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Abstract

Graph Neural Networks (GNNs) have demonstrated strong performance in graph1

mining tasks due to their message-passing mechanism, which is aligned with the2

homophily assumption that adjacent nodes exhibit similar behaviors. However,3

in many real-world graphs, connected nodes may display contrasting behaviors,4

termed as heterophilous patterns, which has attracted increased interest in het-5

erophilous GNNs (HTGNNs). Although the message-passing mechanism seems6

unsuitable for heterophilous graphs due to the propagation of class-irrelevant infor-7

mation, it is still widely used in many existing HTGNNs and consistently achieves8

notable success. This raises the question: why does message passing remain effec-9

tive on heterophilous graphs? To answer this question, in this paper, we revisit the10

message-passing mechanisms in heterophilous graph neural networks and refor-11

mulate them into a unified heterophilious message-passing (HTMP) mechanism.12

Based on HTMP and empirical analysis, we reveal that the success of message13

passing in existing HTGNNs is attributed to implicitly enhancing the compatibility14

matrix among classes. Moreover, we argue that the full potential of the compat-15

ibility matrix is not completely achieved due to the existence of incomplete and16

noisy semantic neighborhoods in real-world heterophilous graphs. To bridge this17

gap, we introduce a new approach named CMGNN, which operates within the18

HTMP mechanism to explicitly leverage and improve the compatibility matrix. A19

thorough evaluation involving 10 benchmark datasets and comparative analysis20

against 13 well-established baselines highlights the superior performance of the21

HTMP mechanism and CMGNN method.22

1 Introduction23

Graph Neural Networks (GNNs) have shown remarkable performance in graph mining tasks, such24

as social network analysis [1, 2] and recommender systems [3, 4]. The design principle of GNNs is25

typically based on the homophily assumption [5], which assumes that nodes are inclined to exhibit26

behaviors similar to their neighboring nodes [6]. However, this assumption does not always hold27

in real-world graphs, where the connected nodes demonstrate a contrasting tendency known as the28

heterophily [7]. In response to the challenges of heterophily in graphs, heterophilous GNNs (HTGNNs)29

have attracted considerable research interest [6, 8–10], with numerous innovative approaches being30

introduced recently [11–24]. However, the majority of these methods continue to employ a message-31

passing mechanism, which was not originally designed for heterophilous graphs, as they tend to32

incorporate excessive information from disparate classes. This naturally raises a question: Why does33

message passing remain effective on heterophilous graphs?34

Recently, a few efforts [6] have begun to investigate this question and reveal that vanilla message35

passing can work on heterophilous graphs under certain conditions. However, the absence of a unified36
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and comprehensive understanding of message passing within existing HTGNNs has hindered the37

creation of innovative approaches. In this paper, we first revisit the message-passing mechanisms38

in existing HTGNNs and reformulate them into a unified heterophilous message-passing (HTMP)39

mechanism, which extends the definition of neighborhood in various ways and simultaneously utilizes40

the messages of multiple neighborhoods. Specifically, HTMP consists of three major steps namely41

aggregating messages with explicit guidance, combining messages from multiple neighborhoods, and42

fusing intermediate representations.43

Equipped with HTMP, we further conduct empirical analysis on real-world graphs. The results reveal44

that the success of message passing in existing HTGNNs is attributed to implicitly enhancing the45

compatibility matrix, which exhibits the probabilities of observing edges among nodes from different46

classes. In particular, by increasing the distinctiveness between the rows of the compatibility matrix47

via different strategies, the node representations of different classes become more discriminative in48

heterophilous graphs.49

Drawing from previous observations, we contend that nodes within real-world graphs might exhibit a50

semantic neighborhood that only reveals a fraction of the compatibility matrix, accompanied by noise.51

This could limit the effectiveness of enhancing the compatibility matrix and result in suboptimal52

representations. To fill this gap, we further propose a novel Compatibility Matrix-aware Graph Neural53

Network (CMGNN) under HTMP mechanism, which utilizes the compatibility matrix to construct54

desired neighborhood messages as supplementary for nodes and explicitly enhances the compatibility55

matrix by a targeted constraint. We build a benchmark to fairly evaluate CMGNN and existing56

methods, which encompasses 13 diverse baseline methods and 10 datasets that exhibit varying57

levels of heterophily. Extensive experimental results demonstrate the superiority of CMGNN and58

HTMP mechanism. The contributions of this paper are summarized as:59

• We revisit the message-passing mechanisms in existing HTGNNs and reformulate them into a60

unified heterophilous message-passing mechanism (HTMP), which not only provides a macroscopic61

view of message passing in HTGNNs but also enables people to develop new methods flexibly.62

• We reveal that the effectiveness of message passing on heterophilous graphs is attributed to63

implicitly enhancing the compatibility matrix among classes, which gives us a new perspective to64

understand the message passing in HTGNNs.65

• Based on HTMP mechanism and empirical analysis, we propose CMGNN to unlock the potential66

of the compatibility matrix in HTGNNs. We further build a unified benchmark that overcomes the67

issues of current datasets for fair evaluation1. Experiments show the superiority of CMGNN.68

2 Preliminaries69

Given a graph G = (V, E ,X,A,Y), V is the node set and E is the edge set. Nodes are characterized70

by the feature matrix X ∈ RN×df , where N = |V| denotes the number of nodes, df is the features71

dimension. Y ∈ RN×1 is the node labels with the one-hot version C ∈ RN×K , where K is72

the number of node classes. The neighborhood of node vi is denoted as Ni. A ∈ RN×N is73

the adjacency matrix , and D = diag(d1, ...,dn) represents the diagonal degree matrix, where74

di =
∑

j Aij . Ã = A+ I represents the adjacency matrix with self-loops. Let Z ∈ RN×dr be the75

node representations with dimension dr learned by the models. We use 1 to represent a matrix with76

all elements equal to 1, and 0 for a matrix with all elements equal to 0.77

Homophily and Heterophily. High homophily is observed in graphs where a substantial portion of78

connected nodes shares identical labels, while high heterophily corresponds to the opposite situation.79

For measuring the homophily level, two widely used metrics are edge homophily he [12] and node80

homophily hn [15], defined as he =
|{eu,v|eu,v∈E, Yu=Yv}|

|E| and hn = 1
|V|
∑

v∈V
|{u|u∈Nv, Yu=Yv}|

dv
.81

Both metrics have a range of [0, 1], where higher values indicate stronger homophily and lower values82

indicate stronger heterophily.83

Vanilla Message Passing (VMP). The vanilla message-passing mechanism plays a pivotal role in84

transforming and updating node representations based on the neighborhood [25]. Typically, the85

1Codebase is available at the supplementary material.
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Table 1: Revisiting the message passing in representative heterophilous GNNs under the perspective
of HTMP mechanism.

Method
Neighborhood Indicators Aggregation Guidance

COMBINE FUSE
Type A Type B

GCN [1]

Raw

[Ã]

DegAvg

[B̃d] / Z = ZL

APPNP [26] [I, Ã] [I, B̃d] WeightedAdd Z = ZL

GCNII [27] [I, Ã] [I, B̃d] WeightedAdd Z = ZL

GAT [28] [Ã] AdaWeight [Baw] / Z = ZL

GPR-GCN [20] [Ã]

DegAvg

[B̃d] / AdaAdd

OrderedGNN [21] [I,A] [I,Bd] AdaCat Z = ZL

ACM-GCN [18] [I,A, Ã] [I,Bd, I−Bd] AdaAdd Z = ZL

FAGCN [11] [I,A]
AdaWeight

[I,Bnaw] WeightedAdd Z = ZLW

GBK-GNN [24] [I,A,A] [I,Baw,1−Baw] Add Z = ZL

SimP-GCN [14]

ReDef

[I, Ã,Af ]

DegAvg

[I, B̃d,Bd
f ] AdaAdd Z = ZL

H2GCN [12] [A,Ah2] [Bd,Bd
h2] Cat Cat

Geom-GCN [15] [Ac1, ...,Acr, ...,AcR] [Bd
c1, ...,B

d
cr, ...,B

d
cR] Cat Z = ZL

MixHop [16] [I,A,Ah2, ...,Ahk] [I,Bd,Bd
h2, ...,B

d
hk] Cat Z = ZL

UGCN [13] [Ã, Ãh2,Af ]
AdaWeight

[B̃aw, B̃aw
h2 ,B

aw
f ] AdaAdd Z = ZL

WRGNN [22] [Ac1, ...,Acr, ...,AcR] [Baw
c1 , ...,Baw

cr , ...,Baw
cR ] Add Z = ZL

HOG-GCN [17] [I,Ahk]

RelaEst

[I,Bre] WeightedAdd Z = ZL

GloGNN [19] [I,1] [I,Bre] WeightedAdd Z = ZL

GGCN [23] Dis [I,Ap,An] [I,Bre
p ,Bre

n ] AdaAdd Z = ZL

* The correspondence between the full form and the abbreviation: Raw Neighborhood (Raw), Neighborhood Redefine (ReDef), Neighborhood
Discrimination (Dis), Degree-based Averaging (DegAvg), Adaptive Weights (AdaWeight), Relation Estimation (RelaEst), Addition (Add),
Weighted Addition (WeightAdd), Adaptive Weighted Addition (AdaAdd), Concatenation (Cat), Adaptive Dimension Concatenation (AdaCat).

* More details about the notations are available in Appendix A.1.

mechanism operates iteratively and comprises two stages:86

Z̃l = AGGREGATE(A,Zl−1), Zl = COMBINE
(
Zl−1, Z̃l

)
, (1)

where the AGGREGATE function first aggregates the input messages Zl−1 from neighborhood A87

into the aggregated one Z̃l, and subsequently, the COMBINE function combines the messages of88

node ego and neighborhood aggregation, resulting in updated representations Zl.89

3 Revisiting Message Passing in Heterophilous GNNs.90

To gain a thorough and unified insight into the effectiveness of message passing in HTGNNs, we91

revisit message passing in various notable HTGNNs [11–24] and propose a unified heterophilous92

message passing (HTMP) mechanism, structured as follows:93

Z̃l
r = AGGREGATE(Ar,Br,Z

l−1), Zl = COMBINE({Z̃l
r}Rr=1), Z = FUSE({Zl}Ll=0). (2)

Generally, HTMP extends the definition of neighborhood in various ways and simultaneously utilize94

the messages of multiple neighborhoods, which is the key for better adapting to heterophily. We95

use R to denote the number of neighborhoods used by the model. In each message passing layer l,96

HTMP separately aggregates messages within R neighborhoods and combines them. The method-97

ological analysis of some representative HTGNNs and more details can be seen in Appendix A.98

Compared to the VMP mechanism, HTMP mechanism has advances in the following functions:99

(i) To characterize different neigborhoods, the AGGREGATE function in HTMP includes the neigh-100

borhood indicator Ar to indicate the neighbors within a specific neighborhood r. The adjacency101

matrix A in VMP is a special neighborhood indicator that marks the neighbors in the raw neigh-102

borhood. To further characterize the aggregation of different neighborhoods, HTMP introduces the103

aggregation guidence Br for each neighborhood r. In VMP, the aggregation guidance is an implicit104

parameter of the AGGREGATE function since it only works for the raw neighborhood. A commonly105

used form of the AGGREGATE function is AGGREGATE(Ar,Br,Z
l−1) = (Ar ⊙Br)Z

l−1Wl
r,106

where ⊙ is the Hadamard product and Wl
r is a weight matrix for message transformation. We take107

3



this as the general form of the AGGREGATE function and only analyze the neighborhood indicators108

and the aggregation guidance in the following.109

The neighborhood indicator Ar ∈ {0, 1}N×N indicates neighbors associated with central nodes110

within neighborhood r. To describe the multiple neighborhoods in HTGNNs, neighborhood indicators111

can be formed as a list A = [A1, ...,Ar, ...,AR]. For the sake of simplicity, we consider the identity112

matrix I ∈ RN×N as a special neighborhood indicator for acquiring the nodes’ ego messages. The113

aggregation guidance Br ∈ RN×N can be viewed as pairwise aggregation weights in most cases,114

which has the multiple form B = [B1, ...,Br, ...,BR]. Table 1 illustrates the connection between115

message passing in various HTGNNs and HTMP mechanism.116

(ii) Considering the existence of multiple neighborhoods, the COMBINE function in HTMP need to117

integrate multiple messages instead of only the ego node and the raw neighborhood. Thus, the input118

of the COMBINE function is a set of messages Z̃l
r aggregated from the corresponding neighborhoods.119

In HTGNNs, addition and concatenation are two common approaches, each of which has variants.120

An effective COMBINE function is capable of simultaneously processing messages from various121

neighborhoods while preserving their distinct features, thereby reducing the effects of heterophily.122

(iii) In VMP, the final output representations are usually the one of the final layer: Z = ZL. Some123

HTGNNs utilize the combination of intermediate representations to leverage messages from different124

localities, adapting to the heterophilous structural properties in different graphs. Thus, we introduce125

an additional FUSE function in HTMP which integrates multiple representations Zl of different126

layers l into the final Z. Similarly, the FUSE function is based on addition and concatenation.127

4 Why Does Message Passing Still Remain Effective in Heterophilous128

Graphs?129

Based on HTMP mechanism, we further dive into the motivation behind the message passing of130

existing HTGNNs. Our discussion begins by examining the difference between homophilous and131

heterophilous graphs. Initially, we consider the homophily ratios he and hn, as outlined in Section 2.132

However, a single number is not able to indicate enough conditions of a graph. Ma et al. [6] propose133

the existence of a special case of heterophily, named "good" heterophily, where the VMP mechanism134

can achieve strong performance and the homophily ratio shows no difference. Thus, to better study135

the heterophily property, here we introduce the Compatibility Matrix [7] to describe graphs:136

Definition 1 Compatibility Matrix (CM): The potential connection preference among classes within137

a graph. It’s formatted as a matrix M ∈ RK×K , where the i-th row Mi denotes the connection138

probabilities between class i and all classes. It can be estimated empirically by the statistics among139

nodes as follows:140

M = Norm(CTCnb), Cnb = ÂC, (3)

where Norm(·) denotes the L1 normalization and T is the matrix transpose operation. Cnb ∈ RN×K141

is the semantic neighborhoods of nodes, which indicates the proportion of neighbors from each class142

in nodes’ neighborhoods.143

We visualize the CM of a homophilous graph Photo [29] and a heterophilous graph Amazon-144

Ratings [30] in Figure 1(a) and 1(b). The CM in Photo displays an identity-like matrix, where the145

diagonal elements can be viewed as the homophily level of each class. With this type of CM, the VMP146

mechanism learns representations comprised mostly of messages from same the class, while messages147

of other classes are diluted. Then how does HTMP mechanism work on heterophilous graphs without148

an identity-like CM? The "good" heterophily inspires us, which we believe corresponds to a CM with149

enough discriminability among classes. We conduct experiments on synthetic graphs to confirm this150

idea, with details available in Appendix C. Also, we find "good" heterophily in real-world graphs151

though it’s not as significant as imagined. Thus, we have the following observation:152

Observation 1 (Connection between CM and VMP). When enough (depends on data) discriminabil-153

ity exists among classes in CM, vanilla message passing can work well in heterophilous graphs.154

With this observation, we have a conjecture: Is HTMP mechanism trying to enhance the discriminabil-155

ity of CM? Some special designs in HTMP intuitively meet this. For example, feature-similarity-based156

neighborhood indicators and neighborhood discrimination are designed to construct neighborhoods157
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(a) Observed CM of
Photo

(b) Observed CM of
Amazon-Ratings

(c) New-constructed
CM of Amazon-Ratings

[0, 0.5, 0.5]

[0, 0.7, 0.3]
[0, 0.2, 0.8]

[0.5, 0, 0.5]

[0.8, 0, 0.2]

[0.3, 0, 0.7]

[0, 0, 1] ?

(d) Overlap of semantic
neighborhood distribution

Figure 1: Visualizations of the compatibility matrix and the example of distribution overlap.

with high homophily, that is, an identity-like CM with high discriminability. We plot the CM of158

feature-similarity-based neighborhood on Amazon-Ratings in Figure 1(c) to confirm it. Moreover,159

we investgate two representative methods ACM-GCN [18] and GPRGNN [20], showing that they160

also meet this conjecture with the posterior proof in Appendix D. ACM-GCN combines the messages161

of node ego, low-frequency and high-frequency with adaptive weights, which actually motifs the162

edge weights and node weights to build a new CM. GPRGNN has a FUSE function with adaptive163

weights while other settings are the same as GCN. It actually integrates the CMs of multiple-order164

neighborhoods with adaptive weights to form a more discriminative CM. These lead to the answer to165

the aforementioned question:166

Observation 2 (Connection between CM and HTMP). The unified goal of various message passing167

in existing HTGNNs is to utilize and enhance the discriminability of CM on heterophilous graphs.168

In other words, the success of message passing in existing HTGNNs benefits from utilizing and169

enhancing the discriminability of CM.170

Furthermore, we notice that the power of CM is not fully released due to the incomplete and noisy171

semantic neighborhoods in real-world heterophilous graphs. We use the perspective of distribution172

to describe the issue more intuitively: The semantic neighborhoods of nodes from the same class173

collectively form a distribution, whose mean value indicates the connection preference of that class,174

i.e. Mi for class i. Influenced by factors such as degree and randomness, the semantic neighborhood175

of nodes in real-world graphs may display only a fraction of CM accompanied by noise. It can176

lead to the overlap between different distributions as shown in Figure 1(d), where the existence of177

overlapping parts means nodes from different classes may have the same semantic neighborhood.178

This brings a great challenge since the overlapping semantic neighborhood may become redundant179

information during message passing.180

5 Method181

To fill this gap, we further propose a method named Compatibility Matrix-Aware GNN (CMGNN),182

which leverages the CM to construct desired neighborhood messages as supplementary, providing183

valuable neighborhood information for nodes to mitigate the impact of incomplete and noisy se-184

mantic neighborhoods. The desired neighborhood message denotes the averaging message within185

a neighborhood when a node’s semantic neighborhoods meet the CM of the corresponding class,186

which converts the discriminability from CM into messages. CMGNN follows the HTMP mechanism187

and constructs a supplementary neighborhood indicator along with the corresponding aggregation188

guidance to introduce supplementary messages. Further, CMGNN introduces a simple constraint to189

explicitly enhance the discriminability of CM.190

Message Passing in CMGNN. CMGNN aggregates messages from three neighborhoods for191

each node, including the ego neighborhood, raw neighborhood, and supplementary neighborhood.192

Following the HTMP mechanism, the message passing of CMGNN cen be described as follows:193

Z̃l
r = AGGREGATE(Ar,Br,Z

l−1) = (Ar ⊙Br)Z
l−1Wl

r,

Zl = COMBINE({Z̃l
r}3r=1) = AdaWeight({Z̃l

r}3r=1),

Z = FUSE({Zl}Ll=0) =
L

∥
l=0

Zl,

(4)
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where AdaWeight is the adaptive weighted addition implemented by an MLP with Softmax, ∥ denotes194

the concatenation. The neighborhood indicators and aggregation guidance of the three neighborhoods195

are formatted as follows:196

Al
1 = I, Bl

1 = I, Al
2 = A, Bl

2 = D−11, Al
3 = Asup, Bl

3 = Bsup, (5)

where Asup and Bsup are described below.197

The supplementary neighborhood indicator Asup assigns K additional virtual neighbors for each198

node: Asup = 1 ∈ RN×K . Specifically, these additional neighbors are K virtual nodes, constructed199

as the prototypes of classes based on the labels of the training set. The attributes Xptt ∈ RK×df ,200

neighborhoods Aptt ∈ RK×N and labels Yptt ∈ RK×K of prototypes are defined as follows:201

Xptt = Norm(Ctrain
TXtrain), A

ptt = 0, Yptt = I, (6)

where Ctrain and Xtrain are the one-hot labels and attributes of nodes in the training set. Utilizing202

class prototypes as supplementary neighborhoods can provide each node with representative messages203

of classes, which builds the basis for desired neighborhood messages.204

The supplementary aggregation guidance Bsup = ĈM̂ indicates the desired semantic neighborhood205

of nodes, i.e. the desired proportion of neighbors from each class in nodes’ neighborhoods according206

to the probability that nodes belong to each class. M̂ is the estimated compatibility matrix described207

in below. Using soft logits instead of one-hot pseudo labels preserves the real characteristics of nodes208

and reduces the impact of wrong predictions. During the message aggregation in the supplementary209

neighborhoods, the input representations Zl−1 are replaced by the representations of virtual prototype210

nodes Zl−1
ptt , which are obtained by the same message-passing mechanism as real nodes.211

Similar to existing methods [18, 19], we also regard topology structure as a kind of additional212

available node features. Thus, the input representation of the first layer can be obtained in two ways:213

Z0 = [XWX∥ÂWA]W0, or Z0 = XW0. (7)

Note that in practice, we use ReLU as the activation function between layers. From the perspective of214

HTMP mechanism, our special design is to introduce an additional neighborhood indicator Asup by215

neighborhood redefining and aggregation guidance Bsup, which can be seen as a form of relation216

estimation along with good interpretability. Meanwhile, these designs greatly reduce the time and217

space cost via the N ×K form.218

Compatibility Matrix Estimation. The CM can be directly calculated via Eq 3 with full-available219

labels. However, the label information is not entirely available in semi-supervised settings. Thus, we220

try to estimate the CM with the help of semi-supervised and pseudo labels. Since the pseudo labels221

predicted by the model might be wrong, which can lead to low-quality estimation, we introduce the222

confidence g ∈ RN×1 based on the information entropy to reduce the impact of wrong predictions,223

where a high entropy means low confidence:224

gi = logK − H(Ĉi) ∈ [0, logK], (8)

where Ĉ ∈ RN×K is the soft pseudo labels composed of labels from the training set and model225

predictions. Then the nodes’ semantic neighborhoods Cnb = Norm(A(g · Ĉ)) ∈ RN×K are226

calculated considering the confidence.227

Further, the degrees of nodes also influence the estimation. As we mentioned in Section 4, the228

semantic neighborhood of low-degree nodes may display incomplete CM, leading to a significant gap229

between semantic neighborhoods and corresponding CM. Thus, they deserve low weights during the230

estimation. We manually set up two fixed thresholds and a weighting function range in [0, 1]:231

wd
i =

{
di/2K, di ≤ K,

0.25 + di/4K, K < di ≤ 3K,
1, otherwise.

(9)

When a node’s degree di is smaller than the number of classes K, its semantic neighborhood is232

unlikely to display complete CM, corresponding to a low weight. And when the node degree is233

greater than 3K, we believe it can display near-complete CM, corresponding to the maximum weight.234

Finally, we can estimate the compatibility matrix M̂ ∈ RK×K as follows:235

M̂ = Norm((wd · g · Ĉ)T )Cnb. (10)
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Table 2: Node classification accuracy comparison (%). The error bar (±) denotes the standard
deviation of results over 10 trial runs. The best and second-best results in each column are highlighted
in bold font and underlined. OOM denotes out-of-memory error during the model training.

Dataset Roman-Empire Amazon-Ratings Chameleon-F Squirrel-F Actor Flickr BlogCatalog Wikics Pubmed Photo

Av
g.

R
an

k

Homo. 0.05 0.38 0.25 0.22 0.22 0.24 0.4 0.65 0.8 0.83
Nodes 22,662 24,492 890 2,223 7,600 7,575 5,196 11,701 19,717 7,650
Edges 65,854 186,100 13,584 65,718 30,019 479,476 343,486 431,206 88,651 238,162

Classes 18 5 5 5 5 9 6 10 3 8

MLP 62.29 ± 1.03 42.66 ± 0.84 38.66 ± 4.02 36.74 ± 1.80 36.70 ± 0.85 89.82 ± 0.63 93.57 ± 0.55 78.94 ± 1.22 87.48 ± 0.46 89.96 ± 1.22 11
GCN 38.58 ± 2.35 45.16 ± 0.49 42.12 ± 3.82 38.47 ± 1.82 30.11 ± 0.74 68.25 ± 2.75 78.15 ± 0.95 77.53 ± 1.41 87.70 ± 0.32 94.31 ± 0.33 10.8
GAT 59.55 ± 1.45 46.90 ± 0.47 40.89 ± 3.50 38.22 ± 1.71 30.94 ± 0.95 57.22 ± 3.04 88.36 ± 1.37 76.69 ± 0.87 87.45 ± 0.53 94.59 ± 0.48 11.4

GCNII 82.53 ± 0.37 47.53 ± 0.72 41.56 ± 4.15 40.70 ± 1.80 37.51 ± 0.92 91.64 ± 0.67 96.48 ± 0.62 84.63 ± 0.66 89.96 ± 0.43 95.18 ± 0.39 4.1
H2GCN 68.61 ± 1.05 37.20 ± 0.67 42.29 ± 4.57 35.82 ± 2.20 33.32 ± 0.90 91.25 ± 0.58 96.24 ± 0.39 78.34 ± 2.01 89.32 ± 0.37 95.66 ± 0.26 8.2
MixHop 79.16 ± 0.70 47.95 ± 0.65 44.97 ± 3.12 40.43 ± 1.40 36.97 ± 0.90 91.10 ± 0.46 96.21 ± 0.42 84.19 ± 0.61 89.42 ± 0.37 95.63 ± 0.30 4.7

GBK-GNN 66.05 ± 1.44 40.20 ± 1.96 42.01 ± 4.89 36.52 ± 1.45 35.70 ± 1.12 OOM OOM 81.07 ± 0.83 88.18 ± 0.45 93.48 ± 0.42 10.7
GGCN OOM OOM 41.23 ± 4.08 36.76 ± 2.19 35.68 ± 0.87 90.84 ± 0.65 95.58 ± 0.44 84.76 ± 0.65 89.04 ± 0.40 95.18 ± 0.44 8.5

GloGNN 68.63 ± 0.63 48.62 ± 0.59 40.95 ± 5.95 36.85 ± 1.97 36.66 ± 0.81 90.47 ± 0.77 94.51 ± 0.49 82.83 ± 0.52 89.60 ± 0.34 95.09 ± 0.46 8.2
HOGGCN OOM OOM 43.35 ± 3.66 38.63 ± 1.95 36.47 ± 0.83 90.94 ± 0.72 94.75 ± 0.65 83.74 ± 0.69 OOM 94.79 ± 0.26 7.3
GPR-GNN 71.19 ± 0.75 46.64 ± 0.52 41.84 ± 4.68 38.04 ± 1.98 36.21 ± 0.98 91.19 ± 0.47 96.37 ± 0.44 84.07 ± 0.54 89.28 ± 0.37 95.48 ± 0.24 6.7
ACM-GCN 71.15 ± 0.73 50.64 ± 0.61 45.20 ± 4.14 40.90 ± 1.74 35.88 ± 1.40 91.43 ± 0.65 96.19 ± 0.45 84.39 ± 0.43 89.99 ± 0.40 95.52 ± 0.40 4.3

OrderedGNN 83.10 ± 0.75 51.30 ± 0.61 42.07 ± 4.24 37.75 ± 2.53 37.22 ± 0.62 91.42 ± 0.79 96.27 ± 0.73 85.50 ± 0.80 90.09 ± 0.37 95.73 ± 0.33 3.3

CMGNN 84.35 ± 1.27 52.13 ± 0.55 45.70 ± 4.92 41.89 ± 2.34 36.82 ± 0.78 92.66 ± 0.46 97.00 ± 0.52 84.50 ± 0.73 89.99 ± 0.32 95.48 ± 0.29 2.1

Objective Function. As mentioned in Sec 4, the CMs in real-world graphs don’t always have236

significant discriminability, which may lead to low effectiveness of supplementary messages. Thus, we237

introduce an additional discrimination loss Ldis to reduce the similarity of the desired neighborhood238

message among different classes, which enhances the discriminability among classes in CM. The239

overall loss consists of a CrossEntropy loss Lce and the discrimination loss Ldis:240

L = Lce + λLdis, Ldis =
∑
i ̸=j

Sim(M̂iZptt, M̂jZptt), (11)

where Zptt ∈ RK×dr is the representation of virtual prototypes nodes. More details about the241

implementation of CMGNN is available in Appendix E.242

6 Benchmarks and Experiments243

In this section, we conduct comprehensive experiments to demonstrate the effectiveness of the244

proposed CMGNN with a newly organized benchmark for fair comparisons.245

6.1 New Benchmark246

As reported in [30], some widely adopted datasets in existing works have critical drawbacks, which247

lead to unreliable results. Therefore, with a comprehensive review of existing benchmark evaluation,248

we construct a new benchmark to fairly perform experimental validation. Specifically, we integrate 13249

representative homophilous and heterophilous GNNs, construct a unified codebase, and evaluate their250

node classification performances on 10 unified organized datasets with various heterophily levels.251

Drawbacks of Existing Datasets. Existing works mostly follow the settings and datasets used252

in [15], including 6 heterophilous datasets (Cornell, Texas, Wisconsin, Actor, Chameleon, and253

Squirrel) and 3 homophilous datasets (Cora, Citeseer, and Pubmed). Platonov et al. [30] pointed out254

that there are serious data leakages in Chameleon and Squirrel, while Cornell, Texas, and Wisconsin255

are too small with very imbalanced classes. Further, we revisit other datasets and discover new256

drawbacks: (i) In the ten splits of Citeseer, there are two inconsistent ones, which have smaller257

training, validation, and test sets that could cause issues with statistical results; (ii) The data split258

ratios for Cora are not consistent with the expected ones. These drawbacks may lead to certain issues259

with the conclusions of previous works. The detailed descriptions of dataset drawbacks are listed in260

Appendix F.1.261

Newly Organized Datasets. The datasets used in the benchmark include Roman-Empire, Amazon-262

Ratings, Chameleon-F, Squirrel-F, Actor, Flickr, BlogCatalog, Wikics, Pubmed, and Photo. Their263

statistics are summarized in Table 2, with details in Appendix F.2. For consistency with existing meth-264

ods, we randomly construct 10 splits with predefined proportions (48%/32%/20% for train/valid/test)265

for each dataset and report the mean performance and standard deviation of 10 splits.266
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Table 3: Ablation study results (%) between CMGNN and three ablation variants, where SM denotes
supplementary messages of the desired neighborhoods and DL denotes the discrimination loss.

Variants Roman-Empire Amazon-Ratings Chameleon-F Squirrel-F Actor Flickr BlogCatalog Wikics Pubmed Photo

CMGNN 84.35 ± 1.27 52.13 ± 0.55 45.70 ± 4.92 41.89 ± 2.34 36.82 ± 0.78 92.66 ± 0.46 97.00 ± 0.52 84.50 ± 0.73 89.99 ± 0.32 95.48 ± 0.29

W/O SM 83.84 ± 1.09 51.98 ± 0.61 42.35 ± 4.21 40.79 ± 1.89 36.02 ± 1.21 92.32 ± 0.83 96.52 ± 0.63 83.97 ± 0.83 89.70 ± 0.44 95.41 ± 0.40

W/O DL 83.68 ± 1.24 52.04 ± 0.37 44.97 ± 3.99 41.60 ± 2.43 36.28 ± 1.12 92.66 ± 0.46 97.00 ± 0.52 83.29 ± 1.83 89.99 ± 0.32 95.26 ± 0.35

W/O SM and DL 83.52 ± 1.91 51.58 ± 1.04 41.12 ± 2.93 40.07 ± 2.41 35.61 ± 1.48 92.32 ± 0.83 96.52 ± 0.63 81.62 ± 1.67 89.70 ± 0.44 94.66 ± 0.42

Baseline Methods. As baseline methods, we choose 13 representative homophilous and het-267

erophilous GNNs, including (i) shallow base model: MLP; (ii) homophilous GNNs: GCN [1],268

GAT [28], GCNII [27]; (iii) heterophilous GNNs: H2GCN [12], MixHop [16], GBK-GNN [24],269

GGCN [23], GloGNN [19], HOGGCN [17], GPR-GNN [20], ACM-GCN [18] and OrderedGNN [21].270

For each method, we integrate its official/reproduced code into a unified codebase and search for271

parameters in the space suggested by the original papers. More experimental settings can be found in272

Appendix F.4 and G.1.273

6.2 Main Results274

Following the constructed benchmark, we evaluate methods and report the performance in Table 2.275

Performance of Baseline Methods. With the new benchmarks, some interesting observations and276

conclusions can be found when analyzing the performance of baseline methods. First, comparing the277

performance of MLP and GCN, we can find "good" heterophily in Amazon-Ratings, Chameleon-F,278

and Squirrel-F. Meanwhile, when the homophily level is not high enough, "bad" homophily may also279

exist as shown in BlogCatalog and Wikics. These results once again support the observations about280

CMs. Therefore, homophilous GNNs can also work well in heterophilous graphs as GCNII has281

an average rank of 4.1, which is better than most HTGNNs. This is attributed to the initial residual282

connection in GCNII actually playing the role of ego/neighbor separation, which is suitable in283

heterophilous graphs. As for heterophilous GNNs, they are usually designed for both homophilous284

and heterophilous graphs. Surprisingly, MixHop, as an early method, demonstrated quite good285

performance. In fact, from the perspective of HTMP, it can be considered a degenerate version286

of OrderedGNN with no learnable dimensions. As previous SOTA methods, OrderedGNN and287

ACM-GCN prove their strong capabilities again.288

Performance of CMGNN. CMGNN achieves the best performance in 6 datasets and an average289

rank of 2.1, which outperforms baseline methods. This demonstrates the superiority of utilizing290

and enhancing the CM to handle incomplete and noisy semantic neighborhoods, especially in291

heterophilous graphs. Regarding the suboptimal performance in Actor, we believe that this is due292

to the CM in this dataset are not discriminative enough to provide valuable information via the293

supplementary messages and hard to enhance. In homophilous graphs, due to the identity-like CMs,294

the overlap between distributions is relatively less, leading to a minor contribution from supplement295

messages. Yet CMGNN still achieves top-level performances.296

6.3 Ablation Study297

We conduct an ablation study on two key designs of CMGNN , including the supplementary messages298

of the desired neighborhood (SM) and the discrimination loss (DL). The results are shown in Table 3.299

First of all, both SM and DL have indispensable contributions except for Flickr, BlogCatalog, and300

Pubmed, in which the discrimination loss has no effect. This may be due to the discriminability of301

desired neighborhood messages reaching the bottlenecks and can not be further improved by DL302

Meanwhile, the extent of their contributions varies across datasets. SM plays a more important role in303

most datasets except Roman-Empire, Wikics, and Photo, in which the number of nodes that need304

supplementary messages is relatively small and DL has great effects. Further, we notice that with305

SM and DL, CMGNN can reach a smaller standard deviation most of the time. This illustrates306

that CMGNN achieves more stable results by handling nodes with incomplete and noisy semantic307

neighborhoods. As for the opposite result on Chameleon-F, this may attributed to the small size of308

this dataset (890 nodes), which can lead to naturally unstable results.309
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(a) Amazon-Ratings Obs (b) Amazon-Ratings Est (c) BlogCatalog Obs (d) BlogCatalog Est

Figure 2: The visualization of observed (Obs) and estimated (Est) compatibility matrixes.

Table 4: Node classification accuracy (%) comparison among nodes with different degrees.

Dataset Amazon-Ratings Flickr BlogCatalog
Deg. Prop.(%) 0∼20 20∼40 40∼60 60∼80 80∼100 0∼20 20∼40 40∼60 60∼80 80∼100 0∼20 20∼40 40∼60 60∼80 80∼100

CMGNN 59.78 58.36 53.08 41.74 47.86 92.56 91.19 92.71 93.24 93.65 94.13 97.17 98.29 97.99 97.47

ACM-GCN 57.35 56.21 51.74 41.55 46.47 90.44 91.17 92.85 93.19 89.50 92.17 96.68 97.83 97.84 96.51

OrderedGNN 56.32 56.16 51.20 41.85 50.26 86.48 90.07 92.40 92.79 93.40 92.19 96.09 97.48 97.36 96.27

GCNII 50.61 49.94 47.49 41.85 47.76 87.49 90.54 92.29 92.68 95.09 92.81 96.73 97.58 97.90 97.43

6.4 Visualization of Compatibility Matrix Estimation310

We visualize the observed and estimated CMs by CMGNN in Figure 2 with heat maps. Obviously,311

CMGNN estimates CMs that are very close to those existing in graphs. This shows that even312

with incomplete node labels, CMGNN can estimate high-quality CMs which provides valuable313

neighborhood information to nodes. Meanwhile, it can adapt to graphs with various levels of314

heterophily. More results can be seen in Appendix G.2.1.315

6.5 Performance on Nodes with Various Levels of Degrees316

To verify the effect of CMGNN on nodes with incomplete and noisy semantic neighborhoods, we317

divide the test set nodes into 5 parts according to their degrees and report the classification accuracy318

respectively. We compare CMGNN with 3 top-performance methods and show the results in Table 4.319

In general, nodes with low degrees tend to have incomplete and noisy semantic neighborhoods.320

Thus, our outstanding performances on the top 20% nodes with the least degree demonstrate the321

effectiveness of CMGNN for providing desired neighborhood messages. Further, we can find that322

OrderedGNN and GCNII are good at dealing with nodes with high degrees, while ACM-GCN is323

relatively good at nodes with low degrees. And CMGNN , to a certain extent, can be adapted to both324

situations at the same time.325

7 Conclusion and Limitations326

In this paper, we revisit the message passing mechanism in existing heterophilous GNNs and327

reformulate them into a unified heterophilous message passing (HTMP) mechanism. Based on the328

HTMP mechanism and empirical analysis, we reveal that the reason for message passing remaining329

effective is attributed to implicitly enhancing the compatibility matrix among classes. Further, we330

propose a novel method CMGNN to unlock the potential of the compatibility matrix by handling the331

incomplete and noisy semantic neighborhoods. The experimental results show the effectiveness of332

CMGNN and the feasibility of designing a new method following HTMP mechanism. We hope the333

HTMP mechanism and benchmark can further provide convenience to the community.334

This work mainly focuses on the message passing mechanism in existing HTGNNs under the335

semi-supervised setting. Thus, the other designs in HTGNNs such as objective functions are not336

analyzed in this paper. The proposed HTMP mechanism is suitable for only a large part of existing337

HTGNNs which still follow the message passing mechanism.338
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A More Details of HTMP Mechanism465

In this part, we list more details about the HTMP mechanism, including additional analysis about466

HTMP, method-wise analysis and overall analysis.467

A.1 Additional Analysis of HTMP Mechanism468

A.1.1 Neighborhood Indicators469

The neighborhood indicator explicitly marks the neighbors of all nodes within a specific neighbor-470

hood. In existing heterophilous GNNs, neighborhood indicators typically take one of the following471

forms: (i) Raw Neighborhood (Raw); (ii) Neighborhood Redefining (ReDef); and (3) Neighborhood472

Discrimination (Dis).473

Raw Neighborhood. Raw neighborhood, including A and Ã, provides the basic neighborhood474

information. The only difference between them lies in whether there is differential treatment of the475

node’s ego messages. For example, APPNP [26] applies additional weighting to the nodes’ ego476

messages compared with GCN [1]. For the sake of simplicity, we consider the identity matrix I ∈477

RN×N as a special neighborhood indicator for acquiring the nodes’ ego messages. In heterophilous478

GNNs, ego/neighbor separation is a common strategy that can mitigate the confusion of ego messages479

with neighbor messages.480

Neighborhood Redefining. Neighborhood redefining is the most commonly used technique in481

heterophilous GNNs, aiming to capture additional information from new neighborhoods. As a repre-482

sentative example, high-order neighborhood Ah can provide long-distance connection information483

but also result in additional computational costs. Feature-similarity-based neighborhood Af is often484

defined by the k-NN relationships within the feature space. Fundamentally, it only utilizes node485

features and thus needs to be used in conjunction with other neighborhood indicators. Otherwise,486

the model will be limited by the amount of information in node features. GloGNN [19] introduces487

fully-connected neighborhood 1 ∈ RN×N , which can capture global neighbor information from all488

nodes. However, it can also cause significant time and space consumption. Additionally, there are489

some custom-defined neighborhood Ac. For example, Geom-GCN [15] redefines neighborhoods490

based on the geometric relationships between node pairs. These neighborhood indicators may have491

limited generality, and the effectiveness is reliant on the specific method.492

Neighborhood Discrimination. Neighborhood discrimination aims to mark whether neighbors493

share the same label with central nodes. The neighborhoods are partitioned into positive Ap and494

negative ones An, which include homophilous and heterophilous neighbors respectively. GGCN [23]495

divides the raw neighborhood based on the similarity of node representations with a threshold496

of 0. Explicitly distinguishing neighbors allows for targeted processing, making the model more497

interpretable. However, its performance is influenced by the accuracy of the discrimination, which498

may lead to the accumulation of errors.499

A.1.2 Aggregation Guidance500

After identifying the neighborhood, the aggregation guidance controls what type of messages to501

gather from the corresponding neighbors. The existing aggregation guidance mainly includes three502

kinds of approaches: (1) Degree Averaging (DegAvg), (2) Adaptive Weights (AdaWeight), and (3)503

Relationship Estimation (RelaEst).504

Degree Averaging. Degree averaging, formatted as Bd = D−
1
21D−

1
2 or Bd = D−11, is the most505

common aggregation guidance, which plays the role of a low-pass filter to capture the smooth signals506

and is fixed during model training. Further, combining negative degree averaging with an identity507

aggregation guidance I ∈ RN×N can capture the difference between central nodes and neighbors, as508

used in ACM-GCN [18]. Degree averaging is simple and efficient but depends on the discriminability509

of corresponding neighborhoods.510

Adaptive Weights. Another common strategy is allowing the model to learn the appropriate aggrega-511

tion guidances Baw. GAT [28] proposes an attention mechanism to learn aggregate weights, which512

guides many subsequent heterophilous methods. To better handle heterophilous graphs, FAGCN [11]513

introduces negative-available attention weights Bnaw to capture the difference between central nodes514
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and heterophilous neighbors. Adaptive weights can personalize message aggregation for different515

neighbors, yet it’s difficult for models to attain the desired effect.516

Relationship Estimation. Recently, some methods have tried to estimate the pair-wise relationships517

Bre between nodes and use them to guide message aggregation. HOG-GCN [17] estimates the518

pair-wise homophily levels between nodes as aggregation guidances based on both attribute and519

topology space. GloGNN [19] treats all nodes as neighbors and estimates a coefficient matrix520

as aggregation guidance based on the idea of linear subspace expression. GGCN [23] estimates521

appropriate weights for message aggregation with the degrees of nodes and the similarities between522

node representations. Relationship estimation usually has theoretical guidance, which brings strong523

interpretability. However, it may also result in significant temporal and spatial complexity when524

estimating pair-wise relations.525

A.1.3 COMBINE Function526

After message aggregation, the COMBINE functions integrate messages from multiple neighborhoods527

into layer representations. COMBINE functions in heterophilous GNNs are commonly based on528

two operations: addition and concatenation, each of which has variants. To merge several messages529

together, addition (Add) is a naive idea. Further, to control the weight of messages from different530

neighborhoods, weighted addition (WeightedAdd) is applied. However, it is a global setting and531

cannot adapt to the differences between nodes. Thus, adaptive weighted addition (AdaAdd) is532

proposed, which can learn personalized message combination weights for each node, but it will result533

in additional time consumption. Although the addition is simple and efficient, some methods [12, 16]534

believe that it may blur messages from different neighborhoods, which can be harmful in heterophilous535

GNNs, so they employ a concatenation operation (Cat) to separate the messages. Nevertheless, such536

an approach not only increases the space cost but may also retain additional redundant messages. To537

address these issues, OrderedGNN [21] proposes an adaptive concatenation mechanism (AdaCat)538

that can combine multiple messages with learnable dimensions. This is an innovative and worthy539

further exploration practice, but the difficulty of model learning should also be considered.540

A.1.4 FUSE Function541

Further, the FUSE functions integrate messages from multiple layers into the final representation. For542

the FUSE function, utilizing the representation of the last layer as the final representation is widely543

accepted: Z = ZL. JKNet [31] proposes that the combination of representations from intermediate544

layers can capture both local and global information. H2GCN [12] applies it in heterophilous graphs,545

preserving messages from different localities with concatenation. Similarly, GPRGNN [20] combines546

the representations of multiple layers into the final representation through adaptive weighted addition.547

A.1.5 AGGREGATE function548

The most commonly used AGGREGATE function is AGGREGATE(Ar,Br,Z
l−1
r ) = (Ar ⊙549

Br)Z
l−1
r Wl

r. We take this as the fixed form of the AGGREGATE function following. Actually,550

the input representations Z−1r and weight matrixes Wl
r also can be specially designed. Taking551

the initial node representations Z0 as input is a relatively common approach as in APPNP [26],552

GCNII [27], FAGCN [11] and GloGNN [19]. Further, GCNII [27] adds an identity matrix Iw to the553

weight matrixes to keep more original messages. However, the methods that specially design these554

components are few and with a similar form. Thus, we don’t discuss them too much, but leave it for555

future extensions.556

A.2 Revisiting Representative GNNs with HTMP Mechanism557

In this part, we utilize HTMP mechanism to revisit the representative GNNs. We start from ho-558

mophilous GNNs as simple examples and further extend to heterophilous GNNs.559

A.2.1 GCN560

Graph Convolutional Networks (GCN) [1] utilizes a low-pass filter to gather messages from neighbors561

as follows:562

Zl = ˆ̃AZl−1Wl. (12)
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It can be revisited by HTMP with the following components:563

A0 = Ã, B0 = Bd = D̃−
1
21D̃−

1
2 ,

Zl = Zl
0 = (A0 ⊙B0)Z

l−1Wl = ˆ̃AZl−1Wl.
(13)

Specifically, GCN has a raw neighborhood indicator Ã and a degree averaging aggregation guidance564

Bd. Since there is only one neighborhood, the COMBINE function is meaningless in GCN. GCN565

utilizes a naive way to fuse messages about the original neighborhood and central nodes. However, it566

may confuse the representations in heterophilous graphs.567

A.2.2 APPNP568

PPNP [26] is also a general method whose message passing is based on Personalized PageRank569

(PPR). To avoid massive consumption, APPNP is introduced as the approximate version of PPNP570

with an iterative message-passing mechanism:571

Zl = µZ0 + (1− µ)ÂZl−1. (14)

It can be revisited by with the following components:572

A = [A0, A1], B = [B0, B1],

A0 = I, B0 = I, Wl
0 = I,

Z̃l
0 = (A0 ⊙B0)Z

0Wl
0 = Z0,

A1 = A, B1 = D−
1
21D−

1
2 , Wl

1 = I,

Z̃l
1 = (A1 ⊙B1)Z

l−1Wl
1 = ÂZl−1.

(15)

Specifically, APPNP aggregates messages from node ego and neighborhoods separately and combines573

them with a weighted addition. Compared with GCN, APPNP assigns adjustable weights to nodes,574

for controlling the proportion of ego and neighbor messages during message-passing, which becomes575

a worthy design in heterophilous graphs.576

A.2.3 GAT577

Going a step further, Graph Attention Networks (GAT) [28] allows learnable weights for each578

neighbor:579

Zl
i =

∑
j∈Ñ (i)

αijZ
l−1
j Wl, (16)

where αij is the weight for aggregating neighbor node j to center node i, whose construction process580

is as follows:581

αij =
exp(eij)∑

k∈Ñ (i) exp(eik)
,

eij = LeakyReLU
([
Zl−1

i |Zl−1
j

]
a
)
.

(17)

Let PGAT be the matrix of aggregation weights in GAT:582

PGAT
ij =

{
αij , Ãij = 1,

0, Ãij = 0.
. (18)

HTMP can revisit GAT with the following components:583

A0 = Ã, B0 = Baw = PGAT ,

Zl = Zl
0 = (A0 ⊙B0)Z

l−1Wl = PGATZl−1Wl,
(19)

which is the matrix version of Eq 16. Specifically, GAT aggregate messages from raw neighborhood584

Ã with adaptive weights Baw. Aggregation guidance with adaptive weights is a nice idea, but simple585

constraints are not enough for the model to learn ideal results.586

15



A.2.4 GCNII587

GCNII [27] is a novel homophilous GNN with two key designs: initial residual connection and588

identity mapping, which can be formatted as follows:589

Zl =
(
αZ0 + (1− α)D̃−

1
2 ÃD̃−

1
2Zl−1

) (
βWl + (1− β)Iw

)
, (20)

where α and β are two predefined parameters and Iw ∈ Rdr×dr is an identity matrix.590

From the perspective of HTMP, it can be viewed as follows:591

A = [I, Ã], B = [I, B̃d], Wl
0 = Wl

1 =
(
βWl + (1− β)Iw

)
,

Z̃l
0 = (I⊙ I)Z0

(
βWl + (1− β)Iw

)
= Z0

(
βWl + (1− β)Iw

)
,

Z̃l
1 = (Ã⊙ B̃d)Zl−1 (βWl + (1− β)Iw

)
= ˆ̃AZl−1 (βWl + (1− β)Iw

)
,

(21)

where the COMBINE function is weighted addition. Specifically, the first design of GCNII is a form592

of ego/neighbor separation, and the second design is a novel transformation weights matrix. This can593

also be specially designed, but only GCNII does this, so we won’t analyze it too much and leave it as594

a future extension.595

A.2.5 Geom-GCN596

Geom-GCN [15] is one of the most influential heterophilous GNNs, which employs the geometric597

relationships of nodes within two kinds of neighborhoods to aggregate the messages through bi-level598

aggregation:599

Zl =

(
∥

i∈{g,s}
∥

r∈R
Zl

i,r

)
Wl,

Zl
i,r = D

− 1
2

i,r Ai,rD
− 1

2
i,r Zl−1,

(22)

where ∥ denotes the concatenate operator, {g, s} is the set of neighborhoods including the original600

graph and the latent space. R is the set of geometric relationships. Ai,r is the corresponding adjacency601

matrix in neighborhood i and relationship r.602

It can be revisited by HTMP with the following components:603

A = [Ai,r|i ∈ {g, s}, r ∈ R], B = [Bd
i,r||i ∈ {g, s}, r ∈ R],

Z̃l
i,r = (Ai,r ⊙Bd

i,r)Zl−1W
l
i,r = D

− 1
2

i,r Ai,rD
− 1

2
i,r Zl−1Wl

i,r,
(23)

where the COMBINE function is concatenation and the weight matrix Wl in Eq 22 can be viewed as604

the combination of multiple Wl
i,r. Specifically, Geom-GCN redefines multiple neighborhoods based605

on the customized geometric relations in both raw and latent space. The messages are aggregated606

from each neighborhood and combined by a concatenation. This approach may be applicable to some607

datasets, yet it has weak universality.608

A.2.6 H2GCN609

H2GCN [12] is also an influential method with three key designs: ego- and neighbor-message610

separation, higher-order neighborhoods, and the combination of intermediate representations. Its611

single-layer representations are constructed as follows:612

Zl =
[
ÂZl−1 ∥ Âh2Z

l−1
]
, (24)

where Âh2 denotes the 2-order adjacency matrix with normalization.613

It can be revisited by HTMP with the following components:614

A = [A,Ah2], B = [Bd,Bd
h2], Wl

0 = Wl
1 = I,

Z̃l
0 = (A⊙Bd)Zl−1I = ÂZl−1,

Z̃l
1 = (Ah2 ⊙Bd

h2)Z
l−1I = Âh2Z

l−1,

(25)
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where the COMBINE function is concatenation. Meanwhile, H2GCN also uses the concatenation615

as the FUSE function. Specifically, H2GCN aggregates messages from the raw and 2-order neigh-616

borhoods in a layer of message passing and keeps them apart in the representations. The design617

of ego/neighbor separation is first introduced by H2GCN and gradually becomes a necessity for618

subsequent methods.619

A.2.7 SimP-GCN620

SimP-GCN [14] constructs an additional graph based on the feature similarity. It has two key concepts:621

(1) the information from the original graph and feature kNN graph should be balanced, and (2) each622

node can adjust the contribution of its node features. Specifically, the message passing in SimP-GCN623

is as follows:624

Zl =
(

diag(sl) ˆ̃A+ diag(1− sl)Âf + γDl
K

)
Zl−1Wl, (26)

where sl ∈ Rn is a learnable score vector that balances the effect of the original and feature graphs,625

Dl
K = diag(Kl

1,K
l
2, ...,K

l
n) is a learnable diagonal matrix.626

It can be revisited by HTMP with the following components:627

A = [I, Ã,Af ], B = [I, B̃d,Bd
f ],

Z̃l
0 = (I⊙ I)Zl−1Wl = Zl−1Wl,

Z̃l
1 = (Ã⊙ B̃d)Zl−1Wl = ˆ̃AZl−1Wl,

Z̃l
2 = (Af ⊙Bd

f )Z
l−1Wl = ÂfZ

l−1Wl,

(27)

where the COMBINE function is adaptive weighted addition. Specifically, SimP-GCN aggregates628

messages from ego, raw and feature-similarity-based neighborhoods, and combines them with629

node-specific learnable weights. The feature-similarity-based neighborhoods can provide more630

homophilous messages to enhance the discriminability of the compatibility matrix. However, it’s still631

limited by the amount of information on node features.632

A.2.8 FAGCN633

FAGCN [11] proposes considering both low-frequency and high-frequency information simultane-634

ously, and transferring them into the negative-allowable weights during message passing:635

Zl
i = µZ0

i +
∑
j∈Ni

αG
ij√
didj

Zl−1
j , (28)

where αG
ij can be negative as follows:636

αG
ij = tanh(gT [Xi∥Xj ]), (29)

which can form a weight matrix:637

PFAG
ij =

{
αG
ij , Aij = 1,
0, Aij = 0.

(30)

It can be revisited by HTMP with the following components:638

A = [I,A], B = [I,D−
1
2PFAGD−

1
2 ], Wl

0 = Wl
1 = I,

Z̃l
0 = (I⊙ I)Z0I = Z0,

Z̃l
1 = (A⊙D−

1
2PFAGD−

1
2 )Zl−1I = D−

1
2PFAGD−

1
2Zl−1,

(31)

where the COMBINE function is weighted addition, same as the matrix form of Eq 28. Specifically,639

FAGCN aggregates messages from node ego and raw neighborhood with negative-allowable weights.640

It has a similar form to GAT but allows for ego/neighbor separation and negative weights, which641

means the model can capture the difference between center nodes and neighbors.642
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A.2.9 GGCN643

GGCN [23] explicitly distinguishes between homophilous and heterophilous neighbors based on644

node similarities, and assigns corresponding positive and negative weights:645

Zl = αl
(
βl
0Ẑ

l + βl
1(S

l
pos ⊙ Ãl

T )Ẑ
l + βl

2(S
l
neg ⊙ Ãl

T )Ẑ
l
)
, (32)

where Ẑl = Zl−1Wl + bl, Ãl
T = Ã⊙ T l is an adjacency matrix weighted by the structure property,646

βl
0, βl

1 and βl
2 are learnable scalars. The neighbors are distinguished by the cosine similarity of node647

representations with a threshold of 0:648

Sl
ij =

{
Cosine(Zi,Zj), i ̸= j &Aij = 1,

0, otherwise. ,

Sl
pos, ij =

{
Sl
ij , Sl

ij > 0,
0, otherwise. ,

Sl
neg, ij =

{
Sl
ij , Sl

ij < 0,
0, otherwise. .

(33)

It can be revisited by HTMP with the following components:649

A = [I,Ap,An], B = [I,Sl
pos ⊙ T l,Sl

neg ⊙ (T )l],

Z̃l
0 = (I⊙ I)Zl−1Wl = Zl−1Wl,

Z̃l
1 = (Ap ⊙ Sl

pos ⊙ T l)Zl−1Wl = (Sl
pos ⊙ T l)Zl−1Wl,

Z̃l
2 = (An ⊙ Sl

neg ⊙ T l)Zl−1Wl = (Sl
neg ⊙ T l)Zl−1Wl,

(34)

where Ap and An are discriminated by the representation similarities:650

Ap,ij =

{
1, Sl

pos,ij > 0&Aij = 1,
0, otherwise. ,

An,ij =

{
1, Sl

neg,ij < 0&Aij = 1,
0, otherwise. .

(35)

The COMBINE function is an adaptive weighted addition. Specifically, GGCN divides the raw651

neighborhood into positive and negative ones based on the similarities among node presentations.652

On this basis, it aggregates messages from node ego, positive and negative neighborhoods, and653

combines them with node-specific learnable weights. This approach allows for targeted processing654

for homophilous and heterophilous neighbors, yet can suffer from the accuracy of discrimination,655

which may lead to the accumulation of errors.656

A.2.10 ACM-GCN657

ACM-GCN [18] introduces 3 channels (identity, low pass and high pass) to capture different informa-658

tion and mixes them with node-wise adaptive weights:659

Zl = diag(αl
I)Z

l−1Wl
I + diag(αl

L)ÂZl−1Wl
L + diag(αl

H)(I− Â)Zl−1Wl
H , (36)

where diag(αl
I), diag(αl

L), diag(αl
H) ∈ RN×1 are learnable weight vectors.660

It can be revisited by HTMP with the following components:661

A = [I,A,A], B = [I,Bd, I−Bd],

Z̃l
0 = (I⊙ I)Zl−1Wl

I = Zl−1Wl
I ,

Z̃l
1 = (A⊙Bd)Zl−1Wl

L = ÂZl−1Wl
L,

Z̃l
2 = (A⊙ (I−Bd))Zl−1Wl

H = (I− Â)Zl−1Wl
H ,

(37)

where the COMBINE function is adaptive weighted addition. Specifically, ACM-GCN aggregates662

node ego, low-frequency, and high-frequency messages from ego and raw neighborhoods, and663

combines them with node-wise adaptive weights. With simple but effective designs, ACM-GCN664

achieves outstanding performance, which shows that complicated designs are not necessary.665
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A.2.11 OrderedGNN666

OrderedGNN [21] is a SOTA method that introduces a node-wise adaptive dimension concatenation667

function to combine messages from neighbors of different hops:668

Zl = Pl
d ⊙ Zl−1 + (1−Pl

d)⊙ (ÂZl−1), (38)

where Pd ∈ RN×dr is designed to be matrix with each line Pl
d,i being a dimension indicate vector,669

which starts with continuous 1s while the others be 0s. In practice, to keep the differentiability, it’s670

"soften" as follows:671

P̂l
d = cumsum←

(
softmax

(
f l
ξ

(
Zl−1, ÂZl−1

)))
,

Pl
d = SOFTOR(Pl−1

d , P̂l
d),

(39)

where f l
ξ is a learnable layer that fuses two messages.672

It can be revisited by HTMP with the following components:673

A = [I,A], B = [I,Bd], Wl
0 = Wl

1 = I,

Z̃l
0 = (I⊙ I)Zl−1 = Zl−1,

Z̃l
1 = (A⊙Bd)Zl−1 = ÂZl−1,

(40)

where the COMBINE function is concatenation with node-wise adaptive dimensions. Specifically, in674

each layer, OrderedGNN aggregates messages from node ego and raw neighborhood and concatenates675

them with learnable dimensions. Combined with the multi-layer architecture, this approach can676

aggregate messages from neighbors of different hops and combine them not only with adaptive677

contributions but also as separately as possible.678

A.3 Analysis and Advice for Designing Models679

The HTMP mechanism splits the message-passing mechanism of HTGNNs into multiple modules,680

establishing connections among methods. For instance, most message passing in HTGNNs have681

personalized processing for nodes. Some methods [24, 11, 13, 22] utilize the learnable aggregation682

guidance and some others [14, 18, 21, 23] count on learnable COMBINE functions. Though683

neighborhood redefining is commonly used in HTGNNs, there are also many methods [24, 11, 18,684

20, 21] using only raw neighborhoods to handle heterophily and achieve good performance. Degree685

averaging, which plays the role of a low-pass filter to capture the smooth signals, can still work well686

in many HTGNNs [12, 14–16, 20]. High-order neighbor information may be helpful in heterophilous687

graphs. Existing HTGNNs utilize it in two ways: directly defining high-order [12, 13, 16, 17] or688

even full-connected [19] neighborhood indicators and by the multi-layer architecture of message689

passing [20, 21].690

With the aid of HTMP, we can revisit existing methods from a unified and comprehensible perspective.691

An obvious observation is that the coordination among designs is important while good combinations692

with easy designs can also achieve wonderful results. For instance, in ACM-GCN [18], the separation693

and adaptive addition of ego, low-frequency, and high-frequency messages can accommodate the694

personalized conditions of each node. OrderedGNN’s design [21], which includes an adaptive695

connection mechanism, ego/neighbor separation, and multi-layer architecture, allows discrete and696

adaptive combinations of messages from multi-hop neighborhoods. This advises us to take into697

account all components simultaneously when designing models. As an illustration, please be cautious698

about using multiple learnable components. Also, here are some additional model design tips and699

considerations. Please separate the messages from node ego and neighbors. When combining them700

afterward, whether by weighted addition or concatenation, this approach is at least harmless if not701

beneficial, especially when dealing with heterophilous graphs. Last but not least, try to design a702

model capable of personalized handling different nodes. Available components include but are not703

limited to, custom-defined neighborhood indicators, aggregation guidance with adaptive weights or704

estimated relationships, and learnable COMBINE functions. This is to accommodate the diversity705

and sparsity of neighborhoods that nodes in real-world graphs may have.706
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B Related Works707

Homophilous Graph Neural Networks. Graph Neural Networks (GNNs) have showcased impres-708

sive capabilities in handling graph-structured data. Traditional GNNs are predominantly founded709

on the assumption of homophily, broadly categorized into two classes: spectral-based GNNs and710

spatial-based GNNs. Firstly, spectral-based GNNs acquire node representations through graph711

convolution operations employing diverse graph filters [1, 32, 33]. Secondly, spatial-based meth-712

ods gather information from neighbors and update the representation of central nodes through the713

message-passing mechanism [26, 28, 34]. Moreover, for a more comprehensive understanding of714

existing homophilous GNNs, several unified frameworks [35, 36] have been proposed. Ma et al. [35]715

propose that the aggregation process in some representative homophilous GNNs can be regarded716

as solving a graph denoising problem with a smoothness assumption. Zhu et al. [36] establishes717

a connection between various message-passing mechanisms and a unified optimization problem.718

However, these methods have limitations, as the aggregated representations may lose discriminability719

when heterophilous neighbors dominate [11, 12].720

Heterophilous Graph Neural Networks. Recently, some heterophilous GNNs have emerged to721

tackle the heterophily problem [11–23]. Firstly, a commonly adopted strategy involves expanding the722

neighborhood with higher homophily or richer messages, such as high order neighborhooods [12, 13],723

feature-similarity-based neighborhoods [13, 14], and custom-defined neighborhoods [15, 22]. Sec-724

ondly, some approaches [11, 17–19, 23] aim to leverage information from heterophilous neighbors,725

considering that not all heterophily is detrimental et al.[6]. Thirdly, some methods [12, 16, 20, 21]726

adapt to heterophily by extending the combine function in message passing, creating variations for727

addition and concatenation. On this basis, several works have reviewed existing heterophilous728

methods. Zheng et al. [8] and Zhu et al. [9] identifies effective designs in heterophilous GNNs and729

analyzes the relationship between heterophily and graph-related issues. Gong et al. [10] provide730

a higher-level perspective on learning heterophilous graphs, summarizing and classifying existing731

methods based on learning strategies, architectures, and applications. However, these reviews merely732

classify and list methods hierarchically, lacking unified understandings and not exploring the reason733

behind the effectiveness of message passing in heterophilous graphs.734

C The Detail of Experiments on Synthetic Datasets735

To explore the performance impact of homophily level, node degrees and compatibility matrix (CMs)736

on simple GNNs, we conduct some experiments on synthetic datasets.737

C.1 Synthetic Datasets738

We construct synthetic graphs considering the factors of homophily, CMs and degrees. For homophily,739

we set 3 levels including Lowh (0.2), Midh (0.5), and Highh (0.8). For CMs, we set two levels of740

discriminability, including Easy and Hard. For degrees, we set two levels including Lowdeg (4)741

and Highdeg (18). Note that with a certain homophily level, we can only control the non-diagonal742

elements of CMs. Thus, there are a total of 12 synthetic graphs following the above settings. These743

synthetic graphs are based on the Cora dataset, which provides node features and labels, which means,744

only the edges are constructed. We visualize the CMs of these graphs in Figure 3. Since there is no745

significant difference in CMs between low-degree and high-degree, we only plot the high-degree746

ones. Further, the edges are randomly constructed under the guidance of these CMs and degrees to747

form the synthetic graphs.748

C.2 Experiments on Synthetic Datasets749

We use GCN to analyze the performance impact of the above factors. The semi-supervised node750

classification performance of GCN is shown in Table 5 while the baseline performance of MLP (72.54751

± 2.18) is the same among these datasets since their difference is only on edges. From these results,752

we have some observations: (1) high homophily is not necessary, GCN can also work well on low753

homophily but discriminative CM; (2) low degrees have a negative impact on performance, especially754

when the CMs are relatively weak discriminative, this also indicates that nodes with lower degrees755

are more likely to have confused neighborhoods; and (3) when dealing with nodes with confused756

neighborhoods, GCN may contaminate central nodes with their neighborhoods’ messages, which757
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Figure 3: The visualization of compatibility matrix on synthetic graphs.

Table 5: Node classification accuracy of GCN on Synthetic Datasets.

Factors Highh, Esay Highh, Hard Midh, Easy Midh, Hard Lowh, easy Lowh, Hard

Highd 99.15 ± 0.35 99.48 ± 0.24 86.42 ± 4.13 90.52 ± 1.05 89.34 ± 2.19 39.22 ± 2.34

Lowd 89.98 ± 1.59 91.25 ± 0.85 70.85 ± 1.59 70.20 ± 1.41 56.46 ± 2.63 40.91 ± 1.75

leads to performance worse than MLP. This once again remind us the importance of ego/neighbor758

separation.759

D Empirical Evidence for the Conjecture about CM760

In this part, we show the empirical evidence for the conjecture about CM as mentioned in Sec 4.761

Specifically, we plot the observed and desired CM of ACM-GCN and GPRGNN in Figure 4. The762

results show that ACM-GCN and GPRGNN have enhanced the discriminability of CM, which can be763

empirical evidence for the conjecture.764

The desired CMs are obtained as follows: For ACM-GCN, we leverage the learned weights in the765

COMBINE function to rebuild a weighted adjacency matrix Aacm based on the low-pass filter Â766

and high-pass filter I − Â, then regard Aacm as the neighborhood and calculate the desired CM.767
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Figure 4: The visualization of compatibility matrix on Amazon-Ratings.
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For GPRGNN, we utilize the leaned weights in the FUSE function to rebuild a weighted adjacency768

matrix Agpr based on the multi-hop adjacency matrixes [I,A,A2, ...,Ak] then regard Agpr as the769

neighborhood and calculate the desired CM.770

E Additional Detailed Implementation of CMGNN771

Overall Message Passing Mechanism. The overall message passing mechanism in CMGNN is772

formatted as follows:773

Zl = diag(αl
0)Z

l−1Wl
0 + diag(αl

1)ÂZl−1Wl
1 + diag(αl

2)(A
sup ⊙Bsup)Zl−1Wl

2,

Z =
L

∥
l=0

Zl,
(41)

where diag(αl
0), diag(αl

1), diag(αl
2)RN×1 are the learned combination weights introduced below.774

COMBNIE Function with Adaptive Weights. Firstly, we list the aggregated messages Z̃l
r from 3775

neighborhoods:776

Z̃l
0 = Zl−1Wl

0, Z̃
l
1 = ÂZl−1Wl

1,

Z̃l
2 = (Asup ⊙Bsup)Zl−1Wl

2.
(42)

The combination weights are learned by an MLP with Softmax:777

[αl
0, α

l
1, α

l
2] = Softmax(Sigmoid([Zl

0∥Zl
1∥Zl

2∥d]Wl
att)W

l
mix), (43)

where Wl
att ∈ R(3dr+1)×3 and Wl

mix ∈ R3×3 are two learnable weight matrixes, d is the node778

degrees which may be helpful to weights learning.779

The Message Passing of Supplementary Prototypes. In practice, the virtual prototype nodes are780

viewed as additional nodes, which have the same message passing mechanism as real nodes:781

Zptt,l = diag(αptt,l
0 )Zptt,l−1Wl

0 + diag(αptt,l
1 )ÂpttZptt,l−1Wl

1

+ diag(αptt,l
2 )(Aptt,sup ⊙Bptt,sup)Zptt,l−1Wl

2,

Zptt =
L

∥
l=0

Zptt,l,

(44)

where Asup,ptt = 1 ∈ RK×K and Bsup,ptt = ĈpttM̂ are similar with those of real nodes.782

Update Strategy for the Estimation of the Compatibility Matrix. For the sake of efficiency, we do783

not estimate the compatibility matrix in each epoch. Instead, we save it as fixed parameters and only784

update it when the evaluation performance is improved during the training.785

Predition of CMGNN. CMGNN leverages the prediction of the model during message passing. For786

initialization, nodes have the same probabilities belonging to each class. During the message passing,787

the prediction soft label Ĉ is replaced by the output of CMGNN, formatted as follow:788

Ĉ = CLA((Z)), (45)

where CLA is a classifier implemented by an MLP and Z is the final node representations.789

F More Detail about the Benchmark790

In this section, we describe the details of the new benchmarks, including (i) the reason why we need791

a new benchmark: drawbacks of existing datasets; (ii) detailed descriptions of new datasets; (iii)792

baseline methods and the codebase; and (iv) details of obtaining benchmark performance.793

F.1 Drawbacks in Existing Datasets794

As mentioned in [30], the widely used datasets Cornell, Texas, and Wisconsin2 have a too small scale795

for evaluation. Further, the original datasets Chameleon and Squirrel have an issue of data leakage,796

2https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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where some nodes may occur simultaneously in both training and testing sets. Then, the splitting797

ratio of training, validation, and testing sets are different across various datasets, which is ignored in798

previous works.799

Therefore, to build a comprehensive and fair benchmark for model effectiveness evaluation, we800

will newly organize 10 datasets with unified splitting across various homophily values in the next801

Subsection F.2.802

F.2 New Datasets803

In our benchmark, we adopt ten different types of publicly available datasets with a unified splitting804

setting (48%/32%/20% for training/validation/testing) for fair model comparison, including Roman-805

Empire [30], Amazon-Ratings [30], Chameleon-F [30], Squirrel-F [30], Actor [15], Flickr [37],806

BlogCatalog [37], Wikics [38], Pubmed [39], and Photo [29]. The datasets have a variety of807

homophily values from low to high. The statistics and splitting of these datasets are shown in Table 6.808

The detailed description of the datasets is as follows:809

Table 6: Statistics and splitting of the experimental benchmark datasets.
Dataset Nodes Edges Attributes Classes Avg. Degree Undirected Homophily Train / Valid / Test

Roman-Empire 22,662 65,854 300 18 2.9 ! 0.05 10,877 / 7,251 / 4,534
Amazon-Ratings 24,492 186,100 300 5 7.6 ! 0.38 11,756 / 7,837 / 4,899

Chameleon-F 890 13,584 2,325 5 15.3 % 0.25 427 / 284 / 179
Squirrel-F 2,223 65,718 2,089 5 29.6 % 0.22 1,067 / 711 / 445

Actor 7,600 30,019 932 5 3.9 % 0.22 3,648 / 2,432 / 1,520
Flickr 7,575 479,476 12,047 9 63.3 ! 0.24 3,636 / 2,424 / 1,515

BlogCatalog 5,196 343,486 8,189 6 66.1 ! 0.40 2,494 / 1,662 / 1,040
Wikics 11,701 431,206 300 10 36.9 ! 0.65 5,616 / 3,744 / 2,341
Pubmed 19,717 88,651 500 3 4.5 ! 0.80 9,463 / 6,310 / 3,944
Photo 7,650 238,162 745 8 31.1 ! 0.83 3,672 / 2,448 / 1,530

• Roman-Empire3 [30] is derived from the extensive article on the Roman Empire found on the810

English Wikipedia, chosen for its status as one of the most comprehensive entries on the platform.811

It contains 22,662 nodes and 65,854 edges between nodes. Each node represents an individual word812

from the text, with the total number of nodes mirroring the length of the article. An edge between813

two nodes is established under one of two conditions: the words are sequential in the text or they814

are linked in the sentence’s dependency tree, indicating a grammatical relationship where one word815

is syntactically dependent on the other. Consequently, the graph is structured as a chain graph,816

enriched with additional edges that represent these syntactic dependencies. The graph encompasses817

a total of 18 distinct node classes, with each node being equipped with 300-dimensional attributes818

obtained by fastText word embeddings [40].819

• Amazon-Ratings3 [30] is sourced from the Amazon product co-purchasing network metadata820

dataset [41]. It contains 24,492 nodes and 186,100 edges between nodes. The nodes within821

this graph represent products, encompassing a variety of categories such as books, music CDs,822

DVDs, and VHS video tapes. An edge between nodes signifies that the respective products are823

often purchased together. The objection is to forecast the average rating assigned to a product by824

reviewers, with the ratings being categorized into five distinct classes. For the purpose of node825

feature representation, we have utilized the 300-dimensional mean values derived from fastText826

word embeddings [40], extracted from the textual descriptions of the products.827

• Chameleon-F and Squirrel-F3 [30] are specialized collections of Wikipedia page-to-page net-828

works [42], of which the data leakage nodes are filtered out by [30]. Within these datasets, each829

node symbolizes a web page, and edges denote the mutual hyperlinks that connect them. The830

node features are derived from a selection of informative nouns extracted directly from Wikipedia831

articles. For the purpose of classification, nodes are categorized into five distinct groups based832

on the average monthly web traffic they receive. Specifically, Chameleon-F contains 890 nodes833

and 13,584 edges between nodes, with each node being equipped with 2,325-dimensional features.834

Squirrel-F contains 2,223 nodes and 65,718 edges between nodes, with each node being equipped835

with a 2,089-dimensional feature vector.836

3https://github.com/yandex-research/heterophilous-graphs/tree/main/data
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• Actor4 [15] is an actor-centric induced subgraph derived from the broader film-director-actor-writer837

network, as originally presented by [43]. In this refined network, each node corresponds to an838

individual actor, and the edges signify the co-occurrence of these actors on the same Wikipedia839

page. The node features are identified through the presence of certain keywords found within840

the actors’ Wikipedia entries. For the purpose of classification, the actors are organized into five841

distinct categories based on the words of the actor’s Wikipedia. Statistically, it contains 7,600842

nodes and 30,019 edges between nodes, with each node being equipped with a 932-dimensional843

feature vector.844

• Flickr and Blogcatalog5 [37] are two datasets of social networks, originating from the blog-sharing845

platform BlogCatalog and the photo-sharing platform Flickr, respectively. Within these datasets,846

nodes symbolize the individual users of the platforms, while links signify the followship relation-847

ships that exist between them. In the context of social networks, users frequently create personalized848

content, such as publishing blog posts or uploading and sharing photos with accompanying tag849

descriptions. These textual contents are consequently treated as attributes associated with each850

node. The classification objection is to predict the interest group of each user. Specifically, Flickr851

contains 7,575 nodes and 479,476 edges between nodes. The graph encompasses a total of 9852

distinct node classes, with each node being equipped with a 12047-dimensional attribute vector.853

BlogCatalog contains 5,196 nodes and 343,486 edges between nodes. The graph encompasses a854

total of 6 distinct node classes, with each node being equipped with 8189-dimensional attributes.855

• Wikics6 [38] is a dataset curated from Wikipedia, specifically designed for benchmarking the856

performance of GNNs. It is meticulously constructed around 10 distinct categories that represent857

various branches of computer science, showcasing a high degree of connectivity. The node features858

are extracted from the text of the associated Wikipedia articles, leveraging the power of pretrained859

GloVe word embeddings [44]. These features are computed as the average of the word embeddings,860

yielding a comprehensive 300-dimensional representation for each node. The dataset encompasses861

a substantial network of 11,701 nodes interconnected by 431,206 edges.862

• Pubmed7 [39] is a classical citation network consisting of 19,717 scientific publications with863

44,338 links between them. The text contents of each publication are treated as their node attributes,864

and thus each node is assigned a 500-dimensional attribute vector. The target is to predict which of865

the paper categories each node belongs to, with a total of 3 candidate classes.866

• Photo8 [29] is one of the Amazon subset network from [29]. Nodes in the graph represent goods867

and edges represent that two goods are frequently bought together. Given product reviews as868

bag-of-words node features, each node is assigned a 745-dimensional feature vector. The task is to869

map goods to their respective product category. It contains 7,650 nodes and 238,162 edges between870

nodes. The graph encompasses a total of 8 distinct product categories.871

F.3 Baseline Methods and the Codebase872

For comprehensive comparisons, we choose 13 representative homophilous and heterophilous GNNs873

as baseline methods in the benchmark, including (i) Shallow base model: MLP; (ii) Homopihlous874

GNNs: GCN, GAT, GCNII; and (iii) Heterophilous GNNs: H2GCN, MixHop, GBK-GNN, GGCN,875

GloGNN, HOGGCN, GPR-GNN. Detailed descriptions of some of these methods can be seen in876

Appendix A.2.877

To explore the performance of baseline methods on new datasets and facilitate future expansions,878

we collect the official/reproduced codes from GitHub and integrate them into a unified codebase.879

Specifically, all methods share the same data loaders and evaluation metrics. One can easily run880

different methods with only parameters changing within the codebase. The codebase is based on the881

PyTorch9 framework, supporting DGL10 and PyG11. Detailed usages of the codebase are available in882

the Readme file of the codebase.883

4https://github.com/bingzhewei/geom-gcn/tree/master/new_data/film
5https://github.com/TrustAGI-Lab/CoLA/tree/main/raw_dataset
6https://github.com/pmernyei/wiki-cs-dataset
7https://linqs.soe.ucsc.edu/datac
8https://github.com/shchur/gnn-benchmark
9https://pytorch.org

10https://www.dgl.ai
11https://www.pyg.org
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F.4 Details of Obtaining Benchmark Performance884

Following the settings in existing methods, we construct 10 random splits (48%/32%/20% for885

train/valid/test) for each dataset and report the average performance among 10 runs on them along886

with the standard deviation.887

For all baseline methods except MLP, GCN, and GAT, we conduct parameter searches within the888

search space recommended by the original papers. The searches are based on the NNI framework889

with an anneal strategy. We use Adam as the optimizer for all methods. Each method has dozens890

of search trails according to their time costs and the best performances are reported. The currently891

known optimal parameters of each method are listed in the codebase. We run these experiments892

on NVIDIA GeForce RTX 3090 GPU with 24G memory. The out-of-memory error during model893

training is reported as OOM in Table 2.894

G More Details about Experiments895

In this section, we describe the additional details of the experiments, including experimental settings896

and results.897

G.1 Additional Experimental Settings898

Our method has the same experimental settings within the benchmark, including datasets, splits,899

evaluations, hardware, optimizer and so on as in Appendix F.4.900

Parameters Search Space. We list the search space of parameters in Table 7, where patience is for901

early stopping, nhidden is the embedding dimension of hidden layers as well as the representation902

dimension dr, relu_varient decides ReLU applying before message aggregation or not as in ACM-903

GCN, structure_info determines whether to use structure information as supplement node features or904

not.905

Table 7: Parameters search space of our method.

Parameters Range
learning rate {0.001, 0.005, 0.01, 0.05}

weight_decay {0, 1e-7, 5e-7, 1e-6, 5e-6, 5e-5, 5e-4}
patience {200, 400}

dropout [0, 0.9]
λ {0, 0.01, 0.1, 1, 10}

layers {1, 2, 4, 8}
nhidden {32, 64, 128, 256}

relu_variant {True, False}
structure_info {True, False}

Ablation Study. In the ablation study, there are three variants of our methods: without SM, without906

DL, without SM and DL. For "without SM", we delete the supplementary messages during message907

passing, using only messages from node ego and raw neighborhood for combination. For "without908

DL", we simply set λ = 0 to delete the discrimination loss. For "without SM and DL", we just909

combine the above two settings.910

G.2 Additional Experimental Results911

In this subsection, we show some additional experimental results and analysis.912

G.2.1 Additional Results of CM Estimations913

The additional visualizations of CM estimations are shown in Figure 5. As we can see, our method914

can estimate quite accurate CMs among various homophily and class numbers, which provides a915

good foundation for the construction of supplementary messages.916
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Figure 5: The visualization of real and estimated CMs on other datasets.

G.2.2 Additional Performance on Nodes with Various Levels of Degrees.917

We show the additional performance on nodes with various degrees in Table 8. The results show that918

CMGNN can achieve relatively good performance on low-degree nodes, especially on heterophilous919

graphs. For the opposite results on homophilous graphs, we guess it may be due to the low-degree920

nodes in homophilous graphs having a more discriminative semantic neighborhood, such as a one-hot921

form. On the contrary, there are relatively more high-degree nodes with confused neighborhoods due922

to the randomness, which leads to the shown results on homophilous graphs.923

Table 8: Node classification accuracy comparison (%) among nodes with different degrees.

Dataset Roman-Empire Chameleon-F Actor
Deg. Prop.(%) 0∼20 20∼40 40∼60 60∼80 80∼100 0∼20 20∼40 40∼60 60∼80 80∼100 0∼20 20∼40 40∼60 60∼80 80∼100

Ours 88.60 87.00 85.59 86.25 74.33 40.73 45.28 56.02 46.64 39.93 35.56 37.14 38.40 36.03 36.84

ACM-GCN 79.00 77.87 73.52 72.09 53.77 39.51 41.21 52.25 45.80 47.09 34.48 36.58 36.27 34.63 37.46
OrderedGNN 88.60 87.00 85.56 84.68 69.69 43.21 44.51 49.16 38.27 32.23 35.94 38.06 37.87 35.77 37.15

GCNII 86.79 85.14 85.20 84.75 71.09 34.84 42.56 47.50 40.45 41.84 36.89 37.20 38.53 38.02 36.99

Dataset Squirrel Pubmed Photo
Deg. Prop.(%) 0∼20 20∼40 40∼60 60∼80 80∼100 0∼20 20∼40 40∼60 60∼80 80∼100 0∼20 20∼40 40∼60 60∼80 80∼100

Ours 45.37 47.10 45.25 34.86 37.10 89.32 89.33 89.31 92.62 89.39 88.88 95.76 96.96 98.27 97.55

ACM-GCN 41.12 44.30 44.22 32.97 42.10 89.60 89.54 89.58 92.02 89.23 89.88 95.20 96.95 98.00 97.56

OrderedGNN 43.78 45.53 43.09 27.90 28.48 89.67 89.37 89.45 92.54 89.02 90.13 95.77 97.14 98.24 97.58
GCNII 43.08 45.55 43.65 33.07 38.05 89.77 89.50 89.24 92.45 88.86 88.89 95.36 97.12 97.83 96.64
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G.2.3 Efficiency Study924

Complexity Analysis. The number of learnable parameters in layer l of CMGNN is 3dr(dr +1)+ 9,925

compared to drdr in GCN and 3dr(dr + 1) + 9 in ACM-GCN. The time complexity of layer l is926

composed of 3 parts (i) AGGREGATE function: O(Ndr
2), O(Ndr

2+Mdr) and O(Ndr
2+NKdr)927

for identity neighborhood, raw neighborhood and the supplementary neighborhood respectively, where928

M = |E| denotes the number of edges; (ii) COMBINE function: O(3N(3dr+1)+12N) for adaptive929

weights calculating and O(3N) for combination; (iii) FUSE function: O(1) for concatenations.930

To this end, the time complexity of CMGNN is O(Ndr(3dr + K + 9) + Mdr + 18N + 1), or931

O(Ndr
2 +Mdr) for brevity.932

Experimental Running Time. we report the actual average running time (ms per epoch) of baseline933

methods and CMGNN in Table 9 for comparison. The results demonstrate that CMGNN can balance934

both performance effectiveness and running efficiency.935

Table 9: Effiency study results of average model running time (ms/epoch). OOM denotes out-of-
memory error during the model training.

Method Roman-Empire Amazon-Ratings Chameleon-F Squirrel-F Actor Flickr BlogCatalog Wikics Pubmed Photo
MLP 7.8 7.0 6.1 6.5 6.3 9.1 6.7 6.4 6.1 5.8
GCN 33.8 33.4 7.9 20.6 34.4 37.2 30.4 25.5 35.6 28.1
GAT 15.9 67.3 10.3 14.0 30.8 66.2 17.6 26.8 33.4 36.0

GCNII 29.4 28.4 37.3 19.6 37.7 84.2 97.6 20.7 258.0 46.9
H2GCN 20.0 31.2 17.2 32.4 55.6 415.7 165.5 332.8 39.0 87.6
MixHop 434.6 486.3 21.9 31.0 30.6 90.4 81.6 277.4 89.5 172.2

GBK-GNN 119.8 191.8 31.0 238.1 157.9 OOM OOM 198.6 137.0 193.3
GGCN OOM OOM 55.7 42.1 199.8 111.2 108.7 226.6 2290.8 105.2

GloGNN 25.4 19.3 121.8 23.3 1292 562.9 30.9 1658.1 43.2 677.4
HOGGCN OOM OOM 25.2 54.3 1002.9 707.3 367.4 1406 OOM 655.3
GPR-GNN 15.9 12.5 22.3 23.2 16.7 15.9 14.7 49.8 13.2 13.1
ACM-GCN 56.7 56.7 26.1 29.7 22.5 60.7 31.7 42.4 37.1 40.1

OrderedGNN 86.0 110.8 49.5 60.1 67.8 107.0 88.3 116.9 88.1 78.2

CMGNN 51.5 93.5 62.5 64.7 19.0 52.5 69.8 44.0 102.9 20.4
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paper’s contributions and scope?939

Answer: [Yes]940

Justification: The contributions and scope of this paper are included in the abstract and941

introduction.942

Guidelines:943

• The answer NA means that the abstract and introduction do not include the claims944

made in the paper.945
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NA answer to this question will not be perceived well by the reviewers.948
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much the results can be expected to generalize to other settings.950
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violations of these assumptions (e.g., independence assumptions, noiseless settings,962

model well-specification, asymptotic approximations only holding locally). The authors963

should reflect on how these assumptions might be violated in practice and what the964

implications would be.965

• The authors should reflect on the scope of the claims made, e.g., if the approach was966

only tested on a few datasets or with a few runs. In general, empirical results often967

depend on implicit assumptions, which should be articulated.968

• The authors should reflect on the factors that influence the performance of the approach.969

For example, a facial recognition algorithm may perform poorly when image resolution970

is low or images are taken in low lighting. Or a speech-to-text system might not be971

used reliably to provide closed captions for online lectures because it fails to handle972
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Answer: [Yes]987

28



Justification: We provide the formalization analysis in Appendix.988
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-991

referenced.992

• All assumptions should be clearly stated or referenced in the statement of any theorems.993

• The proofs can either appear in the main paper or the supplemental material, but if994
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proof sketch to provide intuition.996

• Inversely, any informal proof provided in the core of the paper should be complemented997
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4. Experimental Result Reproducibility1000
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Answer: [Yes]1004
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nature of the contribution. For example1024
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In the case of closed-source models, it may be that access to the model is limited in1035
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cite the original paper and mark the URL in both papers and codebase.1185

Guidelines:1186

• The answer NA means that the paper does not use existing assets.1187

• The authors should cite the original paper that produced the code package or dataset.1188

• The authors should state which version of the asset is used and, if possible, include a1189

URL.1190

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1191

• For scraped data from a particular source (e.g., website), the copyright and terms of1192

service of that source should be provided.1193
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• If assets are released, the license, copyright information, and terms of use in the1194

package should be provided. For popular datasets, paperswithcode.com/datasets1195

has curated licenses for some datasets. Their licensing guide can help determine the1196

license of a dataset.1197

• For existing datasets that are re-packaged, both the original license and the license of1198

the derived asset (if it has changed) should be provided.1199

• If this information is not available online, the authors are encouraged to reach out to1200

the asset’s creators.1201

13. New Assets1202

Question: Are new assets introduced in the paper well documented and is the documentation1203

provided alongside the assets?1204

Answer: [Yes]1205

Justification: We provide a public codebase along with an illustrative README file.1206

Guidelines:1207

• The answer NA means that the paper does not release new assets.1208

• Researchers should communicate the details of the dataset/code/model as part of their1209

submissions via structured templates. This includes details about training, license,1210

limitations, etc.1211

• The paper should discuss whether and how consent was obtained from people whose1212

asset is used.1213

• At submission time, remember to anonymize your assets (if applicable). You can either1214

create an anonymized URL or include an anonymized zip file.1215

14. Crowdsourcing and Research with Human Subjects1216

Question: For crowdsourcing experiments and research with human subjects, does the paper1217

include the full text of instructions given to participants and screenshots, if applicable, as1218

well as details about compensation (if any)?1219

Answer: [NA]1220

Justification: This paper does not involve crowdsourcing nor research with human subjects.1221

Guidelines:1222

• The answer NA means that the paper does not involve crowdsourcing nor research with1223

human subjects.1224

• Including this information in the supplemental material is fine, but if the main contribu-1225

tion of the paper involves human subjects, then as much detail as possible should be1226

included in the main paper.1227

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1228

or other labor should be paid at least the minimum wage in the country of the data1229

collector.1230

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1231

Subjects1232

Question: Does the paper describe potential risks incurred by study participants, whether1233

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1234

approvals (or an equivalent approval/review based on the requirements of your country or1235

institution) were obtained?1236

Answer: [NA]1237

Justification: This paper does not involve crowdsourcing nor research with human subjects.1238

Guidelines:1239

• The answer NA means that the paper does not involve crowdsourcing nor research with1240

human subjects.1241

• Depending on the country in which research is conducted, IRB approval (or equivalent)1242

may be required for any human subjects research. If you obtained IRB approval, you1243

should clearly state this in the paper.1244
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• We recognize that the procedures for this may vary significantly between institutions1245

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1246

guidelines for their institution.1247

• For initial submissions, do not include any information that would break anonymity (if1248

applicable), such as the institution conducting the review.1249

34


	Introduction
	Preliminaries
	Revisiting Message Passing in Heterophilous GNNs.
	Why Does Message Passing Still Remain Effective in Heterophilous Graphs?
	Method
	Benchmarks and Experiments
	New Benchmark
	Main Results
	Ablation Study
	Visualization of Compatibility Matrix Estimation
	Performance on Nodes with Various Levels of Degrees

	Conclusion and Limitations
	More Details of HTMP Mechanism
	Additional Analysis of HTMP Mechanism
	Neighborhood Indicators
	Aggregation Guidance
	COMBINE Function
	FUSE Function
	AGGREGATE function

	Revisiting Representative GNNs with HTMP Mechanism
	GCN
	APPNP
	GAT
	GCNII
	Geom-GCN
	H2GCN
	SimP-GCN
	FAGCN
	GGCN
	ACM-GCN
	OrderedGNN

	Analysis and Advice for Designing Models

	Related Works
	The Detail of Experiments on Synthetic Datasets
	Synthetic Datasets
	Experiments on Synthetic Datasets

	Empirical Evidence for the Conjecture about CM
	Additional Detailed Implementation of CMGNN
	More Detail about the Benchmark
	Drawbacks in Existing Datasets
	New Datasets
	Baseline Methods and the Codebase
	Details of Obtaining Benchmark Performance

	More Details about Experiments
	Additional Experimental Settings
	Additional Experimental Results
	Additional Results of CM Estimations
	Additional Performance on Nodes with Various Levels of Degrees.
	Efficiency Study



