair. In this paper, we instead adopt a conditional logit ap-
proach, due to its less expensive computation cost and better align-
ment with ourmargin-based pairwise loss.Wewill further elaborate
this choice in Section 3.1. This approach is inspired by dense re-
trieval models that use dot product similarity between query and
document representations, and computes dot product similarity
between the token embedding vectors corresponding to the DocID
and the hidden vectors learned for each decoding position given
the query and past decodings. In more detail, this approach can be
formulated as follows:

𝑆 (𝑞, 𝑐𝑑 ) = concat(E1 [𝑐𝑑1 ], . . . , EL [𝑐
𝑑
𝐿]) · concat(h

𝑑
1 , . . . , h

𝑑
𝐿)

=

𝐿∑︁
𝑖=1

Ei [𝑐𝑑𝑖 ] · h
d
i .

Employing these scoring functions, generative retrieval models
produce a ranked list of document using beam search with con-
strained decoding [5], where the top 𝐾 valid DocIDs are gener-
ated according to the scoring function. Each of the DocIDs is then
mapped back to its original document. This results in a ranked list
of 𝐾 documents.

3 METHODOLOGY
This paper proposes RIPOR, a generic framework for document ID
construction and prefix-oriented ranking optimization that can be
applied to any encoder-decoder architecture and enhances the per-
formance of generative retrieval models. The high-level overview
of the RIPOR framework is illustrated in Figure 2. Initially, the
generative model𝑀 is viewed as a dense encoder and is subjected

2
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Figure 2: The overview of the RIPOR framework

to fine-tuning with a relevance-based objective. Upon training, RI-
POR employs Residual Quantization (RQ) [6] to derive a unique
identifier for each document. Subsequently, following Pradeep et al.
[33], Wang et al. [46], Zhuang et al. [54], we leverage a seq2seq
pre-training approach for pre-training the model using pseudo
queries generated from the documents. Next, we introduce a novel
rank-oriented fine-tuning procedure for refining the parameters of
model 𝑀 . In the next two sections, we elucidate the motivations
and methodologies behind the two major novel components in
RIPOR: prefix-oriented ranking optimization and relevance-based
document ID construction. A detailed description of the entire
optimization pipeline in presented in Section 3.3.

3.1 Prefix-Oriented Ranking Optimization
State-of-the-art generative retrieval models, such as LTRGR [23],
adopt a learning-to-rank loss for optimization. The objective is to
ensure that 𝑆 (𝑞, 𝑐𝑑+ ) > 𝑆 (𝑞, 𝑐𝑑− ) for a training triplet of query 𝑞,
relevant document 𝑑+ and irrelevant document 𝑑− . We posit that
this modeling is not optimal. A primary oversight is the intrinsic
nature of beam search that sequentially decodes document ID tokens
from left to right. Solely focusing on pairwise ranking for a full-
length document ID does not guarantee that relevant documents
can survive the beam search eliminations in earlier decoding steps.
Therefore, we aim at developing a model that produce accurate
scoring at every decoding step. Formally, we desire to satisfy the
following criterion: 𝑆𝑖prefix (𝑞, 𝑐𝑑+ ) ≥ 𝑆𝑖prefix (𝑞, 𝑐𝑑− ), ∀𝑖 ∈ [1, 𝐿],
where 𝑆𝑖prefix (𝑞, 𝑑) denotes the relevance score produced by the
generative retrieval model for the first 𝑖 tokens in the document ID:
[𝑐𝑑1 , 𝑐

𝑑
2 , . . . , 𝑐

𝑑
𝑖
].

Margin Decomposed Pairwise Loss. Taking inspiration from
MarginMSE [16], a pairwise loss for knowledge distillation as fol-
lows:

L(𝑞, 𝑑+, 𝑑−) =
(
𝑆 (𝑞, 𝑑+) − 𝑆 (𝑞, 𝑑−) −𝑇(𝑞,𝑑+,𝑑− )

)2
,

where 𝑇(𝑞,𝑑+,𝑑− ) denotes the golden margin, commonly predicted
by a teacher model derived from a cross-encoder [31]. Prior re-
search [16, 50] reveals that this loss function often outperforms
other pairwise losses [47] by addressing data sparsity issues in
large-scale retrieval benchmark [34], utilizing pseudo-labels for
unlabeled query-document pairs.

For generative retrieval, we extend the MarginMSE loss by mod-
eling pairwise ranking between prefixes of 𝑐𝑑+ and 𝑐𝑑− for each
decoding step 𝑖:

L𝑖
rank (𝑞, 𝑐𝑑+ , 𝑐𝑑− ) =

(
𝑆𝑖prefix (𝑞, 𝑐𝑑+ ) − 𝑆𝑖prefix (𝑞, 𝑐𝑑− ) − 𝛼𝑖𝑇(𝑞,𝑑+,𝑑− )

)2
.

Here, at each step 𝑖 we re-weight the golden margin by multiply-
ing with 𝛼𝑖 , which is a weight we assign to each prefix position. The
reason for this decision is that we emphasize on the early decoding
steps of the document IDs. With this motivation, 𝛼𝑖 should be a
monotonically increasing concave function w.r.t. 𝑖 . Formally, 𝛼𝑖 val-
ues should satisfy the following constraint: 𝛼𝑖 −𝛼𝑖−1 ≥ 𝛼𝑖+1−𝛼𝑖 for
every 𝑖 . In our experiments, we use 𝛼𝑖 = 1

𝑍
(1− 𝛽

𝑖 ), where 𝑍 = 1− 𝛽

𝐿
is a normalization factor and 𝛽 is a constant hyper-parameter. We
leave the exploration of other concave functions to future work.
For efficiency reasons, we only do prefix-oriented optimization for
𝑖 = 4, 8, 16, 32 and thus set 𝛽 = 2. This concave formulation of 𝛼𝑖 em-
phasizes larger sub-margins in early steps, ensuring for any query
𝑞 that 𝑆𝑖prefix (𝑞, 𝑐𝑑+ ) surpasses 𝑆𝑖prefix (𝑞, 𝑐𝑑− ). Moreover, as 𝛼𝐿 = 1,
the predicted margin for full-length DocID sequences aligns with
the real margin, maintaining the fidelity of ranking knowledge.

Progressive Training. To better learn representations aligned
with the left-to-right decoding characteristic of the beam search,
we draw inspiration from curriculum learning [2, 26, 28, 50] and
implement a progressive training strategy. The training process
is initialized with the shortest prefix. This allows the model to
first focus on basic sequence representations and build adequate
capacity for the subsequent stages. As the training advances, the
scope is systematically extended to the longer prefixes, culminating
in training on the full-length sequence with length 𝐿.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, MAY 13–17, 2024, Singapore, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

During training on longer prefixes, we empirically found that
the model tends to overlook previously acquired knowledge related
to shorter prefixes. To mitigate this catastrophic forgetting issue,
we employ multi-objective learning at each time step to ensure the
retention of knowledge acquired in earlier stages. Given the training
dataD = {(𝑞 𝑗 , 𝑑+𝑗 , 𝑑

−
𝑗
,𝑇(𝑞 𝑗 ,𝑑

+
𝑗
,𝑑−

𝑗
) )}

|D |
𝑗=1 , we use the following multi-

objective loss function:∑︁
(𝑞,𝑑+

𝑗
,𝑑−

𝑗
) ∈D

(
L𝑖
rank (𝑞, 𝑑

+
𝑗 , 𝑑

−
𝑗 )︸              ︷︷              ︸

(1)

+
𝑖−1∑︁
𝑘=1

L𝑘
rank (𝑞, 𝑑

+
𝑗 , 𝑑

−
𝑗 )︸                    ︷︷                    ︸

(2)

)

In this loss function, term (1) is responsible for acquiring the pair-
wise rankings specific to the current step 𝑖 , while term (2) ensures
the model retains the ranking knowledge from previous prefixes. As
mentioned earlier, for efficiency reasons, without loss of generality,
we only repeat this training process for 𝑖 = 4, 8, 16, 32.

3.2 Relevance-Based DocID Construction
Generative retrieval models predominantly adopt a two-step opti-
mization approach. First, they initialize the document IDs by em-
ploying various methods such as hierarchical k-means [42, 46]
or discriminative textual descriptions extracted from documents
[3, 23, 24]. In the subsequent step, they optimize the model leverag-
ing either cross-entropy loss [3, 42] or learning-to-rank loss [23],
with fixed DocIDs obtained in the first step. Given that the Do-
cIDs remain immutable in this phase, they potentially become a
significant bottleneck, influencing the overall efficacy of generative
retrieval models.

We argue that the design of DocIDs is crucial in two specific
ways: First, it must ensure the documents with inherent similar-
ity possess correspondingly similar DocIDs. Second, due to the
characteristics of beam search for decoding in generative retrieval,
these DocIDs should encapsulate a hierarchical structure. Notably,
the conception of similarity in this context is nuanced; it is tied
intricately to specific queries and deviates from standard linguistic
similarities observed in natural language processing. Addressing
these challenges, we introduce a relevance-based method for ini-
tializing DocIDs. This approach is crafted to encapsulate both the
query-document relevance nuances and the necessary hierarchical
structure, ensuring effective performance in generative retrieval
tasks.

Generative retrieval model as dense encoder. To capture the
relevance-based similarities among documents, we design an opti-
mization process inspired by dense retrieval models, but by utilizing
the encoder-decoder architecture in𝑀 . Specifically, we input docu-
ment content into the encoder and a special start token as input to
the decoder. The document representation is then derived from the
first contextualized output embedding of the decoder:

d = Decoder(𝑠0;Encoder(𝑑)) ∈ R𝐷 .

Where 𝑠0 is the start token. Adopting a similar approach for queries,
we determine their representations. To optimize model𝑀 , we em-
ploy the MarginMSE loss [16] with multi-stage negative sampling
introduced in Sec 3.3.1 in details.

Residual Quantization. Hierarchical k-means, which is used
in [33, 42, 46, 54] for document ID construction, does not explicitly
minimize the distortion error between original and approximated
representations. As highlighted by Ge et al. [14], there is a notable
inverse correlation between information retrieval metrics like MAP
and the distortion error, particularly for large-scale datasets. Moti-
vated by this observation, we adopt quantization-based techniques
[1, 6, 14, 45] explicitly designed to minimize this distortion error.
Among a myriad of quantization algorithms, we select Residual
Quantization (RQ) [1, 6] due to its inherent advantages. Specifically,
(1) its recursive procedure captures the hierarchical document struc-
ture, aligning with the beam search strategy inherent to generative
retrieval, and (2) compared to methods like product quantization
(PQ) [14, 45], it requires a shorter length of DocID to achieve a
strong performance, leading to memory and time savings during
inference. Using 𝑀 as our dense encoder, we calculate the repre-
sentation d for each document 𝑑 . Subsequently, employing RQ,
we optimize the token embedding table {E𝑖 }𝐿𝑖=1 to determine the
optimal DocID 𝑐𝑑 = [𝑐𝑑1 , . . . , 𝑐

𝑑
𝐿
] for every document 𝑑 . Upon opti-

mization, each d can be approximated using a sequence of token
embeddings as:

d ≈
𝐿∑︁
𝑖=1

E𝑖 [𝑐𝑑𝑖 ] .

The trained model𝑀 alongside the embedding tables {E𝑖 }𝐿𝑖=1 will
serve as the initial weights for subsequent optimization phases
within generative retrieval.

3.3 Optimization Details
Our optimization process can be delineated into three distinct
phases: (1) DocID initialization (2) Seq2seq Pre-training, and (3)
Rank-oriented Fine-tuning.

3.3.1 DocID Initialization. As described in Section 3.2, we treat
𝑀 as a dense encoder. To optimize the dense encoder 𝑀 , we use
the recent advance of multi-stage training strategy [47]. Here’s the
tailed steps of the multi-stage training: In the initial stage, we use
BM25 [38] to sample the top 𝐾 (We choose 𝐾 = 100 in our work)
documents for each query and train themodel using theMarginMSE
[16] loss function. Once the model is trained, we obtain the dense
representation d from our model𝑀 for each document and store
them in an index. For each query 𝑞, we apply nearest neighbor
search to retrieve the top 𝐾 documents. Then, we train the model
using the same loss function with the retrieved documents. After
training, we then apply residual quantization (RQ) to obtain the
DocID for each document. The trained model is denoted as𝑀0, and
the embedding tables {E𝑖 }𝐿𝑖=1 will be used as the initial weights for
the next phase.

3.3.2 Seq2seq Pre-training. To equip our model𝑀 with a compre-
hensive understanding of the corpus, we incorporate a seq2seq
pre-training phase. Instead of using the document 𝑑 as input and
predicting its corresponding semantic tokens [𝑐𝑑1 , . . . , 𝑐

𝑑
𝐿
], we align

with prior work [46] and utilize pseudo queries associated with each
document as input proxies for DocID prediction. Specifically, by
leveraging the doc2query model [7], we generate 𝑁𝑝𝑠𝑒𝑢𝑑𝑜 pseudo
queries for every document. We then optimize the model using
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a cross-entropy loss, with the tokens from the relevant DocIDs
serving as the ground-truth labels. We denote the trained model in
this phase as𝑀1.

3.3.3 Rank-oriented Fine-tuning. To optimize our model, we lever-
age the pairwise loss as described in Sec 3.1. Literature suggests
the pivotal roles of negative sampling [47] and the quality of the
supervision signal [16, 17, 50] in enhancing the performance of
ranking models. Following this, we incorporate a multi-stage train-
ing strategy [47, 51] to incrementally enhance the model’s capacity
and extract improved negatives for subsequent stages.

Initial Fine-tuning: This stage is primarily geared towards further
preparing the generative retrieval model for the ranking task and
sourcing high-quality negative samples for ensuing stages. Utilizing
the model 𝑀0 from Sec 3.3.1 as a dense encoder, we index each
document via its embedded representation. We apply the Nearest
Neighborhood search to retrieve the top 100 documents. The train-
ing data D𝑅 can be constructed based on the negative samples and
ground-truth query-document positive pairs. Unlike our approach
in subsequent stages, we directly utilize the full-sequence ranking
loss L𝐿

𝑟𝑎𝑛𝑘
. Starting from 𝑀1 as an initial model, after training,

the model is represented as𝑀2. This is intentional, as the primary
objective here is to curate quality negative samples for later stages
rather than perfecting the model.

Prefix-Oriented Ranking Optimization: Given a query 𝑞, we de-
ploy beam search on the model𝑀2 to retrieve the top 100 DocIDs,
each of which is mapped back to corresponding documents. The
documents serve as an augmented source of negative samples, and
we subsequently construct a training set D𝐵 in a manner analo-
gous to the previous section. The comprehensive training set for
this stage consolidates data both from the Nearest Neighborhood
Search and Beam Search, represented asD = D𝑅∪D𝐵 . To optimize
the model, we utilize the progressive training described in Section
3.1. For each optimization step 𝑖 , we employ the multi-objective
loss function described in Section 3.1. After training, the model is
denoted as𝑀3.

Self-Negative Fine-tuning: To enhance the model’s effectiveness,
we employ beam search on the most recently optimized model𝑀3

to establish a training dataset D𝐵
𝑠𝑒𝑙 𝑓

. Then the model is trained
on the same multi-objective loss function in the full-length setting
(𝑖 = 𝐿), and denoted as𝑀4.

4 EXPERIMENTS
4.1 Experiments Settings
4.1.1 Dataset. We assess our information retrieval models on the
MSMARCO dataset [4], comprising 8.8M passages and 532K train-
ing queries with shallow annotations (averaging about 1.1 relevant
passages per query). We evaluate our models using three datasets:
(1) MSMARCO-Dev, with 7K queries and shallow annotations, (2)
TREC DL 2019: the passage retrieval dataset used in 2019 TREC
Deep Learning Track [9] with 43 queries and (3) TREC DL 2020: the
passage retrieval dataset of TREC Deep Learning Track 2020 [10]
with 54 queries. For evaluation, we report recall@10 for all datasets,
as well as the official metric MRR@10 for the MSMARCO-Dev set
and NDCG@10 for the TREC DL 2019 and 2020.

4.1.2 Implementation Details. We employ the pre-trained T5-
base [35] as the backbone for our generative retrieval model. For
DocID initialization, we adopt the residual quantization (RQ) im-
plementation from Faiss [18]. The length of DocID 𝐿 is 32 and the
table size 𝑉 is 256. For Seq2seq pre-training, the doc2query model
[7] with t5-large as the backbone generates 10 pseudo queries for
each document. For progressive training, we sample 4 prefixes with
lengths 4, 8, 16, 32. The optimization is done using Adam [21], fea-
turing linear scheduling and a warmup ratio of 4.5% of total learn-
ing steps. For DocID initialization and rank-oriented fine-tuning
phases, we set the learning rate as 0.0001 with 120 epochs and
batch size of 64 For Seq2seq pre-training, we set the learning rate
as 0.001 with 250,000 steps and batch size of 256 We conducted all
the experiments using 8 A100 GPUs.

4.1.3 Baselines. We select a wide range of document retrieval
models from generative retrieval to dense retrieval as the baselines
for comparison:

• DSI [42]: DSI is one of the earliest generative retrieval models
that apply the hierarchical k-means over document representa-
tions obtained from pre-trained BERT for DocID construction.
The model utilizes cross-entropy loss for fine-tuning on the re-
trieval task.

• DSI-QG [54]: DSI-QG generates pseudo queries for each docu-
ment and uses them as the augmented data for training.

• NCI-QG [46]: NCI-QG invents a prefix-aware weight-adaptive
decoder architecture to capture position information of docu-
ment identifiers, and like DSI-QG, uses the doc2query model for
data augmentation.

• SEAL [3]: SEAL employs document n-grams as identifiers, ap-
plying the FM-index to ensure valid document identifiers are
decoded in response to specific queries.

• MINDER [24]: An extension of SEAL, MINDER constructs doc-
ument identifiers from multiple document views, such as titles,
pseudo-queries, and n-grams.

• LTRGR [23]: LTRGR utilizes multi-view document identifiers,
akin to MINDER, but shifts the loss function to a pairwise-based
learning-to-rank algorithm.

• BM25 [38]: the simple yet effective bag-of-word retrieval model
that uses term-frequency, inverse document frequency, and doc-
ument length for computing the relevant scores

• DPR [19]: DPR is a dual-encoder based dense retrieval models.
It incorporates the in-batch negative and BM25 negatives for
training.

• ANCE [47]: ANCE selects hard training negatives from the entire
corpus by using an asynchronously updated ANN index.

• MarginMSE [16]: MarginMSE develops a distinctive loss func-
tion based on the konwledge distillation. It aims to minimize the
discrepancy between the predicted margin from dense retrieval
models and the golden margin from the teacher model.

• TAS-B [17]: Building upon MarginMSE, TAS-B designs a topic-
aware sampling algorithm to enhance the model’s effectiveness.
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Table 1: Experimental results on MSMARCO and TREC Deep Learning Track Data. Highest generative retrieval performances
are boldfaced. Superscript ∗ denotes statistically significant improvement compared to all generative retrieval baselines.
Superscripts △ and ▽ denote significantly higher and lower performance compared to RIPOR. (t-test with Bonferroni correction,
p_value < 0.01). For dense retrieval models, HNSW [27] index is used for ANN search.

Model MSMARCO Dev TREC DL 2019 TREC DL 2020
MRR@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10

Generative Retrieval
DSI .045 .138 .163 .076 .150 .070
DSI-QG .105 .292 .320 .138 .328 .120
NCI-QG .153 .352 .403 .167 .394 .159
SEAL .127 - - - - -
MINDER .186 .383 .506 .201 .392 .144
LTRGR .255 .531 - - - -
RIPOR (ours) .333∗ .562∗ .628∗ .205∗ .631∗ .191∗

Sparse and Dense Retrieval Models (For Reference)
BM25 .185▽ .381▽ .512▽ .178▽ .477▽ .164▽
DPR .287▽ .539▽ .588▽ .195▽ .581▽ .182▽
ANCE .301▽ .545▽ .600▽ .262▽ .587▽ .174▽
MarginMSE .312▽ .552▽ .634△ .250△ .614▽ .193
TAS-B .323▽ .557▽ .629 .200 .633 .227△

Table 2: Ablation study results on MSMARCO Dev. Super-
script ▽ denotes significantly lower performance compared
to RIPOR (t-test with Bonferroni correction, p_value < 0.01).

MRR@10 Recall@10
-. RIPOR .333 .562
1. w/o prefix optimization .280▽ .475▽
2. w/o multi-objective learning .317▽ .532▽
3. w/o self-neg. fine-tuning .325▽ .543▽
4. w/o seq2seq pre-training .319▽ .539▽
5. replace with sentence t5 .192▽ .287▽
6. replace with PQ .112▽ .155▽

4.2 Experiment Results
4.2.1 Main Results. We report the performance of RIPOR and
other baselines MSMARCO in Table 1. First, most generative re-
trieval models, including DSI, DSI-QG, NCI-QG, SEAL, and MIN-
DER, consistently lag behind BM25 across all three evaluation sets.
In contrast, the LTRGR model, which incorporates a learning-to-
rank algorithm, manages to surpass BM25. These observations un-
derscore the importance of integrating learning-to-rank methodolo-
gies when designing generative retrieval models. Second, our pro-
posed RIPOR consistently outperforms other generative retrieval
baselines, demonstrating a significant advantage. Notably, when
compared to the top-performing baseline LTRGR, RIPOR achieves
a 30.5% improvement in MRR@10 on the MSMARCO Dev set and
a remarkable 94% enhancement in NDCG@10 on the TREC-20 test
set. Third, our RIPOR can obtain comparable results to state-of-
the-art dense retrieval models, particularly in precision-oriented
metrics. For instance, compared to ANCE, our model achieves a
16% improvement in terms of MRR@10 on MSMARCO Dev and

Table 3: The retrieval performance for various DocID combi-
nations on MSMARCO Dev set.

Extra
Param.(M)L × V MRR@10 Recall@10

32 × 256 .333 .562 6.29
16 × 512 .307 .520 6.29
8 × 1024 .306 .535 6.29
4 × 2048 .273 .493 6.29
16 × 1024 .324 .554 12.58
8 × 2048 .319 .550 12.58
4 × 4096 .291 .528 12.58

a 6.6% improvement on the two TREC DL evaluation sets in total
NDCG@104. Additionally, we provide the experimental results on
the small-scale dataset MSMARCO-1M, in line with previous work
[33]. These results can be found in Appendix Table 4.

4.2.2 Ablation Studies. We conduct a thorough ablation stud-
ies on the MSMARCO dataset to investigate the impact of each
component in RIPOR. We report our study in Table 2.

Beginning with Row 1, we can see the significance of incorpo-
rating prefix-oriented ranking optimization. The absence of this
optimization results in a pronounced 19% degradation in MRR@10.
Without employing the optimization approach, the model fails to ex-
plicitly ensure that every prefix of relevant DocIDs receives higher
scores than those of relevant DocIDs in response to a query. This
increases the risk of discarding these relevant DocIDs in the early
steps of beam search, which, in turn, negatively impacts informa-
tion performance.
4HNSW index might slightly impact the performance compared to DR models using a
flat index [27, 47]
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Figure 3: Clusters of the relevant documents to 20 queries sampled from TREC DL. The color indicates the query ID.

In Row 2, we infer the significance of incorporatingmulti-objective
learning within the prefix optimization. This inclusion results in a
further improvement of 5% in MRR@10. The enhancement can be
credited to the approach’s efficacy in mitigating the forgetting issue
encountered during the progressive training’s latter stages. Notably,
this methodology introduces only a minimal addition to the loss
computation, ensuring that there is no increase in computational
overhead during training.

Row 3 reports the results for RIPOR when self-negative fine-
tuning is not used in the final training stage. Incorporating this
strategy yields a 2.5% enhancement in MRR@10 and a 3.5% boost
in Recall@10. This improvement stems primarily from the fact that
hard negative samples would increae the efficacy of the retrieval
model as shown in previous dense retrieval models[47]. By strategi-
cally leveraging these hard negative samples, we bolster the model’s
capability, ensuring relevant DocIDs consistently be ranked higher
than potential high-scoring hard negatives, which subsequently
elevates the model’s overall effectiveness.

From Row 4, we note that by integrating seq2seq pre-training,
RIPOR achieves a 4% improvement in MRR@10. This method allows
the model to encapsulate document information across the entire
corpus, mirroring the indexing phase in dense retrieval models, and
subsequently driving the observed performance improvement.

From Row 5, when we treat the generative retrieval model as
a dense encoder and instead use the sentence-T5 [30] to derive
the hidden representation for each document, a substantial perfor-
mance degradation would happen, with a 73% drop in MRR@10,
for instance. The rationale behind this decline is that sentence-T5,

being pre-trained on NLP tasks, is not optimized to discern query-
dependent semantic similarities between documents. Leveraging
it to initialize the DocIDs disrupts the inherent semantic linkages
among documents in relation to queries.

Finally, in Row 6, substituting RQwith PQ results in a substantial
performance decline, evidenced by a 197% decrease in MRR@10.
While PQ is recognized as a potent quantization algorithm in the
dense retrieval domain, our results suggest its unsuitability for
generative retrieval. This limitation may stem from PQ’s inability
to encapsulate the hierarchical structure among documents, an
attribute that has been shown to be crucial in generative retrieval,
especially when employing beam search.
4.3 Analysis and Discussion
4.3.1 The impact of DocID combination. The configuration
of the Document Identifier (DocID), specifically its length 𝐿 and
vocabulary size 𝑉 , influences the effectiveness of model𝑀 . We ex-
amine this relationship by evaluating various performance metrics
on the MSMARCO Dev set, as detailed in Table 3. Firstly, when
holding the extra parameters constant (quantified by 𝐿 ×𝑉 × 𝐷),
we observe that an elongation in DocID length 𝐿 corresponds to
enhanced performance in both MRR@10 and Recall@10. Secondly,
while maintaining a fixed DocID length 𝐿 and incrementing the vo-
cabulary size 𝑉 , there’s a noticeable improvement in performance
metrics. For instance, when 𝐿 = 16, increasing the vocabulary size
from 512 to 1024 leads to the 5.5% improvement in MRR@10.

4.3.2 The quality of document approximated representation.
In Section 3.2, we emphasized the importance of the relevance-based
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Figure 4: The retrieval performance for different prefix lengths in MSMARO Dev.
document similarities, in influencing model performance. To prove
that our model can capture these signals. We randomly selected 20
queries from TREC DL 19 and TREC DL 20, along with their corre-
sponding relevant documents. We utilize the approximated vector
representation d̂ =

∑𝐿
𝑖=1 E𝑖 [𝑐𝑑𝑖 ] and apply T-SNE [44] to project the

approximated representations of each document into a 2D space
for visualization. We studied clustering quality for different prefix
lengths, specifically 𝐿 = 1, 2, 4, 8, 16, and 32, as illustrated in Figure 3.
First, when 𝐿 ≥ 8, those documents with the same relevant query
are located in their corresponding cluster nicely, which indicates
that our RIPOR effectively draws relevant documents nearer while
distancing the irrelevant ones. Second, the clustering quality is
progressively improved when 𝐿 increases. This might be because
when 𝐿 increases, the distance between approximated vector d̂ and
original vector d diminishes, enabling the approximation to capture
finer-grained ranking information.

4.3.3 The influence of prefix-length. The prefix length plays
a pivotal role in the RIPOR framework due to its influence on the
distortion error between the original and approximated vectors.
While Section 4.3.2 provides a qualitative perspective on its effects
in terms of document similarities in a low-dimensional space, this
section delves into its quantitative impact on retrieval performance,
as depicted in Figure 4. Referring to the left figure, which displays
different DocID combinations from RIPOR, several trends emerge.
First, as the prefix length 𝐿 grows, there’s a consistent improvement
in performance. Second, the rate of this performance gain is more
pronounced for shorter prefix lengths, since we observe that the
boost is more substantial when 𝐿 ≤ 8 than when 𝐿 > 8. Third,
given an equal prefix length, variants with a larger vocabulary
size tend to perform better. From the right figure, which contrasts
RIPOR with three other selected variants from the ablation study
in Section 4.3.3: First, excluding the prefix-oriented optimization
invariably results in reduced performance. Second, the performance
curve of the "replace with sentence-T5" variant emphasizes the criti-
cal role of DocID initialization. Its subpar performance suggests that
not employing relevance-based DocID initialization is detrimental,
rendering it less effective than the variant excluding prefix-oriented
optimization. Third, Product Quantization (PQ) seems less compat-
ible with generative retrieval, given its stagnant performance for
𝐿 ≥ 8. This stagnation might be due to PQ’s shortcomings in cap-
turing the hierarchical nuances among documents, subsequently
impacting the benefits drawn from longer prefix lengths.

5 RELATEDWORK
Pre-trained language models (LMs) [11, 25, 35, 40] have become
foundational in the field of information retrieval (IR). The integra-
tion of these LMs into neural IR models can be broadly categorized
into four main streams:

Neural Sparse Retrieval models, inspired by conventional bag-of-
words approaches like TF-IDF [37] and BM25 [38], adapt BERT to re-
weight subwords, thereby enhancing IR performance. To maintain
the sparsity of high-dimensional vectors, they utilize L1 [49] or
Flop [13] regularizers. This characteristic sparsity allows them to
be incorporated into fast search frameworks based on the inverted
index [39].

Re-ranking with LMs is another approach where LMs serve as
re-rankers [31, 53]. By feeding a concatenated query and document,
these models produce a relevance score. Despite their often superior
performance, they are better suited for document re-ranking due
to efficiency constraints, rather than retrieval.

Dense Retrieval models, a more recent advancement, are dual-
encoder-based [16, 17, 19, 20, 34, 47, 50, 51]. Notably, they have ex-
hibited standout performance on large-scale datasets [4, 22]. These
models, typically leveraging BERT, encode each document and
query into dense representations. For efficient retrieval, they em-
ploy approximated nearest neighbor search (ANN) [27, 47].

Lastly, the Generative Retrieval paradigm is an innovative ap-
proach drawing inspiration from successful generative LMs [8, 32,
35]. In this paradigm, models like T5 are treated as retrievers. Each
document is mapped to a distinct sequence, often denoted as a
DocID. At inference, given a specific query, a constrained beam
search [42, 52] retrieves a list of the most probable DocIDs.

6 CONCLUSIONS AND FUTUREWORK
We introduced the RIPOR framework, designed to generalize gen-
erative retrieval models for large-scale datasets. We employ a novel
prefix-oriented ranking optimization method to harness the sequen-
tial nature of DocID generation. By viewing generative retrieval as
a dense encoder, we fine-tune it for the target task, and apply RQ
for DocID construction. Our experimental results demonstrate that
this DocID construction captures the relevance-based similarity
among documents, thereby improving the effectiveness of the IR
task. Looking ahead, we aim to further optimize the model’s effi-
ciency and integrate the framework into other knowledge-intensive
NLP tasks, such as Open-domain QA.
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A PERFORMANCE ON SMALLER-SCALE
DATASET.

Following the methodology in [33], we also create a scaled-down
version encompassing 1M passages. Initially, we include all passages
relevant to the 532K training queries and the 7K Dev set queries,
summing to 522K passages. The rest are selected at random from the
main collection, totaling 1M passages. We merge the TREC DL 19
and TREC DL 20 to form the TREC DL. The results for MSMARCO
Dev and TREC DL are shown in the Table 4

Table 4: The performance comparison on MSMARCO-1M.
Highest performance models are boldfaced (p_value < 0.01)

Model
MSMARCO Dev TREC DL

MRR@10 Recall@10 NDCG@10 Recall@10
BM25 .418 .625 .275 .054
DSI-QG .508 .726 .429 .339
NCI-QG .511 .720 .441 .340
DPR .542 .775 .505 .340
ANCE .547 .779 .514 .338
MarginMSE .556 .781 .537 .399
TAS-B .573 .789 .542 .418
RIPOR .580 .793 .530 .425
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