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ABSTRACT

In this work, we study the problem of Offline Imitation Learning (OIL), where an
agent aims to learn from the demonstrations composed of expert behaviors and
sub-optimal behaviors without additional online environment interactions. Pre-
vious studies typically assume that there is high-quality behavioral data mixed
in the auxiliary offline data and seriously degrades when only low-quality data
from an off-policy distribution is available. In this work, we break through the
bottleneck of OIL relying on auxiliary high-quality behavior data and make the
first attempt to demonstrate that low-quality data is also helpful for OIL. Specifi-
cally, we utilize the transition information from offline data to maximize the pol-
icy transition probability towards expert-observed states. This guidance can im-
prove long-term returns on states that are not observed by experts when reward
signals are not available, ultimately enabling imitation learning to benefit from
low-quality data. We instantiate our proposition in a simple but effective algo-
rithm, Behavioral Cloning with Dynamic Programming (BCDP), which involves
executing behavioral cloning on the expert data and dynamic programming on the
unlabeled offline data respectively. In the experiments on benchmark tasks, unlike
most existing offline imitation learning methods that do not utilize low-quality
data sufficiently, our BCDP algorithm can still achieve an average performance
gain of more than 40% even when the offline data is purely random exploration.

1 INTRODUCTION

The recent success of offline Reinforcement Learning (RL) in various fields demonstrate the signif-
icant potential of addressing sequential decision-making problem in a data-driven manner (Levine
et al., 2020). Offline RL enables the learning of policies from logged experience, reducing the re-
liance on online interactions and making RL more practical, especially when online data collection
may be expensive or risk-sensitive (Sinha et al., 2021; Qin et al., 2022; Fang et al., 2022). How-
ever, in many real-world applications, offline RL encounters two major challenges: quantity-quality
dilemma on logged data and tricky design of reward function. In offline RL tasks, high-quality ex-
pert data is often expensive and difficult to obtain, and it is usually difficult to demand both quantity
and quality from offline data (Levine et al., 2020; Liu et al., 2021). Moreover, the reward function,
which determines the desired behavior of the agent, usually needs to be custom-designed for each
task. This requires sufficient prior knowledge and can be challenging in fields such as robotics (Bobu
et al., 2022), autonomous driving (Knox et al., 2023), and healthcare (Yu et al., 2023). One popular
paradigm for breaking these practical barriers is Offline Imitation Learning, which trains an agent
using limited expert demonstrations and reward-free logged data from arbitrary polices.

Recent offline imitation learning (IL) methods have achieved promising success that benefits from
unlabeled offline data of uncertain quality. For example, DemoDICE (Kim et al., 2022) extends
adversarial imitation learning by executing state-action distribution matching on offline data as a
regularization term. DWBC (Xu et al., 2022a) regards the offline data as a mixture of expert data and
suboptimal data and employs positive-unlabeled learning to build a discriminator that can identify
these expert-similar behaviors from offline data. OTIL (Luo et al., 2023) utilizes optimal transport
to discover an alignment that has the least Wasserstein distance between unlabelled trajectories and
expert demonstrations. This similarity measure is then used to provide reward annotation and off-
the-shelf offline RL algorithms are applied to learn the agent.
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Figure 1: The performance of offline imitation
learning degrades significantly as the number of
expert trajectories in the unlabeled data decreases.
The experimental details are provided in the C.2.

All of the above positive results, however, are
based on a basic assumption that there is some
high-quality behavioral data mixed in the aux-
iliary offline data that is similar to expert trajec-
tories. Such an assumption may differ from the
real situation because the offline data may come
from any off-policy distribution, which can
be targeted towards different goals, suboptimal
policies, or even random exploration (Levine
et al., 2020). Unfortunately, existing offline im-
itation learning struggles with these low-quality
auxiliary data (Li et al., 2023b). In other words,
offline imitation learning cannot benefit from
them and may even underperform a baseline
that does not use auxiliary data, as illustrated
in Figure 1. Such phenomena undoubtedly
go against the expectation of offline imitation
learning and limit its effectiveness in a large number of practical tasks. This naturally leads to the
following question:

Could Offline Imitation Learning benefit from auxiliary low-quality behavior data?

In this work, we demonstrate that this is actually achievable, breaking through the previous assump-
tions about the behavior quality of offline policy. Unlike the existing offline imitation learning, we
do not search for behaviors in the offline data that are similar to the expert data, which is futile when
dealing with low-quality behaviors. Instead, we utilize the transition information in the offline data
to guide the policy toward expert-observed states. This guidance can improve long-term returns
on states that are not observed by experts when reward signals are also not available, ultimately
enabling imitation learning to benefit from low-quality behavior data. We instantiate our proposi-
tion in a simple but effective algorithm, Behavioral Cloning with Dynamic Programming (BCDP),
which involves executing behavioral cloning on the expert data and dynamic programming on the
unlabeled offline data separately. On the one hand, imitation of expert data can obtain behavioral
rewards on the expert-observed states; on the other hand, dynamic programming on offline data in-
creases the likelihood of transitioning to expert-observed states and improves the agent’s ability in
expert-unobserved states. In the experiments on D4RL benchmark tasks, unlike most existing offline
imitation learning methods that do not utilize low-quality data sufficiently, our BCDP algorithm can
still achieve an average performance gain of more than 40% even when the offline data is purely
random exploration.

2 BRIEF INTRODUCTION TO OFFLINE IMITATION LEARNING

This section provides a brief review of offline imitation learning, including the problem formulation
and the two main branches of solutions: behavioral cloning and inverse reinforcement learning.

2.1 BACKGROUND AND FORMULATION

In this work, we consider the infinite Markov Decision Process (MDP) setting (Sutton et al., 1998),
denoted asM = {S,A, T, r, d0, γ}. Here, S is the state space,A is the action space, T : S×A → S
is the transition probability ofM, r : S × A → [0, 1] is the reward function, d0 : S → ∆(S) is the
initial state distribution and γ ∈ (0, 1) is the discount factor. The decision-making process occurs
sequentially. At time t, the agent observes a state st ∈ S and takes an action at, following the
conditional probability π(at|st). The agent then receives a reward r(st, at) from the environment,
and a new state st+1 appears based on the transition probability T (st+1|st, at) ofM. The goal of
sequential decision-making is to maximize the expected cumulative reward:

J(π) = Es0∼d0,st+1∼T (·|st,π(st))

[ ∞∑
t=0

γtr(st, π(st))

]
. (1)
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In the offline imitation learning setting, there are limited expert demonstrations with NE trajectories:

DE = {(s0, a0, s1, a1, . . . , sh, ah)|s0 ∼ d0, at ∼ πE(·|st), st+1 ∼ T (·|st, at),∀t ∈ [h]}
where h is the length of each trajectory following the expert policy. There are also some logged
experiences collected by the arbitrary behavior policies π which is much cheaper to obtain:

DO = {(s0, a0, s1, a1, . . . , sh, ah)|s0 ∼ d0, at ∼ π(·|st), st+1 ∼ T (·|st, at),∀t ∈ [h]}.
In the literature (Levine et al., 2020), the offline policy π can come from various task objectives,
suboptimal policies, or even random exploration, which are different from the expert policy and
thus challenging to utilize in the imitation learning.

2.2 BEHAVIORAL CLONING

Behavior Cloning is a classical imitation learning method which optimizes the policy via supervised
learning (Pomerleau, 1988). Recent studies provide a generalized objective:

max
π

1

|DE |
∑

(s,a)∈DE

log π(a|s) + α
1

|DO|
∑

(s,a)∈DO

log π(a|s) · f(s, a). (2)

where f : S×A → [0, 1] and α balances the utilization of offline data. The behavioral cloning max-
imizes the log-likelihood on the empirical observations. Recently, DemoDICE (Kim et al., 2022)
takes the α regularization to provide proper policy regularization. DWBC (Xu et al., 2022a), set the
f(s, a) =

dπ
E(s,a)

dπ
O(s,a) and then implement an importance sampling via an distribution discriminator. As

a result, the expert-similar behavior will be filtered. ORIL (Zolna et al., 2020) trains a critic network
Q to evaluate actions (s, a) and sets f(s, a) = I[Q(s, a) > Q(s, π(s))] to eliminate actions that are
considered inferior to the current policy π. Sasaki & Yamashina (2021) use the old policy π′ during
the learning process to weight f(s, a) = π′(a|s), thus eliminates the noisy demonstrations in the
offline data. A delicate f can help identify expert trajectories in the offline data and enhance the
imitation towards the expert policy πE . However, when the offline data does not contain expert tra-
jectories but only sub-optimal data or purely random explorations, behavioral cloning cannot benefit
from these data and may even perform worse compared to the counterpart that only uses expert data.

2.3 INVERSE REINFORCEMENT LEARNING

Inverse Reinforcement Learning is another popular branch to implement reinforcement learning
without reward supervision (Ng & Russell, 2000). It involves iteratively learning a reward function
and policy (Ziebart et al., 2008; Arora & Doshi, 2021). However, this requires a potentially large
number of online interactions during training, which can result in poor sample efficiency. Recently,
offline inverse reinforcement learning has been proposed to eliminate the online interactions and
learn from the offline demonstrations (Jarboui & Perchet, 2021; Luo et al., 2023). Cameron (Jarboui
& Perchet, 2021) built a discriminator between expert demonstrations and offline demonstrations
to serve as the reward function r̂, which takes a similar underlying idea like discriminator-based
imitation learning, that is, the state-action pairs (s, a) which resemble expert data receive higher
rewards. Luo et al. (2023) uses optimal transport to find an alignment with the minimal wasserstein
distance between unlabeled trajectories and expert demonstrations. The similarity measure between
a state-action pair in unlabeled trajectory and that of an expert trajectory is then treated as a reward
label. Given the reward function, they further take a specific RL algorithm to learn a policy:

max
π

JRL(π|DE ∪DO, r̂), r̂(s, a) = similarity((s, a), DE). (3)

When the offline data does not contain expert trajectories, the similarity evaluation becomes chal-
lenging in recovering the true reward. In some cases, it may even result in a zero reward, reducing
it to a simple method known as unlabeled data sharing (UDS). UDS (Yu et al., 2022) simply applies
zero rewards to unlabeled data and finds that it leads to effective utilization in offline reinforcement
learning, even when the unlabeled data is incorrectly labeled. In this paper, we assign a zero reward
for unlabeled data, similar to UDS. Unlike UDS which provides an explanation based on reward
bias, we offer a new theoretical view for the effectiveness of offline imitation learning. In terms of
practical method design, we made a modification on the top of offline RL method to adapt to the
offline imitation learning, which led to a significant performance improvement in the experiments.
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Expert data + offline data Main idea

How to achieve an expert-observed state       ?

Expert Demonstration Offline logged data Learned action on expert-unobserved stateGoal

Figure 2: An illustration of our main idea: we make use of transition information in the offline data
to guide the agent from expert-unobserved states to expert-observed states, ultimately ensuring a
long-term return (reaching the target diamond).

3 THE PROPOSED METHOD

In the offline imitation learning setting, the reward labels for the offline data are unknown, leading
to uncertain behavior quality. The agent can only rely on expert data to imitate the expert policy
and maximize cumulative rewards. Fortunately, the transition information in the offline data is
also reliable with the nature of sequential decision-making. We can leverage this information to
guide policy optimization on expert-unobserved states. Figure 2 illustrates our main idea using the
navigation as an example. Given limited expert demonstrations, the agent is confused when staying
on a state ( ) has not been observed in the expert data. Nevertheless, we can guide the agent to
the expert-observed states ( ) and then ensure that it reaches the goal ( ) via imitating expert
behavior on the observed states. Based on this idea, we further present a solution which maximize
the transition probability towards expert-observed states and the corresponding analysis.

3.1 LONG-TERM RETURN ON EXPERT-UNOBSERVED STATES

Following our main idea, we first formally present it with the standard MDP. The goal of sequential
decision-making is to maximize a long-term cumulative return. Given a policy π, the value function
on state s at time µ could be formulated as:

V π(s) =
∑
a∈A

π(a|s) ·

 r(s, a)︸ ︷︷ ︸
one-step reward

+γ
∑
s′∈S

V π(s′)T (s′|s, a)︸ ︷︷ ︸
long-term return

 (4)

Although the one-step reward r(s, a) is uncertain in the context of offline imitation learning, the
long-term return on the following states s′ can be guaranteed if s′ belongs to expert data DE , when
we follow the behavioral cloning on the expert-observed states, there is a lower bound (Rajaraman
et al., 2020; Xu et al., 2022b):

Lemma 1 (Lower Bound on Expert-Observed States). For deterministic expert policy and behav-
ioral cloning policy πE , π ∈ Πdet For any expert-observed state s ∈ DE , the policy π following
behavioral cloning has a lower bound:

V π(s) ≥ V πE

(s)− 1

d0(s)(1− γ)2
4|S|
9NE

(5)

At an expert-unobserved state s /∈ DE , if we find an action a that could lead the agent to an expert-
observed state, i.e., ∃(s, a, s′) ∈ DO, s′ ∈ DE , then we could ensure the long-term return of the
action a via the above lower bound. A formal proposition to maximize the distribution of expert-
observed states could be provided as:
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Proposition 1 (Expert-State Distribution Maximization). Given expert dataset DE and offline
dataset DO, the policy could imitate the expert behavior on the expert-observed states s ∈ DE

and take the transition information in offline data to maximize the policy-dependent transition prob-
ability towards expert-observed states on the expert-unobserved states.

π(s) =

{
πE(s), s ∈ DE

argmaxπ′
∑∞

t=1 γ
tPr(st = s′|π, s0 = s) · I[s′ ∈ DE ], s /∈ DE

(6)

Supposing the reward of expert behavior πE(s) is as least RE , i.e., r(s, πE(s)) ≥ RE ,∀s ∼ dπ
E

,
this proposition could maximize a lower bound of policy π as:

J(π) ≥
∞∑
t=0

γt
∑

s∈DE

Pr(st = s|π) ·RE =
1

1− γ

∑
s∈DE

dπ(s) ·RE (7)

The above proposition proposes to maximize the exception of keeping the agent at expert-observed
states in order to achieve an improvement in the lower bound of long-term returns. In this propo-
sition, we assume that the behavior quality of expert policy is guaranteed, which is common in se-
quential decision-making. For examples, navigation experts are often able to clearly identify goals
and provide the most efficient route to reach them. Similarly, in autonomous driving, experts are
skilled human drivers who can ensure the safe operation of the vehicle. The equation 7 offers a
straightforward and easy-to-understand lower bound. Based on the above lower bound, maximiz-
ing the expert-state distribution

∑
s∈DE dπ(s), i.e., lead the agent to the expert-visited states, could

improve the lower bound of cumulative return J(π). The form of our analysis is different from the
previous imitation learning work (Rajaraman et al., 2020; Xu et al., 2022b;c). Most of them focus
on minimizing the imitation gap |J(π)−J(πE)|, which means imitating expert strategies as closely
as possible, including making dπ as close to dπ

E

as possible. In contrast, we choose to maximize∑
s∈DE dπ(s) when the quality of expert behavior is guaranteed. The difference here is that our

actions may not be consistent with those of the expert for unobserved states. However, please note
that there is no direction for imitating experts on these expert-unobserved states, if only empirical
observations are given. In contrast, we provide a guarantee of long-term returns via maximizing the
expert-state distribution , and thus improve the lower bound.

3.2 PRACTICAL IMPLEMENTATION

To implement the proposition, we combine the dynamic programming with behavioral cloning to
boost the long-term return on expert-unobserved states while imitating the expert behavior on the
expert-observed states. Specifically, we choose the TD3 (Fujimoto et al., 2018) as the dynamic
programming algorithm. TD3 builds network to estimate the Q-function of state-action pair:

argmin
Q

∑
(s,a,s′)∼DO∪DE

∥BπγQ(s, a)−Q(s, a)∥2,

BπγQ(s, a) = r(s, a) + γ
∑
a′∈A

π(a′|s′)Q(s′, a′)
(8)

where Bπ is the Bellman operator and r(s, a) = I[(s, a) ∈ DE ] with the indicator function I[·].
Then the policy π is optimized via a objective:

max
π

∑
(s,a)∼DE

[log π(a|s)] + α
∑

s∼DO∪DE

Q(s, π(s)) (9)

The Equation 9 contains behavioral cloning and Q-learning to form our proposal, which involves
imitating expert behavior on expert-observed states and ensuring long-term rewards through dy-
namic programming on expert-unobserved states. The overall implementation is summarized in the
algorithm 1.

Our implementation makes a minimal derivation on the top of TD3+BC, a simple but effective offline
reinforcement learning method (Fujimoto & Gu, 2021). The difference is that they do behavioral

5



Under review as a conference paper at ICLR 2024

Algorithm 1 Behavioral Cloning with Dynamic Programming (BCDP)
Require: Expert data DE , offline data DO, Initialize critic network Qθ1 , Qθ2 and actor network πϕ

with random parameters θ1, θ2, ϕ. Initialize delayed networks θ′1 ← θ1, θ
′
2 ← θ2, ϕ

′ ← ϕ.
for t = 1 to T do

Sample mini-batches bE and bO of transitions (s, a, s′) from datasets DE , DO respectively.
bU ← bE ∪ bO

y ← mini=1,2 B
πϕ′
γ Qθ′

i
(s, a) ▷ Obtain the minimum estimation y from delayed networks.

θi ← 1/|bU |
∑

(s,a)∈bU ∇θi(y −Qθi(s, a))
2 ▷ Update Q-network via y.

GBC ← 1/|bE |
∑

(s,a)∈bE ∇ϕ − log π(a|s) ▷ Calculate gradient with behavioral cloning.
if t mod tfreq then
GQ ← 1/|bU |

∑
s∈bU ∇ϕ −Q(s, π(s)) ▷ Calcualte policy gradient with Q function

θ′1 ← τθ1 + (1− τ)θ
′

i ▷ Update the delayed networks.
θ′2 ← τθ2 + (1− τ)θ

′

i
ϕ′ ← τϕ+ (1− τ)ϕ′

end if
ϕ← ϕ− η(GBC + αGQ) ▷ Update actor network with learning rate η.

end for

cloning on the entire offline data, while we do behavioral cloning on expert data. This difference
actually indicates two completely different purposes. That is, TD3+BC’s behavioral cloning is for
conservatism, to keep the learned policy close to the offline policy and eliminate the estimation bias
of Q-learning, while we hope to supplement dynamic programming on unseen states with behavioral
cloning on expert data. In the offline imitation learning, applying behavior regularization on the
unlabeled data without quality assurance may be unsafe and lead to fitting low-quality behaviors,
thus harming the performance. In this paper, we have not added any additional regularization terms
to maintain conservatism as traditional offline RL methods (Kumar et al., 2020; Fujimoto & Gu,
2021; Kostrikov et al., 2022), but have instead kept our approach simplified. We mainly focus on
boosting the performance on non-visited states of expert data to improve offline imitation learning,
and leave the development of these offline technologies to future work.

3.3 CONNECTION WITH THE RELATED WORK

Our study is motivated by the recent empirical success in offline IL. We find that most of them
consider the integration of expert data into sub-optimal data or introduce noise into expert data
to construct an offline dataset (Sasaki & Yamashina, 2021; Kim et al., 2022; Xu et al., 2022a; Li
et al., 2023a), and then identify expert-similar data to improve IL. We argue that this assumption
may not hold in real applications, and it also differs significantly from the existing offline RL lit-
erature (Levine et al., 2020). In this paper, we focus on the utilization of pure sub-optimal data
replay (even random exploration), which is more in line with the objective of offline RL: improving
performance using suboptimal data. For offline IL, we overcome the obstacle of not having learning
guidance in expert-unobserved states, ensuring the cumulative return of the policy. In the field of
online IL, SQIL (Reddy et al., 2020) also considers guiding the agent to expert-observed states to
improve online sampling efficiency. BC-SAC (Lu et al., 2022) combines imitation and RL to im-
prove the safety and reliability of autonomous driving. Unlike them, we demonstrate that BCDP
can benefit from low-quality offline data. Utilizing low-quality data in offline imitation learning as
a supplement to limited expert data is crucial, while in online imitation learning, agents can actively
explore the environment and rarely collect a lot of low-quality data. Additionally, BCDP improves
the lower bound of cumulative return and provides a promising way for offline imitation learning.

4 EMPIRICAL STUDY

The main objectives of our empirical study are to answer three questions: (1) How does BCDP
perform relative to other offline IL methods? (2) How does the performance of BCDP agents vary
as a function of the size of the expert and offline datasets, especially when the expert data is extremly
scarce? (3) How do the BCDP agents exactly perform on the expert-unobserved states?
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We conduct the experiments on the D4RL benchmark (Fu et al., 2020), includes a series tasks of
navigation, locomotion and manupulation. We respond to the above questions in Section 4.1, 4.2
and 4.3, respectively. For all settings, we obtain undiscounted average returns of the policy at the
last 10 evaluations of training. The average and deviation under three different seeds are reported.

4.1 MAIN EVALUATION (Q1)

We evaluate BCDP on a wide range of domains in the D4RL benchmark (Fu et al., 2020).

Navigation. We conduct the experiments on the Maze2D environments to evaluate the policy. The
Maze2D domain requires an agent to navigate in the maze to reach a fixed target goal and stay
there. The D4RL benchmark provides three maze layouts (i.e., umaze, medium, and large) and two
rewards types (i.e., sparse and dense reward singals) in this domain. We employs 5 expert trajectories
as the expert data which follows a path planner Fu et al. (2020). We consider two types of offline
data: randomly walking (umaze-random, medium-random, etc.) and logged experience with random
goals (umaze-v1, medium-v1, etc.). The former considers the ability of offline imitation learning
methods to use low-quality policy data, while the latter considers the ability to use related task data.

Locomotion. We conduct the experiments on the Gym-MuJoCo environments to evaluate the policy.
It consists four different environments (i.e., hopper, walker2d, halfcheetah and ant). We employs
5 expert trajectories from the “-expert” dataset as the expert data. We also consider two types
of offline data: random policy (hopper-random-v2, halfcheetah-random-v2, etc.) and sub-optimal
policy (hopper-medium-v2, halfcheetah-medium-v2, etc.). The former contains logged experiences
from a random policy, while the latter comes from an early-stopped SAC policy.

Manupulation. We conduct the experiments on the Adroit environments to evaluate the policy.
Adroit (Rajeswaran et al., 2018) involves controlling a 24-DoF simulated Shadow Hand robot tasked
with hammering a nail, opening a door, twirling a pen, or picking up and moving a ball. It measures
the effect of a narrow expert data distributions and human demonstrations on a high-dimensional
robotic manipulation task. We employs 50 expert trajectories from the “-expert-v1” dataset as the
expert data. Two types of offline data are considered: human demonstrations (pen-human-v1, door-
human-v1, etc.) and sub-optimal policy (pen-cloned-v1, door-cloned-v1, etc.). The former contains
logged experiences from real humen, while the latter comes from an imitation policy.

Competing Baselines. We compare BCDP with the well-validated baselines and state-of-the-art
offline imitation learning methods, includes: BC-exp and BC-all perform behavior cloning on expert
data and union data, respectively. DemoDICE (Kim et al., 2022) and DWBC (Xu et al., 2022a) are
two state-of-the-art methods based on the generalized behavioral cloning. OTIL (Luo et al., 2023)
is a recently proposed offline inverse reinforcement learning method. UDS (Yu et al., 2022) labels
all rewards from the unlabeled datasets with 0 and utilizes offline reinforcement learning algorithms
to train the agent on the merged dataset. We have selected TD3+BC as our most similar offline RL
algorithm, which allows it to be considered as an ablation study of our approach.

Experimental Results. We evaluate BCDP in fourteen D4RL benchmark domains with 28 settings.
As shown in the Table 1, BCDP significantly outperforms baselines and achieves the best perfor-
mance on 17 of 28 continuous control tasks. From the results, we have the following observations
and analyses: The BC-exp baseline indicates the diffculty of imitating learning when the expert data
is limited. The BC-all method uses all of the offline data for behavior cloning, without considering
the possibility that some of the unlabelled data in the offline IL setting may come from low-quality
policies that are not suitable for direct use in behavior cloning, leading to weaker performance
compared to BC-exp in most cases. DemoDICE achieved good performance in offline data with
high-quality behavior, such as locomotion tasks with medium settings. However, its performance
is weak when the behavior quality is low, revealing that using the entire offline data as regulariza-
tion for imitation learning makes it difficult to leverage the low-quality behavior data. DWBC uses
positive-unlabeled learning to identify samples similar to expert behavior, which can help improve
the performance of behavior cloning in situations where the data quality is low. It performs well
in different settings. OTIL and UDS adopt the perspective of inverse reinforcement learning, which
involves labeling offline data before conducting offline RL. We can observe that OTIL and UDS per-
form unsatisfactorily when the quality of offline data is low. One plausible reason is that, in offline
RL, algorithms typically constrain the policy to be close to the offline distribution to avoid the risk
of OOD exploration. However, in offline imitation learning, when the quality of the behavior data is
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Table 1: The results on D4RL benchmark. All values are normalized to lie between 0 and 100,
where 0 corresponds to a random policy and 100 corresponds to an expert policy (Fu et al., 2020).
The best result in each setting is in bold and the second-best result is underlined.

Dataset BC-exp BC-all DemoDICE DWBC OTIL UDS BCDP

N
av

ig
at

io
n

sparse-umaze-random 88.9 ± 42.0 9.53 ± 14.5 81.0 ± 17.1 125. ± 19.1 33.6 ± 22.8 -2.1 ± 11.5 126. ± 19.9
sparse-medium-random 38.3 ± 18.1 -2.8 ± 3.61 27.5 ± 8.58 26.1 ± 1.48 22.2 ± 14.5 19.5 ± 8.41 82.3 ± 28.3

sparse-large-random 1.45 ± 6.63 5.92 ± 14.6 7.89 ± 7.76 13.1 ± 14.0 1.88 ± 3.19 47.8 ± 46.7 138. ± 19.0
dense-umaze-random 61.7 ± 30.8 0.77 ± 14.0 66.9 ± 12.5 85.9 ± 5.34 7.27 ± 18.9 -10. ± 8.01 89.2 ± 20.5

dense-medium-random 37.6 ± 19.2 -7.7 ± 4.08 27.0 ± 9.98 25.8 ± 5.78 16.9 ± 12.0 16.3 ± 15.9 72.4 ± 27.2
dense-large-random 41.3 ± 53.2 6.92 ± 14.0 18.6 ± 9.00 16.8 ± 9.78 11.7 ± 11.2 39.9 ± 34.0 122. ± 15.3

sparse-umaze-v1 88.9 ± 42.0 47.1 ± 13.0 15.7 ± 1.66 128. ± 14.5 35.8 ± 7.35 91.1 ± 22.9 132. ± 22.0
sparse-medium-v1 38.3 ± 18.1 5.55 ± 7.89 24.4 ± 7.63 80.4 ± 16.4 88.5 ± 30.5 97.0 ± 20.0 137. ± 11.4

sparse-large-v1 1.45 ± 6.63 23.7 ± 21.4 60.7 ± 30.6 161. ± 43.7 50.6 ± 41.5 134. ± 26.0 124. ± 22.0
dense-umaze-v1 61.7 ± 30.8 31.8 ± 10.5 19.3 ± 2.95 95.7 ± 12.6 31.7 ± 7.36 75.4 ± 23.3 96.0 ± 16.1

dense-medium-v1 37.6 ± 19.2 31.0 ± 3.81 34.7 ± 7.26 98.9 ± 33.4 65.6 ± 3.96 88.8 ± 20.9 93.2 ± 23.5
dense-large-v1 41.3 ± 53.2 37.9 ± 20.7 68.6 ± 4.95 164. ± 50.8 84.4 ± 26.2 128. ± 18.7 110. ± 28.1

L
oc

om
ot

io
n

hopper-random-v2 52.1 ± 6.76 2.31 ± 0.41 15.8 ± 3.62 63.2 ± 8.77 21.6 ± 3.23 1.15 ± 0.46 73.2 ± 9.66
halfcheetah-random-v2 15.3 ± 7.36 2.25 ± 0.00 2.20 ± 0.01 13.3 ± 4.65 2.25 ± 0.00 4.62 ± 1.15 18.8 ± 6.11
walker2d-random-v2 105. ± 3.53 2.06 ± 2.34 30.4 ± 5.22 104. ± 6.03 7.43 ± 0.23 -.11 ± 0.00 105. ± 2.08

ant-random-v2 41.0 ± 7.17 52.4 ± 8.41 55.5 ± 13.4 51.3 ± 6.88 31.2 ± 0.09 30.4 ± 2.99 54.1 ± 9.01
hopper-medium-v2 52.1 ± 6.76 56.4 ± 1.86 52.5 ± 1.19 74.5 ± 11.2 62.5 ± 25.9 66.0 ± 0.49 98.7 ± 5.81

halfcheetah-medium-v2 15.3 ± 7.36 42.8 ± 0.41 40.6 ± 1.50 16.2 ± 5.52 34.7 ± 1.82 57.1 ± 6.91 18.4 ± 10.9
walker2d-medium-v2 105. ± 3.53 86.8 ± 5.28 75.1 ± 1.61 77.8 ± 14.3 79.6 ± 1.70 8.52 ± 4.99 98.0 ± 1.94

ant-medium-v2 41.0 ± 7.17 98.7 ± 3.68 90.0 ± 3.18 41.9 ± 10.7 96.4 ± 2.32 18.4 ± 10.5 59.7 ± 16.2

M
an

up
ul

at
io

n

pen-human-v1 68.6 ± 35.0 51.9 ± 16.0 106. ± 22.3 50.5 ± 10.3 97.3 ± 25.7 8.56 ± 15.4 91.1 ± 20.8
door-human-v1 5.25 ± 7.90 9.30 ± 8.58 9.30 ± 8.58 1.04 ± 1.36 99.7 ± 2.78 -.33 ± 0.01 4.16 ± 5.40

hammer-human-v1 101. ± 17.7 8.00 ± 5.89 28.5 ± 21.3 83.3 ± 14.0 66.0 ± 16.8 3.07 ± 0.06 109. ± 16.0
relocate-human-v1 59.8 ± 32.9 10.5 ± 5.23 1.31 ± 2.07 47.4 ± 12.8 41.7 ± 4.69 -.34 ± 0.06 41.1 ± 15.4

pen-cloned-v1 68.6 ± 35.0 5.89 ± 8.01 33.1 ± 10.9 75.6 ± 27.2 58.7 ± 27.5 4.32 ± 8.03 103. ± 13.3
door-cloned-v1 5.25 ± 7.90 0.02 ± 0.04 0.07 ± 0.09 0.36 ± 0.33 0.29 ± 0.38 -.33 ± 0.01 9.96 ± 8.94

hammer-cloned-v1 101. ± 17.7 0.28 ± 0.00 0.24 ± 0.01 98.6 ± 8.40 1.50 ± 0.86 0.38 ± 0.07 106. ± 21.3
relocate-cloned-v1 59.8 ± 32.9 10.5 ± 5.23 -0.1 ± 0.09 56.2 ± 23.7 -0.1 ± 0.04 -.32 ± 0.03 34.7 ± 8.96

low, this may constrain the agent to low-quality policies and result in poor performance. Note that
UDS, like our proposal, assigns a zero reward to offline data, which actually is an ablation case of
our method. We found that our method, BCDP, has demonstrated significant performance improve-
ment in the experiments. This is due to the fact that we treat the dynamic programming on offline
data as an aid for behavior cloning on expert data, thereby avoiding excessive conservatism in offline
RL. Moreover, BCDP ensures the performance of expert-observed states through behavior cloning
on expert data while also providing guidance for dynamic programming on unlabeled data. Even
though the offline data comes from pure random exploration, unlike existing methods that often fall
short of the BC-exp baseline, BCDP achieves an average improvement of 43.6 (normalized score).

4.2 ALBATION STUDY FOR DATA-CENTRIC PROPERTIES (Q2)

To enable a systematic understanding of the BCDP, we vary the scale of expert data to examine
the performance of BCDP. In the Figure 3, we present the comparison of BCDP with recent offline
imitation learning methods, i.e., DemoDICE, OTIL and DWBC, for expert budgets ranging from
1 to 5 trajectories (from 10 to 50 trajectories in the Adroit settings). In the navigation task, there
is always a transition path from any expert-unobserved states to expert-observed states, and our
method is significantly better than existing offline imitation learning methods. In tasks such as
locomotion and manipulation, the agent may fail to transfer to the expert-observed states, such as
getting stuck in some difficult-to-recover states. Our method is also competitive in these tasks,
showing the practical effectiveness of improving the lower bound of long-term return. In particular,
when expert data is very scarce, BCDP can still make significant performance improvements by
using dynamic programming to benefit from unlabeled data.

4.3 CONCERNS ON EXPERT-UNOBSERVED STATES (Q3)

To delve deeper into how BCDP improves imitating learning, we provide a detailed analysis on nav-
igation tasks: maze2d-medium-dense and maze2d-large-dense, where obtaining long-term returns is
crucial. Specifically, we sampled 1000 trajectories in medium environments and 500 trajectories in
large environments based on the learned agents, and estimated the distance deduction and long-term
return of their behaviors in different states, as shown in the Figure 4. We aim to quantitatively ana-
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Figure 3: Comparision under varying number of expert trajectories.

(a) Distance Reduction Gain (b) Long-Term Return

Figure 4: Quantitative analysis of behavior in expert-unobserved states.

lyze whether BCDP has gained the ability to transfer to expert states in OOD states, and therefore
define the following 1-NN-based measure to assess the improvement.
Definition (Distance Reduction Gain). Given a expert dataset DE and a policy π, the excepted
distance reduction on state s:

E[DRG(s)] = min
s1∈DE

∥s− s1∥2 −
∑
s′

T (s′|s, a)π(a|s) · min
s2∈DE

∥s′ − s2∥2. (10)

If the expected reduction on state DRG(s) is greater than 0, it means that the next state s′ is closer
to the expert-observed states relative to the current state s, corresponding to our proposal. In the
Figure 4(a), we report the expected DRG for the different states s with their distances from the
expert data DE . The OOD distance (x-axis) for state s is calcualted as: mins1∈DE∥s − s1∥2. We
could find that the BCDP actually has a positive excepted DRG and tend to the expert-observed
states. Their long-term return on the different states is also reported in the Figure 4(b). The results
implicate that BCDP actually executes a conservate action to the expert-observed states and thus
achieve more long-term return, especially on the states which is far from the expert data.

5 CONCLUSION

In this paper we tackle an important problem of offline imitation learning, that is, struggling with
the low-quality auxiliary data from off-policy distribution. We show that the transition information
in the offline data can be used to establish optimization objectives in expert-unobserved states and
propose a simple but effective algorithm, BCDP (Behavioral Cloning with Dynamic Programming).
Experiments demonstrate that BCDP can efficiently leverage low-quality behavior data and achieve
state-of-the-art performance on the D4RL benchmark with 14 tasks. BCDP has made a step to
break the behavior quality assumption of auxiliary data and extends the ability of offline imitation
learning. One potential future direction is to extend BCDP with the model-based method, improving
the efficiency of utilizing offline transition information. General theoretical formalization with the
existing imitation gap in offline imitation learning is also an interesting future direction.
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A PROOF OF LEMMA 1

Lemma A.1 (Lower Bound on Expert-Observed States). For deterministic expert policy and behav-
ioral cloning policy πE , π ∈ Πdet For any expert-observed state s ∈ DE , the policy π following
behavioral cloning has a lower bound:

V π(s) ≥ V πE

(s)− 1

d0(s)(1− γ)2
4|S|
9NE

(11)

Proof A.1. Following the Theorem 1 in the (Xu et al., 2022b),we first define the state-action distri-
bution dπs (·, ·) of policy π as: dπs (s̃, ã) :=

∑∞
t=0 Pr(st = s̃, at = ã|s0 = 0, π).

V πE

(s)− V π(s)

=
1

1− γ
Es̃,ã∼dπE

s (·,·)r(s̃, ã)−
1

1− γ
Es̃,ã∼dπ

s (·,·)r(s̃, ã)

≤ 1

1− γ

∑
(s,a)∈S×A

|dπ
E

s (s, a)− dπs (s, a)| · 1

=
1

1− γ

∑
(s,a)∈S×A

|(πE(a|s)− π(a|s))dπ
E

s (s) + (dπ
E

s (s)− dπs (s))π(a|s)|

≤ 1

1− γ

 ∑
(s,a)∈S×A

|(πE(a|s)− π(a|s))dπ
E

s (s) +
∑
s∈S
|dπ

E

s (s)− dπs (s)|



(12)

Following the Lemma 5 of (Xu et al., 2022b), the differernce on state distribution could be bounded
by the poicy difference:

∑
s∈S |dπ

E

s (s) − dπs (s)| ≤
γ

1−γEs∼dπE
s

∑
a |πE(a|s) − π(a|s)|. For the

12
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deterministic policies π and πE ,
∑

a |πE(a|s) − π(a|s)| = I[s ̸= DE ]. Then we have a policy-
difference-based upper bound:

V πE

(s)− V π(s)

≤ 1

(1− γ)2
Es∼dπE

s

∑
a

|πE(a|s)− π(a|s)|

=
1

(1− γ)2

∑
s̃

dπ
E

s (s̃) · Pr(s̃ /∈ DE)

=
1

(1− γ)2

∑
s̃

dπ
E

s (s̃) · (1− dπ
E

(s̃))|NE |

=
1

(1− γ)2

∑
s̃

dπ
E

s (s̃)

dπE (s̃)
dπ

E

(s̃) · (1− dπ
E

(s̃))|NE |

≤ 1

(1− γ)2

∑
s̃

dπ
E

s (s̃)∑
ŝ d0(ŝ)d

πE

ŝ (s̃)
dπ

E

(s̃) · (1− dπ
E

(s̃))|NE |

≤ 1

(1− γ)2

∑
s̃

dπ
E

s (s̃)

d0(s)dπ
E

s (s̃)
dπ

E

(s̃) · (1− dπ
E

(s̃))|NE |

≤ 1

(1− γ)2

∑
s̃

dπ
E

s (s̃)

d0(s)dπ
E

s (s̃)
dπ

E

(s̃) · (1− dπ
E

(s̃))|NE |

=
1

(1− γ)2
1

d0(s)

∑
s̃

dπ
E

(s̃) · (1− dπ
E

(s̃))|NE |

≤ 1

d0(s)(1− γ)2
4|S|
9NE

(13)

The least inequality comes from (Ross & Bagnell, 2010). The lower bound of the value function
V π(s) could be concluded.

B DISCUSSION WITH MODEL-BASED METHODS

In this paper, our main focus is on model-free methods in the imitation learning community. How-
ever, there are also some model-based methods. One such method is MobILE Kidambi et al. (2021),
which addresses online imitation learning when expert actions are not available. It achieves this by
integrating the idea of optimism in the face of uncertainty into the distribution matching framework.
In offline imitation learning, MILE Hu et al. (2022) leverages 3D geometry from high-resolution
videos of expert demonstrations and then plans entirely predicted in imagination to execute com-
plex driving maneuvers. DMIL Zhang et al. (2022) introduces a discriminator to simultaneously
distinguish the dynamics correctness and suboptimality of model rollout data against real expert
demonstrations. MILO Chang et al. (2021) presents a model-based method to build a dynamic
model ensemble on offline data and then solve a min-max imitation objective on the trajectories
sampled by the dynamics model.

These model-based methods utilize the transition information to augment the trajectories for imita-
tion learning. This is completely different from our goal. (1) On the one hand, since the data does
not have reward labels, the trajectories sampled by model-based methods are still unlabeled. We
still need to consider how to utilize these low-quality behavior data that have been sampled. Thus,
the problem we presented in this paper is still unsolved. (2) On the other hand, these methods still
perform distribution / similarity matching between the generated trajectories and the state-action
distribution of expert behavior (p(s, a)) to annotate reward labels, which is consistent with our sum-
mary of existing work in equations 2 and 3. As we discussed in sections 2.2 and 2.3, they cannot
provide optimization objectives on expert-unobserved states because this similarity can only rely on
the model’s function approximation ability to distinguish the quality of unlabeled trajectories and
utilize them. This makes it difficult for them to effectively utilize offline data, which may contain
many expert-unobserved states. On the contrary, when utilizing transition information, we consider
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the subsequent expert-state distribution maximization. This approach does not expect the sampled
trajectories to necessarily contain samples with a similar state-action distribution to the expert data.
Instead, it provides guidance to the agent towards expert-observed states through the transition in-
formation between states, thereby improving the lower bound of long-horizon return.

C EXPERIMENTAL DETAILS

C.1 DETAILS OF DATASETS

For navigation task, we generate offline data from random policy to evaluate the offline imitation
learning with low-quality data. Specifically, we use the random agent provided by D4RL sample
5000 trajectories with 200 transitions in the corresponding environments. Random data in other
settings are all provided by the D4RL, and we directly conduct the experiments on them. Table 3
provides a detailed statistics on all settings.

Table 2: Additional Details
Expert Data Offline Data

Setting #Transitions Ave. of Rewards #Transitions Ave. of Rewards
sparse-umaze-random 1490 0.561 1490000 0.094

sparse-medium-random 2990 0.711 2990000 0.028
sparse-large-random 3990 0.792 3990000 0.012
dense-umaze-random 1490 0.625 1490000 0.241

dense-medium-random 2990 0.738 2990000 0.073
dense-large-random 3990 0.819 3990000 0.046

sparse-umaze-v1 1490 0.561 976725 0.080
sparse-medium-v1 2990 0.711 1976410 0.023

sparse-large-v1 3990 0.792 3966628 0.008
dense-umaze-v1 1490 0.561 1490000 0.094

dense-medium-v1 2990 0.738 1976410 0.065
dense-large-v1 3990 0.819 3966628 0.035

hopper-random-v2 4990 3.609 954757 0.832
halfcheetah-random-v2 4990 10.743 998000 -0.288
walker2d-random-v2 4990 4.92 951090 0.091

ant-random-v2 4456 4.393 993537 -0.338
hopper-medium-v2 4990 3.609 997719 3.108

halfcheetah-medium-v2 4990 10.743 998000 4.77
walker2d-medium-v2 4990 4.92 998128 3.393

ant-medium-v2 4456 4.393 997920 3.667
pen-human-v1 4900 30.458 4950 31.609
door-human-v1 9900 14.722 6679 2.927

hammer-human-v1 9900 62.082 11260 6.756
relocate-human-v1 9900 20.705 9892 9.184

pen-cloned-v1 4900 30.458 492397 25.017
door-cloned-v1 9900 14.722 991225 1.312

hammer-cloned-v1 9900 62.082 992662 2.821
relocate-cloned-v1 9900 20.705 992210 4.573

C.2 MOTIVATION EXPERIMENT (FIGURE 1)

The figure 1 demonstrate a case to verify our motivation. Here we provide the details of its ex-
perimental setting. The illustration in Figure 1 is conducted in the maze2d-medium environment
with dense reward. Expert data contains 5 trajectories, each with 600 transitions generated from
the PD controller of D4RL Fu et al. (2020). As we claimed in Appendix C.1, the random data
contains 5000 trajectories with 200 transitions each. Following the previous offline imitation learn-
ing, the auxiliary data is formed by mixing low-quality trajectories (5000 trajectories) and some
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expert trajectories (ranging from 5 to 0 trajectories in Figure 1). The averaged results of DWBC (the
state-of-the-art method in offline imitation learning) over three seeds are reported in Figure 1.

C.3 COMPETING BASELINES.

We compare BCDP with the well-validated baselines and state-of-the-art offline imitation learning
methods, includes:

• BC-exp: Behavior cloning on expert data DE . The DE contains high-quality demonstra-
tions but with limited quantity, and thus causes serious generalization problem.

• BC-all: Behavior cloning on the union of expert data DE and offline data DO. BC-all is
expected to be better than BC-exp as it integrates more offline data. However, when the
quality of the offline data is low, BC-all may be weaker than BC-exp.

• DemoDICE (Kim et al., 2022): DemoDICE approximates the state-action distribution
dπ(s, a) to both expert data with offline data, treating offline data as a regularization, i.e.,
minπ KL(dπ||DE)+αKL(dπ||do) with the expectation of further improving performance
based on expert data.

• DWBC (Xu et al., 2022a): DWBC regards the offline data as a mixture of expert-similar
trajectories and low-quality trajectories, and apply positive-unlabeled learning to build a
discriminator. The discriminator will evaluate unlabeled trajectories and provide an expert-
similarity score, followed by a weighted behavior cloning.

• OTIL (Luo et al., 2023): OTIL uses optimal transport to label the rewards of offline trajec-
tories based on their Wasserstein distance from expert trajectories. It then employs offline
reinforcement learning algorithms to train an agent on the labeled dataset. We implement
offline RL using IQL (Kostrikov et al., 2022), as described in the original paper.

• UDS (Yu et al., 2022): UDS labels all rewards from the unlabeled datasets with 0 (min-
imum rewards), and uses offline reinforcement learning algorithms to train the agent on
the merged dataset. This method has been found to be effective for the utilization of low-
quality data. Compared to their setting has a high-quality labeled dataset, our expert dataset
does not have a ground-truth reward label. Instead, we label them with 1 (maximum re-
wards) to implement offline RL. Regarding the specific choice of offline RL algorithm, we
have chosen our most similar offline RL algorithm, TD3+BC.

C.4 MODEL ARCHITECTURE AND HYPER-PARAMETERS

For fair comparison, we follow the DWBC (Xu et al., 2022a) to build the actor network for all
methods. In our BCDP, we follow the design of TD3+BC (Fujimoto & Gu, 2021) and build the
critic network. For DemoDICE (Kim et al., 2022), we directly use their TensorFlow implementation
in the experiments. All other methods are implemented via Pytorch.

Balance factor α: Following the TD3BC paper, which also considers the trade-off between Q-
learning and behavioral cloning, we consider balancing the optimization process by using the aver-
aged batch-wise loss as a reference. Specifically, we define the batch-wise BC loss as λ1 and the
batch-wise Q loss as λ2, then α = λ2/λ1. This balance parameter will stabilize the absolute range of
both values, similar to what was designed in TD3BC. The learning rates are roughly selected in 1e-3,
1e-4, and 1e-5. Specifically, maze2d-umaze, medium, and large use learning rates of 1e-3, 1e-4, and
1e-5 respectively, where more challenging tasks require smaller learning rates for a stable learning
process. Mujoco and Adroit use a learning rate of 1e-4 and 1e-5 respectively. The frequency tfreq
of updating with policy gradient from the critic. We did not put much effort into adjusting tfreq to
improve performance. For Navigation, Locomotion, and Manipulation, the frequency tfreq is set to
2, 3, and 3 respectively.

C.5 SUPPLEMENTAL RESULTS UNDER VARYING BUDGETS

Figure 5 provides the results of the experiment in subsection 4.2 under all settings, and we can find
that our method BCDP has achieved competitive results across varying expert budegts.
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Figure 5: Comparision under varying number of expert trajectories.

C.6 SCALABILITY WITH OPTIMIZED REWARDS

In this paper, we mainly focus on whether it is possible to remove previous assumptions on high-
quality behavioral data and attempt to take advantage of the benefits of low-quality data. When
the data contains some high-quality behavioral data, our method tends to be conservative, so its
performance improvement is not as significant as in the setting with purely low-quality data. In such
cases, we can also combine previous research to identify potential expert-similar data to further
enhance performance. Here, we provide the corresponding experimental results. Specifically, we
use DWBC and OTIL as reward labels for offline auxiliary data and then apply the BCDP method.

Table 3: Results under Optimized Rewards

BCDP DWBC-BCDP OTIL-BCDP
maze2d-sparse-umaze-v1 132. ± 22.0 128. ± 12.9 137. ± 6.59

maze2d-sparse-medium-v1 137. ± 11.4 138. ± 19.0 139. ± 9.84
maze2d-sparse-large-v1 124. ± 22.0 111. ± 14.8 137. ± 19.8

hopper-medium-v2 98.7 ± 5.81 88.3 ± 8.85 59.4 ± 0.97
halfcheetah-medium-v2 18.4 ± 10.9 15.6 ± 11.1 40.5 ± 3.79
walker2d-medium-v2 98.0 ± 1.94 97.2 ± 9.88 96.1 ± 4.79

ant-medium-v2 59.7 ± 16.2 14.1 ± 13.8 94.8 ± 4.07

The results of BCDP with optimized rewards demonstrate its potential when combined with previous
reward annotation and trajectory recognition methods. Especially when the auxiliary data contains
some relatively high-quality data, the performance of the BCDP framework can be further improved.
It clearly supports the advantages of our proposal on scalability.

C.7 SCALABILITY WITH DIFFERENT REINFORCEMENT LEARNING METHODS

In this paper, we formulate the utilization of low-quality behavior data as an expert-state-distribution
maximization problem, and address it via TD3. Here, TD3 can be replaced with different (offline)
reinforcement learning methods. In this case, we conduct the experiments with popular methods,
such as IQL (Kostrikov et al., 2022), CQL (Kumar et al., 2020), and BEAR (Kumar et al., 2019).
We also provide the UDS with different RL implementations as we did in the main evaluation. For
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the specific implementation of IQL, CQL, and BEAR, we follow the CORL benchmark 1 and the
official code of BEAR 2. The experimental results on maze2d are reported in the Table 4.

Table 4: Results with different offline reinforcement learning methods.
UDS (Ablation) BCDP (Ours)

TD3+BC IQL CQL BEAR TD3 IQL CQL BEAR
sparse-umaze-v1 91.1 ± 22.9 49.0 ± 8.88 83.7 ± 86.3 21.9 ± 6.60 132. ± 22.0 111. ± 36.6 103. ± 18.4 94.5 ± 47.8

sparse-medium-v1 97.0 ± 20.0 90.4 ± 29.9 67.3 ± 63.2 -1.5 ± 5.04 137. ± 11.4 125. ± 20.1 83.3 ± 38.2 87.2 ± 62.4
sparse-large-v1 134. ± 26.0 100. ± 17.5 164. ± 37.5 0.67 ± 5.50 124. ± 22.0 206. ± 14.9 105. ± 13.8 16.0 ± 16.1

hopper-random-v2 1.15 ± 0.46 5.76 ± 1.99 32.0 ± 2.64 4.86 ± 2.47 73.2 ± 9.66 46.5 ± 29.8 59.0 ± 9.15 4.86 ± 2.47
halfcheetah-random-v2 4.62 ± 1.15 2.25 ± 0.00 6.67 ± 1.63 2.25 ± 0.00 18.8 ± 6.11 3.27 ± 2.60 1.82 ± 0.52 3.54 ± 2.31
walker2d-random-v2 -.11 ± 0.00 45.3 ± 48.6 7.41 ± 0.60 0.90 ± 0.01 105. ± 2.08 88.1 ± 32.7 96.1 ± 9.33 104. ± 3.72

ant-random-v2 30.4 ± 2.99 71.0 ± 0.76 39.8 ± 6.35 30.9 ± 0.02 54.1 ± 9.01 62.3 ± 12.9 47.0 ± 20.1 58.6 ± 4.30

From the results, we could find that our BCDP has scalability for different offline reinforcement
learning methods. Compared to directly applying offline reinforcement learning methods (UDS),
BCDP brings consistent performance improvement. In addition, we can also see that advanced
offline RL algorithms, such as IQL, can help BCDP achieve further performance growth in some
cases. However, overall, TD3 remains a stable choice, which is also simple and effective.

C.8 CONSERVATIVE ANALYSIS OF OFFLINE RL METHODS

In section 3.2, we point out that existing offline RL methods are difficult to apply to offline imitation
learning problems. This is because, without reward labels to guide optimization, their conservative
regularization may mislead policy learning towards low-quality behaviors, which are prevalent in
auxiliary data. Here, we provide further experimental evidence to support this point.

Table 5: Hyper-parameters of conservative regularization.

BEAR
UDS (Ablation) BCDP (Ours)

weighted factor 10 3 (selected) 0.1 10 3 0.1 (selected)
sparse-umaze-v1 18.7 ± 5.18 21.9 ± 6.60 -2.89 ± 12.4 57.1 ± 15.7 57.5 ± 29.1 94.5 ± 47.8

sparse-medium-v1 -1.7 ± 5.57 -1.5 ± 5.04 -1.91 ± 5.30 7.97 ± 12.3 32.0 ± 13.4 87.2 ± 62.4
sparse-large-v1 0.63 ± 5.43 0.67 ± 5.50 0.54 ± 5.28 7.44 ± 17.1 7.69 ± 16.3 16.0 ± 16.1

CQL
UDS (Ablation) BCDP (Ours)

weighted factor 10 1 0.1 (selected) 10 1 0.1 (selected)
sparse-umaze-v1 -9.11 ± 11.1 18.7 ± 61.2 83.7 ± 86.3 38.8 ± 23.3 20.0 ± 11.0 103. ± 18.4

sparse-medium-v1 -4.42 ± 0.48 -4.71 ± 0.45 67.3 ± 63.2 8.93 ± 11.4 6.00 ± 12.1 83.3 ± 38.2
sparse-large-v1 -1.61 ± 0.79 -2.17 ± 0.59 164. ± 37.5 12.0 ± 12.6 17.1 ± 17.3 105. ± 14.8

CQL Kumar et al. (2020) and BEAR Kumar et al. (2019) reduce out-of-distribution error by max-
imizing the lower bound of the Q-function and minimizing the MMD distance between the policy
and the behavior data distribution, respectively. We validate them in the offline imitation learning
problem and adjust their weighted factor of conservative regularization term for observation. The
weight candidates of CQL and BEAR are suggested from the CORL and Zhang et al. (2021).

From the results, we found that, for the original offline RL methods, smaller conservative regular-
ization leads to higher returns, but also higher variance (such as CQL). This supports the discussion
in our paper that the conservative terms in existing offline RL methods may be too conservative,
making it difficult to handle situations with a large amount of low-quality data, such as offline IL.
When facing the offline IL problem, a more appropriate choice may be to remove the regularization
term, such as directly using the TD3 algorithm like us, or consider advanced offline RL methods,
such as IQL. Both of these options have demonstrated higher and more stable performance in Ta-
ble 4 above. Additionally, after reducing the weight of the conservative regularization term, the
BCDP framework we proposed can also help CQL and BEAR achieve performance improvement,
demonstrating its scalability.

1https://github.com/tinkoff-ai/CORL/tree/main
2https://github.com/ryanxhr/BEAR
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C.9 LEARNING CURVES OF MAIN RESULTS

Here we provide the corresponding learning curves of our main experiments in the Table 1.

Figure 6: Learning curves of the main results.

As shown in Figure 6, in most cases, especially when the quality of the auxiliary data is low, our
BCDP achieves consistent and stable performance improvement.
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