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ABSTRACT

Music has a unique and complex structure which is challenging for both expert
humans and existing Al systems to understand, and presents unique challenges
relative to other forms of audio. We present LLARK, an instruction-tuned
multimodal model for music understanding. We detail our process for dataset
creation, which involves augmenting the annotations of diverse open-source music
datasets and converting them to a unified instruction-tuning format. We propose a
multimodal architecture for LLARK, integrating a pretrained generative model
for music with a pretrained language model. In evaluations on three types
of tasks (music understanding, captioning, and reasoning), we show that our
model matches or outperforms existing baselines in music understanding, and
that humans show a high degree of agreement with the model’s responses in
captioning and reasoning tasks. LLARK is trained entirely from open-source
music data and models, and we make our training code available along with
the release of this paper. Additional results and audio examples are at https:
//bit.1ly/32yzbGG.

Note to reviewers: all revised/added text will appear in this color.

1 INTRODUCTION

The creation, sharing, discovery, and understanding of music are important activities for billions
of people around the globe. Music is also distinct from other modalities, and even other types
of audio, addressed by existing Al systems. For example, core attributes of music, such as key,
tempo, and instrumentation are not present in non-musical audio. Many tasks studied for non-
musical audio (e.g. captioning, transcription) require unique forms of understanding when applied
to music. However, to date, no model has made progress in music understanding comparable to
recent multimodal advances in vision and speech.

Our work addresses these limitations with a model that takes (audio, text) pairs as inputs, and
produces text outputs. This form of specifying tasks as text is often referred to as “instruction-
following,” and fine-tuning pretrained large language models (LLMs) to this end as “instruction-
tuning” (Wei et al., 2021; Wang et al., 2022; Taori et al., 2023). Recent works across many modalities
have demonstrated that this general multimodal approach (Language + Multimodal — Language)
can provide a foundation for flexible and even zero-shot multimodal modeling, such as InstructBLIP
(Dai et al., 2023), LLaVA (Liu et al., 2023a), LLaMA-Adapterv2 (Gao et al., 2023) and Mini-GPT4
(Zhu et al., 2023).

Multimodal LLMs for audio have been an area of active research (e.g. Guzhov et al. (2022); Elizalde
et al. (2023); Deshmukh et al. (2023); Girdhar et al. (2023)), with few exceptions (Doh et al., 2023;
Liu et al., 2023b; Manco et al., 2021) focusing specifically on music. However, the challenges of
obtaining large, high-quality, richly-annotated music datasets has limited the multitask effectiveness
of these works, and most are trained for individual tasks (question answering, captioning).

This paper presents LLARK, a model to address the unique challenges of music understanding.
We train LLARK from a set of open-source music datasets using an end-to-end instruction-tuning
approach with musical augmentations. Our contributions include:

Instruction-Tuning Recipe for Multimodal Music Modeling: We develop an end-to-end
procedure for transforming diverse, noisy, unaligned music data into a unified instruction-following
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Figure 1: Overview of LLARK. Given audio input and text instructions, LLARK can answer a variety
of queries, including music understanding, music captioning, and reasoning queries. Real sample
inputs shown, alongside LLARK’s outputs for examples from each of the task families addressed in
this work (indicated as three colored input/output pairs).

format in three task categories (music understanding, captioning, reasoning), augmenting the data
with musical annotations.

Model Architecture: We propose an architecture, shown in Figure 1, which leverages (1) a
pretrained generative audio encoder, (2) a pretrained language model, and (3) a simple multimodal
projection module that maps encoded audio into the LLM embedding space. While the individual
components predate this work, LLark is the first work to demonstrate how these can be combined.

Empirical Evaluation: We conduct a rigorous evaluation across several music tasks, ranging from
classification and regression to captioning and reasoning. We evaluate LLARK alongside state-of-
the-art (SOTA) models on benchmark datasets, and with human studies. Via ablation studies, we
evaluate the model components and investigate scaling behavior with respect to training data. We
show that LLARK achieves improved task performance and greater breadth than previous works.

2 RELATED WORK

Our work is related to (¢) multimodal modeling, (i¢) Music Information Retrieval (MIR), and (%)
foundation modeling for music and audio. (7): Several multimodal modeling studies (Liu et al.,
2023a; Zhu et al., 2023; Gao et al., 2023; Alayrac et al., 2022) have demonstrated the use of
pretrained LLMs and pretrained modality-specific encoders as a paradigm for multimodal modeling.
(ii) the broader field of Music Information Retrieval (MIR) addresses a diverse set of musical tasks,
including estimating properties of music (e.g. key, tempo, tags, instruments, music captioning), such
as in Faraldo et al. (2016); Won et al. (2021); Manco et al. (2021) using both machine learning and
other approaches. Finally, (i7¢) our work is related to recent efforts to build multimodal foundation
models for audio (Guzhov et al., 2022; Wu et al., 2022; Deshmukh et al., 2023; Han et al., 2023;
Radford et al., 2023), particularly to studies extending this paradigm to music Liu et al. (2023b).

Our work is distinct from these recent efforts in particular due to (1) use of augmentation to extract
musical characteristics from audio; (2) use of a generative audio encoder for music, building on the
insights from previous work (Castellon et al., 2021); (3) larger and higher-quality training dataset;
and (4) thorough empirical evaluations, which demonstrate (a) the increased breadth of LLARK’S
capabilities and (b) improved performance on the tasks addressed by these prior works.

We provide a more comprehensive overview of related work in Supplementary Section D.



Under review as a conference paper at ICLR 2024

Table 1: Training datasets used in our instruction-generation pipeline. Task families key:

captioning; <§ : music understanding; @ : reasoning.
Dataset | Tracks | Task Families
MusicCaps (Agostinelli et al., 2023) 2,663
YouTube8M-MusicTextClips (McKee et al., 2023) 4,169
MusicNet (Thickstun et al., 2017) 323 {» %
FMA (Defferrard et al., 2017) 84, 353 4 %
MTG-Jamendo (Bogdanov et al., 2019) 55,609 @ =
MagnaTagATune (Law et al., 2009) 16,761 4 %

3 TASK AND NOTATION

We address the task of generating a “response” sequence of natural language tokens R =
[r1,...,7], given a raw audio waveform X, = [z41,...,%,,] and sequence of input “query”
tokens Xy = [24.1,...,%q,m|. Following existing works in language modeling, we model this as a
task of auto-regressively estimating P(r;| X, X, 71.i—1). This estimate is parameterized by three
functions: A, an audio encoder, which computes a representation A(X,); P, a projection module
which operates on .4(X,); and M, a language model, which operates jointly on representations of
language tokens X, and audio representations P o A(X,). Together, this produces the following
formal model:

P(r;| X, Xo Rii1) =M (an Po A(X,), Rlziq)

This model is illustrated in Figure 1. Let © = [0, Op, 0 4] represent the parameters of M, P, A
respectively. Our goal is to identify parameters which minimize some loss £(M, P, .A) on a dataset
D consisting of (X,, X, R) triplets.

We note that many music tasks (classification, regression, sequence-to-sequence) can be
encapsulated within this general framework, as long as the desired behavior can be specified with a
natural language query (e.g., “What is the tempo of this song in beats per minute (BPM)?”’) and the
output can be represented as a sequence of discrete tokens.

4 INSTRUCTION-TUNING DATASET

This Section describes our process for transforming large, diverse, and noisy annotated music
datasets into the (X,, X,, R) triplets described in Section 3.

Recent works, particularly in the instruction-following domain, have shown that, using relatively
small, diverse, and high-quality datasets, pretrained LLMs can be fine-tuned to high quality for
tasks such as chat (Taori et al., 2023; Zhou et al., 2023) and vision-language modeling (Gao et al.,
2023; Liu et al., 2023a; Zhu et al., 2023). This is a particularly useful insight for the music domain:
open-source music datasets are relatively limited in size, and the available datasets often have
very different annotations due to differences in data collection and intended downstream use. For
example, the FMA dataset (Defferrard et al., 2017) contains sparse, user-generated free-form text
(among other metadata); in contrast, MagnaTagaTune (Law et al., 2009) contains 160 crowd-sourced
binary tags for each track related to musical and stylistic attributes (“hard rock”, “bongos”, “synth”,
“weird”, etc.).

The instruction-tuning paradigm presents a natural approach to leverage the diversity of these
datasets while also converting them into a unified format suitable for training a single model. Indeed,
a number of recent works have shown that multimodal models can generalize even when trained on
semi-automatically generated text (Wu et al., 2023; Doh et al., 2023; Nguyen et al., 2023). While
this lack of feature alignment across datasets has presented a challenge for traditional supervised
learning methods that require fixed feature schemas, we hypothesize that this diversity may in fact
be an asset for an instruction-tuned model.
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Figure 2: The core LLARK data pipeline. Left: The metadata augmentation procedure. Right:
Query-Response generation from augmented data via LLM for the three task families considered in
this work (Music Understanding, Captioning, Reasoning).

4.1 DATA SOURCES

To construct our instruction-tuning datasets, we use a set of only publicly-available, open source,
permissively-licensed music datasets. The datasets we use for training are summarized in Table 1.
For each dataset, we collect the audio and any accompanying annotations available for that dataset.
The audio from these sources consist of a variety of styles, ranging from classical to electronic
music, rock, and experimental, and comprise approximately 164, 000 distinct tracks from which we
ultimately construct approximately 1.2M instruction pairs over three task families.

Since our audio encoder is limited to 25-second clips of audio, we crop the audio, selecting a random
25-second clip from each track (one clip per track is used).'

4.2 INSTRUCTION DATA GENERATION

To generate instruction-tuning data from the raw (audio, annotations) pairs, we perform a two-step
procedure. A sketch of each step of the procedure is provided in Figure 2.

1. Metadata Augmentation: Many music datasets lack important musical information that is useful
for music understanding, and can be estimated directly from the audio. In this step, we extract a set
of features from the raw audio files using pretrained models.

We extract four features: tempo (in beats per minute, or BPM), global key and mode (e.g. ‘F#
minor’), timestamped chords, and beat grid (timestamped markers of where downbeats occur, along
with numeric indicators of the beat “number”, e.g. 1, 2, 3, 4 for a song in 4/4 time). For all features,
we use open-source estimators via Bock et al. (2016).

We hypothesize that extracting and providing this information alongside the available annotations
can improve the music understanding capabilities of a downstream model and can act as a guardrail
against hallucination. Indeed, these features should not only allow the model to learn to directly
identify the features in the annotations, but also to reason about how these characteristics relate
to higher-level properties of the music, such as genre, harmonic and compositional structure, and
emotional content.

2. Instruction-Tuning Generation via Language Model Using the original, dataset-provided
metadata for each track alongside the augmented metadata (tempo, key, beat grid, and chords),
we prompt a large language model to generate question-answer pairs.

We provide the metadata for a given clip as raw JSON, alongside a system prompt. We use distinct
prompts for each of the three task families (described in Section 4.3 below), but the overall procedure

'The sole exception to our one-clip-per-track rule is captioning on MusicNet; see H.S.
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is the same. Each prompt describes some of the metadata in the JSON (not all fields are described,
as some datasets contain more than 150 annotations), alongside the desired types of question-answer
pairs to be produced by the language model.

We use variants of ChatGPT (GPT3.5-turbo, GPT3.5-turbo-16k, GPT4) to generate the
training examples. Details on the models and prompts used to generate the data for each dataset-
task pair are listed in Sections H.1.1 and H.1.2, respectively. In addition to the existing captioning
datasets (MusicCaps, YouTube8M-MusicTextClips), we generate captions for MusicNet, the only
dataset in our study where note-level metadata is available.

As the result of this step, we obtain one or more Query-Response pairs for each input example. These
Query-Response pairs are then subject to a data filtering step, where we remove pairs which contain
certain keywords indicating that instructions were not followed ; see Section H.1.3 for filtering
details. Our pipeline ultimately yields approximately 1.2M training samples from the original
164, 000 tracks, as multiple query-response pairs are generated for each track and task family.

4.3 TASK FAMILIES

Our work focuses on three conceptual “families” of tasks, which are used both to prompt the
language model for instruction pairs, and in our evaluations (described in Section 6. These task
families reflect three forms of understanding associated with music data:

Music Understanding: We define as “music understanding” tasks which require identifying a single
global property of a piece of music. This includes: tempo, key, genre, instrumentation, etc. These
are the lowest-level tasks addressed by our model. These tasks mostly relate to prior work in the
Music Information Retrieval (MIR) community.

Captioning: Music captioning, similar to image captioning, involves summarizing the content of a
piece of audio in language. This task has been of increasing interest to the multimodal and music
communities,” and has many possible applications including accessibility and music summarization.

Higher-Level Reasoning: We define as “higher-level reasoning” (or simply “reasoning”) tasks
which require either (a) combining knowledge of multiple aspects of a track or (b) reasoning
about how aspects of this track combine to external knowledge about the world. This can include
reasoning about how instruments and playing techniques demonstrate the Baroque composition
style, or identifying what aspects of a track make it appropriate for certain settings (e.g. dinner
party, studying, or a dance club).

Each task comprises a separate system prompt used at instruction data creation time, and a distinct
set of evaluations (in Section 6) at test time. Supplementary Table 7 gives the count of instruction
pairs generated for each dataset and task family.

5 MODEL ARCHITECTURE AND TRAINING

LLARK is a 12B parameter model consisting of three modules, introduced in Section 3.

We parameterize the language model M via Llama 2 (Touvron et al., 2023). Specifically, we
use the Llama2-7b-chat variant which is a 7B-parameter language model fine-tuned for chat
applications via Reinforcement Learning from Human Feedback (RLHF).

We parameterize the audio encoder A via Jukebox-5B (Dhariwal et al., 2020). In contrast to the
encoders used for many other multimodal applications, where contrastively-trained models (e.g.,
CLIP for images/text; CLAP for audio) are often used, Jukebox is a generative model. Previous work
has shown that Jukebox’s representations can be effective features for task-specific linear classifiers
(Castellon et al., 2021). We hypothesize that a generative model may create representations of audio
which are useful beyond merely classification, and which are sufficiently general to be used by a
single model to effectively represent many attributes of music simultaneously (our ablation study
validates this decision; see Sections 6.5, F). Following Castellon et al. (2021), we use the output
of the 36th layer of the Jukebox encoder. Jukebox encodes audio in 4800-dimensional vectors at
a frequency of 345Hz, which means that the embedding of a 25s audio clip contains over 4.14 x

2Seee.g. https://dcase.community/challenge2022/task-automatic-audio-captioning
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Table 2: Music Understanding task results on zero-shot datasets. Metrics for the tasks are: MIREX
Score for Key estimation, Acc2 for Tempo estimation, Acc@1 for Genre classification, and F1 for
Instrument ID. In all cases, a larger score is better. k: Essentia task-specific algorithm. b: Majority
class predictor. For instrument ID, this is the five most frequent instruments (drums, bass, vocals,
piano, guitar).

Task Dataset Baseline IB-LLM LTU-AS LLark
Key Estimation GiantSteps-Key 0.32 0.048 0.00 0.70
Tempo Estimation GiantSteps-Tempo  0.77 4 0.05 0.00 0.86
Genre Classification GTZAN 0.1b 0.71 0.30 0.56
MedleyDB 0.125+b 0.57 0.378 0.56
Instrument ID MedleyDB 0.255b 0.25 0.24 0.31

107 floating-point values. Castellon et al. (2021) averages over the time dimension. In contrast,
we mean-pool the Jukebox embeddings within 100ms frames, downsampling the embeddings to a
frequency of 10Hz and a size of 1.2 x 10° for a 25s audio clip while retaining temporal information.
We note that this is roughly 6x the embedding size of the CLIP ViT-L14 models used in many
multimodal vision models.

Our projection module P is parameterized by a single linear projection layer. This is in following
recent multimodal works (e.g. LLaVA Liu et al. (2023a)) which have shown projection layers to be
effective for combining strong encoders with strong language models for multimodal modeling in
the image-text domain. Using a single layer for P is also compute-efficient, adding fewer than 0.1%
additional parameters relative to the base models.

Our model is trained on (audio, text) inputs in the instruction-tuning format described in Section
4. We use the same preprocessing as in LLAVA (Liu et al., 2023a) to convert instruction pairs
into training examples. The model is trained with stochastic gradient descent using the AdamW
optimizer and the standard cross-entropy training objective over the response tokens R. We freeze
the encoder weights and fine-tune both M and P. Additional training details for reproducibility are
provided in Section K.

6 EVALUATION

We evaluate our model on all task families described above (music understanding, music captioning,
reasoning), to assess the flexibility of our general framework.

6.1 BASELINES

For all tasks, we compare our model to other open-source multimodal models capable of generating
text from (text, audio) inputs. Specifically, we compare to:

ImageBind-LLM (Han et al., 2023) (IB-LLM): This multimodal model is an improved version of
LLaMA-Adapter (Gao et al., 2023) trained on multimodal (text, audio, video, image) embeddings
from ImageBind Girdhar et al. (2023) which are combined with a LLaMA language model via
interleaved cross-attention layers in the language model.

Listen, Think and Understand (LTU-AS) (Gong et al., 2023b) : LTU-AS is an improvement to
(Gong et al., 2023c) using Whisper Radford et al. (2023) and TLTR (Gong et al., 2023a) audio
encoders and LLaMA-7B language model, integrated via a set of low-rank adapters. LTU-AS is
trained on an audio question-answering dataset generated by prompting GPT3.5-Turbo on both
musical and non-musical audio.

For Music Understanding and Captioning tasks, we compare to additional task-specific baselines;
see Sections 6.2 and 6.3 for details. Additionally, for selected Music Understanding tasks (key,
tempo detection), we compare to conventional baselines. More details on all baselines are provided
in Supplementary Section J.
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6.2 MUsIC UNDERSTANDING (CLASSIFICATION AND REGRESSION) TASKS

Our Music Understanding evaluations focus on recognizing the following global properties of music:
the overall key and mode of the song (i.e. ‘A major’ or ‘F# minor’); the tempo of the song in BPM;
the genre associated with a song; and the set of all instruments present in the song.

For each Music Understanding task, we evaluate on a zero-shot dataset (a dataset which was not used
to train the model; note that this is more strict than simply using the “test” split of a training dataset
as it requires generalization to a potentially different data distribution and task). Our results are
shown in Table 2. We use conventional metrics from the MIR literature for evaluating performance
on each tasks; details on these metrics are in Section E.1 and additional results for more datasets are
in Section G. While our focus is in comparing to audio-text models capable of completing all tasks,
we provide results from task-specific baseline models in Section E.

While LLARK does not reach the level of the strongest task-specific specialised for all tasks,
our results show that it achieves strong performance across the zero-shot datasets in Table 2.
Indeed, LLARK is the top performer among music-text models for all tasks, besides genre
classification, where it achieves the second-highest performance. We hypothesize that the strong
genre performance of ImageBind-LLM is due to exposure to (a) popular music and (b) genre tags
during the training of its multimodal backbone, ImageBind (ImageBind was trained on a set of web
videos and associated text. It is likely that these contained both popular music and genre tags, e.g.
as hashtags, including even the popular tracks present in GTZAN, but the ImageBind training set is
not publicly available to confirm or disconfirm this hypothesis.). We also show in Supplementary
Figure 10 that LLARK’s genre prediction errors tend to be related genres higher in the same branch
of the genre hierarchy (i.e., predicting “rock” for songs labeled as “metal’).

6.3 Music CAPTIONING TASKS

Evaluating LLMs for open-ended tasks, such as captioning and reasoning, is an open research
problem. Furthermore, we cannot access the raw logits of all baseline models (and these models
do not all share the same tokenization scheme), so likelihood-based metrics, such as perplexity, are
not possible to compute or compare across all models. Therefore we use human evaluation in this
setting, which has been called the “gold standard” of chatbot evaluation Touvron et al. (2023). We
also provide additional quantitative evaluation results for these tasks in the supplement (Section G).

We evaluate our models’ music captioning capabilities on three datasets: (1) MusicCaps Agostinelli
et al. (2023), a recently-introduced music captioning dataset consisting of audio extracted from
a wide variety of YouTube videos; (2) MusicNet Thickstun et al. (2017), a dataset consisting of
freely-licensed classical recordings; and (3) FMA Defferrard et al. (2017), a diverse set of royalty-
free music covering an eclectic mix of genres and styles. For the test split of each dataset, we ask
humans to compare captions from our model to those from the baseline models. Details on this
procedure are given in Section L.1. The ordering of captions in the interface is always randomized.

In addition to the baseline models described in Section 6.1, we also compare to two additional
captioning-specific models: (1) Whisper Audio Captioning (WAC) Kadl¢ik et al. (2023), a
fine-tuned variant of Whisper-Large (Radford et al., 2023) trained for audio captioning, and
(2) LP-MusicCaps (LP-MC) (Doh et al., 2023), a Transformer-based multimodal model with a
convolutional encoder that operates on audio spectrograms.

Our results, shown in Figure 3, show that humans consistently prefer LLARK’s captions. We
note that LLARK’s performance is particularly strong on the datasets containing solely musical
recordings (MusicNet and FMA). The smaller performance gap on MusicCaps could be attributed
to the fact it contains many non-musical samples (sound effects, television and radio recordings,
etc.), as well as relatively shorter recordings, where superficial captions are less detrimental.

We also evaluate the musical detail of our model’s captions using GPT-4. These results in
Supplementary Table 5 demonstrate that our model’s outputs contain more musical details than
baseline models, likely due to our metadata augmentation strategy. In contrast, the baseline models
often contain irrelevant or non-musical details, such as imagined descriptions of the appearance of
the musicians making the music.
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Figure 3: Win rates of LLARK vs. existing captioning models on test data.

We provide additional metrics, including linguistic measures of caption correspondence to the
ground truth, token counts, and token diversity metrics, in Section G.2.1.

6.4 REASONING TASKS

Evaluating the quality of a models’ responses to complex, open-ended questions is an open and
unresolved research challenge. Reasoning about music often requires skills and knowledge that
only expert musicians possess, including the ability to discern musical details (tempo, key, chords)
and knowledge of music composition and production. As a result, we found basic comparisons
similar to those in Section 6.3 to be unreliable for evaluating models’ reasoning capabilities in initial
exploratory evaluations. In this section, we construct two different experiments to assess the quality
of our models’ responses on reasoning tasks.

First, we conduct a human evaluation based on audio-to-text matching. We found that this setup
helped mitigate the susceptibility of non-expert raters to model hallucinations and generic responses
not grounded in the specific audio. We present raters with a (question, audio) pair from the test
split of our data. We also present raters with three randomly-ordered answers to this question, all
from the same model. One is the true model response for the given audio; the remaining two are
randomly-sampled responses for the same model and prompt but different audio. We ask raters to
determine which response best answers the question, for the provided audio. (More details on this
evaluation are given in Section L.2.) The results of the human study are given in Figure 4.

Second, we prompt GPT-4 to compare the musical detail of models’ outputs on a random subset of
1,000 samples from the test dataset for four datasets. The results for this are shown in Table 3 with
the procedure detailed in Section E.3.2.

These results show that LLARK’s outputs surpass existing multimodal models in terms of their
correspondence to audio and queries. Additionally, they show that LLARK’s provide considerably
more musical detail, validating our data augmentation strategy. While LLARK outperforms existing
SOTA models in our study, we observe that the performance is perhaps lower than expected given
its strong performance on other task families; we hypothesize that this is due to limitations in the
musical expertise of the (non-expert) raters in our study.

6.5 ABLATION AND SCALING STUDY

We conduct an ablation study to investigate two main factors: (1) the impact of the language model
and audio encoder, and (2) scaling behavior with respect to training dataset size.

The full results presented in Supplementary Section F. Briefly, we find (1) that both the Jukebox
audio encoder and the Llama 2 language model contribute to critical performance gains on
benchmark tasks; and (2) there are diminishing marginal returns to increased training set size,
which aligns with recent work suggesting that small, diverse, high-quality instruction-tuning datasets
are sufficient when fine-tuning high-quality encoders pretrained on large pretraining datasets (Zhou
et al., 2023; Taori et al., 2023).
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7 LIMITATIONS

LLARK is limited to the 25-second context window of the Jukebox audio encoder, but in principle,
it is possible to extend the context window by e.g. concatenating encodings of consecutive audio
segments; we leave such analyses to future work.

Our human evaluations are conducted by non musical-expert annotators. As a result, it is possible
that these annotators may lack relevant musical knowledge for certain evaluation tasks, or may be
biased toward specific forms of model output.

Finally, LLARK was trained only on the limited available open-source music data. It is likely that
training on additional (but copyright-protected) music data would significantly improve the model.
However, there are important ethical and legal considerations surrounding the use of such data which
are beyond the scope of the current work to address.

8 CONCLUSIONS AND FUTURE WORK

This work introduced LLARK, a multimodal model for music using a novel data augmentation
strategy, multimodal instruction-tuning dataset, and a generative audio encoder. Our evaluations
demonstrate LLARK’s music understanding, captioning, and reasoning capabilities at a level of
quality unseen so far from a single model.

Our study points to several directions for future work. First, our ablation studies point toward gains
from improving both the audio encoder and language model, which are substantially larger than
the gains from scaling training data. Future work improving these parts would offer improved
multimodal capabilities. Second, our study emphasizes the importance of adding rich musical
annotations to multimodal training data. We encourage future audio modeling efforts to incorporate
musical annotations even beyond those used in this work. Incorporating future improvements in
the feature annotation models used would also increase the underlying quality of LLark’s training
data, which would likely lead to improved performance on these tasks (key, tempo, etc.). Finally,
we note the lack of, and need for, high-quality benchmarks for many musical tasks, including those
addressed in this work. Many tasks require high-quality data that is expensive and time-consuming
to collect (genre, chord labeling and harmonic analysis, captioning, reasoning). We encourage the
field to continue development of such benchmarks and to utilize them to measure future progress,
as high-quality evaluation is critical to achieving robust and reliable gains in ML/AI research (Liao
etal., 2021).
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A ETHICS STATEMENT

There are important ethical considerations associated with training multimodal music models. These
include: bias toward Western music in music datasets and the features used to represent them
(i.e. chords in 12-tone scale, instruments in MIDI or common tagging datasets), and potential
gender or other biases inherited from the pretrained language model and training dataset annotations
(for example, MusicCaps and Magnatagatune annotations sometimes specify the inferred gender
of a vocalist, but these may be unreliable, incorrect, or otherwise biased). Additionally, there is
no guarantee that the information produced by the model is factually accurate, as these types of
models are known to hallucinate in some cases, which should be carefully considered when building
applications for such models.

We strongly encourage potential users of LLARK’s data, model, and training methods to consider
the impacts of each of these factors on the downstream learned model (e.g., the impact of foundation
model pretraining data, LLARK multimodal training data, and other factors) on the resulting model.
Furthermore, we encourage the risks associated with using a multimodal language model to be made
transparent to users in any downstream application of such a model. These include flagging the risk
of persuasive but factually incorrect, biased, or harmful outputs.

We provide a Model Card Mitchell et al. (2019) for LLARK in Section M. We encourage readers
to consult the Model Card, as it also highlights considerations relevant to ethical training, use, and
deployment of LLARK.

B REPRODUCIBILITY STATEMENT

We provide several artifacts to reproduce the analysis in this work. These include: scripts
to reproduce the model training; details on the datasets used (Section 4 and H); prompts and
additional details for instruction data generation (Section 4 and the provided code); hyperparameter
and hardware details for model training (Section K). Our code also includes Python scripts and
instructions for extracting the metadata used to augment our training examples, and for extracting
Jukebox embeddings from audio (modified from the open-source code of Castellon et al. (2021)°.
We provide exact software dependencies for our code, alongside Dockerfiles to reproduce our
training and data preprocessing environments. We will publicly release this code on publication
of the paper.

In order to comply with the licenses specified by the artists who contributed to the training data, we
are unable to provide the exact training data, instruction data, or trained model weights. Specifically,
while our training datasets are open-source and Creative Commons-licensed, each audio file is
typically governed by its own license, specified by the artist or rightsholder. Many audio files in
the datasets used in our study contain “no derivatives” licenses, which prohibit the sharing of any
artifact derived from the audio. Thus would include estimated or extracted metadata and annotations;
instruction-tuning Q/A pairs, or model weights derived from these audio files. This, we are not able
to share these artifacts in order to honor the license put in place by the original artists who created
the music used in this study. However, we provide the technical resources for other researchers to
reproduce our methods.
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D RELATED WORK

Music Information Retrieval: The discipline of “music information retrieval” refers to a broad
research area, covering many tasks beyond purely information retrieval. The tasks addressed in
this domain reflect the diverse variety of characteristics embodied by music, and the diverse set of
stakeholders involved in music creation and consumption (listeners, artists, producers, platforms).
This includes: key (Faraldo et al., 2016) and tempo estimation (Schreiber et al., 2020), music
transcription (Benetos et al., 2018; Gardner et al., 2021), chord recognition (Pauwels et al., 2019),
captioning (Manco et al., 2021), source separation (Cano et al., 2018), music tagging (including
genre classification) (Won et al., 2021; George et al., 2001), and musical version identification
(Yesiler et al., 2021), among many other tasks. Most prior work in this area focuses on developing
task-specific classification or regression models. In contrast, our work is focused on training a
generalist model for all tasks which can be framed as Audio + Text — Text tasks, which we discuss
formally in Section 3.

Multimodal Learning: Multimodal learning has increasingly been explored across all
combinations of the text, audio and image/video modalities, with the majority of works focused
on the image + text modalities. Within the audio domain, the majority of multimodal approaches
are focused on speech or environmental sound (Arandjelovic & Zisserman, 2017), do not contain
any music-specific training and often treat music as its own class (i.e. a general “music” class in
common datasets such as AudioSet (Gemmeke et al., 2017)) with no fine-grained understanding of
unique musical properties such as key, genre, or instrumentation. Multimodal modeling has been
explored extensively in the music domain in general, but usually with very specific tasks in mind
Simonetta et al. (2019). There have also been explorations of contrastive models for audio, which
have included some music-focused training (Elizalde et al., 2023; Wu et al., 2023; Guzhov et al.,
2022; Huang et al., 2022; Wu et al., 2022; Ma et al., 2021), but contrastive models are limited to
applications that can be framed as a function of distances between predefined set of (audio, text)
pairs in the model’s embedding space and cannot be used for open-vocabulary tasks or generate
free-form text.

Foundation Models for Audio and Music: There has been limited work on foundation models for
audio, and in particular for music audio. Whisper (Radford et al., 2023) supports a predefined set of
speech-related tasks, including transcription and translation, but is confined to only a specific set of
speech tasks and does not address music or other forms of audio. Jukebox (Dhariwal et al., 2020)
is a music generation model whose embeddings have been shown to be useful for fine-tuning task-
specific linear classifiers for lower-level music understanding tasks such as music tagging, emotion
classification, and genre classification Castellon et al. (2021). While this has shown promise for
specific downstream tasks, Jukebox embeddings have not been more deeply explored as a basis
for a foundation model for music understanding (an exception to this is Liu et al. (2023b), which
investigated Jukebox embeddings in an exploratory study but did not use them as the basis for their
final model). However, we hypothesize that, due to Jukebox’s ability to accurately model both global
and time-varying properties of music (i.e. produce detailed songs with a consistent tempo, genre,
instrumentation, key, etc.) using a single representation, as well as its generative training setting, the
representations in its encodings can be the basis for a more general music language model. For this
reason, we focus on Jukebox’s musical tokens as the basis for our work.

Text-to-audio models have demonstrated promising capabilities to generate music from text, but
audio-to-text models that can tackle both close-ended and open-ended tasks are far less common. A
recent exception is Deshmukh et al. (2023), which addresses general audio tasks and only a small set
of music tasks. Finally, there is a growing literature on music captioning, where models input audio
and produce textual descriptions, such as Manco et al. (2021), LP-MusicCapsDoh et al. (2023),
WAC Kadl¢ik et al. (2023)), and MU-LLaMA Liu et al. (2023b). However these models are built
to describe musical clips at the level of detail provided based on the training set, and the models are
not able to be further “prompted” to perform different types of music understanding tasks.

More broadly, various representation learning methods have also been used to generate task-
independent representations of audio (and, in some cases, text) that have been shown to be useful
for a variety of downstream tasks. These include constrastive methods such as CLAP Elizalde
et al. (2023); Wu et al. (2023), and more general representation learning methods such as MERT
Li et al. (2023) and the work of McCallum et al. (2022). However, these methods do not directly
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output predictions for target tasks, and thus often rely on either a form of zero-shot adaptation for
closed-vocabulary problems, or on linear probing (which consists of fine-tuning a linear output layer
directly on the target task of interest). Thus, the utility of general representation learning methods
on zero-shot and open-vocabulary problems is limited.

Instruction Tuning: Fine-tuning language models on a collection of datasets described via natural-
language instructions was originally introduced for language-only tasks in Wei et al. (2021). This
paradigm has emerged as a successful approach for a wide variety of modeling tasks, including
chatbots Taori et al. (2023) and vision-language models Liu et al. (2023a); Dai et al. (2023); Zhu
et al. (2023); Gao et al. (2023). The only application to audio of which we are aware is a recent
extension to Gao et al. (2023)° which, to our knowledge, has not been formally described or
evaluated.

E TASK DETAILS

E.1 Music UNDERSTANDING (CLASSIFICATION/REGRESSION) TASKS

This section provides details on the task background, definition, and metrics for our Music
Understanding tasks. For details on the datasets used in these tasks, see Section H.

E.1.1 KEY ESTIMATION

Description: The key represents the dominant harmonic mode of a song. The key of a piece is the
group of pitches, or scale, that forms the basis of a musical composition. Understanding the key is
useful for many reasons, which include playing a song, harmonizing, and finding other compatible
songs (e.g. DJs typically mix songs in the same or compatible keys).

Metric: We evaluate key using the MIREX Score’, on the Giant Steps Key Dataset Knees et al.
(2015). This is a measure widely used in the Music Information Retrieval (MIR) field for key
estimation. The MIREX Score assigns a value between 0 and 1 representing representing how
closely related an estimated key is to a reference key. The relationships between reference and
estimated keys, and their associated scores, are given in Table 4.

Prompt: For this task, we prompt all models with the phrase: “What is the key of this song?”.

Table 4: Scoring function for MIREX Score. This is a standard metric used for evaluating key
detection algorithms.

Relationship Score
Same key and mode 1.0
Estimated key is a perfect fifth above reference key 0.5
Relative major/minor (same key signature) 0.3
Parallel major/minor (same key) 0.2
Other 0.0

We use the implementation of MIREX scoring in the mir_eval library (Raffel et al., 2014).

Task-Specific SOTA Baseline: The existing state of the art for key estimation on Giant Steps is the
model of Korzeniowski & Widmer (2017), which achieves accuracy of 74.3%. We note that this
model was trained directly on audio from the same source (Beatport) and genre distribution as the
Giant Steps Key dataset.

Feature Extractor Performance: The feature extraction model used for key estimation in our
metadata augmentation pipeline Bock et al. (2016) achieved a MIREX score of 0.729 in key
estimation on this dataset.

See https://github.com/OpenGVLab/LLaMA-Adapter/tree/main/imagebind_LLM
7https ://www.music—-ir.org/mirex/wiki/2021:Audio_Key_Detection
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E.1.2 TEMPO ESTIMATION

Description: The tempo, or frequency of beats in a track in beats per minute, is a widely used
musical feature in the field of music information retrieval.

Metric: Measuring the global tempo of a piece of music is a potentially under-determined task. For
many tracks with a fixed tempo of z, so-called “octave errors” of 1/2x and 2z are also plausible
tempi. The Acc2 score is originally described alongside the Giant Steps Tempo Dataset in Knees
et al. (2015), and considers an estimate to be correct if it is within =4% of either a third, half, double
or triple of the true tempo, thus allowing octave errors of factors of 2 or 3.

Prompt: This task, we prompt all models with the phrase: “What is the tempo of this song?”

Task-Specific SOTA Baseline: The existing state of the art for tempo estimation on Giant Steps is
the model of Schreiber & Miiller (2019), as benchmarked in de Souza et al. (2021) which reports an
Acc?2 score of 0.925.

Feature Extractor Performance: The feature extraction model used for tempo estimation in our
metadata augmentation pipeline Bock et al. (2016) achieved an Acc2 of 0.947 in on this dataset. We
hypothesize that the gap between LLark’s performance and that of the feature extraction model is
due to the challenges in learning to output numeric labels, illustrated in Figure 7.

E.1.3 GENRE CLASSIFICATION

Description: The genre of a song is a categorization that identifies the song as belonging to a shared
tradition or set of conventions®. Similar to other properties of music, genre is a subjective label and
reflects cultural norms and associations related to a given piece of music Sturm (2013). Most pieces
of music are associated with multiple (often many) genres. Despite this, genre classification is a
widely-used categorization for music, and so we attempt to address this task as a measurement of
our models’ ability to understand the cultural associates of a given song.

Metric: We use a simple accuracy metric, ACCI, to evaluate genre classification performance. For
each model’s output, we compute the embedding of the full text. Then, we compare this embedding
to the text label of all candidate classes. If the true label (according to the dataset annotation) is the
nearest to the model’s outputs in embedding space (in terms of Euclidean distance), the prediction
is considered correct, otherwise it is incorrect.

Prompt: For this task, we prompt all models with the phrase “What genre is this song?”

Task-Specific SOTA Baseline: The existing state of the art for genre estimation on GTZAN is
McCallum et al. (2022), which achieves accuracy of 0.835 after linear probing on GTZAN.

E.1.4 INSTRUMENT IDENTIFICATION

Description: Instrument identification is a multi-label classification task that consists of predicting
the full set of labels present in a given audio clip. Instrument identification is widely useful for
many music applications, but it requires precise labels of an audio file in order to know whether
an instrument is playing at any given time in the audio (since instruments typically do not play
continuously in any given song).

Metric: We evaluate instrument identification performance by computing the F1 score on only
instruments present in the MIDI protocol’, treating drums as a single instrument. We ignore
instruments not present in the MIDI protocol, such as yangqin and guzheng; we map guitar-like
instruments (’lap steel guitar’, "'mandolin’) to a single ’guitar’ instrument and treat drums and vocals
as separate instruments.

Prompt: For this task, we prompt all models with “List the instruments you hear in this clip,
including vocals and drums.”

$https://en.wikipedia.org/wiki/Music_genre
‘https://en.wikipedia.org/wiki/General MIDI
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E.2 Music CAPTIONING

Music captioning is the automated description of musical audio using natural language. The task of
audio captioning has been of broader interest to the audio research community, see e.g. the 2021
and 2023 DCASE workshop challenge'”.

Measuring the quality of captioning is a subjective and challenging open research task, both in the
vision and audio communities. Within the domain of music, different metrics are used, including
human evaluation Doh et al. (2023), metrics of token length, diversity and non-duplication of
training captions Doh et al. (2023), and other linguistic metrics (BLEU, ROUGE, METEOR) that
measure structural and semantic similarity between a predicted and ground-truth captions Deshmukh
et al. (2023); Liu et al. (2023b).

We focus primarily on human evaluation of musical captions, as this is a task we believe even non-
experts are capable of performing for basic summaries of musical audio, while this is currently hard
for machines to assess automatically. As a result, we compare win rates of our model in head-to-
head measurements of human preference, in line with works in the music captioning domain (Doh
et al., 2023) and broader efforts on LLM chatbot evaluation Touvron et al. (2023).

We believe that the linguistic metrics which are sometimes used to measure captioning performance
are not well-suited to musical audio. In particular, this is due to the much larger space of potential
musical descriptors used to describe the “contents” of a musical excerpt; while the “main elements”
of an image might be considered widely recognizable in an image caption (where these linguistic
metrics were originally adopted for captioning), we believe that using them for music introduces
an unnecessarily strict dependence on a “ground truth” or reference caption which itself is only
a subjective description of the content of the original audio. As a result, we believe that human
evaluation (the “gold standard” of chatbot evaluation (Touvron et al., 2023)), comparing a caption
to the original audio, is the most appropriate metric for evaluating our model. For comparison, we
also provide the linguistic and token-based metrics in Section G.

E.3 REASONING

For reasoning tasks, we use datasets with the same preprocessing as our other datasets (MusicNet,
FMA, MTG-Jamendo, MagnaTagATune).

E.3.1 AUDIO-TEXT MATCHING

The prompts we used for the audio-text matching study are:

* Recreating the audio: How could a music producer recreate the sounds in this track?

* Defining characteristics: What are some characteristics that potentially differentiate the
song from other similar songs?

* Suitable listening environments: In what kind of environments or situations would
someone likely listen to this track?

» Style and genre: Describe the styles or genres of this song and explain how the song
illustrates each style or genre mentioned.

* Music professor description: How would a music professor describe the structure, sound,
and instrumentation of this track?

* Main instrument(s): What are the main instruments present in this track and how do they
contribute to the sound?

* Main elements: What are the main elements that give this piece its distinctive style and
sound?

* Modification: I need to remove one instrument in this track but want to keep the results as
close as possible to the original. Which instrument should I pick and why?

* Emotions: What moods, emotions or sentiments might the song be trying to convey, and
how does it do so?

Yhttps://dcase.community/challenge2022/task-automatic—audio-captioning
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» Associated products: What kind of consumer product might be associated with this song,
and why?

We manually curate these prompts to be suitable for human evaluation. The audio used for this study
is a random subset of 64 tracks from the MTG-Jamendo test dataset, which we selected due to its
diversity across genres and its mix of popular and less-popular music. For each of the 64 test tracks,
we use the identical set of prompts above for each model (LLARK, IB-LLM, LTU-AS), resulting in
a set of 64 x 10 outputs which is the cross-product of the test audio and prompts.

E.3.2 MUSICAL DETAIL

You will be provided two different pieces of text ("captions"). Both captions describe the same piece of
music. Your goal is to determine which caption contains the most musical detail.

Musical detail can include any information about the musical characteristics of the audio. This includes:
instruments present (or absent) in the audio

notes, patterns, or themes being played by different instruments

the style, genre, or other general descriptors of the type of music being played

harmonic characteristics of the song such as the key, mode (major/minor), and chords being played
techniques used by the performers playing the instruments

audio effects applied to the instruments (delay, distortion, etc.)

techniques used in the songwriting or composition of the music

information about the time signature

the tempo of the song, e.g. in beats per minute (BPM)

descriptions of the emotional characteristics of the song

The following would NOT be considered musical details:

- where the song might be played (e.g. in a church, in a dance club, in a video game)

- descriptions of what the performers are doing while they are making the music (what they are wearing, how
they are dancing, etc.)

- subjective judgments about whether the music is good or bad

Since you do not have direct access to the audio being described, assume both captions are correctly
describing the audio and that the information contained in them is true.

IMPORTANT: your goal is to assess only which caption has the most MUSICAL details. Ignore details which are
not about the music.

The provided captions will be labeled "A" and "B". In your response, return only either "A" or "B".

Figure 5: Prompt used for GPT-4 musical detail analyses (Tables 3, 5).

For the musical detail study, we use a random subset of 512 samples from the test sets of
the four instruction-following datasets shown in Table 3: MusicNet, FMA, MTG-Jamendo,
MagnaTagATune. Note that we do not use the manually-selected prompts described for the audio-
text matching study (although those prompts are similar to prompts that occur in our instruction-
following data).

Recent work has demonstrated that strong language models such as GPT-4 can match both
controlled and crowd-sourced human preferences well, and can be effective judges in basic language
understanding tasks (Zheng et al., 2023). We prompt GPT-4 to determine which of two randomly-
selected responses to a query (LLARK vs. a randomly-selected model), for the same audio input,
contains more musical detail. We believe that GPT-4 is a suitable judge of this, since this task only
assesses the presence of musical detail; our experiments in Section 6.2 assess the correctness of our
model’s musical understanding (and show that its performance for basic musical properties, such as
key, tempo, genre, and instrument, is strong).

The exact prompt used for the musical detail studies is shown in Figure 5. (This prompt is also used
for the musical detail captioning results in Table 5).

F ABLATION STUDY
We conduct a series of ablations to evaluate the respective components of our model.
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F.1 AUDIO ENCODER ABLATION

First, we ablate the audio encoder module .A. We replace the audio encoder with CLAP Wu
et al. (2023), a contrastively-trained language-audio model. We follow the same procedure for
training this model as for LLARK (same training data and hyperparameters), only changing the
audio encodings. We use the LAION CLAP model, and in particular use the recommended CLAP
checkpoint for music and the pretrained models available in the CLAP repository'!.

The results of our audio encoder ablation are shown in Figure 6 (top row). Our study shows that
replacing the Jukebox encoder with CLAP significantly degrades the model performance on all
music understanding tasks. This is consistent with the degradations that have been observed in
other related works exploring contrastively-trained music and audio encoders i.e. Liu et al. (2023b);
Castellon et al. (2021).

We hypothesize that there are several specific factors that could contribute to the decreased
performance with CLAP. First, CLAP’s training data differs from that of Jukebox. CLAP’s
pretraining data consists of 630k audio-text pairs (of which a substantial but unspecified fraction
is non-musical sound effects) Elizalde et al. (2023), while Jukebox is trained on 1.2M songs (only
music) Dhariwal et al. (2020). Second, the keyword-to-caption augmentation used in CLAP also
likely leads to representations that do not capture temporal information, making it difficult for
a downstream model to estimate time-varying features such as tempo or groove. Third, CLAP’s
representations are fundamentally not time-varying: in CLAP, a single 768-dimensional embedding
is used to represent audio. This in contrast to our encoder, which uses a 250 x 4800-dimensional
vector for a 25-second audio clip. It is possible that applying temporal averaging to the Jukebox
encodings (instead of the windowed averaging used in our work to compress the embeddings), as
in Castellon et al. (2021), would also reduce the performance of a model trained with a Jukebox
encoder. Additionally, we note that this comparison may not be compute-matched, as a forward
pass on an input with Jukebox encodings includes up to 250 tokens of initial embedding size 4800
before the projection, while with a CLAP model the encoding consists of a single token of size 768.
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Figure 6: Ablation studies for the audio encoder A (top) and language model M (below). See Figure
7 for details on language model ablation in Tempo Estimation task.

F.2 LANGUAGE MODEL ABLATION

Second, we ablate the language model M, replacing Llama2 language model with MPT-1b-
RedPajama-200b-dolly. MPT-1b-RedPajama-200b-dolly is a 1.3 billion parameter decoder-only
Transformer pre-trained on the RedPajama dataset and subsequently fine-tuned on the Databricks

"https://github.com/LAION-AI/CLAP
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Figure 7: Ablation study results for the tempo prediction task, with lines showing the true tempo
and the “octave errors” permitted by the ACC2 metric. Left: true and predicted tempos for model
with MPT-1b-RedPajama-200b-dolly. Right: the same values for LLARK. While the MPT-based
model achieves performance close to LLARK on the other music understanding tasks (key, genre,
instrument ID; Figure 6), we hypothesize that the Llama tokenizer’s improved handling of numeric
digits allows for improved regression outputs on the tempo prediction task.

Dolly instruction dataset. The model was pre-trained for 200B tokens by sampling from the subsets
of the RedPajama dataset in the same proportions as were used by the Llama series of models.

The results of our language model ablation are shown in Figure 6 (bottom row). These results
demonstrate more modest gains than the audio encoder ablation study. However, we note two
particular findings of interest. First, MPT-1B performance degrades particularly in the task of tempo
estimation, the only regression task in our study. We provide some additional results on this task in
Figure 7, which shows that the MPT model makes far less precise tempo predictions, often predicting
the same numeric values for tracks with widely varying tempos. We hypothesize that this is due to
differences in the tokenization scheme between MPT-1B and Llama 2, the latter of which takes
special steps to ensure numeric digits (1, 2, 3, etc.) are tokenized individually. Figure 7 reflects the
impact of this design decision. Second, we note that Figure 6 only shows performance on music
understanding tasks. Subjectively, the performance of Llama 2-based models on captioning and
general instruction-following tasks was significantly improved beyond MPT-1B.

F.3 TRAINING DATA SCALING

It is widely understood that foundation models require large datasets to achieve good generalization
performance. However, there is also evidence that the size of pretraining datasets is particularly
important, and that it may be possible to fine-tune pretrained models (via instruction-tuning or
reinforcement learning from human preferences) on smaller datasets Zhou et al. (2023); Taori et al.
(2023). We investigate the scaling properties of our model with respect to the training dataset size
by training identical, compute-matched models on 1%, 10%, and 50% subsets of the training data.
These models are then evaluated on our Music Understanding tasks. The results of this study
are shown in Figure 8. It suggests that, while having “large enough” training data is important,
the marginal returns to data in our case may be limited; indeed, there is some evidence of model
saturation or even small performance drops as dataset size decreases. We note that Figure 8 does not
investigate performance on the other tasks we evaluate (captioning, reasoning); subjectively, we find
that performance of a model trained on the full training set is improved relative to a model trained
on 50% less data.

These results may also reflect the fact that this experiment scales data from the same mix of training
distributions, covering the same (mixture) distribution with increasing sample size. It may not
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Figure 8: Dataset scaling study on music understanding tasks. We train a model identical to LLARK
using 1%, 10%, and 50% of the data respectively.

LAv2 WAC LTU LP-MC
MusicCaps 100.0% 100.0% 100.0% 99.6 %
MusicNet 100.0% 100.0% 100.0% 100.0%
FMA 100.0% 100.0% 99.7% 95.7%

Table 5: Win rates of LLARK vs. other models in GPT-4 evaluations of musical detail on captioning
tasks. (See Figure 5 for prompt.)

reflect the potential benefits from new, unobserved datasets. We note, qualitatively, that we explored
adding further open-source datasets to our training mixture (Slakh (Manilow et al., 2019), FSL10k
(Ramires et al., 2020)), but found that these degraded performance and ultimately excluded them
from training.

G ADDITIONAL RESULTS

This section provides additional experimental results not included in the main text.

G.1 Music UNDERSTANDING

We provide additional results to contextualize our model’s performance on music understanding
tasks.

Figure 9 shows LLARK’s predictions vs. ground truth on the Key Estimation task. Figure 9 shows
that LLARK generally achieves strong key estimation results. We also note that not all errors are
considered equal in this matrix; see Table 4 and Section E.1.1 for details on how the MIREX score
is calculated.

Figure 10 shows LLARK’s predictions vs. ground truth on the GTZAN Genre Estimation task.
While LLARK achieves ACC1 of only 0.56 (relative to approximately 0.71 for the best-performing
model on this task), Figure 10 shows that LLARK makes mistakes that appear subjectively
reasonable. For example, LLARK tends to mistake “metal” songs for “rock” and categorizes “disco”
and “country” songs as “pop” (we note that in both cases, the genres are actually at different levels
of the genre hierarchy, and LLARK’s predictions are actually a level above the GTZAN-labeled
genre in the same branch of the genre tree at https://en.wikipedia.org/wiki/List_
of_music_genres_and_styles).
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Figure 9: Confusion matrix for LLARK on Key Estimation task. Table 4 and Section E.1.1 provide
details on computation of MIREX scores from key estimates.

G.2 CAPTIONING

G.2.1 QUANTITATIVE CAPTIONING METRICS

This section provides additional results regarding captioning performance.

Captioning is an inherently subjective task, and the evaluation of captioning models is also an open
research question, with varying approaches in the literature. Many audio captioning works have
adopted metrics from the image captioning community, which themselves were borrowed from the
machine translation literature (such as the BLEU score (Papineni et al., 2002)).

These metrics measure the similarity between a proposed caption (or translation) and a reference
caption. The differ in how they measure this similarity. They share an emphasis on measuring
lexical similarity, specifically the similarity between n-grams present in the candidate and ground
truth captions (either individually, or as a set). However, they are inherently limited for an art form
like music, where describing the data has many valid answers, both on the style and on the content
itself, and where there is not a ground truth to be as similar as possible.

We provide a set of these linguistic captioning metrics in Table 6, along with some additional
experimental results which we believe demonstrate why these metrics may be misleading for music
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Figure 10: Confusion matrix for LLARK on GTZAN Genre Estimation task.

captioning. Table 6 shows a set of common linguistic captioning metrics for both datasets in our
captioning study which include ground truth captions (FMA does not contain ground truth captions;
our MusicNet captions are generated by GPT—3.5-turbo using the provided metadata and the
precise note-leve MIDI data for each track in MusicNet). In addition to the captions for all models
in our original study (human evaluation of these results is discussed in Section 6.3), we also provide
a second set of results for LLARK using the prompt from our instruction-following study (Section
G.4): “Give a short summary of the provided audio”; Table 6 thus contains two entries for the same
LLARK model, but using different prompts to elicit captions.

Table 6 demonstrates several interesting results. To interpret these results, we remind the reader that
the MusicCaps captions tend to be short, informal, no more than a few sentences, and formulaic
(they typically describe (1) the main aspects of a clip, (2) the audio quality, and (3) where such
a song might be heard). In contrast, our MusicNet captions tend to be long (2-3 paragraphs),
more formal, and focused explicitly on musical qualities (which instruments play, how they interact,
compositional aspects of the music, etc.).

First, from Table 6 we see that LLARK’s performance according to these metrics varies considerably
based on the prompt used. On MusicCaps, LLARK with our standard captioning prompt (‘“Describe
the contents of the provided audio in detail.”) is the lowest-performing model; when changing the
prompt, LLARK is the second-highest across all metrics on the same dataset. In contrast, LLARK
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Table 6: Captioning metrics. *: nonzero, but too small to display in table (< 107°°). #: uses the
prompt “Give a short summary of the provided audio”; see Section G.2.1 for discussion.

Dataset | Model | BLEU BLEU-4 METEOR ROUGE CIDER
LLARK 0.02 0.01 0.07 0.07 0.00
LLARK § 0.28 0.14 0.21 0.25 0.08
MusicCaps LTU-AS 0.21 0.09 0.19 0.25 0.01
IB-LLM 0.26 0.11 0.17 0.19 0.02
WAC 0.10 0.04 0.15 0.30 0.00
LP-MC 0.34 0.18 0.22 0.23 0.09
LLARK 0.62 0.45 0.38 0.33 0.05
LLARK § 0.09 0.06 0.21 0.45 0.00*
MusicNet LTU-AS 0.06 0.04 0.16 0.49 0.00
IB-LLM 0.21 0.13 0.29 0.40 0.00*
WAC 0.03 0.02 0.09 0.59 0.00
LP-MC 0.20 0.10 0.21 0.27 0.00*

achieves significantly higher scores than any other model on MusicNet (except ROUGE score) with
the standard prompt, but tends to perform poorly with the “short” prompt. This reflects both the
advantages of our model’s instruction-following capabilities, but also the limitations of the linguistic
metrics, which largely reward similarity in n-gram distribution, but not semantic similarity or going
“above and beyond” the reference captions in musical detail, as LLARK tends to do relative to the
short MusicCaps captions.

Second, Table 6 shows how existing captioning-only models, such as WAC and LP-MusicCaps, can
perform well when the target dataset is close to their training distribution (LP-MusicCaps, as its
name suggests, was trained on both MusicCaps and a set of artificially-generated captions designed
to match the caption style of MusicCaps), but can perform poorly when the reference captions are
linguistically different. Since neither of these models is capable of general instruction-following,
this limitation may restrict their ability to generate different forms of captions where needed.

Finally, we believe that Table 6 shows that, while these linguistic metrics may be a useful signal
of strict lexical closeness between candidate and reference captions, they can be unreliable and
potentially misleading for music captioning. Since many different captions might describe a given
music art piece, we believe that these metrics are of limited utility in the music domain, and should
be accompanied by other forms of evaluation. (Consider, for example, the number of reviews that
might be given for a single song, compared to a caption for a single photo — where these metrics are
more widely used.)

In Figure 11, we provide two quantitative measures related to captioning: The number of unique
tokens across all captions in a dataset, and the average token length of the captions. We tokenize
the text on whitespace and punctuation via nltk.wordpunct_tokenize () after converting to
lowercase; thus, each token is roughly equivalent to a word.

First, Figure 11 demonstrates that LLARK yields captions with consistently higher token counts,
relative to the other captioning models. We consider this a positive attribute, as LLARK is capable
of providing more detail than the other multimodal models (we show in Section G.4 and Figure
13 that LLARK is also capable of producing shorter captions when desired, but our intention in
this study was to demonstrate the maximal level of detail obtainable from each model). This is
consistent with the GPT-4 judgments regarding musical detail in Tables 5 and 3, which confirm that
the additional tokens in our model’s outputs also produce a higher level of musical detail.

Second, Figure 11 provides some evidence to support the results of the captioning study. For
example, we can see that LLaMA-Adapter tends to produce large numbers of unique tokens in
its responses; despite this apparent diversity LLaMA-Adapter performs poorly relative to LLARK
in our human evaluations. We hypothesize that this is due to the tendency of LLaMA-Adapter to
hallucinate. Its captions often include descriptions of nonexistent visual aspects of the audio (for
example, musicians seated in a row, performers dancing) which are irrelevant to understanding the
musical or auditory contents of the provided clip. This result also demonstrates the usefulness of
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modality-specific training data: LLaMA-Adapter uses an ImageBind backbone which is trained
primarily on visual (image + video) data, and which potentially biases the outputs of the model
towards these modalities.

Third, Figure 11 provides insight into the relatively poor performance of generic captioning models,
such as Listen-Think-Understand (LTU) and Whisper Audio Captioning (WAC). We hypothesize
that, because these models are trained on many types of audio data (i.e. sound effects and sound
scenes, speech) and the musical subset of their training data is not richly annotated, they tend
to produce fewer unique tokens and shorter captions, for example describing a piece simply as
“classical music” or “a clip of an orchestra playing”.

G.3 REASONING

Figure 12 provides similar metrics as Figure 11, but for the reasoning test datasets instead of
captioning.

Analysis of ImageBind-LLM results: Figure 4 shows that raters performed audio-text matching
for ImageBind-LLM at a rate slightly below a random baseline. Figure 12 provides some insight into
how this can occur. In particular, Figure 12 shows that ImageBind-LLM provides lengthy responses
to reasoning questions, generating the largest number of tokens, and the highest number of average
tokens, for every dataset evaluated. Qualitatively, we observe that these responses tend to consist
of long descriptions with hallucinated details (such as fictional artists and song titles, and detailed
visual scenes) which do not correspond to the provided audio. We hypothesize that this reflects the
image-alignment strategy used to train the ImageBind backbone Girdhar et al. (2023) which thus
leads to an overemphasis on visual elements. As a result, these detailed responses can lead raters to
select persuasive responses other than the correct, matching response.

Analysis of LTU-AS results: Figure 4 shows that raters performed audio-text matching for LTU-AS
at a rate slightly below a random baseline. In this case, as Figure 12 shows, we hypothesize that the
main factor was vagueness and lack of detail in the responses. As 12 (left) shows, LTU-AS responses
contained the smallest number of unique tokens. This reflects a pattern we observed, where LTU-AS
tended to produce similar responses for every piece of audio for a given question, irrespective of the
nature of the audio. Additionally, as 12 (right) shows, LTU-AS also tended to produce the shortest
responses, more than 2 x shorter than any other model. This reflects the brevity of its responses.
As a result, raters had a challenging time disambiguating the model’s responses, which tended to
be very similar. Further, raters tended to prefer outputs which were more detailed, regardless of the
length; these factors together produce below-baseline selection rates.

Collectively, the performance of ImageBind-LLM and LTU-AS highlight how the lower bound
for audio-text matching is not random chance, but is in fact closer to zero. Consider the extreme
case where every option is always presented, but reviewers prefer a single very detailed response,
regardless of the provided audio — in this case, the matching rate would be 1 / (number of response
choices), which approaches zero as the number of responses grows.

In contrast to ImageBind-LLM and LSU-AS, LLARK provides an intermediate level of details and
tokens, while also matching the music content, as Figure 4 shows. This could reflect our model’s
emphasis on musical attributes due to our musical data augmentation: because the other models are
exposed to less musical detail during their multimodal training, they may be less sensitive to changes
in the audio, and therefore more inclined toward predicting text sequences with high unconditional
probability (that is, unconditional of the audio) but potentially poor correspondence with a given
piece of audio, while LLARK has stronger musical conditioning.

We also wish to emphasize that, while higher matching rates are certainly achievable for this task,
the best matching rates with even expert human responses may not reach 100%, due to factors such
as inherent similarity between input audios or responses which make it impossible to perfectly match
each audio to the correct response.

We provide additional examples in the demo page associated with this paper which highlight the
descriptive, but often either incorrect (describing an imagined song or visual scene not associated
with the audio) or generic (verbose, but sufficiently general as to apply to any audio and not specific
to the given audio) behavior of the ImageBind-LLM baseline. We hypothesize that this behavior
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Figure 11: Quantitative metrics for generated captions on each captioning dataset. (“LLaMA-
Adapter” refers to the ImageBind-LLM model, which is a variant of LLaMA-Adapter.) Top:
MusicCaps dataset. Center: MusicNet dataset. Bottom: FMA dataset.

is linked to the multimodal pretraining of the ImageBind-LLM model (which includes images and
videos alongside their corresponding audio).

G.4 INSTRUCTION FOLLOWING
We design a small experiment to probe LLARK’s instruction-following capabilities. For each

of the 3 captioning datasets described in Section 6.3 and Figure 3, we do the following: First,
we select a random subset of 64 tracks from the test set. Second, for each track, we probe
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(“LLaMA-Adapter” refers to the ImageBind-LLM model, which is a variant of LLaMA-Adapter.)

In order from top to bottom: FMA, MagnatagatugSe, MTG-Jamendo, MusicNet.

on each reasoning dataset (test split).
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Figure 13: Word counts of LLARK responses across captioning test datasets for varying prompts. As
the prompt specifies a greater level of detail, the word count of model outputs increases. Similarly,
as prompts specify shorter responses, word counts decrease. LLARK’s response consists of exactly
one word for 54.9% of the collective outputs across the three datasets. 2-SD error bars shown.

the model with three different prompts designed to elicit different levels of detail (the prompts
are shown in Figure 13). Finally, we compute the word count of the model’s response (using
nltk.workpunct_tokenize).

The results are shown in Figure 13. They show that, across all three datasets, the model clearly
adapts its responses to instructions. Indeed, for the prompt “Describe the provided audio in one
word”, LLARK’s response consists of exactly one word for 54.9% of the collective outputs across
the three datasets.

H DATASET DETAILS

This section describes details of our data preprocessing, including any information related to train-
test splitting, data filtering, etc.

We provide additional descriptive metrics in Tables 7 and 8.

H.1 PREPROCESSING

We apply a similar preprocessing step to all datasets in our study. First, we convert all audio to 16-bit
44.1kHz wav files (we convert the audio to other formats where required by other models, e.g. for
some baselines that require 16kHz audio). We crop audio into 25-second chunks according to the
following procedure: if a track is less than 60 seconds in duration, we retain the first 25 seconds of
the clip, or the entire clip, whichever is shorter. If a track is longer than 60 seconds, we crop the
interval [30, 55) with probability p = 0.8, and the interval [0, 25) with probability (1 — p). This
helps ensure that the model observes audio from more active sections of tracks, but still sometimes
hears the opening sections of songs.

We retain all annotations accompanying each dataset, and augment these annotations with those
extracted according to our augmentation pipeline described in Section 4. The union of the original
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Table 7: Per-dataset statistics of instruction pairs.

Split  Dataset Captioning MIR Reasoning
FMA N/A 33,185 29,053
MTG-Jamendo N/A 7,499 3,299

Test MagnaTagATune N/A 33,342 39,171
MusicCaps 2,858 N/A N/A
MusicNet 45 558 139
FMA N/A 237,599 61,373
MTG-Jamendo N/A 407,070 173,604

Train MagnaTagATune N/A 119,352 123,727
MusicCaps 2,663 N/A N/A
MusicNet 3,799 44,457 15,533
YT8M-MusicTextClips 4,169 N/A N/A

Table 8: Aggregate statistics of instruction pairs across tasks.

Split \ Captioning MIR Reasoning Total

Train | 10,631 0.9% 808,478 (67.7%) 374,237 (31.4%) 1,193,346
Test | 2,903 (1.9%) 74,584 (50.0%) 71,662 (48.0 %) 149,149

dataset features and the augmented features are provided to the language models at instruction-
generation time.

H.1.1 INSTRUCTION DATA LANGUAGE MODELS

We use variants of ChatGPT to extract the instruction-tuning data for all experiments. However,
the exact language model used varies by dataset. We select the OpenAl model as follows: We
use GPT-4 for all reasoning tasks. We found that GPT-4 was much more adept at following the
complex instructions in the Reasoning task family. For datasets with more than 25k samples, we
limit Reasoning data to a random subsample of 25k tracks.

For Music Understanding and captioning tasks, we use GPT3.5-turbo, except when the metadata is
too large to fit into the model’s context window; in those cases (MagnaTagaTune, MusicNet), we
use GPT-3.5-turbo-16k. Note that we only generate captions for the MusicNet dataset; captions
for the MusicCaps and YT8M-MusicTextClips dataset are used as provided. We generate captions
for MusicNet, and not for other datasets in our sample, because only MusicNet contains note-level
metadata (in the form of MIDI data), which allows the caption-generation model to observe the
musical events of an audio in detail; we found that captions generated from global, non-time-
varying features such as tags or generic instrument labels led to lower-quality captions and degraded
downstream performance in initial experiments.

H.1.2 INSTRUCTION DATA GENERATION PROMPTS

For each task (Music Understanding, Captioning, Reasoning), we use a different base prompt to
describe the desired outputs for that task. While other works have used an approach of prompting the
language model to output diverse Q-A pairs Liu et al. (2023b), we found that separately prompting
the model for more specific forms of query-response pairs led to higher quality data.

The exact prompts used for each task and dataset are provided in the code released in conjunction
with this paper. However, we show three example prompts from the same dataset in Figures 14, 15,
and 16 to demonstrate their structure.

H.1.3 INSTRUCTION DATA FILTERING

After generating instruction data, we found that the language model still sometimes did not follow
the prompt. For example, it was common for the model to ask about metadata fields which we
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You are an expert AI assistant that is knowledgeable about music production, musical structure, music
history, and music styles, and you are hearing audio of a short clip of music. What you hear is
described in the JSON-formatted caption below, describing the same audio clip you are listening to.
Answer all questions as if you are hearing the audio clip. This caption is provided in a JSON list of
the form: [{"some_key": "some_value", "other_key": "other_value"}], where the keys and values
represent metadata about the music clip.

The JSON may contain the following fields:

"album.information': optional user-provided information about the album.

‘album.tags': optional user-provided tags associated with the track album.

'artist.tags': optional user-provided tags associated with the track artist.

"track.genre_top': the top genre for the track (most frequent as determined by user votes).
"track.genres_all': all genre labels for the track.

"track.information': optional user-provided information about the track.

"track.language_code': the language of the track.

tempo_in_beats_per_minute_madmom: the tempo of the track in beats per minute (BPM).
downbeats_madmom: a list of the downbeats in the song, containing their timing ("time") and their
associated beat ("beat_number"). For example, beat_number 1 indicates the first beat of every measure
of the song. The maximum beat_number indicates the time signature (for instance, a song with
beat_number 4 will be in 4/4 time).

chords: a list of the chords of the song, containing their start time, end time, and the chord being
played.

key: the key of the song.

Design a conversation between you and a person asking about this music. The answers should be in a
tone that an AI assistant is hearing the music and answering the question. Ask diverse questions and
give corresponding answers.

Ask factual questions about the musical characteristics and content of the song, including the style
and emotions, audio characteristics, harmonic structure, presence of various instruments and vocals,
tempo, genre, relative ordering of events in the clip, etc.

Only include questions that have definite answers based on the provided metadata or your background
knowledge of this specific music as an intelligent AI assistant. Write as many question as you can
using the provided inputs. Try to include a mixture of simple questions ("Is there a saxophone in the
song?" "Are there vocals in the clip?" "What is the approximate tempo of the clip in beats per minute
(BPM)?")) and more complex questions (""How would you describe the overall mood and emotions conveyed
by the song?"). Make the questions as diverse as possible, and ask about as many different aspects of
the song as possible. Do not mention the name of the artist in the response.

Again, do not ask about uncertain details. Provide detailed answers when answering complex questions.
For example, give detailed examples or reasoning steps to make the content more convincing and
well-organized. Explain any musical concepts that would be unfamiliar to a non-musician. You can
include multiple paragraphs if necessary. Make sure that the generated questions contain questions
asking about the musical characteristics and content of the song. If there are multiple plausible
answers to a question, make sure to mention all of the plausible choices. Do not specifically
reference the provided metadata in the response; instead, respond as if you are hearing the song and
reporting facts about what you hear.

IMPORTANT: Do not use the word "metadata" anywhere in the answers to the questions. DO NOT disclose
that metadata about the song is provided to you. Always answer as if you are an expert who is
listening to the audio.

Return a single JSON list object containing the question-answer pairs. Each element in the JSON list
should be a JSON object that has the following structure: {"question": "<QUESTION TEXT GOES HERE>"
"answer": "<ANSWER TEXT GOES HERE>"}

Figure 14: Example prompt for instruction-data generation. This prompt is for Music Understanding
instruction data generation on the FMA dataset.
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You are an expert AI assistant that is knowledgeable about music production, musical structure, music history, and
music styles, and you are hearing audio of a short clip of music. What you hear is described in the JSON-formatted
caption below, describing the same audio clip you are listening to. Answer all questions as if you are hearing the
audio clip. This caption is provided in a JSON list of the form: [{"some_key": "some_value", "other_key":
"other_value"}], where the keys and values represent metadata about the music clip.

The JSON may contain the following fields:

genre: a list of genres associated with the song.

instrument: a list of instruments known to be in the song. Other instruments not listed here may also be
present. If the song contains vocals, they will not be mentioned here.

mood/theme: a list of moods or themes associated with the song.

tempo_in_beats_per_minute_madmom: the tempo of the track in beats per minute (BPM).

downbeats_madmom: a list of the downbeats in the song, containing their timing ("time") and their associated
beat ("beat_number"). For example, beat_number 1 indicates the first beat of every measure of the song. The
maximum beat_number indicates the time signature (for instance, a song with beat_number 4 will be in 4/4 time).

chords: a list of the chords of the song, containing their start time, end time, and the chord being played.

key: the key of the song.

Design a conversation between you and a person asking about this music. The answers should be in a tone that an AL
assistant is hearing the music and answering the question. Ask diverse questions and give corresponding answers.

Only ask questions that require complex reasoning about the content in the music, possibly combined with other
background knowledge. Here are some examples of complex questions that you could ask:

- Ask about background knowledge about the music.

- Ask for songs or artists with a similar style.

- Ask about the order of events in the audio, for example, "What comes first, the drum break or the vocals?" Do
the piano and the guitar play at the same time? (For this question, only ask about instruments that are present in
the track.)

- Ask about how to learn to play this type of music.

- Ask how a music producer would create the sounds heard in this track.

- Ask about how to change the music in a specific way, for example, to make it better, happier, more danceable, or
to sound like another genre.

- Ask how a music professor would describe the track.

- Ask about any cultural, historical or popular references related to this track, in terms that the general public
would use.

- Ask to describe the scenarios in which people would listen to this track, again in terms that the general public
would use.

- List instructions that could be provided to an AI in order to generate music that is similar to this song
without using the word similar or a reference to this particular song.

Do NOT ask basic questions that can be answered with a single attribute of the JSON such as:
- What key is the song in?

- What is the genre of this song?

etc.

Only include questions that have definite answers based on the provided metadata or your background knowledge of
this specific music as an intelligent AI assistant. Write as many question as you can using the provided inputs.
Make the questions as diverse as possible, and ask about as many different aspects of the song as possible.

Again, do not ask about uncertain details. Provide detailed answers to all questions. For example, give detailed
examples or reasoning steps to make the content more convincing and well-organized. Explain any musical concepts
that would be unfamiliar to a non-musician. You can include multiple paragraphs if necessary. If there are
multiple plausible answers to a question, make sure to mention all of the plausible choices. Do not specifically
reference the provided metadata in the response; instead, respond as if you are hearing the song and reporting
facts about what you hear. IMPORTANT: Make sure the provided answers do not contain the phrases "the metadata"
"based on the provided metadata”. DO NOT disclose that metadata about the song is provided; always answer as if
you are an expert who is listening to the audio.

Make sure that the questions are complex, and that the detailed answers reflect your expertise as an expert AL
assistant that is knowledgeable about music production, musical structure, music history, and music styles
listening to the clip.

Please return a single JSON list object containing the question-answer pairs. Each element in the JSON list should
be a JSON object that has the following structure: {"question": "<QUESTION TEXT GOES HERE>", "answer": "<ANSWER
TEXT GOES HERE>"}

Figure 15: Example prompt for instruction-data generation. This prompt is for Reasoning instruction
data generation on the MTG-Jamendo dataset.
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You are an expert AI assistant that is knowledgeable about music production, musical structure,
music history, and music styles, and you are hearing audio of a short clip of music. What you hear
is described in the JSON-formatted outputs below, describing the same audio clip you are listening
to. Answer all questions as if you are hearing the audio clip. This description is provided in a
JSON dictionary, where the keys and values represent events in the music clip.

The JSON dictionary contains the following keys: "composer", "composition", "movement",
"ensemble", "notes".

The main component of the JSON is the "notes" field, which is a nested JSON dictionary. The keys
in "notes" represent individual instruments, and the values is a JSON list representing all of the
notes played by that instrument in the music clip. Each element in the value JSON list represents
one note played in the music, and includes the following keys:

- start: the start time of the note, in seconds

- end: the end time of the note, in seconds

- pitch: the pitch and octave of the note

In addition to these fields, the JSON also contains the following special annotations:

- tempo_in_beats_per_minute_madmom: the tempo of the track in beats per minute (BPM).

- downbeats_madmom: a list of the downbeats in the song, containing their timing ("time") and
their associated beat ("beat_number"). For example, beat_number 1 indicates the first beat of
every measure of the song. The maximum beat_number indicates the time signature (for instance, a
song with beat_number 4 will be in 4/4 time).

- chords: a list of the chords of the song, containing their start time, end time, and the
chord being played.

- key: the key of the song.

Provide a detailed musical description of the clip, from the perspective of a musical expert
describing the clip as they hear it being played. Make sure to describe the ordering of the
different instruments (which plays first, which plays at the end), themes or rhythms, arpeggios
chords, repeating patterns, etc.

The answers should be in a tone that an AI assistant is hearing the music and describing it to a
listener.

Only provide details that are based on the provided metadata or your background knowledge of music
as an intelligent AI assistant. Assume that there are no notes or instruments in the clip besides
those in the "notes" data. Explain any musical concepts that would be unfamiliar to a
non-musician. You can include multiple paragraphs if necessary. Do not specifically reference the
provided metadata in the response; instead, respond as if you are hearing the song and reporting a
rich description of what you hear. The descriptions should keep in mind that this may only be an
excerpt or part of a song, and not the complete song.

IMPORTANT: Do not use the word "metadata" anywhere in the answers to the questions. DO NOT
disclose that metadata about the song is provided to you. Do not specifically reference the
instruments by number (do not say "Violin 1" or "Violin 2"; instead just say "a violin"). Focus
more on a high-level description of the audio, and do not simply list the notes being played;
specific notes (i.e. G5 or F#0@) should only be mentioned if they are particularly important to the
description of the song. Always answer as if you are an expert who is listening to the audio. Do
not mention or ask about the track title, artist, or album.

Figure 16: Example prompt for instruction-data generation. This prompt is for Captioning
instruction data generation on the MusicNet dataset. Note that this is the only dataset where we
generate captions, due to the unique MIDI data available in this dataset
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Table 9: Keywords and phrases used to filter questions and answers after instruction data generation.
Any query-response pairs where the query or response contained a disallowed phrase from the
respective list was excluded.

Query Keywords

\ Response Keywords

“what is the composer”, “who is the
composer”, “tell me about the composer”,
“name of the composer”, "who is the artist”,
“tell me about the artist”, “what tags are
associated with the artist”, ”what are the
tags associated with the artist”, is there
any information available about the album”,
”about the album”, “name of the artist”,
”what is the name”, what is the movement”,
“what is the specific movement”, “what is
the title”, ”which movement is”, ”what is the

length of this clip”, “duration”, ’pack”,

93 99

“metadata”, ’is not provided”, “based on the
provided metadata”, “based on the provided
beat”, based on the provided chord”, "based
on the provided information”, ”based on the
provided annotations”, “no specific mood”,
“there is no mention of”’, ’there is no specific
mention of any”, ”As an Al assistant, I
am unable to”, ”As an Al assistant, I do
not”, it is difficult to determine”, it is
not possible to determine”, no information
is available about the album”, cannot

determine”, “violin 17, violin 2”, violin 37,

”viola 17, ’viola 27, “viola 37, ”pack”

provided but instructed it not to ask about (e.g. artist, song title), to ask questions where the “answer”
was some form of “this answer cannot be determined”, or to give answers of the form “from the
provided metadata, we can determine...”. As a result, we found that filtering the QA pairs was
important to improve the data quality, both in order to avoid low-quality training samples being

included in the data, and to ensure desirable behavior from LLARK.

We manually collect a set of substrings for both questions, and answers, which represent
question/answer formats that violate our instructions. We then remove any Q/A pairs which contain
the disallowed substrings in either the question or answer, respectively. Examples of disallowed
phrases in the question include “who is the artist” and “what is the length of this clip”’; examples
of disallowed phrases in the answer include “based on the provided metadata”, “it is not possible to

determine”, and “as an Al assistant, I am unable to”.
The list of phrases we remove from questions and answers are shown in Table 9.
The list of phrases we remove from answers is given in Table 9.

Depending on the language model, this filtration process excludes roughly between 1% and 10% of
the generated instruction data.

H.2 FMA

The Free Music Archive (FMA) Defferrard et al. (2017) (https://github.com/mdeff/fma)
is a dataset comprising 106, 574 Creative Commons-licensed tracks from 16, 341 artists spanning
a taxonomy of 161 genres. FMA includes high-quality audio together with track- and user-level
metadata, tags, and free-form text provided by users of an online interface. We use the default set of
metadata provided by the FMA Python API, but do not use the extracted audio features (neither the
librosa nor the Echonest features).

We use the default train/test split for FMA.

H.3 GIANT STEPS (KEY, TEMPO)

The Giant Steps Key and Tempo datasets, originally proposed in Knees et al. (2015), are two widely-
used benchmark datasets for key and tempo estimation. They contain sets of over 600 tracks each,
mostly of the electronic genre.

For tempo, we use the ‘v2’ labels, which are labels that are corrected by human annotators using the
process described in Knees et al. (2015). We note that there are three tracks in Giant Steps Tempo
that have labeled tempi of 0 BPM; we exclude these tracks.
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H.4 GTZAN

The GTZAN dataset George et al. (2001) contains 1000 tracks of 30 seconds each, uniformly
distributed across 10 genres: blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, and
rock. While some of these genres are not entirely distinct from each other and the task itself highly
subjective, it is nevertheless a widely-used benchmark in the music information retrieval community,
and so we adopt it here.

H.5 MEDLEYDB

We use the MedleyDB 1.0 dataset'? Bittner et al. (2014) with fine-grained (time-varying) instrument
activity labels. MedleyDB contains 74 tracks covering a variety of instruments and genres
(Singer/Songwriter, Classical, Rock, World/Folk, Fusion, Jazz, Pop, Musical Theatre, Rap).

H.6 MAGNATAGATUNE

The MagnaTagATune dataset'3'* (Law et al., 2009) is a dataset consisting of audio clips from the
Magnatune label'®, annotated by users playing the TagATune game (Law et al., 2009). It consists
of a set of approximately 25,000 29s-long music clips alongisde a set of 188 binary tags rated by
platers of the TagATune game.

H.7 MTG-JAMENDO

The MTG-Jamendo dataset (Bogdanov et al., 2019) is a dataset built using music available on
the Jamendo platform (https://www. jamendo.com/) under Creative Commons licenses and
tags provided by content uploaders. The dataset includes annotations for genre, instrument, and
mood/theme, which comprise a set of around 195 tags collectively. We use the default autotagging
feature set provided by the MTG-Jamendo Python APL'® We use the full-quality audio, and do not
use the mel spectrograms provided with the dataset.

There is no official train-test split for the MTG-Jamendo dataset. We use a random subset of 1, 000
tracks as the test set. The IDs of the tracks in the train and test sets are provided in the code.

H.8 MUSICNET

We use the official train-test split for the MusicNet dataset.

MusicNet provides a uniquely rich set of annotations, as it is the only dataset in our study which
includes complete MIDI transcriptions (precise note-by-note descriptions of the exact pitches and
timings of each instrument in the track). As a result, we also generate captions from the MusicNet
dataset. This allows us to enrich our pool of captioning data, which is only around 1% of our total
training data, and to do so with annotations not available from other captioning dataset in our study.

In order to maximize the number of captioning examples we are able to obtain from MusicNet, we
make one exception to our one-audio-crop-per-track rule for MusicNet captioning data only: we
take all crops from the MusicNet captioning data, which yields a total of 3,799 captioned audio
segments from the songs in the MusicNet train split.

We use the improved MIDI data from MusicNet-EM (Maman & Bermano, 2022)'” in place of the
original MusicNet MIDI data.

Phttps://medleydb.weebly.com
Bhttps://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
“https://musicmachinery.com/2009/04/01/magnatagatune—a-new-research-data-set—-for-mir/
Bhttp://magnatune.com

Yhttps://github.com/MIG/mtg- jamendo-dataset/
"https://github.com/benadar293/benadar293.github.io
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H.9 MUusICCAPS

MusicCaps (Agostinelli et al., 2023) is a dataset consisting of 5.5k music-text pairs, with rich
text descriptions provided by humans. MusicCaps is extracted from from AudioSet. The overall
musicality of the dataset is mixed, and MusicCaps contains a relatively high proportion of musical
audio that might not be considered studio-quality: field recordings, sound effects, etc.

Because MusicCaps is only a list of YouTube IDs, the dataset effectively shrinks over time: tracks
can be removed from YouTube for various reasons, but the original set of candidate YouTube IDs
in MusicCaps is fixed, so the subset of publicly-available YouTube tracks decreases as tracks are
inevitably removed. As a result of this shrinkage, it is difficult to compare MusicCaps results directly
across works, since different subsets of the data may be available to different authors.

In order to at least partially address this issue, we provide the exact set of YouTube IDs used for
evaluation in the code associated with this work. We cannot guarantee direct comparability to other
works evaluating on MusicCaps, however, as they have used a different subset of the MusicCaps
evaluation dataset.

H.10 YOUTUBES8M-MUSICTEXTCLIPS

YouTube8M-MusicTextClips'® (McKee et al., 2023) is a dataset consisting of over 4,000 high-
quality human text descriptions of music found in video clips from the YouTube8M dataset (Abu-
El-Haija et al., 2016). It includes 10s audio clips extracted from the videos in YouTube8M,
accompanied by human-generated annotations. Since there is no prior work of which we are aware
of that uses this dataset for evaluation and captioning data is scarce, we use the entire dataset for
training (the original split contains 1000 samples for training and 3169 for testing).

I EXAMPLE INSTRUCTION-TUNING DATA

For samples of the instruction-tuning data, including question, answer, and the corresponding audio,
see the website associated with our paper at https://bit.1ly/3ZyzbGG .

J BASELINE DETAILS

J.1 ESSENTIA

Essentia'® is an open-source library and tools for audio and music analysis, description, and
synthesis. Essentia packages a variety of different pretrained models. For each task, we select
the Essentia model best suited for that task based on the package developers’ recommendations
alongside our own understanding of the target task. For key estimation, we use the edma model,
which is derived from the method of Faraldo et al. (2016) and tailored specifically for electronic
dance music (which is the genre of the Giant Steps dataset used for tempo evaluation). For tempo
estimation, we use their default tempo model.

J.2 IMAGEBIND-LLM

ImageBind-LLM (Han et al., 2023) is a multimodal language model evolved from LLaMA-Adapter
(Gao et al., 2023). It uses an ImageBind (Girdhar et al., 2023) backbone, which allows the model
to accept inputs of any of the modalities supported by ImageBind. We note that ImageBind-LLM
is not specifically fine-tuned on any audio examples; it instead relies on the ImageBind backbone to
ensure good performance across modalities.

J.3 LISTEN, THINK AND UNDERSTAND (LTU-AS)

LTU-AS Gong et al. (2023b) is “an improved version of LTU” Gong et al. (2023c¢) and, according to
the authors, “stronger in spoken text understanding and music understanding.” We use the version

Bhttps://zenodo.org/record/8040754
Yhttps://essentia.upf.edu
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available online in August and September 2023 via the online demo at https: //huggingface.
co/spaces/yuangongfdu/ltu-2.

J.4 WHISPER AUDIO CAPTIONING (WAC)

We use the fine-tuned Whisper-Large model available in the code and model release associated with
Kadl&ik et al. (2023)*°. The model supports different prompt formats, but a format must be selected
in order to use the model; we use the recommended Clotho prompt format?'.

J.5 LP-MUSICCAPS

LP-MusicCaps (Doh et al., 2023) is a Transformer-based captioning model. The model is trained
on a large dataset of “pseudo captions”, which are generated by providing keyword/tag descriptors
to a language model. The model architecture ise a cross-modal encoder-decoder architecture that
operates on 10s chunks of log Mel spectrograms, and applies a convolutional audio encoder to the
spectrograms in the encoder stack.

K TRAINING DETAILS

Our model is trained on 4 80GB NVIDIA A40 GPUs. Training takes approximately 54 hours.

The model is trained for 100k steps with a global batch size of 32, cosine learning rate scheduler
with 3000 warmup steps and a maximal learning rate of be — 5. We use the AdamW optimizer
(Loshchilov & Hutter, 2018) with betas=(0.9,0.999), ¢ = le — 6, and do not apply weight decay.
We fine tune both the projection module and the language model throughout, and freeze the audio
encoder. The model is trained with BF16 and TF32.

We provide the complete set of software dependencies (Python packages, Conda environment, and
Docker image) to reproduce our training environment. We provide additional utilities (scripts +
Docker images) to reproduce additional components of our pipeline, such as offline processing of
the audio encodings and the extraction of augmented data features. We will publicly release this
code on publication of this paper.

L HUMAN EVALUATION EXPERIMENTS

For all evaluations, we recruit raters via Appen (https://appen. com). We restrict the rater pool
to only English-speaking raters, and we disable browser-based translation to ensure that raters are
not using automated translation tools. Appen includes a test procedure, where raters must accurately
complete an assessment of 8 sample questions prior to joining the pool, and must intermittently
answer sample questions throughout the rating process to ensure that their rating maintains a
standard of quality. Raters are paid for each task they complete. We also apply a control setting
in Appen which ensures that no more than 5% of ratings come from a single rater in any task. We
use between 382 and 799 workers in each task, depending on rater behavior (raters are free to exit
tasks at any point), quality control performance, and the size of the task pool.

L.1 CAPTIONING

For the captioning task, we provide each model with the prompt “Describe the provided audio in
detail,” plus an identical audio clip of up to 25 seconds. We ask human raters to assess the quality
of these captions.

Interface: A screenshot of the interface used in our MusicCaps captioning study is shown in Figure
17. We ask raters to answer the question “Which option is better overall (completely describing
the music while also being accurate)?”, comparing responses from LLARK and a randomly-selected

Phttps://github.com/prompteus/audio-captioning
2IThe model was fine-tuned on Clotho and this is the recommended default style; see https://
huggingface.co/MU-NLPC/whisper—-large-v2—-audio-captioning
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baseline model on a 7-point Likert scale. The ordering of the pairs is randomized so that either
model has an equal chance of appearing either first or second.

Only the MusicCaps evaluation included the first question shown in Figure 17. Because MusicCaps
contains many examples which do not contain primarily music (sound effects, bodily functions,
field recordings, etc.). We use this question to identify samples from MusicCaps where the majority
of raters agree that the sample does not contain only music, and exclude these samples from our
analysis (this affects only 3.04% of the total data resulting from our experiment). The other
captioning datasets (MusicNet, MusicCaps) do not require this question, as they are composed
entirely of music only.

We randomly sample a total of 1024 pairwise comparisons for each dataset (or as many samples as
exist in the dataset, since MusicNet contains only 45 test instances), which equates to approximately
256 pairwise comparisons to LLARK per baseline.

L.2 REASONING

For reasoning tasks, our human evaluation differs slightly from captioning. We noted in initial
pilot studies that (a) baseline models, particularly ImageBind-LLM, tended to give responses that
contained either (1) a high degree of specificity with imagined but unverifiable details (such as a
track name and artist description, descriptions of an accompanying visual, etc.) or (2) results that
were generic and vague enough to apply to nearly any music. We noted that non-expert reviewers
had difficulty assessing the quality of these responses. Furthermore, we observed that different
models tended to produce structurally consistent responses across all tracks (as shown in Figure
12, with some models tending to produce lengthy responses with others producing much shorter
responses). We also adapted our design to control for the model itself (so that reviewers would not
simply choose models that they preferred the format of the response, regardless of the content).

Therefore, we designed a study based on audio-text matching. In this study, we present raters with
a question + audio pair alongside three randomly-chosen responses from the same model, and then
ask the rater to determine which response best answers the question, given the audio. This design
encourages model responses that are specific to the provided audio, and avoids bias in reviewers that
prefer either longer or shorter responses (since these tended to remain consistent for a fixed model,
but vary across models, as shown in Figure 12).

We use the MTG-Jamendo dataset for our reasoning study, as it contains a diverse set of genres,
including classical, popular, and experimental music.

Interface: A screenshot of the interface used in our reasoning audio-to-text study is shown in Figure
18. We ask raters to answer the question “Which option is better overall (completely describing the
music while also being accurate)?”, comparing responses from LLARK and a randomly-selected
baseline model on a 7-point Likert scale. The ordering of the pairs is randomized so that either
model has an equal chance of appearing either first or second.

We randomly sample a total of 512 comparisons for each model for this study.
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Listen carefully to the following music example.

> 0:00/0:10

O i

Option A

electronic dance music plays continuously

Option B

As | listen to the music clip, | can hear a combination of various instruments playing together. The
song has a strong and energetic feel, with a fast tempo of approximately 139.5 beats per minute.
The rhythm is driven by a prominent drum beat, which provides a steady pulse throughout the clip.
The drums are played with intensity, adding to the overall energetic atmosphere of the song.

Apart from the drums, there is also a bass guitar that adds depth and groove to the music. The bass
guitar plays a repeating pattern of notes, creating a rhythmic foundation for the other instruments
to build upon. The bass guitar's notes are played in sync with the drums, creating a cohesive
rhythmic structure.

In addition to the drums and bass guitar, there are also synthesizers that provide melodic and
harmonic elements to the song. The synthesizers create a layered and textured sound, adding to
the overall complexity and richness of the music. The synthesizers play a combination of sustained
chords and melodic lines, contributing to the song's melodic and harmonic structure.

The song is in the key of C# minor, which gives it a slightly dark and moody feel. The chords played
in the song are primarily C# major and C# minor, with some variations in between. The chord
progression creates a sense of tension and release, adding to the emotional depth of the music.

Overall, the music clip I'm hearing is a dynamic and energetic piece with a strong rhythmic
foundation. The combination of drums, bass guitar, and synthesizers creates a vibrant and layered
sound. The melodic and harmonic elements add depth and complexity to the music, making it an
engaging and captivating listening experience.

Questions

Does the audio clip contain only music? (Musical instruments, percussion, and
musical vocals with no other sounds or background noise.) (required)

O Yes
O No
O Not sure/there was a problem displaying the audio

Which option is better overall (completely describing the music while also being
accurate)? (required)

O Ajis much better
O Ais better

O Als slightly better
O About the same
O Bis slightly better
O Bis better

O Bis much better

Figure 17: Screenshot of the rating interface used for captioning evaluation on MusicCaps.
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Listen carefully to the following music example.
» 000/0:30 = 4

Question

Describe the styles or genres of this song and explain how the song illustrates each style or genre
mentioned.

Response A

The song is a blend of pop, rock, and folk genres. The pop influence is evident in the catchy melody
and the straightforward rhythmic structure. The rock elements are noticeable in the energetic
guitar riffs and the powerful drum beats. The folk influence can be heard in the use of traditional
chord progressions and the storytelling lyrical style.

Response B

The song appears to be a blend of several genres including house, electronic, dance, and techno.
The tempo of 125 beats per minute is common in these genres, providing a steady rhythm that is
conducive to dancing. The song's time signature, indicated by the maximum beat number being 4, is
typical of house and techno music. The electronic elements may come from the use of synthesizers
or digital sound samples, while the dance elements could be characterized by the repetitive,
upbeat nature of the rhythm and the 4/4 time signature.

Response C

This song can be described as a fusion of electronic, funk, and reggae genres. The electronic genre
is reflected in the use of synthesized sounds and electronic beats. The funk influence is evident in
the rhythmic grooves and basslines. The reggae elements are noticeable in the off-beat rhythms
and the use of minor chords. These genres come together to create a unigque and eclectic sound
that blends different musical traditions and styles.

Which response best answers the question, given the provided audio? (required)
O Response A
O Response B
O Response C

Figure 18: Screenshot of the rating interface used for reasoning evaluation on MTG-Jamendo.
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M MODEL CARD

This section presents a Model Card Mitchell et al. (2019) for LLark.

M.1 MODEL DETAILS

Person or organization developing model: LLARK was developed at [ANONYMIZED] by
[ANONYMIZED]. Model date: LLARK was developed in 2023.

Model version: This paper describes version 1.0 of the model. Further releases are not planned.

Model type: LLARK is a decoder Transformer model. Its fundamental architecture is that of Llama
2 Touvron et al. (2023), with a Jukebox audio encoder Dhariwal et al. (2020) and a single multimodal
adapter layer.

Information about training algorithms, parameters, fairness constraints or other applied
approaches, and features: Our dataset construction procedure and features are described in Section
4. Our training procedure is described in K.

Paper or other resource for more information: This paper is the main resource for LLARK.
Additional results are available at https://bit.ly/3ZyzbGG. Training and preprocessing
code to reproduce our results is available at [ANONYMIZED].

Citation details: Please cite this paper.
License: LLARK is released under the Apache License, Version 2.0.

Where to send questions or comments about the model: Please send correspondence to the
corresponding authors indicated on this paper.

M.2 INTENDED USE

Primary intended uses: LLARK is intended to be used for research purposes only.

Primary intended users: our primary intended users for this release are researchers in machine
learning, audio, music information retrieval (MIR) and related disciplines.

Out-of-scope use cases: non-research uses of LLARK should be considered out-of-scope.

M.3 FACTORS

Relevant factors: The most significant factors we identify correspond to “groups” (Mitchell et al.
(2019), §4.3.1). The training data for LLARK is based on a variety of sources, which include:
user-generated data posted to the Internet; crowdsourced labels; and features estimated using
trained machine learning models. The data is processed using Large Language Models (variants
of ChatGPT, for text/labels) and Jukebox (for audio), each of which were trained on undisclosed
datasets collected from a variety of sources. Each of these elements can introduce bias into the data.
These may include: bias toward Western music; bias toward certain gender identities; or biases
toward particular forms of language.

Evaluation factors: Many of the same factors described above apply to evaluation. In particular,
our evaluations reflect certain structural assumptions about music (the use of a consistent tempo; 12-
tone scale; and instrumentation). Additionally, we use English-speaking non-expert raters (recruited
as described in Section L) for our human evaluations. These raters may introduce their own biases
into the evaluation process; in particular, it is possible that these raters do not assess technical and
structural musical properties of the model’s generated responses.

M.4 METRICS

Model performance measures: Our model is evaluated using a variety of metrics, described in
Section 6. The evaluation metrics are described in detail in Section E.

Decision thresholds: Our model does not use a decision threshold.
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Variation approaches: Many of the musical metrics used in our study do not provide precise
theoretical estimates of variation (i.e. Acc2, MIREX Score). However, we report the sample sizes
of our evaluation sets, which are used to estimate confidence intervals for accuracy-based metrics
and binary proportions (i.e., win rates). Wherever such estimates are available and our results do not
hold with p < 0.01, we do not report or discuss them as practically significant differences.

M.5 EVALUATION DATA

We use a variety of evaluation datasets; the datasets, motivation, and preprocessing are described in
Section 6 and Section H. We also describe evaluation metrics in Section E.

M.6 TRAINING DATA

We use a mixture of 6 training datasets; the datasets, motivation, and preprocessing are described in
Section 4.

M.7 QUANTITATIVE ANALYSES

Our quantitative analysis is summarized in Section 6.

M.8 ETHICAL CONSIDERATIONS

There are several ethical considerations, relating both to inputs (i.e., the training data) and outputs.

With respect to inputs: the inputs to our model are public, open-source, Creative Commons-licensed
audio and associated annotations. However, each individual audio file can have its own, potentially
more restrictive license. Many of the audio files include “no derivatives” licenses. We encourage
users of the datasets to familiarize themselves with the restrictions of these licenses; in order to
honor such licenses, we do not release any derivatives from the training data in this paper (including
query-response pairs or trained model weights).

With respect to outputs: LLARK is a machine learning model trained to generate text conditional on
(text, audio) inputs. Its outputs can be factually unreliable, but can also be presented confidently and
fluently. As a result, we encourage any users of the model to carefully consider their potential uses
of any models based on our training framework (since our model itself is not planned for release).
This includes considering the risks of incorrect or misleading text which may be difficult for both
experts and non-experts to detect, as well as potential offensive or malicious uses of the model
through inputs to its audio and text modalities.

M.9 CAVEATS AND RECOMMENDATIONS

We recommend further research on all dimensions necessary to improve and understand the
performance of models similar to LLARK. This includes improved and publicly accessible training
data for music research; better foundation models and architectures; and improved evaluations (both
evaluation methodologies, and datasets) specific to music research. In particular, we encourage the
development of datasets and evaluation methods that reflect all styles of music, not strictly Western
or popular music. Finally, we also encourage the development of bias detection methods that can
detect and mitigate biased or harmful outputs in the audio-language modeling domain.

N FAILURE CASES

This section describes our qualitative, exploratory observations regarding common observed failure
modes of LLARK. Our intention in this section is to provide transparency and insight into potential
failures of LLARK in order to empower potential future developers and users of such models, and to
spur future research on understanding and mitigating failure modes of multimodal audio language
models.
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Below, we separately identify and discuss a set of failure cases. These failure cases are identified
based not only on frequency of occurrence, but also due to their potential impact on downstream
users or to their perceived similarity or difference to potential risks of other large models.

N.1 FAILURE CASE: INCORRECT DETAILS IN LONG-FORM RESPONSES

While we conduct a controlled evaluation of LLARK’s music understanding capabilities in Section
6.2, by design, these evaluations isolate only music understanding tasks (key classification, tempo
prediction, etc.). One failure mode we observed while evaluating LLARK was an apparent decrease
in the model’s description of these properties when doing so in the context of longer-form text
outputs.

As a concrete example of this, we provide an output for LLARK on a reasoning task from the
MTG-Jamendo dataseton https://bit.ly/3ZyzbGG, for track 223092 from this dataset. Two
independently-generated query-response pairs are shown in Table 10. The outputs show signs of
incorrect details in the model’s outputs: in both responses, LLARK describes the audio as having
a tempo of 120BPM, despite the true tempo being roughly 139 BPM. Furthermore, while E minor
(Em) is the correct key of the song, LLARK also provides and incorrect key, E major, which would
not traditionally be compatible with the key E minor.

These samples reflect a broader trend of LLARK sometimes showing decreased performance and
core music understanding tasks during longer-form generation. We hypothesize that this is due to a
combination of (1) biases from the pretrained models, and (2) a lack of this form of supervision in
the training data. (1) is evident, for example, in the model’s bias toward 120BPM — we hypothesize
that this is a common tempo observed by the language model during its pretraining (as it is not a
prevalent tempo in our training data). (2) is possible due to the fact that, in generating reasoning
outputs, we explicitly instruct the language model generating query-response pairs not to ask about
basic musical details such as tempo and key; as a result, these details may be underrepresented in the
reasoning training data and the model may be less likely to learn to generate correct key and tempo
data during longer-form outputs to reasoning queries.

Mitigation strategies: This failure mode could be addressed through a combination of training
data improvements and improved prompting. Our music understanding evaluations (Section 6.2
suggest that LLARK is capable of correct musical detail in isolation. This suggests that our training
process is effective (as the “music understanding” task family explicitly generates query-response
pairs reflecting these types of details); it is likely that the model simply had limited exposure
to “correct” musical detail in reasoning training examples. Changing the instruction-generation
prompts to encourage richer musical detail could increase supervisory signals for LLARK at training
time. As a second mitigation strategy, improved prompting of LLARK could help mitigate the use
of erroneous musical details at inference time, for example, by leaving them out if unnecessary, or
via strategies such as chain-of-thought prompting which have been shown to improve quality and
consistency of outputs in other domains.

N.2 FAILURE CASE: OUT-OF-DISTRIBUTION INPUTS AND NON-MUSICAL AUDIO

Another failure case we observed was when the model was provided with non-musical audio. Such
audio occurs, for example, in the MusicCaps dataset, which can contain inputs such as the sounds of
bodily functions, animal noises, or background noise, all of which are not represented in LLARK’s
training data mixture.

Example captioning outputs on non-musical audio samples from MusicCaps are shown in Table 11.
These examples illustrate how, when provided with non-musical inputs such as birds singing or “a
cacophony of burping and farting sounds,” LLARK generates text as if the inputs were music from
its training data.

This behavior is likely due to a combination of factors. For example, the audio encodings are
obtained from JukeBox, which is trained only on music, not sound effects or ambient sounds.
Although it is possible that the Jukebox training data could have contained a small fraction of
samples of such audio, it is likely that the model’s representations are learned to represent musical
audio. As a result, the encodings for non-musical inputs may be less informative. An additional
cause of this out-of-distribution degradation is likely that the fine-tuning process of LLARK also
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Prompt

LLARK Response

How could a music | A music producer would need to focus on creating an atmospheric
producer recreate the | soundscape to recreate the sounds in this track. They would likely use
sounds in this track? a variety of synthesizers, both digital and analog, to create the layered
textures that form the basis of this music. The producer would also need
to create a steady beat, likely using a drum machine or software, to keep
the rhythm. The tempo would be set to around 120 beats per minute to
match the pace of the original track. The chord progression would need
to be programmed or played to match the sequence of E minor, E major,
and D major.

What are some | One characteristic that potentially differentiates the song from other
characteristics similar songs is the use of the synthesizer as the main instrument.
that potentially | The synthesizer is a versatile instrument that can create a wide range
differentiate the song | of sounds and textures, allowing for unique musical expressions.
from other similar | Additionally, the song’s tempo of 120 BPM and the use of the E
songs? minor key contribute to its distinctive sound. The combination of
these elements, along with the specific chord progression and downbeat
pattern, gives the song its own unique identity within the electronic
genre.

Table 10: Selected reasoning outputs illustrating “Incorrect details in long-form responses” failure
mode; MTG-Jamendo Track 223092 (see online supplement for audio).

was curated to favor musical audio. While small amounts of ambient and sound-effect data may
exist in the datasets described in Section 4, the majority of the training data consists of various
forms of amateur and studio-quality music, not “found sounds” or sound effects.

Mitigation strategies: One simple strategy to mitigate this behavior would be to add non-musical
inputs to the training data of future models. Such training sets (for example, of background and
ambient noises, speech, and sound effects) are widely available, and could improve robustness to
such forms of audio.

N.3 FAILURE CASE: MISSING OR INCOMPLETE CONTEXT

An additional failure mode of LLARK is failure to provide complete context. Here, we are referring
to the limited ability to completely describe certain tasks, world states, or background information
necessary to fully answer a query or to present all possible reasonable responses.

One example of this behavior is apparent in the first row of Table 10. Here, LLARK is asked how
to recreate a track, and it answers that a producer “would likely use a variety of synthesizers, both
digital and analog.” While this is indeed one potential strategy, the model’s response ignores another
important strategy: using a computer.

Mitigation strategies: This failure mode reflects the challenges of both getting language models
to completely represent knowledge of the world, and also to communicate this knowledge in their
outputs. While the former is a problem best addressed during pretraining of the language model
itself, the latter may be addressed by improved prompting to LLARK (i.e. “describe all potential
options”) and improvements to the training data pipeline (by adjusting instruction-generation
prompts to encourage more thorough, exhaustive, or contextually-rich responses to queries; or by
improving our data filtering pipeline to explicitly select for such responses).

N.4 FAILURE CASE: POPULARITY BIAS

We observe a tendency for the model’s generations to trend toward “popular” or more strongly-
represented musical categories, labels, styles, and descriptors during generation. This is evident,
for example, in the GTZAN genre confusion matrix (in Figure 10), where the model systematically
prefers “metal” over “rock” and “pop” over “disco” (note that this confusion matrix represents the
embeddings of LLARK’s outputs, not the exact text of the outputs themselves; see Section 6 for
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MusicCaps Caption
(MusicCaps Track ID)

LLARK Response

(ID: -pUfYFcsgG4)
This recording contains
environmental sounds
such as birds singing.
Then bells start playing a
melody with a long release
time. This is an amateur
recording. This song may
be playing outside in a
park at a fixed time.

As I listen to the audio clip, I hear a combination of various sounds and
elements. The clip starts with a short section of silence, followed by
a sustained chord that creates a sense of tension and anticipation. This
chord is then followed by a series of quick, staccato notes played on a
piano. The piano notes are played in a fast and rhythmic pattern, adding
a sense of energy and movement to the music.

Throughout the clip, I also hear the sound of a cello playing long,
sustained notes. The cello adds a rich and warm tone to the music,
providing a contrast to the piano’s quick and percussive notes. The
cello’s notes are played with a smooth and legato style, creating a sense
of flow and fluidity.

In addition to the piano and cello, I also hear the presence of a
synthesizer. The synthesizer adds electronic elements to the music,
creating a modern and futuristic sound. The synthesizer’s sounds
are layered and textured, adding depth and complexity to the overall
composition.

The tempo of the music is moderate, with a steady beat that provides a
sense of stability and structure. I can hear a clear rthythm established by
the piano and cello, which is supported by the presence of downbeats.
The downbeats occur at regular intervals, marking the beginning of each
measure and providing a sense of rhythmic stability.

Overall, the audio clip features a combination of piano, cello, and
synthesizer, creating a unique and captivating musical texture. The
tension and anticipation established by the initial chord, combined with
the rhythmic patterns and melodic lines of the piano and cello, make for
an intriguing and engaging listening experience.

(ID: 10zZWDVGWRng)
This track features a
cacophony of burping and
farting sounds which are
used in an instrumental
manner to make up a
Christmas jingle. There’s
a bell in the background
and the sound of sleds and
wings flapping.

As 1 listen to the audio clip, I hear a dynamic and energetic piece
of music. The song is characterized by a fast tempo, with a tempo
of approximately 171.4 beats per minute. The rhythm is driven by a
consistent and strong beat, which gives the song a sense of urgency and
excitement.

The song features a variety of instruments, including drums,
synthesizers, and possibly some percussion elements. The drums provide
a solid foundation, with a driving rhythm that adds to the overall energy
of the song. The synthesizers create melodic lines and add a modern and
electronic feel to the music. The percussion elements, if present, add
additional rhythmic layers and texture to the song.

Throughout the clip, I hear distinct chord progressions. The chords
change at specific times, creating a sense of movement and progression.
The song starts with no chord, then transitions to a D major chord,
followed by an A major chord. This progression creates a sense of
tension and release, adding to the dynamic nature of the song.

The key of the song is A minor, which gives it a dark and melancholic
quality. The minor key adds a sense of depth and emotional intensity to
the music.

Overall, the audio clip showcases a high-energy and rhythmic piece
of music with a strong beat and melodic elements. The combination
of drums, synthesizers, and percussion creates a vibrant and dynamic
sound, while the chord progressions and key contribute to the emotional
depth of the song.

Table 11: Selected captions from MusicCaps, with LLARK responses, illustrating the failure mode

of out-of-domain audio.
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details). In a different form of popularity bias, the tempo predictions of 120BPM for the track in
Table 10 (the true tempo is 139BPM) may also reflect popularity bias, as discussed above, from the
original language model training data.

While the impact of popularity bias can be obvious in some cases (e.g., when tempo predictions
are incorrect), in other cases its impact may be more subtle. While bias toward more commonly-
observed categories and inputs may be expected or even preferred behavior for certain contexts,
in other contexts, particularly for music, this form of bias can have unintended or harmful effects.
We encourage researchers, developers, and users of these models to remain conscious of potential
popularity bias in the outputs of musical models.

Mitigation strategies: Constructing or assembling more diverse training and evaluation datasets
for large-scale music and language models would likely help to mitigate this form of bias, as would
specific algorithmic interventions to encourage effective training on underrepresented or rare inputs
or outputs. Furthermore, popularity bias may also reflect the greedy autoregressive strategy used to
generate the models’ output text; increasing the stochasticity inherent to the generation process or
even guiding this process toward novel and diverse outputs would also likely reduce this bias.

N.5 FAILURE CASE: CHATBOT BIAS

We identify a failure mode which we term “chatbot bias:” this reflects the tendency of the model
to generate generally positive, vague, verbose descriptors which sound authoritative but can be
semantically vacuous in context. Examples of these phrases from LLARK’s outputs include:

* “The combination of these elements, along with the specific chord progression and
downbeat pattern, gives the song its own unique identity within the electronic genre”

* “Throughout the clip, I notice the presence of chords that support the melodic lines. These
chords add a sense of depth and complexity to the music, enhancing the emotional impact
of the piece. The chords change subtly over time, creating a sense of tension and release
that draws the listener in.”

* “The combination of these styles and genres creates a unique and vibrant sound that is both
energetic and catchy”

While it can be difficult to definitively state that these types of vague, flowery descriptions are always
unhelpful or incorrect, this is part of the point of this failure mode: the model generates plausible,
seemingly descriptive or helpful text, which is so vague or generic as to be meaningless outside of a
small set of contexts.

We hypothesize that multiple factors drive this behavior. One likely cause is the RLHF process used
to encourage the pretrained language model to be “helpful” to humans Touvron et al. (2023). It is
likely that this process endows the model with a positive tone that pervades such samples (“gives the
song its own unique identity”, “creating a sense of tension and release that draws the listener in”, “a
unique and vibrant sound that is both energetic and catchy”). In particular, this reflects the emphasis

on being “helpful” often used in RLHF training.

A second likely cause is the instruction-following training data. In particular, we see that the
ChatGPT variants used to generate the instruction-following pairs displays a tendency toward
positive, overly verbose, generic descriptors. As a result, the language model (already predisposed
to such language via its RLHF tuning) is further fine-tuned toward “chatbot biased” language during
LLARK training.

Mitigation strategies: Eliminating this form of bias is challenging. One reason is that such bias
may not be undesirable in all cases — some users and applications may prefer this type of language,
while others might require more precise, technical, and verifiable musical descriptions. However,
we note that multiple steps could reduce this bias. These include: (1) not using RLHF-tuned
models, when desired and when the instruction-following capabilities of such models are considered
less advantageous than eliminating chatbot bias; (2) reducing the occurrence of such language
in the training data, perhaps via better prompting at instruction-generation time; (3) reducing the
occurrence at LLARK’s inference time via prompting.
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