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ABSTRACT

Reinforcement learning (RL) has achieved phenomenal success in various domains.
However, its data-driven nature also introduces new vulnerabilities that can be
exploited by malicious opponents. Recent work shows that a well-trained RL agent
can be easily manipulated by strategically perturbing its state observations at the
test stage. Existing solutions either introduce a regularization term to improve the
smoothness of the trained policy against perturbations or alternatively train the
agent’s policy and the attacker’s policy. However, the former does not provide
sufficient protection against strong attacks, while the latter is computationally
prohibitive for large environments. In this work, we propose a new robust RL algo-
rithm for deriving a pessimistic policy to safeguard against an agent’s uncertainty
about true states. This approach is further enhanced with belief state inference and
diffusion-based state purification to reduce uncertainty. Empirical results show that
our approach obtains superb performance under strong attacks and has a compara-
ble training overhead with regularization-based methods. Our code is available at
https://github.com/SliencerX/Belief-enriched-robust-Q-learning.

1 INTRODUCTION

As one of the major paradigms for data-driven control, reinforcement learning (RL) provides a
principled and solid framework for sequential decision-making under uncertainty. By incorporating
the approximation capacity of deep neural networks, deep reinforcement learning (DRL) has found
impressive applications in robotics (Levine et al., 2016), large generative models (OpenAI, 2023),
and autonomous driving (Kiran et al., 2021), and obtained super-human performance in tasks such as
Go (Silver et al., 2016) and Gran Turismo (Wurman et al., 2022).

However, an RL agent is subject to various types of attacks, including state and reward perturbation,
action space manipulation, and model inference and poisoning (Ilahi et al., 2022). Recent studies
have shown that an RL agent can be manipulated by poisoning its observation (Huang et al., 2017;
Zhang et al., 2020a) and reward signals (Huang & Zhu, 2019), and a well-trained RL agent can be
easily defeated by a malicious opponent behaving unexpectedly (Gleave et al., 2020). In particular,
recent research has demonstrated the brittleness (Zhang et al., 2020a; Sun et al., 2021) of existing RL
algorithms in the face of adversarial state perturbations, where a malicious agent strategically and
stealthily perturbs the observations of a trained RL agent, causing a significant loss of cumulative
reward. Such an attack can be implemented in practice by exploiting the defects in the agent’s
perception component, e.g., sensors and communication channels. This raises significant concerns
when applying RL techniques in security and safety-critical domains.

Several solutions have been proposed to combat state perturbation attacks. Among them, SA-
MDP (Zhang et al., 2020a) imposes a regularization term in the training objective to improve the
smoothness of the learned policy under state perturbations. This approach is improved in WocaR-
RL (Liang et al., 2022) by incorporating an estimate of the worst-case reward under attacks into the
training objective. In a different direction, ATLA (Zhang et al., 2021) alternately trains the agent’s
policy and the attacker’s perturbation policy, utilizing the fact that under a fixed agent policy, the
attacker’s problem of finding the optimal perturbations can be viewed as a Markov decision process
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(MDP) and solved by RL. This approach can potentially lead to a more robust policy but incurs
high computational overhead, especially for large environments such as Atari games with raw pixel
observations.

Despite their promising performance in certain RL environments, the above solutions have two major
limitations. First, actions are directly derived from a value or policy network trained using true states,
despite the fact that the agent can only observe perturbed states at the test stage. This mismatch
between the training and testing leads to unstable performance at the test stage. Second, most existing
work does not exploit historical observations and the agent’s knowledge about the underlying MDP
model to characterize and reduce uncertainty and infer true states in a systematic way.

In this work, we propose a pessimistic DQN algorithm against state perturbations by viewing the
defender’s problem as finding an approximate Stackelberg equilibrium for a two-player Markov game
with asymmetric observations. Given a perturbed state, the agent selects an action that maximizes
the worst-case value across possible true states. This approach is applied at both training and test
stages, thus removing the inconsistency between the two. We further propose two approaches to
reduce the agent’s uncertainty about true states. First, the agent maintains a belief about the actual
state using historical data, which, together with the pessimistic approach, provides a strong defense
against large perturbations that may change the semantics of states. Second, for games with raw
pixel input, such as Atari games, we train a diffusion model using the agent’s knowledge about valid
states, which is then used to purify observed states. This approach provides superb performance
under commonly used attacks, with the additional advantage of being agnostic to the perturbation
level. Our method achieves high robustness and significantly outperforms existing solutions under
strong attacks while maintaining comparable performance under relatively weak attacks. Further, its
training complexity is comparable to SA-MDP and WocaR-RL and is much lower than alternating
training-based approaches.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

A reinforcement learning environment is usually formulated as a Markov Decision Process (MDP),
denoted by a tuple ⟨S,A, P,R, γ⟩, where S is the state space and A is the action space. P :
S × A → ∆(S) is the transition function of the MDP, where P (s′|s, a) gives the probability of
moving to state s′ given the current state s and action a. R : S × A → R is the reward function
where R(s, a) = E(Rt|st−1 = s, at−1 = a) and Rt is the reward in time step t. Finally, γ is
the discount factor. An RL agent wants to maximize its cumulative reward G = ΣT

t=0γ
tRt over

a time horizon T ∈ Z+ ∪ {∞}, by finding a (stationary) policy π : S → ∆(A), which can be
either deterministic or stochastic. For any policy π, the state-value and action-value functions
are two standard ways to measure how good π is. The state-value function satisfies the Bellman
equation Vπ(s) = Σa∈Aπ(a|s)[R(s, a) + γΣs′∈SP (s′|s, a)Vπ(s

′)] and the action-value function
satisfies Qπ(s, a) = R(s, a) + γΣs′∈SP (s′|s, a)[Σa′∈Aπ(a

′|s′)Qπ(s
′, a′)]. For MDPs with a finite

or countably infinite state space and a finite action space, there is a deterministic and stationary
policy that is simultaneously optimal for all initial states s. For large and continuous state and action
spaces, deep reinforcement learning (DRL) incorporates the powerful approximation capacity of deep
learning into RL and has found notable applications in various domains.

2.2 STATE ADVERSARIAL ATTACKS IN RL

(a) Original (b) Perturbed (c) Original (d) Perturbed

Figure 1: Examples of perturbed states : (a) and (b)
show states in a continuous state Gridworld, and (c) and
(d) show states in the Atari Pong game.

First introduced in Huang et al. (2017), a state
perturbation attack is a test stage attack targeting
an agent with a well-trained policy π. At each
time step, the attacker observes the true state st
and generates a perturbed state s̃t (see Figure 1
for examples). The agent observes s̃t but not st
and takes an action at according to π(·|s̃t). The
attacker’s goal is to minimize the cumulative
reward that the agent obtains. Note that the
attacker only interferes with the agent’s observed state but not the underlying MDP. Thus, the true
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state in the next time step is distributed according to P (st+1|st, π(·|s̃t)). To limit the attacker’s
capability and avoid being detected, we assume that s̃t ∈ Bϵ(st) where Bϵ(st) is the lp ball centered
at st for some norm p. We consider a strong adversary that has access to both the MDP and the
agent’s policy π and can perturb at every time step. With these assumptions, it is easy to see that the
attacker’s problem given a fixed π can also be formulated as an MDP ⟨S, S, P̃ , R̃, γ⟩, where both
the state and action spaces are S, the transition probability P̃ (s′|s, s̃) =

∑
a π(a|s̃)P (s′|s, a), and

reward R̃(s, s̃) = −
∑

a π(a|s̃)R(s, a). Thus, an RL algorithm can be used to find a (nearly) optimal
attack policy. Further, we adopt the common assumption (Zhang et al., 2020a; Liang et al., 2022) that
the agent has access to an intact MDP at the training stage and has access to ϵ (or an estimation of it).
As we discuss below, our diffusion-based approach is agnostic to ϵ. Detailed discussions of related
work on attacks and defenses in RL, including and beyond state perturbation, are in Appendix B.

3 PESSIMISTIC Q-LEARNING WITH STATE INFERENCE AND PURIFICATION

Figure 2: Belief-enriched robust RL
against state perturbations. Note that the
agent can only access the true state st
and reward Rt at the training stage.

In this section, we first formulate the robust RL prob-
lem as a two-player Stackelberg Markov game. We then
present our pessimistic Q-learning algorithm that derives
maximin actions from the Q-function using perturbed
states as the input to safeguard against the agent’s uncer-
tainty about true states. We further incorporate a belief
state approximation scheme and a diffusion-based state pu-
rification scheme into the algorithm to reduce uncertainty.
Our extensions of the vanilla DQN algorithm that incor-
porates all three mechanisms are given in Algorithms 4-7
in Appendix E. We further give a theoretical result that
characterizes the performance loss of being pessimistic.

3.1 STATE-ADVERSARIAL MDP AS A STACKELBERG
MARKOV GAME WITH ASYMMETRIC OBSERVATIONS

The problem of robust RL under adversarial state perturbations can be viewed as a two-player Markov
game, which motivates our pessimistic Q-learning algorithm given in the next subsection. The two
players are the RL agent and the attacker with their state and action spaces and reward functions
described in Section 2.2. The RL agent wants to find a policy π : S → ∆(A) that maximizes its
long-term return, while the attacker wants to find an attack policy ω : S → S to minimize the RL
agent’s cumulative reward. The game has asymmetric observations in that the attacker can observe
the true states while the RL agent observes the perturbed states only. The agent’s value functions for
a given pair of policies π and ω satisfy the Bellman equations below.
Definition 1. Bellman equations for state and action value functions under a state adversarial attack:

Vπ◦ω(s) = Σa∈Aπ(a|(ω(s))[R(s, a) + γΣs′∈SP (s′|s, a)Vπ◦ω(s
′)];

Qπ◦ω(s, a) = R(s, a) + γΣs′∈SP (s′|s, a)[Σa′∈Aπ(a
′|ω(s′))Qπ◦ω(s

′, a′)].

To achieve robustness, a common approach is to consider a Stackelberg equilibrium by viewing
the RL agent as the leader and the attacker as the follower. The agent first commits to a policy
π. The attack observes π and identifies an optimal attack, denoted by ωπ, as a response, where
ωπ(s) = argmins̃∈Bϵ(s)

Σa′∈Aπ(a
′|s̃)Q(s, a′). As the agent has access to the intact environment at

the training stage and the attacker’s budget ϵ, it can, in principle, identify a robust policy proactively
by simulating the attacker’s behavior. Ideally, the agent wants to find a policy π∗ that reaches a
Stackleberg equilibrium of the game, which is defined as follows.
Definition 2. A policy π∗ is a Stackelberg equilibrium of a Markov game if

∀s ∈ S,∀π, Vπ∗◦ωπ∗ (s) ≥ Vπ◦ωπ
(s).

A Stackelberg equilibrium ensures that the agent’s policy π∗ is optimal (for any initial state) against
the strongest possible adaptive attack and, therefore, provides a robustness guarantee. However,
previous work has shown that due to the noisy observations, finding a stationary policy that is optimal
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for every initial state is generally impossible (Zhang et al., 2020a). Existing solutions either introduce
a regularization term to improve the smoothness of the policy or alternatively train the agent’s policy
and attacker’s policy. In this paper, we take a different path with the goal of finding an approximate
Stackelberg equilibrium (the accurate definition is in Appendix D.3), which is further improved
through state prediction and denoising. Figure 2 shows the high-level framework of our approach,
which is discussed in detail below.

3.2 STRATEGY I - PESSIMISTIC Q-LEARNING AGAINST THE WORST CASE

Both value-based (Könönen, 2004) and policy-based (Zheng et al., 2022; Vu et al., 2022) approaches
have been studied to identify the Stackelberg equilibrium (or an approximation of it) of a Markov
game. In particular, Stackelberg Q-learning (Könönen, 2004) maintains separate Q-functions for the
leader and the follower, which are updated by solving a stage game associated with the true state
in each time step. However, these approaches do not apply to our problem as they all require both
players to have access to the true state in each time step. In contrast, the RL agent can only observe
the perturbed state. Thus, it needs to commit to a policy for all states centered around the observed
state instead of a single action, as in the stage game of Stackelberg Q-learning.

In this work, we present a pessimistic Q-learning algorithm (see Algorithm 1) to address the above
challenge. The algorithm maintains a Q-function with the true state as the input, similar to vanilla
Q-learning. But instead of using a greedy approach to derive the target policy or a ϵ-greedy approach
to derive the behavior policy from the Q-function, a maximin approach is used in both cases. In
particular, the target policy is defined as follows (line 5). Given a perturbed state s̃, the agent picks an
action that maximizes the worst-case Q-value across all possible states in Bϵ(s̃), which represents
the agent’s uncertainty. We abuse the notation a bit and let π(·) denote a deterministic policy in the
rest of the paper since we focus on Q-learning-based algorithms in this paper. The behavioral policy
is defined similarly by adding exploration (lines 8 and 9). The attacker’s policy ωπ is derived as the
best response to the agent’s policy (line 6), where a perturbed state is derived by minimizing the Q
value given the agent’s policy.

A few remarks follow. First, the maximin scheme is applied when choosing an action with exploration
(line 9) and when updating the Q-function (line 11), and a perturbed state is used as the input in
both cases. In contrast, in both SA-DQN (Zhang et al., 2020a) and WocaR-DQN (Liang et al.,
2022), actions are obtained from the Q-network using true states at the training stage, while the same
network is used at the test stage to derive actions from perturbed states. Our approach removes this
inconsistency, leading to better performance, especially under relatively large perturbations. Second,
instead of the pessimistic approach, we may also consider maximizing the average case or the best
case across Bϵ(s̃) when deriving actions, which provides a different tradeoff between robustness and
efficiency. Third, we show how policies are derived from the Q-function to help explain the idea of
the algorithm. Only the Q-function needs to be maintained when implementing the algorithm.

Figure 3 in the Appendix C illustrates the relations between a true state s, the perturbed state s̃, the
worst-case state s̄ ∈ Bϵ(s̃) for which the action is chosen (line 5). In particular, it shows that the true
state s must land in the ϵ-ball centered at s̃, and the worst-case state the RL agent envisions is at most
2ϵ away from the true state. This gap causes performance loss that will be studied in Section 3.6.
For environments with large state and action spaces, we apply the above idea to derive pessimistic
DQN algorithms (see Algorithms 4- 7 in Appendix E), which further incorporate state inference and
purification discussed below. Although we focus on value-based approaches in this work, the key
ideas can also be incorporated into Stackelberg policy gradient (Vu et al., 2022) and Stackelberg
actor-critic (Zheng et al., 2022) approaches, which is left to our future work.

3.3 STRATEGY II - REDUCING UNCERTAINTY USING BELIEFS

In Algorithm 1, the agent’s uncertainty against the true state is captured by the ϵ-ball around the
perturbed state. A similar idea is adopted in previous regularization-based approaches (Zhang et al.,
2020a; Liang et al., 2022). For example, SA-MDP (Zhang et al., 2020a) regulates the maximum
difference between the top-1 action under the true state s and that under the perturbed state across
all possible perturbed states in Bϵ(s). However, this approach is overly conservative and ignores
the temporal correlation among consecutive states. Intuitively, the agent can utilize the sequence of
historical observations and actions {(s̃τ , aτ )}τ<t∪{s̃t} and the transition dynamics of the underlying
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Algorithm 1: Pessimistic Q-Learning
Result: Robust Q-function Q

1 Initialize Q(s, a) = 0 for all s ∈ S, a ∈ A;
2 for epsiode = 1,2,... do
3 Initialize true state s
4 repeat
5 Update agent’s policy: ∀s̃ ∈ S, π(s̃) = argmaxa∈Amins̄∈Bϵ(s̃)Q(s̄, a);
6 Update attacker’s policy: ∀s ∈ S, ωπ(s) = argmins̃∈Bϵ(s)Q(s, π(s̃));
7 Generate perturbed state s̃ = ωπ(s);
8 Choose a from s̃ using π with exploration:
9 a = π(s̃) with probability 1− ϵ′; otherwise a is a random action;

10 Take action a, observe reward R and next true state s′;
11 Update Q-function: Q(s, a) = Q(s, a) + α

[
R(s, a) + γQ(s′, π(ωπ(s

′)))−Q(s, a)
]
;

12 s = s′;
13 until s is terminal;
14 end

MDP to reduce its uncertainty of the current true state st. This is similar to the belief state approach
in partially observable MDPs (POMDPs). The key difference is that in a POMDP, the agent’s
observation ot in each time step t is derived from a fixed observation function with ot = O(st, at).
In contrast, the perturbed state s̃t is determined by the attacker’s policy ω, which is non-stationary at
the training stage and is unknown to the agent at the test stage.

To this end, we propose a simple approach to reduce the agent’s worst-case uncertainty as follows.
Let Mt ⊆ Bϵ(s̃t) denote the agent’s belief about all possible true states at time step t. Initially, we
let M0 = Bϵ(s̃0). At the end of the time step t, we update the belief to include all possible next
states that is reachable from the current state and action with a non-zero probability. Formally, let
M ′

t = {s′ ∈ S : ∃s ∈ Mt, P (s′|s, at) > 0}. After observing the perturbed state s̃t+1, we then
update the belief to be the intersection of M ′

t and Bϵ(s̃t+1), i.e., Mt+1 = M ′
t ∩ Bϵ(s̃t+1), which

gives the agent’s belief at time t+ 1. Figure 3 in the Appendix C demonstrates this process, and the
formal belief update algorithm is given in Algorithm 2 in Appendix E. Our pessimistic Q-learning
algorithm can easily incorporate the agent’s belief. In each time step t, instead of using Bϵ(s̃) in
Algorithm 1 (line 5), the current belief Mt can be used. It is an interesting open problem to develop a
strong attacker that can exploit or even manipulate the agent’s belief.

Belief approximation in large state space environments. When the state space is high-dimensional
and continuous, computing the accurate belief as described above becomes infeasible as computing
the intersection between high-dimensional spaces is particularly hard. Previous studies have proposed
various techniques to approximate the agent’s belief about true states using historical data in partially
observable settings, including using classical RNN networks (Ma et al., 2020) and flow-based
recurrent belief state learning (Chen et al., 2022). In this work, we adapt the particle filter recurrent
neural network (PF-RNN) technique developed in (Ma et al., 2020) to our setting due to its simplicity.
In contrast to a standard RNN-based belief model B : (S × A)t → H that maps the historical
observations and actions to a deterministic latent state ht, PF-RNN approximates the belief b(ht)
by κp weighted particles in parallel, which are updated using the particle filter algorithm according
to the Bayes rule. An output function fout then maps the weighted average of these particles in the
latent space to a prediction of the true state in the original state space.

To apply PF-RNN to our problem, we first train the RNN-based belief model N and the prediction
function fout before learning a robust RL policy. This is achieved by using C trajectories generated
by a random agent policy and a random attack policy in an intact environment. Then at each time
step t during the RL training and testing, we use the belief model N and historical observations and
actions to generate κp particles, map each of them to a state prediction using fout, and take the set of
κp predicted states as the belief Mt about the true state. PF-RNN includes two versions that support
LSTM and GRU, respectively, and we use PF-LSTM to implement our approach. We define the
complete belief model utilizing PF-RNN as Np ≜ fout ◦B.
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We remark that previous work has also utilized historical data to improve robustness. For example,
Xiong et al. (2023) uses an LSTM-autoencoder to detect and denoise abnormal states at the test stage,
and Zhang et al. (2021) considers an LSTM-based policy in alternating training. However, none of
them explicitly approximate the agent’s belief about true states and use it to derive a robust policy.

3.4 STRATEGY III - PURIFYING INVALID OBSERVATIONS VIA DIFFUSION

For environments that use raw pixels as states, such as Atari Games, perturbed states generated by
adding bounded noise to each pixel are mostly “invalid” in the following sense. Let S0 ⊆ S denote
the set of possible initial states. Let S0 denote the set of states that are reachable from any initial
state in S0 by following an arbitrary policy. Then perturbed states will fall outside of S0 with high
probability. This is especially the case for l∞ attacks that bound the perturbation applied to each
pixel as commonly assumed in existing work (see Appendix C.2 for an example). This observation
points to a fundamental limitation of existing perturbation attacks that can be utilized by an RL agent
to develop a more efficient defense.

One way to exploit the above observation is to identify a set of “valid” states near a perturbed state
and use that as the belief of the true state. However, it is often difficult to check if a state is valid
or not and to find such a set due to the fact that raw pixel inputs are usually high-dimensional.
Instead, we choose to utilize a diffusion model to purify the perturbed states, which obtains promising
performance, as we show in our empirical results.

To this end, we first sample C ′ trajectories from a clean environment using a pre-trained policy
without attack to estimate a state distribution q(·), which is then used to train a Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020). Then during both RL training and testing, when the
agent receives a perturbed state s̃, it applies the reverse process of the diffusion model for k steps to
generate a set of purified states as the belief Mt of size κd, where k and κd are hyperparameters. We
let Nd : S → Sκd denote a diffusion-based belief model. Note that rather than starting from random
noise in the reverse process as in image generation, we start from a perturbed state that the agent
receives and manually add a small amount of pixel-wise noise ϕ to it before denoising, inspired by
denoised smoothing in deep learning (Xiao et al., 2022). We observe in experiments that using a large
k does not hurt performance, although it increases the running time. Thus, unlike previous work,
this approach is agnostic to the accurate knowledge of attack budget ϵ. One problem with DDPM,
however, is that it incurs high overhead to train the diffusion model and sample from it, making it
less suitable for real-time decision-making. To this end, we further evaluate a recently developed
fast diffusion technique, Progressive Distillation (Salimans & Ho, 2022), which distills a multi-step
sampler into a few-step sampler. As we show in the experiments, the two diffusion models provide
different tradeoffs between robustness and running time. A more detailed description of the diffusion
models and our adaptations are given in Appendix B.6.

3.5 PESSIMISTIC DQN WITH APPROXIMATE BELIEFS AND STATE PURIFICATION

Built upon the above ideas, we develop two pessimistic versions of the classic DQN algorithm (Mnih
et al., 2013) by incorporating approximate belief update and diffusion-based purification, denoted by
BP-DQN and DP-DQN, respectively. The details are provided in Algorithms 4- 7 in Appendix E.
Below we highlight the main differences between our algorithms and vanilla DQN.

The biggest difference lies in the loss function, where we incorporate the maximin search into the
loss function to target the worst case. Concretely, instead of setting yi = Ri + γmaxa′∈AQ

′(si, a
′)

as in vanilla DQN, we set yi = Ri + γmaxa′∈Aminm∈Mi
Q′(m, a′) where Ri, si,Mi are sampled

from the replay buffer and Q′ is the target network. Similarly, instead of generating actions using the
ϵ-greedy (during training) or greedy approaches (during testing), the maximin search is adopted.

To simulate the attacker’s behavior, one needs to identify the perturbed state s̃ that minimizes the
Q value under the current policy π subject to the perturbation constraint. As finding the optimal
attack under a large state space is infeasible, we solve the attacker’s problem using projected gradient
descent (PGD) with η iterations to find an approximate attack similar to the PGD attack in (Zhang
et al., 2020a). In BP-DQN where approximate beliefs are used, the history of states and actions is
saved to generate the belief in each round. In DP-DQN where diffusion is used, the reverse process is
applied to both perturbed and true states. That is, the algorithm keeps the purified version of the true

6



Published as a conference paper at ICLR 2024

states instead of the original states in the replay buffer during training. We find this approach helps
reduce the gap between purified states and true states. In both cases, instead of training a robust policy
from scratch, we find that it helps to start with a pre-trained model obtained from an attack-free MDP.

We want to highlight that BP-DQN is primarily designed for environments with structural input,
whereas DP-DQN is better suited for environments with raw pixel input. Both approaches demonstrate
exceptional performance in their respective scenarios, even when faced with strong attacks, as shown
in our experiments. Thus, although combining the two methods by integrating history-based belief
and diffusion techniques may seem intuitive, this is only needed when confronted with an even more
formidable attacker, such as one that alters both semantic and pixel information in Atari games.

3.6 BOUNDING PERFORMANCE LOSS DUE TO PESSIMISM

In this section, we characterize the impact of being pessimistic in selecting actions. To obtain insights,
we choose to work on a pessimistic version of the classic value iteration algorithm (see Algorithm 3
in Appendix E), which is easier to analyze than the Q-learning algorithm presented in Algorithm 1.
To this end, we first define the Bellman operator for a given pair of policies.
Definition 3. For a given pair of agent policy π and attack policy ω, the Bellman operator for the
Q-function is defined as follows.

Tπ◦ωQ(s, a) = R(s, a) + γΣs′∈SP (s′|s, a)Q(s′, π(ω(s′))) (1)

The algorithm maintains a Q-function, which is initialized to 0 for all state-action pairs. In each
round n, the algorithm first derives the agent’s policy πn and attacker’s policy ωπn

from the current
Q-function Qn in the same way as in Algorithm 1, using the worst-case belief, where

πn(s̃) = argmaxa∈Amins̄∈Bϵ(s̃)Qn(s̄, a),∀s̃ ∈ S.

ωπn
(s) = argmins̃∈Bϵ(s)Qn(s, πn(s̃))),∀s ∈ S.

That is, πn is obtained by solving a maximin problem using the current Qn, and ωπn
is a best

response to πn. The Q-function is then updated as Qn+1 = Tπn◦ωπnQn. It is important to note that
although Tπ◦ωπ is a contraction for a fixed π (see Lemma 3 in Appendix D for a proof), Tπn◦ωπn is
typically not due its dependence on Qn. Thus, Qn may not converge in general, which is consistent
with the known fact that a state-adversarial MDP may not have a stationary policy that is optimal for
every initial state. However, we show below that we can still bound the gap between the Q-value
obtained by following the joint policy π̃n := πn ◦ ωπn

, denoted by Qπ̃n , and the optimal Q-value for
the original MDP without attacks, denoted by Q∗. It is known that Q∗ is the unique fixed point of the
Bellman optimal operator T ∗, i.e., T ∗Q∗ = Q∗, where

T ∗Q(s, a) = R(s, a) + γΣs′∈SP (s′|s, a)maxa′∈AQ(s′, a′). (2)

We first make the following assumptions about the reward and transition functions of an MDP and
then state the main result after that.
Assumption 1. The reward function and transition function are Lipschitz continuous. That is, there
are constants lr and lp such that for ∀s1, s2, s′ ∈ S, ∀a ∈ A, we have

|R(s1, a)−R(s2, a)| ≤ lr∥s1 − s2∥, |P (s′|s1, a)− P (s′|s2, a))| ≤ lp∥s1 − s2∥.

Assumption 2. Reward R is upper bounded where for any s ∈ S and a ∈ A, R(s, a) ≤ Rmax.

Theorem 1. The gap between Qπ̃n and Q∗ is bounded by

limsupn→∞∥Q∗ −Qπ̃n∥∞ ≤ 1 + γ

(1− γ)2
∆,

where π̃n is obtained by Algorithm 3 and ∆ = 2ϵγ(lr + lp|S|Rmax

1−γ ).

We give a proof sketch and leave the detailed proof in Appendix D. We first show that Qπ̃n is
Lipschitz continuous using Assumption1. Then we establish a bound of ∥T ∗Qn − Qn+1∥∞ and
prove that Tπ◦ωπ for a fixed policy π is a contraction. Finally, we prove Theorem 1 following the
idea of Proposition 6.1 in (Bertsekas & Tsitsiklis, 1996).
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PGD MinBest PA-ADEnvironment Model Natural Reward
ϵ = 0.1 ϵ = 0.5 ϵ = 0.1 ϵ = 0.5 ϵ = 0.1 ϵ = 0.5

DQN 156.5± 90.2 128± 118 −53± 86 98.2± 137 98.2± 137 −10.7± 136 −35.9± 118
SA-DQN 20.8± 140 46± 142 −100± 0 −5.8± 131 −100± 0 −97.5± 13.6 −67.8± 78.3

WocaR-DQN −63± 88 −100± 0 −63.2± 88 −100± 0 −63.2± 88 −100± 0 −63.2± 88
GridWorld
Continous

BP-DQN (Ours) 163± 26 165± 29 176± 16 147± 88 114± 114 171.9± 17 177.2± 10.6

(a) Continuous Gridworld Results
PGD MinBest PA-ADEnv Model Natural

Reward ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255
DQN 21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −18.2± 2.3 −19± 2.2 −21± 0

SA-DQN 21± 0 21± 0 21± 0 −20.8± 0.4 21± 0 21± 0 −21± 0 21± 0 18.7± 2.6 −20± 0
WocaR-DQN 21± 0 21± 0 21± 0 −21± 0 21± 0 21± 0 −21± 0 21± 0 19.7± 2.4 −21± 0

DP-DQN-O (Ours) 19.9± 0.3 19.9± 0.3 19.8± 0.4 19.7± 0.5 19.9± 0.3 19.9± 0.3 19.3± 0.8 19.9± 0.3 19.9± 0.3 19.3± 0.8
Pong

DP-DQN-F (Ours) 20.8± 0.4 20.4± 0.9 20.4± 0.9 18.3± 1.9 20.6± 0.9 20.4± 0.8 21.0± 0.0 18.6± 2.5 20.0± 1 18.2± 1.8
DQN 34± 0.1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

SA-DQN 30± 0 30± 0 30± 0 0± 0 27.2± 3.4 18.3± 3.0 0± 0 20.1± 4.0 9.5± 3.8 0± 0
WocaR-DQN 31.2± 0.4 31.2± 0.5 31.4± 0.3 21.6± 1 29.6± 2.5 19.8± 3.8 21.6± 1 24.9± 3.7 12.3± 3.2 21.6± 1

DP-DQN-O (Ours) 28.8± 1.1 29.1± 1.1 29± 0.9 28.9± 0.7 29.2± 1.0 28.5± 1.2 28.6± 1.3 28.6± 1.2 28.3± 1 28.8± 1.3
Freeway

DP-DQN-F (Ours) 31.2± 1 30.0± 0.9 30.1± 1 30.7± 1.2 30.2± 1.3 30.6± 1.4 29.4± 1.2 30.8± 1 31.4± 0.8 28.9± 1.1

(b) Atari Games Results

Table 1: Experiment Results. We show the average episode rewards ± standard deviation over 10
episodes for our methods and three baselines. The results for our methods are highlighted in gray.

4 EXPERIMENTS

In this section, we evaluate our belief-enriched pessimistic DQN algorithms by conducting experi-
ments on three environments, a continuous state Gridworld environment (shown in Figure 1a) for
BP-DQN and two Atari games, Pong and Freeway for DP-DQN-O and DP-DQN-F, which utilize
DDPM and Progressive Distillation as the diffusion model, respectively. (See Appendix F.1 for a
justification.) We choose vanilla DQN (Mnih et al., 2015), SA-DQN (Zhang et al., 2020a), WocaR-
DQN (Liang et al., 2022), and Radial-DQN (Oikarinen et al., 2021) as defense baselines. We consider
three commonly used attacks to evaluate the robustness of these algorithms: (1) PGD attack (Zhang
et al., 2020a), which aims to find a perturbed state s̃ that minimizes Q(s, π(s̃)); (2) MinBest at-
tack (Huang et al., 2017), which aims to find a perturbed state s̃ that minimizes the probability of
choosing the best action under s; and (3) PA-AD (Sun et al., 2021), which utilizes RL to find a
(nearly) optimal attack policy. Details on the environments and experiment setup can be found in
Appendix F.2. Additional experiment results and ablation studies are given in Appendix F.3.

4.1 RESULTS AND DISCUSSION

Continuous Gridworld. As shown in Table 1a, our method (BP-DQN) achieves the best performance
under all scenarios in the continuous state Gridworld environment and significantly surpasses all the
baselines. In contrast, both SA-DQN and WocaR-DQN fail under the large attack budget ϵ = 0.5
and perform poorly under the small attack budget ϵ = 0.1. We conjecture that this is because state
perturbations in the continuous Gridworld environment often change the semantics of states since
most perturbed states are still valid observations. We also noticed that both SA-DQN and WocaR-
DQN perform worse than vanilla DQN when there is no attack and when ϵ = 0.1. We conjecture
that this is due to the mismatch between true states and perturbed states during training and testing
and the approximation used to estimate the upper and lower bounds of Q-network output using the
Interval Bound Propagation (IBP) technique (Gowal et al., 2019) in their implementations. Although
WocaR-DQN performs better under ϵ = 0.5 than ϵ = 0.1, it fails in both cases to achieve the goal of
the agent where the policies end up wandering in the environment or reaching the bomb instead of
finding the gold.

Atari Games. As shown in Table 1b, our DP-DQN method outperforms all other baselines under a
strong attack (e.g., PA-AD) or a large attack budget (e.g., ϵ = 15/255), while achieving comparable
performance as other baselines in other cases. SA-DQN and WocaR-DQN fail to respond to large
state perturbations for two reasons. First, both of them use IBP to estimate an upper and lower
bound of the neural network output under perturbations, which are likely to be loose under large
perturbations. Second, both approaches utilize a regularization-based approach to maximize the
chance of choosing the best action for all states in the ϵ-ball centered at the true state. This approach
is effective under small perturbations but can pick poor actions for large perturbations as the latter can
easily exceed the generalization capability of the Q-network. We observe that WocaR-DQN performs
better when the attack budget increases from 3/255 to 15/255 in Freeway, which is counter-intuitive.
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PGD PA-ADEnvironment Model
ϵ = 0.5

Environment Model
ϵ = 15/255

Maximin Only −71± 91 Maximin Only −21± 0
Belief Only 45.7± 134 DDPM Only 18.8± 1.6

Continuous
Gridworld BP-DQN (Ours) 176± 16

Pong
DP-DQN-O (Ours) 19.3± 0.8

Table 2: Ablation Study Results. We compare our methods with variants that use maximin search or
belief approximation only.

The reason is that under large perturbations, the agent adopts a bad policy by always moving forward
regardless of state, which gives a reward of around 21. Further, SA-DQN and WocaR-DQN need
to know the attack budget in advance in order to train their policies. A policy trained under attack
budget ϵ = 1/255 is ineffective against larger attack budgets. In contrast, our DP-DQN method is
agnostic to the perturbation level. All results of DP-DQN shown in Table 1b are generated with the
same policy trained under attack budget ϵ = 1/255.

We admit that our method suffers a small performance loss compared with SA-DQN and WocaR-
DQN in the Atari games when there is no attack or when the attack budget is low. We conjecture
that no single fixed policy is simultaneously optimal against different types of attacks. A promising
direction is to adapt a pre-trained policy to the actual attack using samples collected online.

Importance of Combining Maximin and Belief. In Table 2, we compare our methods (BP-DQN and
DP-DQN-O) that integrate the ideas of maximin search and belief approximation (using either RNN
or diffusion) with variants of our methods that use maximin search or belief approximation only. The
former is implemented using a trained BP-DQN or DP-DQN-O policy together with random samples
from the ϵ-ball centered at a perturbed state (the worst-case belief) during the test stage. The latter
uses the vanilla DQN policy with a single belief state generated by either the PF-RNN or the DDPM
diffusion model at the test stage. The results clearly demonstrate the importance of integrating both
ideas to achieve more robust defenses.

5 CONCLUSION AND LIMITATIONS

In conclusion, this work proposes two algorithms, BP-DQN and DP-DQN, to combat state per-
turbations against reinforcement learning. Our methods achieve high robustness and significantly
outperform state-of-the-art baselines under strong attacks. Further, our DP-DQN method has revealed
an important limitation of existing state adversarial attacks on RL agents with raw pixel input, pointing
to a promising direction for future research.

However, our work also has some limitations. First, our method needs access to a clean environment
during training. Although the same assumption has been made in most previous work in this area,
including SA-MDP and WocaR-MDP, a promising direction is to consider an offline setting to release
the need to access a clean environment by learning directly from (possibly poisoned) trajectory data.
Second, using a diffusion model increases the computational complexity of our method and causes
slow running speed at the test stage. Fortunately, we have shown that fast diffusion methods can
significantly speed up runtime performance. Third, we have focused on value-based methods in this
work. Extending our approach to policy-based methods is an important next step.
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APPENDIX

A BROADER IMPACTS

As RL is increasingly being used in vital real-world applications like autonomous driving and large
generative models, we are rapidly moving towards an AI-assisted society. With AI becoming more
widespread, it is important to ensure that the policies governing AI are robust. An unstable policy
could be easily exploited by malicious individuals or organizations, causing damage to property,
productivity, and even loss of life. Therefore, providing robustness is crucial to the successful
deployment of RL and other deep learning algorithms in the real world. Our work provides new
insights into enhancing the robustness of RL policies against adversarial attacks and contributes to
the foundation of trustworthy AI.

B RELATED WORK

B.1 STATE PERTURBATION ATTACKS AND DEFENSES

State perturbation attacks against RL policies are first introduced in Huang et al. (2017), where the
MinBest attack that minimizes the probability of choosing the best action is proposed. Zhang et al.
(2020a) show that when the agent’s policy is fixed, the problem of finding the optimal adversarial
policy is also an MDP, which can be solved using RL. This approach is further improved in (Sun et al.,
2021), where a more efficient algorithm for finding the optimal attack called PA-AD is developed.

On the defense side, Zhang et al. (2020a) prove that a policy that is optimal for any initial state
under optimal state perturbation might not exist and propose a set of regularization-based algorithms
(SA-DQN, SA-PPO, SA-DDPG) to train a robust agent against state perturbations. This approach is
improved in (Liang et al., 2022) by training an additional worst-case Q-network and introducing state
importance weights into regularization. In a different direction, an alternating training framework
called ATLA is studied in (Zhang et al., 2021) that trains the RL attacker and RL agent alternatively
in order to increase the robustness of the DRL model. However, this approach suffers from high
computational overhead. Xiong et al. (2023) propose an auto-encoder-based detection and denoising
framework to detect perturbed states and restore true states. Also, He et al. (2023) show that when
the initial distribution is known, a policy that optimizes the expected return across initial states under
state perturbations exists.

B.2 ATTACKS AND DEFENSES BEYOND STATE PERTURBATIONS

This section briefly introduces other types of adversarial attacks in RL beyond state perturbation. As
shown in (Huang & Zhu, 2019), manipulating the reward signal can successfully affect the training
convergence of Q-learning and mislead the trained agent to follow a policy that the attacker aims at.
Furthermore, an adaptive reward poisoning method is proposed by (Zhang et al., 2020b) to achieve a
nefarious policy in steps polynomial in state-space size |S| in the tabular setting.

Lee et al. (2020b) propose two methods for perturbing the action space, where the LAS (look-ahead
action space) method achieves better attack performance in terms of decreasing the cumulative
reward of DRL by distributing attacks across the action and temporal dimensions. Another line of
work investigates adversarial policies in a multi-agent environment, where it has been shown that an
opponent adopting an adversarial policy could easily beat an agent with a well-trained policy in a
zero-sum game (Gleave et al., 2020).

For attacking an RL agent’s policy network, both inference attacks (Chen et al., 2021), where the
attacker aims to steal the policy network parameters, and poisoning attacks (Huai et al., 2020) that
directly manipulate model parameters have been considered. In particular, an optimization-based
technique for identifying an optimal strategy for poisoning the policy network is proposed in (Huai
et al., 2020).
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B.3 BACKDOOR ATTACKS IN RL

Recent work investigating defenses against backdoor attacks in RL also considers recovering true
states to gain robustness (Bharti et al., 2022). However, there are important differences between our
work and (Bharti et al., 2022). First, our work contains two important parts that (Bharti et al., 2022)
does not have, which are the maximin formulation and belief update. The former allows us to obtain
a robust policy by making fewer assumptions about attack behavior compared to (Bharti et al., 2022).
Note that this approach is unique to state-perturbation attacks, as it is difficult to define a worst-case
scenario for backdoor attacks. The latter is crucial to combat adaptive perturbations that can change
the semantic meaning of states, which can potentially be very useful to backdoor attacks as well.
Second, our Lipschitz assumptions differ from those in (Bharti et al., 2022). We assume that the
reward and transition functions of the underlying MDP are Lipschitz continuous while Bharti et al.
(2022) assume that the backdoored policies are Lipschitz continuous.

B.4 PARTIALLY OBSERVABLE MDPS

As first proposed by Astrom et al. (1965), a Partially Observable MDP is a generalization of an MDP
where the system dynamics are determined by an MDP, but the agent does not have full access to
the state. The agent could only partially observe the underlying state that is usually determined by a
fixed observation function O. POMDPs could model a lot of real-life sequential decision-making
problems such as robot navigation. However, since the agent does not have perfect information about
the state, solutions for POMDPs usually need to infer a belief about the true state and find an action
that is optimal for each possible belief. To this end, algorithms for finding a compressed belief space
in order to solve large state space POMDPs have been proposed (Roy et al., 2005). State-of-the-art
solutions approximate the belief states with distributions such as diagonal Gaussian (Lee et al., 2020a),
Gaussian mixture (Tschiatschek et al., 2018), categorical distribution (Hafner et al., 2021) or particle
filters (Ma et al., 2020). Most recently, a flow-based recurrent belief state modeling approach has
been proposed in (Chen et al., 2022) to approximate general continuous belief states.

The main difference between POMDPs and MDPs under state adversarial attacks is the way the
agent’s observation is determined. In a POMDP, the agent’s partial observation at time step t is
determined by a fixed observation function O, where ot = O(st, at). And it is independent of the
agent’s policy π. Instead, in an MDP under state adversarial attacks, a perturbed state s̃ is determined
by the attack policy ω, which can adapt to the agent’s policy π in general.

B.5 RL FOR STACKELBERG MARKOV GAMES

Previous work has studied various techniques for solving the Stackelberg equilibrium of asymmetric
Markov games, with one player as the leader and the rest being followers. Kononen (Könönen, 2004)
proposes an asymmetric multi-agent Q-Learning algorithm and establishes its convergence in the
tabular setting. Besides value-based approaches, Fiez et al. (Fiez et al., 2020) recently investigated
sufficient conditions for a local Stackelberg equilibrium (LSE) and derived gradient-based learning
dynamics for Stackelberg games using the implicit function theorem. Follow-up work applied this
idea to derive Stackelberg actor-critic (Zheng et al., 2022) and Stackelberg policy gradient (Vu et al.,
2022) methods. However, all these studies assume that the true state information is accessible to all
players, which does not apply to our problem.

B.6 MORE DETAILS ABOUT DIFFUSION-BASED DENOISING

In a DDPM model, the forward process constructs a discrete-time Markov chain as follows. Given an
initial state x0 sampled from q(·), it gradually adds Gaussian noise to x0 to generate a sequence of
noisy states x1,x2,...,xK where q (xi | xi−1) := N

(
xi;

√
1− βixi−1, βiI

)
so that xK approximates

the Gaussian white noise. Here βi is precalculated according to a variance schedule and I is the iden-
tity matrix. The reverse process is again a Markov chain that starts with xK sampled from the Gaussian
white noise N (0, I) and learns to remove the noise added in the forward process to regenerate q(·).
This is achieved through the reverse transition pθ (xi−1 | xi) := N (xi−1;µθ (xi, i) ,Σθ (xi, i))
where θ denotes the network parameters used to approximate the mean and the variance added in
the forward process. As mentioned in the main text, we modify the reverse process by starting
from a perturbed state s̃ + ϕ instead of xK , where ϕ is pixel-wise noise sampled from Gaussian
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Figure 3: True, perturbed, and worst-case states in Algorithm 1 and belief update. Beginning with true state s0
and perturbed state s̃0, the agent will have an initial belief, i.e., the ϵ ball centered at s̃0. After taking action a0,
the belief is updated to the region marked by the purple ball. When observing the next perturbed state s̃1, the
agent will update belief by taking the intersection of the purple ball and the green ball.

(a) Original (b) Perturbed

Figure 4: An example of valid vs. invalid states in Pong.

distribution N (0, ϵ2ϕ). We then take k reverse steps with k ≪ K, according to the observation that
a perturbed state only introduces a small amount of noise to the true state due to the attack budget
ϵ. We observe in our experiments that using a large k does not hurt the performance, although it
increases the running time (see Figures 5d and 5e in Appendix F.3).

The progressive distillation diffusion model (Salimans & Ho, 2022) can distill an N steps sampler to
a new sampler of N/2 steps with little degradation of sample quality. Thus with a 1024 step sampler,
we could generate 512 step, 256 step, ..., and 8 step samplers. Notice that a single reverse step in
an 8 step sampler will have an equivalent effect of sampling multiple steps in the original 1024 step
sampler. By choosing a proper sampler generated by progressive distillation (we report every model
we used in F.2), we could accelerate our diffusion process while preserving sample quality at the
same time.

C MORE GRAPHS AND EXAMPLES

C.1 AN EXAMPLE OF BELIEF UPDATE

Figure 3 illustrates the relations between a true state s, the perturbed state s̃, and the worst-case state
s̄ ∈ Bϵ(s̃) for which the action is chosen.

C.2 AN EXAMPLE OF INVALID STATES IN PIXEL-WISE PERTURBATIONS

For example, the white bar shown in Figure 4 in the Atari Pong game will not change during
gameplay and has a grayscale value of 236/255. However, a pixel-wise state perturbation attack such
as PGD with attack budget ϵ = 15/255 will change the pixel values in the white bar to a range of
221/255− 251/255 so that the perturbed states become invalid.
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D PROOFS

D.1 PROOF OF THEOREM 1

In this section, we prove Theorem 1. Recall that π̃ := π◦ωπ . We first establish the Lipchitz continuity
of Qπ̃ , the Q-value when the agent follows policy π and the attack follows policy ωπ .

Lemma 1. Qπ̃ is Lipchitz continuous for any π , i.e., ∀s, s′ ∈ S, ∀a ∈ A,

|Qπ̃(s, a)−Qπ̃(s′, a)| ≤ LQ∫ ∥s− s′∥ (3)

where LQf
= lr +

Rmax

1−γ |S|lp

Proof. Based on the definition of the action value function under state perturbation, we have

Qπ̃(s, a) = R(s, a) + Σs′∈SP (s′|s, a)γVπ◦ωπ
(s′)

≤ R(s, a) + Σs′∈SP (s′|s, a)γVπ(s
′)

Thus,

|Qπ̃(s1, a)−Qπ̃(s2, a)|
=|R(s1, a)−R(s2, a) + Σs′∈S [(P (s′|s1, a)− P (s′|s2, a))Vπ◦ωπ

(s′)]|
≤|R(s1, a)−R(s2, a)|+Σs′∈S |[(P (s′|s1, a)− P (s′|s2, a))Vπ(s

′)]|
(a)

≤ lr∥s1 − s2∥+maxs′∈SVπ(s
′)|S|P (s′|s1, a)− P (s′|s2, a)|

(b)

≤ lr∥s1 − s2∥+
Rmax

1− γ
|S|lp∥s1 − s2∥

≤(lr +
Rmax

1− γ
|S|lp)∥s1 − s2∥

=LQ∫ ∥s1 − s2∥

where (a) follows from Assumption 1 and (b) follows from Assumptions 1 and 2 and the definition of
Vπ .

Lemma 2. For Qn defined in Algorithm 3, the Bellman approximation error is bounded by

∥T ∗Qn −Qn+1∥∞ ≤ 2ϵγ(lr + lp|S|
Rmax

1− γ
) (4)

Proof.

∥T ∗Qn −Qn+1∥∞
= max

s∈S,a∈A
|R(s, a) + γΣs′P (s′|s, a)max

a∈A
Qn(s

′, a)− [R(s, a) + γΣs′P (s′|s, a)Qn(s
′, πn(ωπn

(s′)))]|

=γ max
s∈S,a∈A

Σ
s′∈S

P (s′|s, a)|max
a∈A

Qn(s
′, a)−Qn(s

′, π̃n(s
′))|

≤γmax
s′∈S

|max
a∈A

Qn(s
′, a)−Qn(s

′, π̃n(s
′))|

Let s̃′ = ωπn
(s′) denote the perturbation of the true state s′, and ã and s̄′ denote the agent’s action

when observing s̃′ and the worst-case state in Bϵ(s̃′) that solves the maximin problem, respectively.
We then have

Qn(s
′, ã)≥Qn(s̄′, ã) = max

a∈A
min

s∈Bϵ(s̃′)
Qn(s, a). (5)
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where the first inequality is due to the fact that s̄′ obtains the worst-case Q-value under action ã,
across all states in Bϵ(s̃′) including s′. It follows that

∥T ∗Qn −Qn+1∥∞ ≤γmax
s′∈S

|max
a∈A

Qn(s
′, a)−Qn(s

′, π̃(s′))|

≤γmax
s′∈S

|max
a∈A

Qn(s
′, a)−max

a∈A
min

s∈Bϵ(s̃′)
Qn(s, a)|

≤γ max
s′∈S,a∈A

|Qn(s
′, a)− min

s∈Bϵ(s̃′)
Qn(s, a)|

(a)

≤γ max
s′∈S,a∈A

|Qn(s
′, a)− min

s∈B2ϵ(s′)
Qn(s, a)|

(b)

≤2γϵLQ∫

where (a) is due to ∥s̃′ − s′∥ ≤ ϵ and (b) follows from Lemma 1.

Lemma 3. Given any policy π̃ = π ◦ ωπ where π is a fixed policy, T π̃ is a contraction.

Proof.

∥T π̃Q1 − T π̃Q2∥∞ = max
s∈S,a∈A

Σ
s′∈S

γP (s′|s, a)|Q1(s
′, π(ω(s′)))−Q2(s

′, π(ω(s′)))|

≤ max
s′∈S

γ|Q1(s
′, π(ω(s′)))−Q2(s

′, π(ω(s′)))|

≤ max
s′∈S,a∈A

γ|Q1(s
′, a)−Q2(s

′, a)|

= γ||Q1 −Q2||∞
Thus, for any given policy π, T π̃ is a contraction.

With Lemmas 2 and 3, we are ready to prove Theorem 1.
Theorem 1. The gap between Qπ̃n and Q∗ is bounded by

limsupn→∞∥Q∗ −Qπ̃n∥∞ ≤ 1 + γ

(1− γ)2
∆

where π̃n is obtained by Algorithm 3 and ∆ = 2ϵγ(lr + lp|S|Rmax

1−γ ).

Proof.

∥Q∗ −Qπ̃n∥∞
(a)

≤ ∥T ∗Q∗ − T ∗Qn∥∞ + ∥T ∗Qn − T π̃nQπ̃n∥∞
≤ ∥T ∗Q∗ − T ∗Qn∥∞ + ∥T ∗Qn − T π̃nQn∥∞ + ∥T π̃nQn − T π̃nQπ̃n∥∞
(b)

≤ γ∥Q∗ −Qn∥∞ + ∥T ∗Qn −Qn+1∥∞ + γ(∥Qn −Q∗∥∞ + ∥Q∗ −Qπ̃n∥∞)

where (a) follows from Q∗ is the fixed point of T ∗, Qπ̃n is the fixed point of T π̃n , and the triangle
inequality, and (b) follows from both T ∗ and T π̃n (for a fixed πn) are contractions. This together
with Lemma 2 implies that

∥Q∗ −Qπ̃n∥∞ ≤ 2γ∥Q∗ −Qn∥∞) + ∆

1− γ
(6)

We then bound ∥Q∗ −Qn∥∞ as follows
∥Q∗ −Qn+1∥∞ ≤ ∥T ∗Q∗ − T ∗Qn∥∞ + ∥T ∗Qn −Qn+1∥∞ ≤ γ∥Q∗ −Qn∥∞ +∆,

which implies that

limsup
n→∞

∥Q∗ −Qn∥∞ ≤ ∆

1− γ
(7)

Plug this back in equation 6, we have

limsup
n→∞

∥Q∗ −Qπ̃n∥∞ ≤ 1 + γ

(1− γ)2
∆ (8)

where ∆ = 2ϵγ(lr + lp|S|Rmax

1−γ ).
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Q1 s1 s2 s3 Q2 s1 s2 s3
a1 12 11 3 a1 4 2 -2
a2 12 10 2 a2 4 0 -1
a3 12 8 1 a3 4 1 -3

Table 3: A counterexample to Tπn◦ωπn being a contraction

D.2 A COUNTEREXAMPLE TO Tπn◦ωπn BEING A CONTRACTION WHEN πn ◦ ωπn
IS NOT FIXED

Consider an MDP ⟨S,A, P,R, γ⟩ where S = {s1, s2, s3} and A = {a1, a2, a3}. Suppose that for any
s ∈ S and a ∈ A, P (s2|s, a) = 1 and P (s′|s, a) = 0 for s′ ̸= s2, and Bϵ(s) = {s1, s2, s3}. Con-
sider the two Q-functions shown in Table 3. We have ||Q1−Q2||∞ = |Q1(s2, a2)−Q2(s2, a2)| = 10.
However, when π̃1 = π1 ◦ ωπ1

is derived from Q1 and π̃2 = π2 ◦ ωπ2
is derived from Q2,

||T π̃1Q1 − T π̃2Q2||∞ = max
s∈S,a∈A

Σ
s′∈S

γP (s′|s, a)|Q1(s
′, π1(ωπ1

(s′)))−Q2(s
′, π2(ωπ2

(s′)))|

= max
s∈S,a∈A

γ|Q1(s2, π1(ωπ1
(s′)))−Q2(s,π2(ωπ2

(s′)))|

≥ γ|Q1(s2, π1(ωπ1
(s2)))−Q2(s2, π2(ωπ2

(s2)))|
(a)
= γ|Q1(s2, a1)−Q2(s2, a2)|
= γ × 11

(b)
> 10 = ||Q1 −Q2||∞

where (a) is due to the fact that no matter what ωπ(s2) is, Bϵ(ωπ(s2)) = {s1, s2, s3} = S, which
implies that π1(ωπ1

(s2)) = argmaxa∈Amins̄∈SQ1(s̄, a) = a1, and similarly, π2(ωπ2
(s2)) = a2;

(b) holds when γ > 10
11 . Therefore, Tπ1◦ωπ1 is not a contraction.

D.3 APPROXIMATE STACKELBERG EQUILIBRIUM

As shown in Theorem 4.11 of (He et al., 2023), when the initial state distribution Pr(s0) is known,
there is an agent policy π∗ that maximizes the worst-case expected state value against the optimal
state perturbation attack, that is

∀π,Σs0∈S Pr(s0)Vπ∗◦ωπ∗ (s0) ≥ Σs0∈S Pr(s0)Vπ◦ωπ (s0) (9)

In particular, when the initial state s0 is fixed, an optimal policy that maximizes the worst-case state
value (against the optimal state perturbation attack) exists. Let V ∗(s0) denote this optimal state value.
Note that V ∗(s0) is obtained using a different policy for different s0. Then a reasonable definition
of an approximate Stackelberg Equilibrium is a policy π where its state value under each state s0 is
close to V ∗(s0), that is, |Vπ◦ωπ (s0)− V ∗(s0)| ≤ ∆ for some constant ∆. Note that this condition
should hold for each state s0. Also note that we compare π with a different optimal policy with
respect to each s0, thus bypassing the impossibility result stated in Section 3.1.

In the paper, we further approximated V ∗(s0) by the optimal value without attacks and derived ∆
in this simplified setting (Theorem 1). However, we believe that the general definition given above
presents a novel extension of approximate Stackelberg Equilibrium in the standard sense and it is an
interesting open problem to derive a policy that is nearly optimal under this new definition.
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E ALGORITHMS

Algorithm 2: Belief Update
Data: Old Belief Mt, action a, perturbed state s̃t+1.
Result: Updated Belief Mt+1

1 Initialize M ′
t to be an empty set

2 for s in Mt do
3 for s′ in S do
4 if P (s′|s, a) ̸= 0 then
5 Add s′ to M ′

t
6 end
7 end
8 end
9 Mt+1 = M ′

t ∩Bϵ(s̃t+1)
10 RETURN Mt+1

Algorithm 3: Pessimistic Q-Iteration
Result: Robust Q-function Q

1 Initialize Q0(s, a) = 0 for all s ∈ S, a ∈ A;
2 for n = 0, 1, 2, ... do
3 Update RL agent policy: ∀s̃ ∈ S, πn(s̃) = argmaxa∈Amins̄∈Bϵ(s̃)Qn(s̄, a);
4 Update attacker policy: ∀s ∈ S, ωπn(s) = argmins̃∈Bϵ(s)

Qn(s, πn(s̃));
5 for s ∈ S do
6 for a ∈ A do
7 Qn+1(s, a) = R(s, a) + γΣs′∈SP (s′|s, a)Qn(s

′, π(ωπ(s
′)));

8 end
9 end

10 end

Algorithm 4: Belief-Enriched Pessimistic DQN (BP-DQN) Training. We highlight the difference
between our algorithm and the vanilla DQN algorithm in brown.
Data: Number of iterations T , trained vanilla Q network Qv , PF-RNN belief model Np, target

network update frequency Z, batch size D, exploration parameter ϵ′
Result: Robust Q network Qr

1 Initialize replay buffer B, robust Q network Qr = Qv , target Q network Q′ = Qv , observation
history Shis, action history Ahis;

2 for t = 0,1,...,T do
3 Use PGD to find the best perturb state s̃t that minimizes Qr(st, π(s̃t)), where π is derived

from Qr by taking greedy action;
4 Mt = Mt ∩Bϵ(s̃t);
5 Choose an action based on belief Mt and Qr using ϵ-greedy:

at = argmaxa∈Aminm∈Mt
Qr(m, a) with probability 1− ϵ′; otherwise at is a random

action;
6 Append s̃t and at to Shis and Ahis and use belief model Np(Shis, Ahis) to generate Mt+1;
7 Execute action at in the environment and observe reward Rt and next true state st+1;
8 if st+1 is a terminal state then
9 Reset Shis and Ahis

10 end
11 Store transition {st, at, Rt, st+1,Mt} in B;
12 Sample a random minibatch of size D of transitions {si, ai, Ri, si+1,Mi} from B;

13 Set yi =
{
Ri for terminal si+1

Ri + γmaxa′∈Aminm∈Mi
Q′(m, a′) for non-terminal si+1

14 Perform a gradient descent step to minimize Huber(Σiyi −Qr(si, ai));
15 Update target network every Z steps;
16 end
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Algorithm 5: Belief-Enriched Pessimistic DQN (BP-DQN) Testing
Data: Trained robust Q network Qr, PFRNN belief model Np

1 Initialize observation history Shis and action history Ahis;
2 for t = 0,1,...,T do
3 Observe the perturbed state s̃t;
4 if t = 0 then
5 M0 = Bϵ(s̃t);
6 end
7 Select an action based on belief Mt and Qr: at = argmaxa∈Aminm∈MtQr(m, a);
8 Append s̃t and at to Shis and Ahis and use belief model Np(Shis, Ahis) to generate Mt+1;
9 Execute action at in the environment;

10 end

Algorithm 6: Diffusion-Assisted Pessimistic DQN (DP-DQN) Training. We highlight the
difference between our algorithm and the vanilla DQN algorithm in brown.
Data: Number of iterations T , trained vanilla Q network Qv , diffusion belief model Nd, target

network update frequency Z, batch size D, belief size κd, exploration parameter ϵ′, noise
level ϵϕ

Result: Robust Q network Qr

1 Initialize replay buffer B, robust Q network Qr = Qv , target Q network Q′ = Qv;
2 for t = 0,1,...,T do
3 Use PGD to find the best perturb state s̃t that minimizes Qr(st, π(s̃t)), where π is derived

from Qr by taking greedy action;
4 Sample noise ϕ from Gaussian distribution N (0, ϵ2ϕ) pixel-wise with same dimension as st;
5 Use the diffusion belief model to generate belief Mt = Nd(s̃t + ϕ) of size κd;
6 Select an actions based on belief Mt and Qr using ϵ-greedy:

at = argmaxa∈Aminm∈Mt
Qr(m, a) with probability 1− ϵ′; otherwise at is a random

action;
7 Execute action at in environment and observe reward Rt and next true state st+1;
8 Apply the reverse diffusion process to st and st+1: ŝt = Nd(st), ŝt+1 = Nd(st+1);
9 Store transition {ŝt, at, Rt, ŝt+1,Mt} in B;

10 Sample a random minibatch of size D of transitions {ŝi, ai, Ri, ŝi+1,Mi} from B;

11 Set yi =
{
Ri for terminal ŝi+1

Ri + γmaxa′∈Aminm∈MiQ
′(m, a′) for non-terminal ŝi+1

12 Perform a gradient descent step to minimize Huber(Σiyi −Qr(ŝi, ai));
13 Update target network every Z steps;
14 end

Algorithm 7: Diffusion-Assisted Pessimistic DQN (DP-DQN) Testing
Data: Trained robust Q network Qr, diffusion belief model Nd, noise level ϵϕ

1 for t = 0,1,...,T do
2 Observe the perturbed state s̃t;
3 Sample noise ϕ from Gaussian distribution N (0, ϵ2ϕ) pixel-wise with same dimension as st;
4 Generate belief using the diffusion belief model Mt = Nd(s̃t + ϕ);
5 Choose an action based on belief Mt and Qr: at = argmaxa∈Aminm∈Mt

Qr(m, a);
6 Execute action at in the environment;
7 end

F EXPERIMENT DETAILS AND ADDITIONAL RESULTS

F.1 EXPERIMENT SETUP JUSTIFICATION

Although both the BP-DQN and DP-DQN algorithms follow our idea of pessimistic Q-learning, the
former is more appropriate for games with a discrete or a continuous but low-dimensional state space
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such as the continuous Gridworld environment, while the latter is more appropriate for games with
raw pixel input such as Atari Games.

In the Gridworld environment, state perturbations can manipulate the semantics of states by changing
the coordinates of the agent. In this case, historical information can be utilized to generate beliefs
about true states. Following this idea, BP-DQN uses the particle filter recurrent neural network (PF-
RNN) method to predict true states. In principle, we can also use BP-DQN on the Atari environments
to predict true states through historical data. In practice, however, it is computationally challenging
to do so due to the high-dimensional state space (84× 84) of the Atari environments. Developing
more efficient belief update techniques for large environments remains an active research direction.

On the other hand, state perturbations are injected pixel-wise in state-of-the-art attacks in Atari
games. Consequently, they can barely change the semantics of true states Atari environments. In
this case, historical information becomes less useful, and the diffusion model can effectively “purify”
the perturbed states to recover the true states from high-dimensional image data. Although it is
theoretically possible to use DP-DQN on the Gridworld environment, we conjecture that it is less
effective than BP-DQN since it does not utilize historical data, which is crucial to recover true states
when perturbations can change the semantic meaning of states as in the case of continuous Gridworld.
In particular, we observe that the distributions of perturbed states and true states are very similar in
this environment, making it difficult to learn a diffusion model that can map the perturbed states back
to true states.

It is an interesting direction to develop strong perturbation attacks that can manipulate the semantics
of true states for games with raw pixel input. As a countermeasure, we can potentially integrate
diffusion-based state purification and belief-based history modeling to craft a stronger defense.

F.2 EXPERIMENT SETUP

Environments. The continuous state Gridworld is modified from the grid maze environment in (Ma
et al., 2020). We create a 10 × 10 map with walls inside. There are also gold and a bomb in the
environment where the agent aims to find the gold and avoid the bomb. The state space is a tuple
of two real numbers in [0, 10]× [0, 10] representing the coordinate of the agent. The initial state of
the agent is randomized. The agent can move in 8 directions, which are up, up left, left, down left,
down, down right, right, and up right. By taking an action, the agent moves a distance of 0.5 units
in the direction they choose. For example, if the agent is currently positioned at (x, y) and chooses
to move upwards, the next state will be (x, y + 0.5). If the agent chooses to move diagonally to the
upper right, the next state will be (x+ 0.5/

√
2, y + 0.5/

√
2). If the agent would collide with a wall

by taking an action, it remains stationary at its current location during that step. The agent loses 1
point for each time step before the game ends and gains a reward of 200 points for reaching the gold
and −50 points for reaching the bomb. The game terminates once the agent reaches the gold or bomb
or spends 100 steps in the game. For Atari games, we choose Pong and Freeway provided by the
OpenAI Gym (Brockman et al., 2016).

Baselines. We choose vanilla DQN (Mnih et al., 2015), SA-DQN (Zhang et al., 2020a) and WocaR-
DQN (Liang et al., 2022) as defense baselines. We consider three commonly used attacks to evaluate
the robustness of these algorithms: (1) PGD attack Zhang et al. (2020a), which aims to find a
perturbed state s̃ that minimizes Q(s, π(s̃)) and we set PGD steps η = 10 for both training and
testing usage; (2) MinBest attack (Huang et al., 2017), which aims to find a perturbed state s̃ that
minimizes the probability of choosing the best action under s, with the probabilities of actions
represented by a softmax of Q-values; and (3) PA-AD (Sun et al., 2021), which utilizes RL to
find a (nearly) optimal attack policy. For each attack, we choose ϵ ∈ {0.1, 0.5} for the Gridworld
environment and ϵ ∈ {1/255, 3/255, 15/255} for the Atari games. Natural rewards (without attacks)
are reported using policies trained under ϵ = 0.1 for continuous state Gridworld and ϵ = 1/255 for
Atari games.

Training and Testing Details. We use the same network structure as vanilla DQN (Mnih et al.,
2015), which is also used in SA-DQN (Zhang et al., 2020a) and WocaR-DQN (Liang et al., 2022).
We set all parameters as default in their papers when training both SA-DQN and WocaR-DQN. For
training our pessimistic DQN algorithm with PF-RNN-based belief (called BP-DQN, see Algorithm 4
in Appendix E), we set κp = |Mt| = 30, i.e., the PF-RNN model will generate 30 belief states in
each time step. For training our pessimistic DQN algorithm with diffusion (called DP-DQN, see
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Env Parameter PGD MinBest PA-AD
ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255

Pong
noise level ϵϕ 3/255 5/255 10/255 3/255 1/255 1/255 2/255 3/255 10/255
reverse step k 1 1 4 1 1 1 2 2 3
sampler step 128 64 128 128 128 32 64 64 32

Freeway
noise level ϵϕ 3/255 3/255 3/255 3/255 3/255 3/255 3/255 3/255 3/255
reverse step k 2 4 4 2 4 4 2 4 4
sampler step 64 64 64 64 64 64 64 64 64

Table 4: Parameters Used to Test DP-DQN-F

Algorithm 6 in Appendix E), we set κd = |Mt| = 4, that is, the diffusion model generates 4 purified
belief states from a perturbed state. We consider two variants of DP-DQN, namely, DP-DQN-O and
DP-DQN-F, which utilize DDPM and Progressive Distillation as the diffusion model, respectively.
For DP-DQN-O, we set the number of reverse steps to k = 10 for ϵ = 1/255 or 3/255 and k = 30
for ϵ = 15/255, and do not add noise ϕ when training and testing DP-DQN-O. For DP-DQN-F, we
set k = 1, sampler step to 64, and add random noise with ϵϕ = 5/255 when training DP-DQN-F. We
report the parameters used when testing DP-DQN-F in Table 4. We sample C = C ′ = 30 trajectories
to train PF-RNN and diffusion models. All other parameters are set as default for training the PF-RNN
and diffusion models. For all other baselines, we train 1 million frames for the continuous Gridworld
environment and 6 million frames for the Atari games. For our methods, we take the pre-trained
vanilla DQN model, and train our method for another 1 million frames. All training and testing
are done on a machine equipped with an i9-12900KF CPU and a single RTX 3090 GPU. For each
environment, all RL policies are tested in 10 randomized environments with means and variances
reported.

F.3 MORE EXPERIMENT RESULTS

F.3.1 MORE BASELINE RESULTS

Tables 5a and 5b give the complete results for the continuous space Gridworld and the two Atari
games, where we include another baseline called Radial-DQN (Oikarinen et al., 2021), which adds
an adversarial loss term to the nominal loss of regular DRL in order to gain robustness. We find that
Radial-DQN fails to learn a reasonable policy in continuous Gridworld as other regularization-based
methods. However, Radial-DQN performs well under a small attack budget in Atari games but still
fails to respond when the attack budget is high. Our Radial-DQN results for the Atari games were
obtained using the pre-trained models (Oikarinen et al., 2021), which might explain why the results
are better than those reported in (Liang et al., 2022).

PGD MinBest PA-ADEnvironment Model Natural Reward
ϵ = 0.1 ϵ = 0.5 ϵ = 0.1 ϵ = 0.5 ϵ = 0.1 ϵ = 0.5

DQN 156.5± 90.2 128± 118 −53± 86 98.2± 137 98.2± 137 −10.7± 136 −35.9± 118
SA-DQN 20.8± 140 46± 142 −100± 0 −5.8± 131 −100± 0 −97.5± 13.6 −67.8± 78.3

WocaR-DQN −63± 88 −100± 0 −63.2± 88 −100± 0 −63.2± 88 −100± 0 −63.2± 88
Radial-DQN −100± 0 −96.1± 12.3 −96.1± 12.3 −100± 0 −100± 0 −100± 0 −100± 0

GridWorld
Continous

BP-DQN (Ours) 163± 26 165± 29 176± 16 147± 88 114± 114 171.9± 17 177.2± 10.6

(a) Continuous Gridworld Results
PGD MinBest PA-ADEnv Model Natural

Reward ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255
DQN 21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −21± 0 −18.2± 2.3 −19± 2.2 −21± 0

SA-DQN 21± 0 21± 0 21± 0 −20.8± 0.4 21± 0 21± 0 −21± 0 21± 0 18.7± 2.6 −20± 0
WocaR-DQN 21± 0 21± 0 21± 0 −21± 0 21± 0 21± 0 −21± 0 21± 0 19.7± 2.4 −21± 0
Radial-DQN 21± 0 21± 0 21± 0 −21± 0 21± 0 21± 0 −21± 0 21± 0 21± 0 −19± 0

DP-DQN-O (Ours) 19.9± 0.3 19.9± 0.3 19.8± 0.4 19.7± 0.5 19.9± 0.3 19.9± 0.3 19.3± 0.8 19.9± 0.3 19.9± 0.3 19.3± 0.8

Pong

DP-DQN-F (Ours) 20.8± 0.4 20.4± 0.9 20.4± 0.9 18.3± 1.9 20.6± 0.9 20.4± 0.8 21.0± 0.0 18.6± 2.5 20.0± 1 18.2± 1.8
DQN 34± 0.1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

SA-DQN 30± 0 30± 0 30± 0 0± 0 27.2± 3.4 18.3± 3.0 0± 0 20.1± 4.0 9.5± 3.8 0± 0
WocaR-DQN 31.2± 0.4 31.2± 0.5 31.4± 0.3 21.6± 1 29.6± 2.5 19.8± 3.8 21.6± 1 24.9± 3.7 12.3± 3.2 21.6± 1
Radial-DQN 33.4± 0.5 33.4± 0.5 33.4± 0.5 21.6± 1 33.4± 0.5 32.8± 0.8 21.6± 1 33.4± 0.5 33.4± 0.5 21.6± 1

DP-DQN-O (Ours) 28.8± 1.1 29.1± 1.1 29± 0.9 28.9± 0.7 29.2± 1.0 28.5± 1.2 28.6± 1.3 28.6± 1.2 28.3± 1 28.8± 1.3

Freeway

DP-DQN-F (Ours) 31.2± 1 30.0± 0.9 30.1± 1 30.7± 1.2 30.2± 1.3 30.6± 1.4 29.4± 1.2 30.8± 1 31.4± 0.8 28.9± 1.1

(b) Atari Games Results

Table 5: Experiment Results. We show the average episode rewards ± standard deviation over 10
episodes for our methods and three baselines. The results for our methods are highlighted in gray.

22



Published as a conference paper at ICLR 2024

(a) (b) (c) (d) (e)

Figure 5: a), b) and c) show the l2 distance between perturbed states and original states before and
after purification under different attack budgets in the Pong environment using DDPM. d) shows the
performance of DP-DQN-O under different diffusion steps in the Freeway environment under PGD
attack with ϵ = 15/255. e) shows the testing stage speed of DP-DQN-O (measured by the number of
frames processed per second) under different diffusion steps in the Freeway environment.

Environment Model Training
(hours)

Testing
(FPS) Environment Model Training

(hours)
Testing
(FPS)

SA-DQN 3 607 SA-DQN 38 502
WocaR-DQN 3.5 721 WocaR-DQN 50 635GridWorld

Continous BP-DQN (Ours) 0.6+1.5+7 192 DP-DQN-O (Ours) 1.5+18+30 6.6Pong

DP-DQN-F (Ours) 1+18+24 93

Table 6: Training and Testing Time Comparison. The training of our methods contains three parts: a)
training the PF-RNN or diffusion model, b) training a vanilla DQN policy without attacks, and c)
training a robust policy using BP-DQN, DP-DQN-O, or DP-DQN-F.

F.3.2 MORE ABLATION STUDY RESULTS

Diffusion Effects. In Figures 5a-5c, we visualize the effect of DDPM-based diffusion by recording
the l2 distance between a true state and the perturbed state and that between a purified true state and
the purified perturbed state. For all three levels of attack budgets, our diffusion model successfully
shrinks the gap between true states and perturbed states.

Performance vs. Running Time in DP-DQN. We study the impact of different diffusion steps k on
average return of DP-DQN-O in Figure 5d and their testing stage running time in Figure 5e. Figure
5d shows the performance under different diffusion steps of our method in the Freeway environment
under PGD attack with budget ϵ = 15/255. It shows that we need enough diffusion steps to gain
good robustness, and more diffusion steps do not harm the return but do incur extra overhead, as
shown in Figure 5e, where we plot the testing stage running time in Frame Per Second (FPS). As the
number of diffusion steps increases, the running time of our method also increases, as expected.

On the other hand, as DP-DQN-F uses a distilled sampler, it can decrease the reverse sample step k to
as small as 1, which greatly reduces the testing time as reported in Table 6. We report the performance
results of DP-DQN-F in Table 1b and we find that DP-DQN-F improves DP-DQN-O under small
perturbations, but suffers performance loss in Pong under PA-AD attack and large perturbations.
Further, DP-DQN-F has a larger standard deviation than DP-DQN in the Pong environment, indicating
that DP-DQN-F is less stable than DP-DQN-O in Pong. We conjecture that the lower sample quality
introduced by Progressive Distillation causes less stable performance and performance loss under
PA-AD attack compared to DP-DQN-O that utilizes DDPM.

Training and Testing Overhead. Table 6 compares the training and test-stage overhead of SA-DQN,
WocaR-DQN, and our methods. Notice that the training of our methods consists of three parts: a)
training the PF-RNN belief model or the diffusion model, b) training a vanilla DQN policy without
attacks, and c) training a robust policy using BP-DQN, DP-DQN-O or DP-DQN-F. In the continuous
state Gridworld environment, our method takes around 9 hours to finish training, which is higher than
SA-DQN and WocaR-DQN. But our method significantly outperforms these two baselines as shown
in Table 1a. In the Atari Pong game, our method takes about 50 hours to train, which is comparable
to WocaR-DQN but slower than SA-DQN. In terms of running time at the test stage, we calculate the
FPS of each method and report the average FPS over 5 testing episodes. In the continuous Gridworld
environment, our method is slower but comparable to SA-DQN and WocaR-DQN due to the belief
update and maximin search. However, in the Atari Pong game, our DP-DQN-O method is much
slower than both SA-DQN and WocaR-DQN. This is mainly due to the use of a large diffusion model
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PGD MinBest PA-ADEnvironment Model Natural Reward
ϵ = 0.1 ϵ = 0.5 ϵ = 0.1 ϵ = 0.5 ϵ = 0.1 ϵ = 0.5

GridWorld Continous (Clean) BP-DQN 163± 26 165± 29 176± 16 147± 88 114± 114 171.9± 17 177.2± 10.6
GridWorld Continous BP-DQN 102± 110 101.5± 109 56± 135 79.3± 125 30.7± 138 78.6± 125 13.1± 140

(a) Continuous Gridworld Results
PGD MinBest PA-ADEnv Model Natural

Reward ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255 ϵ = 1/255 ϵ = 3/255 ϵ = 15/255
Freeway (Clean) DP-DQN-F 31.2± 1 30.0± 0.9 30.1± 1 30.7± 1.2 30.2± 1.3 30.6± 1.4 29.4± 1.2 30.8± 1 31.4± 0.8 28.9± 1.1

Freeway DP-DQN-F 29.4± 0.9 29.0± 1.2 28.8± 1.5 29.0± 1.4 28.8± 0.4 29.6± 1.1 29± 1.6 29.2± 0.4 28.2± 1.8 23.6± 1.1

(b) Atari Games Results

Table 7: Noisy Environment Results. We show the average episode rewards ± standard deviation
over 10 episodes for our methods trained in a noisy environment.

in our method. However, our DP-DQN-F method is around 13 times faster than DP-DQN-O and is
comparable to SA-DQN and WocaR-DQN.

Noisy Environment Results. Existing studies (including all the baselines we used) on robust
RL against adversarial state perturbations commonly assume that the agent has access to a clean
environment at the training stage. This is mainly because an RL agent may suffer from a significant
amount of loss if it has to explore a poisoned environment on the fly, which is infeasible for security-
sensitive applications. However, it is an important direction to study the more challenging setting
where the agent has access to a noisy environment only, and we have conducted a preliminary
investigation. We assumed that the agent could access a small amount of clean data (30 episodes
of clean trajectories were used in the paper) to train a belief model or a diffusion model. Note
that to learn the diffusion model, we only need a set of clean states but not necessarily complete
trajectories. We then trained an RL policy in a poisoned environment by modifying the BP-DQN and
DP-DQN algorithms as follows. For BP-DQN, we changed line 11 of Algorithm 4 (in Appendix E)
to store the average of belief states (obtained from the perturbed states) instead of the true states in
the replay buffer. For DP-DQN, we changed lines 8 and 9 of Algorithm 6 (in Appendix E) to apply
the diffusion-based purification on perturbed states instead of true states. We trained these policies
against PGD-poisoned continuous Gridworld and Freeway environments, with an attack budget of
0.1 and 1/255, respectively, and then tested them in the same environment. The results are as shown
in Table 7a and 7b. Although our algorithms suffer from a small performance loss when the training
environment is noisy, they can still achieve a high level of robustness under all test cases.
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