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ABSTRACT

Deep learning models have a propensity for fitting the entire training set even with
random labels, which requires memorization of every training sample. In this pa-
per, we explore the memorization effect in adversarial training (AT) for promoting
a deeper understanding of model capacity, convergence, generalization, and espe-
cially robust overfitting of the adversarially trained models. We first demonstrate
that deep networks have sufficient capacity to memorize adversarial examples of
training data with completely random labels, but not all AT algorithms can con-
verge under the extreme circumstance. Our study of AT with random labels mo-
tivates further analyses on the convergence and generalization of AT. We find that
some AT approaches suffer from a gradient instability issue and most recently sug-
gested complexity measures cannot explain robust generalization by considering
models trained on random labels. Furthermore, we identify a significant drawback
of memorization in AT that it could result in robust overfitting. We then propose a
new mitigation algorithm motivated by detailed memorization analyses. Extensive
experiments on various datasets validate the effectiveness of the proposed method.

1 INTRODUCTION

Deep neural networks (DNNs) usually exhibit excellent generalization ability in pattern recognition
tasks, despite their sufficient capacity to overfit or memorize the entire training set with completely
random labels (Zhang et al., 2017). The memorization behavior in deep learning has aroused tremen-
dous attention to identifying the differences between learning on true and random labels (Arpit et al.,
2017; Neyshabur et al., 2017), and examining what and why DNNs memorize (Feldman, 2020; Feld-
man & Zhang, 2020; Maennel et al., 2020). This phenomenon has also motivated a growing body
of works on model capacity (Arpit et al., 2017; Belkin et al., 2019), convergence (Allen-Zhu et al.,
2019; Du et al., 2019; Zou et al., 2020), and generalization (Neyshabur et al., 2017; Bartlett et al.,
2017), which consequently provide a better understanding of the DNN working mechanism.

In this paper, we explore the memorization behavior for a different learning algorithm—adversarial
training (AT). Owing to the security threat of adversarial examples, i.e., maliciously generated in-
puts by adding imperceptible perturbations to cause misclassification (Szegedy et al., 2014; Goodfel-
low et al., 2015), various defense methods have been proposed to improve the adversarial robustness
of DNNs (Kurakin et al., 2017; Madry et al., 2018; Liao et al., 2018; Wong & Kolter, 2018; Cohen
et al., 2019; Zhang et al., 2019b; Pang et al., 2019; 2020; Dong et al., 2020a). AT is arguably the
most effective defense technique (Athalye et al., 2018; Dong et al., 2020b), in which the network is
trained on the adversarially augmented samples instead of the natural ones (Madry et al., 2018).

Despite the popularity, the memorization behavior in AT is less explored. Schmidt et al. (2018) show
that a model is able to fully (over)fit the training set against an adversary, i.e., reaching almost 100%
robust training accuracy, while the performance on test data is much inferior, witnessing a significant
generalization gap. The overfitting phenomenon in AT is further investigated in Rice et al. (2020).
However, it is not clear whether DNNs could memorize adversarial examples of training data with
completely random labels. Answering this question could help to examine the effects of memo-
rization in AT under the “extreme” circumstance and facilitate a deeper understanding of capacity,
convergence, generalization, and robust overfitting of the adversarially trained models. In general, it
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Figure 1: A conceptual illustration of decision boundaries learned via standard training and adversarial training
with true and random labels, respectively. The model needs a significantly more complicated decision boundary
to memorize adversarial examples of training data with random labels.

is difficult for a classifier to memorize adversarial examples with random labels since the model en-
tails a much more complicated decision boundary, as illustrated in Fig. 1. Even though the networks
have sufficient capacity, AT may not necessarily converge. Therefore, we aim to comprehensively
study this problem and explore how the analysis can motivate better algorithms.

Our contributions. We first empirically investigate the memorization behavior in AT by perform-
ing PGD-AT (Madry et al., 2018) and TRADES (Zhang et al., 2019b) with random labels sampled
uniformly over all classes. Different from standard training (ST) that can easily memorize random
labels (Zhang et al., 2017), AT may fail to converge, with PGD-AT being a typical example. Never-
theless, TRADES can converge under this circumstance. It demonstrates that DNNs have sufficient
capacity to memorize adversarial examples of training data with completely random labels. This
phenomenon is commonly observed on multiple datasets, network architectures, and threat models.

The memorization analysis has further implications for understanding the convergence and gener-
alization of AT. We conduct a convergence analysis on gradient magnitude and stability to explain
the counter-intuitive different convergence properties of PGD-AT and TRADES with random la-
bels since they behave similarly when trained on true labels (Rice et al., 2020). We corroborate that
PGD-AT suffers from a gradient instability issue while the gradients of TRADES are relatively stable
thanks to its adversarial loss. Moreover, by considering models trained on random labels, our gen-
eralization analysis indicates that several recently suggested complexity measures are inadequate to
explain robust generalization, which is complementary to the findings in ST (Neyshabur et al., 2017).
Accordingly, an appropriate explanation of robust generalization remains largely under-addressed.

Lastly, but most importantly, we identify a significant drawback of memorization in AT that it could
result in robust overfitting (Rice et al., 2020). We argue that the cause of robust overfitting lies in the
memorization of one-hot labels in the typical AT methods. The one-hot labels can be inappropriate
or even noisy for some adversarial examples because some data naturally lies close to the decision
boundary, and the corresponding adversarial examples should be assigned low predictive confidence
(Stutz et al., 2020; Cheng et al., 2020). To solve this problem, we propose a new mitigation algorithm
that impedes over-confident predictions by regularization for avoiding the excessive memorization of
adversarial examples with possibly noisy labels. Experiments validate that our method can eliminate
robust overfitting to a large extent across multiple datasets, network architectures, threat models, and
AT methods, achieving better robustness under a variety of adversarial attacks than the baselines.

2 BACKGROUND

2.1 ADVERSARIAL TRAINING

LetD = {(xi, yi)}ni=1 denote a training dataset with n samples, where xi ∈ Rd is a natural example
and yi ∈ {1, ..., C} is its true label often encoded as an one-hot vector 1yi with totally C classes.
Adversarial training (AT) can be formulated as a robust optimization problem (Madry et al., 2018):

min
θ

n∑
i=1

max
x′
i∈S(xi)

L(fθ(x′i), yi), (1)

where fθ is a DNN classifier with parameters θ that predicts probabilities over all classes, L is the
classification loss (i.e., the cross-entropy loss as L(fθ(x), y) = −1>y log fθ(x)), and S(x) = {x′ :
‖x′ − x‖p ≤ ε} is an adversarial region centered at x with radius ε > 0 under the `p-norm threat
models (e.g., `2 and `∞ norms that we consider). The robust optimization problem (1) is solved by
using adversarial attacks to approximate the inner maximization and updating the model parameters
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θ via gradient descent. A typical method uses projected gradient descent (PGD) (Madry et al., 2018)
for the inner problem, which starts at a randomly initialized point in S(xi) and iteratively updates
the adversarial example under the `∞-norm threat model by

x′i = ΠS(xi)

(
x′i + α · sign(∇xL(fθ(x′i), yi))

)
, (2)

where Π(·) is the projection operator and α is the step size.

Besides PGD-AT, another typical AT method is TRADES (Zhang et al., 2019b), which balances the
trade-off between robustness and natural accuracy by minimizing a different adversarial loss

min
θ

n∑
i=1

{
L(fθ(xi), yi) + β · max

x′
i∈S(xi)

D(fθ(xi)‖fθ(x′i))

}
, (3)

where L is the clean cross-entropy loss on the natural example, D is the Kullback–Leibler diver-
gence, and β is a balancing parameter. The inner maximization of TRADES is also solved by PGD.

Recent progress of AT includes designing new adversarial losses (Mao et al., 2019; Qin et al., 2019;
Pang et al., 2020; Wang et al., 2020; Dong et al., 2020a) and network architecture (Xie et al., 2019),
training acceleration (Shafahi et al., 2019; Zhang et al., 2019a; Wong et al., 2020), and exploiting
more training data (Hendrycks et al., 2019; Alayrac et al., 2019; Carmon et al., 2019; Zhai et al.,
2019). Recent works highlight the training tricks in AT (Gowal et al., 2020; Pang et al., 2021).

2.2 RELATED WORK ON DNN MEMORIZATION

It has been observed that DNNs can easily memorize training data with random labels (Zhang et al.,
2017), which requires “rethinking” of conventional techniques (e.g., VC dimension) to explain gen-
eralization. Arpit et al. (2017) identify qualitative differences between learning on true and random
labels. Further works attempt to examine what and why DNNs memorize (Feldman, 2020; Feld-
man & Zhang, 2020; Maennel et al., 2020). Motivated by the memorization phenomenon in deep
learning, convergence of training has been analyzed in the over-parameterized setting (Allen-Zhu
et al., 2019; Du et al., 2019; Zou et al., 2020), while generalization has been studied with numerous
theoretical and empirical complexity measures (Neyshabur et al., 2015; 2017; Bartlett et al., 2017;
Novak et al., 2018; Arora et al., 2018; Cao & Gu, 2019; Jiang et al., 2020; Chen et al., 2020).

In contrast, the memorization behavior in AT has been less explored. The previous works demon-
strate that DNNs can fit training data against an adversary (Madry et al., 2018; Schmidt et al., 2018;
Rice et al., 2020), e.g., achieving nearly 100% robust training accuracy against a PGD adversary, but
this behavior is not explored when trained on random labels. This paper is dedicated to investigating
the memorization in AT under the extreme condition with random labels, while drawing connections
to capacity, convergence, generalization, and robust overfitting, with the overarching goal of better
understanding the AT working mechanism.

3 MEMORIZATION IN AT AND IMPLICATIONS

In this section, we first explore the memorization behavior in AT through an empirical study. Our
analysis raises new questions about the convergence and generalization of AT, many of which cannot
be answered by existing works. Thereafter, we provide further analytical studies on the convergence
and generalization of AT by considering models trained on random labels particularly.

3.1 AT WITH RANDOM LABELS

We explore the memorization behavior of PGD-AT (Madry et al., 2018) and TRADES (Zhang et al.,
2019b) as two studying cases. The experiments are conducted on CIFAR-10 (Krizhevsky & Hinton,
2009) with a Wide ResNet model (Zagoruyko & Komodakis, 2016) of depth 28 and widen factor 10
(WRN-28-10). Similar to Zhang et al. (2017), we train a network on the original dataset with true
labels and on a copy of the dataset in which the true labels are corrupted by random ones. For training
and robustness evaluation, a 10-step `∞ PGD adversary with ε = 8/255 and α = 2/255 is adopted.
For TRADES, the PGD adversary maximizes the KL divergence during training, while maximizes
the cross-entropy loss for robustness evaluation, as common practice (Zhang et al., 2019b). We set
β = 6.0. In the sequel, we denote accuracy of a classifier against the 10-step PGD adversary as
“robust accuracy”, and accuracy on natural examples as “natural accuracy”.

3



Published as a conference paper at ICLR 2022

(a) PGD-AT (b) TRADES (c) Generalization gap growth

Figure 2: (a) and (b) show the natural and robust training accuracies of PGD-AT and TRADES, respectively,
when trained on true or random labels. (c) shows the generalization gap under varying levels of label noise.

Fig. 2(a) and Fig. 2(b) show the learning curves of PGD-AT and TRADES without explicit regular-
izations. Both methods achieve almost 100% natural and robust training accuracies when trained on
true labels. When the labels are random, we observe the totally different behaviors between PGD-
AT and TRADES—PGD-AT fails to converge while TRADES still reaches nearly 100% training
accuracies. This phenomenon is somewhat striking because PGD-AT and TRADES perform simi-
larly on true labels (Rice et al., 2020). We find that the different memorization behaviors between
PGD-AT and TRADES when trained on random labels can commonly be observed across a variety
of datasets, model architectures, and threat models (shown in Appendix A.1), indicating that it is a
general phenomenon of memorization in the two AT methods. Therefore, our finding is:

DNNs have sufficient capacity to memorize adversarial examples of training data with completely
random labels, but the convergence depends on the AT algorithms.

Partially corrupted labels. We then inspect the behavior of AT under varying levels of label noise
from 0% (true labels) to 100% (completely random labels). The generalization gap (i.e., difference
between training and test accuracies) presented in Fig. 2(c) grows steadily as we increase the noise
rate before the network fails to converge. The learning curves are provided in Appendix A.1.

Explicit regularizations. We study the role of common regularizers in AT memorization, including
data augmentation, weight decay, and dropout (Srivastava et al., 2014). We train TRADES on true
and random labels with several combinations of regularizers. We observe the explicit regularizers do
not significantly affect the model’s ability to memorize adversarial examples, similar to the finding
in ST (Zhang et al., 2017; Arpit et al., 2017). The detailed results are provided in Appendix A.1.

3.2 CONVERGENCE ANALYSIS OF AT WITH RANDOM LABELS

Since we have observed a counter-intuitive fact that PGD-AT and TRADES exhibit different conver-
gence properties with random labels, it is necessary to perform a convergence analysis to understand
this phenomenon. Note that our finding can hardly be explained by previous works (Gao et al., 2019;
Wang et al., 2019; Zhang et al., 2020).

We first study the effects of different training settings on PGD-AT with random labels. We conduct
experiments to analyze each training factor individually, including network architecture, attack steps,
optimizer, and perturbation budget. We find that tuning the training settings cannot make PGD-AT
converge with random labels (Appendix A.2 details the results). Based on the analysis, we think that
the convergence issue of PGD-AT could be a result of the adversarial loss function in Eq. (1) rather
than other training configurations. Specifically, TRADES in Eq. (3) minimizes a clean cross-entropy
(CE) loss on natural examples, making DNNs memorize natural examples with random labels before
fitting adversarial examples. As seen in Fig. 2(b), at the very early stage of TRADES training (the
first 25 epochs), the natural accuracy starts to increase while the robust accuracy does not. However,
PGD-AT in Eq. (1) directly minimizes the CE loss on adversarial samples with random labels, which
can introduce unstable gradients with large variance, making it fail to converge. To corroborate the
above argument, we analyze the gradient magnitude and stability below.

Gradient magnitude. First, we calculate the average gradient norm of the adversarial loss in Eq. (1)
w.r.t. model parameters over each training sample for PGD-AT, and similarly calculate the average
gradient norm of the clean CE loss (the first term) and the KL loss (the second term) in Eq. (3)
w.r.t. parameters for TRADES to analyze their effects, respectively. We present the gradient norm
along with training in Fig. 3(a). We can see that at the initial training epochs, the gradient norm
of the KL loss in TRADES is much smaller than that of the CE loss, which indicates that the CE
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(a) (b)

Figure 3: (a): Gradient norm of PGD-AT and TRADES
along the training process. (b): The ratio of the gra-
dient norm of PGD-AT and TRADES during the first
1000 training iterations.

(a) (b)

Figure 4: (a): The `2 distance between the gradients
at θ and θ + λd of different losses, where θ are ini-
tialized, λ ∈ [−0.05, 0.05]. (b): The cosine similarity
between the gradients in each two successive epochs.

loss dominates TRADES training initially. With the training progressing, the KL loss has a larger
gradient norm, making the network memorize adversarial examples. However, it is still unclear why
PGD-AT does not rely on a similar learning tactic for convergence. To make a direct comparison
with TRADES, we rewrite the adversarial loss of PGD-AT in Eq. (1) as

max
x′
i∈S(xi)

L(fθ(x′i), yi) = L(fθ(xi), yi) +R(xi, yi,θ),

where R(xi, yi,θ) denotes the difference between the CE loss on adversarial example x′i and that
on natural example xi. Hence we can separately calculate the gradient norm of L(fθ(xi), yi) and
R(xi, yi,θ) w.r.t. parameters θ to find out the effect of R(xi, yi,θ) on training. Specifically, we
measure the relative gradient magnitude, i.e., in PGD-AT we calculate the ratio of the gradient norm
‖∇θR(xi,yi,θ)‖2
‖∇θL(fθ(xi),yi)‖2 ; while in TRADES, we similarly calculate the ratio of the gradient norm of the KL
loss to that of the CE loss. Fig. 3(b) illustrates the ratio of PGD-AT and TRADES during the first
1000 training iterations. The ratio of PGD-AT is consistently higher than that of TRADES, meaning
thatR(xi, yi,θ) has a non-negligible impact on training.

Gradient stability. Then, we analyze the gradient stability to explain why PGD-AT cannot con-
verge. We denote the adversarial loss of PGD-AT as J (x, y,θ) = maxx′∈S(x) L(fθ(x′), y) with
the subscript i omitted for notation simplicity. We have a theorem on gradient stability.
Theorem 1. Suppose the gradient of the clean cross-entropy loss is locally Lipschitz continuous as

‖∇θL(fθ(x′), y)−∇θL(fθ(x), y)‖2 ≤ K‖x′ − x‖p, (4)

for any x ∈ Rd, x′ ∈ S(x), and any θ, where K is the Lipschitz constant. Then we have

‖∇θJ (x, y,θ1)−∇θJ (x, y,θ2)‖2 ≤ ‖∇θL(fθ1
(x), y)−∇θL(fθ2

(x), y)‖2 + 2εK. (5)

We provide the proof in Appendix B, where we show the upper bound in Eq. (5) is tight. Theorem 1
indicates that the gradient of the adversarial loss J (x, y,θ) of PGD-AT will change more dramati-
cally than that of the clean CE loss L(fθ(x), y). When θ1 and θ2 are close, the difference between
the gradients of L at θ1 and θ2 is close to 0 due to the semi-smoothness of over-parameterized
DNNs (Allen-Zhu et al., 2019), but that of J is relatively large due to 2εK in Eq. (5). To validate
this, we visualize the change of gradient when moving the parameters θ along a random direction
d with magnitude λ. In particular, we set θ as initialization, d is sampled from a Gaussian distri-
bution and normalized filter-wise (Li et al., 2018). For PGD-AT and TRADES, we craft adversarial
examples on-the-fly for the model with θ + λd and measure the change of gradient by the `2 dis-
tance to gradient at θ averaged over all data samples. The curves on gradient change of PGD-AT,
TRADES, and the clean CE loss are shown in Fig. 4(a). In a small neighborhood of θ (i.e., small
λ), the gradient of PGD-AT changes abruptly while the gradients of TRADES and the clean CE loss
are more continuous. The gradient instability leads to a lower cosine similarity between the gradient
directions w.r.t. the same data in each two successive training epochs of PGD-AT, as illustrated in
Fig. 4(b). Therefore, the training of PGD-AT would be rather unstable that the gradient exhibits
large variance, making it fail to converge.

Figure 5: AT by Eq. (6)
.

Clean CE loss helps PGD-AT converge. To further verify our argu-
ment, we add the clean CE loss into the PGD-AT objective to resemble
the learning of TRADES with random labels, as

min
θ

n∑
i=1

{
(1− γ) · L(fθ(xi), yi) + γ · max

x′
i∈S(xi)

L(fθ(x′i), yi)

}
, (6)
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Figure 6: The results on four complexity measures of the adversarially trained models w.r.t. robust generaliza-
tion gap. The training settings of these models are provided in Appendix A.3.

where γ is gradually increased from 0 to 1. By using Eq. (6), the gradient would be stabler at the
initial stage and training on random labels can successfully converge, as shown Fig. 5.

In summary, our convergence analysis identifies the gradient instability issue of PGD-AT, provides
new insights on the differences between PGD-AT and TRADES, and partially explain the failures
of AT under other realistic settings beyond the scope of this section as detailed in Appendix A.2.

3.3 GENERALIZATION ANALYSIS OF AT WITH RANDOM LABELS

As our study demonstrates DNNs’ ability to memorize adversarial examples with random labels, we
raise the question of whether DNNs rely on a similar memorization tactic on true labels and how to
explain/ensure robust generalization. Although many efforts have been devoted to studying robust
generalization of AT theoretically or empirically (Yin et al., 2018; Schmidt et al., 2018; Bubeck et al.,
2019; Tu et al., 2019; Wu et al., 2020), they do not take the models trained on random labels into
consideration. As it is easy to show that the explicit regularizations are not the adequate explanation
of generalization in ST (Zhang et al., 2017; Arpit et al., 2017) and AT (see Appendix A.3), people
resort to complexity measures of a model to explain generalization (i.e., a lower complexity should
imply a smaller generalization gap). Here we show how the recently proposed complexity measures
fail to explain robust generalization when comparing models trained on true and random labels.

We consider several norm-based and sharpness/flatness-based measures. We denote the parameters
of a network by θ := {Wi}mi=1. The norm-based measures include spectral norm 1

γmargin

∏m
i=1 ‖Wi‖2

and `1 norm 1
γmargin

∑m
i=1 ‖Wi‖1 of model parameters, where γmargin is a margin on model output to

make them scale-insensitive (Neyshabur et al., 2017). The spectral norm appears in the theoretical
robust generalization bounds (Yin et al., 2018; Tu et al., 2019) and is related to the Lipschitz constant
of neural networks (Cisse et al., 2017). The `1 norm is adopted to reduce the robust generalization
gap (Yin et al., 2018). The sharpness/flatness-based measures include the curvature of input loss
landscape (Moosavi-Dezfooli et al., 2019) as the dominant eigenvalue of the Hessian matrix, as well
as the flatness of weight loss landscape (Wu et al., 2020) related to the change of adversarial loss
when moving the weights along a random direction. Fig. 6 plots the four complexity measures w.r.t.
robust generalization gap of several models trained with various combinations of regularizations
on true or random labels. The results show that the first three measures can hardly ensure robust
generalization, that lower complexity does not necessarily imply smaller robust generalization gap,
e.g., the models trained on random labels can even lead to lower complexity than those trained on
true labels. Among them, the flatness of weight loss landscape (Wu et al., 2020) is more reliable.

In summary, the generalization analysis indicates that the previous approaches, especially various
complexity measures, cannot adequately explain and ensure the robust generalization performance in
AT. Our finding of robust generalization in AT is complementary to that of standard generalization in
ST (Zhang et al., 2017; Neyshabur et al., 2017; Jiang et al., 2020). Accordingly, robust generalization
of adversarially trained models remains an open problem for future research.

4 ROBUST OVERFITTING ANALYSIS

Rice et al. (2020) have identified robust overfitting as a dominant phenomenon in AT, i.e., shortly
after the first learning rate decay, further training will continue to decrease the robust test accuracy.
They further show that several remedies for overfitting, including explicit `1 and `2 regularizations,
data augmentation, etc., cannot gain improvements upon early stopping. Although robust overfitting
has been thoroughly investigated, there still lacks an explanation of why it occurs. In this section, we
draw a connection between memorization and robust overfitting in AT by showing that robust over-
fitting is caused by excessive memorization of one-hot labels in the typical AT methods. Motivated
by the analysis, we then propose an effective strategy to eliminate robust overfitting.
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(a) (b) (c)

Figure 7: (a): The accuracy curves of PGD-AT with true labels to reproduce robust overfitting. (b): The robust
test accuracy of PGD-AT under various perturbation budgets ε. (c): The adversarial loss of two independently
trained networks by PGD-AT on 500 samples sorted by the loss of the first model.

4.1 EXPLAINING ROBUST OVERFITTING

The typical AT approaches (e.g., PGD-AT, TRADES) commonly adopt one-hot labels as the targets
for training, as introduced in Sec. 2.1. The one-hot labels could be inappropriate for some adversarial
examples because it is difficult for a network to assign high-confident one-hot labels for all perturbed
samples within the perturbation budget ε (Stutz et al., 2020; Cheng et al., 2020). Intuitively, some
examples may naturally lie close to the decision boundary and should be assigned lower predictive
confidence for the worst-case adversarial examples. It indicates that one-hot labels of some training
data may be noisy in AT1. After a certain training epoch, the model memorizes these “hard” training
examples with possibly noisy labels, leading to the reduction of test robustness, as shown in Fig. 7(a).
Thus, we hypothesize the cause of robust overfitting lies in the memorization of one-hot labels.

Our hypothesis is well supported by two pieces of evidence. First, we find that when the perturbation
budget ε is small, robust overfitting does not occur, as shown in Fig. 7(b). This observation implies
that the one-hot labels are more appropriate as the targets for adversarial examples within a smaller
neighborhood while become noisier under a larger perturbation budget and lead to overfitting. Sec-
ond, we validate that the “hard” training examples with higher adversarial loss values are consistent
across different models. We first train two independent networks (using the same architecture and
different random seeds) by PGD-AT and calculate the adversarial loss for each training sample. We
show the adversarial losses on 500 samples sorted by the loss of the first model in Fig. 7(c). It can
be seen that the samples with lower adversarial losses of the first model also have relatively lower
losses of the second one and vice versa. We further quantitatively measure the consistency of the ad-
versarial losses of all training samples between the two models using the Kendall’s rank coefficient
(Kendall, 1938), which is 0.85 in this case. A similar result can be observed for two different model
architectures (see Appendix C.1). The results verify that the “hard” training examples with possibly
noisy labels are intrinsic of a dataset, supporting our hypothesis on why robust overfitting occurs.

4.2 MITIGATING ROBUST OVERFITTING

Based on the above analysis, we resort to the methods that are less prone to overfit noisy labels for
mitigating robust overfitting in AT. Although learning with noisy labels has been broadly studied in
ST (Natarajan et al., 2013; Patrini et al., 2017; Jiang et al., 2018; Han et al., 2018; Zhang & Sabuncu,
2018), we find that most of these approaches are not suitable for AT. For example, a typical line of
methods filter out noisy samples and train the models on the identified clean samples (Jiang et al.,
2018; Han et al., 2018; Ren et al., 2018). However, they will neglect a portion of training data with
noisy labels, which can lead to inferior results for AT due to the reduction of training data (Schmidt
et al., 2018). Table 2 shows the results to validate this.

To address this problem, we propose to regularize the predictions of adversarial examples from being
over-confident by integrating the temporal ensembling (TE) approach (Laine & Aila, 2017) into
the AT frameworks. TE maintains an ensemble prediction of each data and penalizes the difference
between the current prediction and the ensemble prediction, which is effective for semi-supervised
learning and learning with noisy labels (Laine & Aila, 2017). We think that TE is suitable for AT
since it enables to leverage all training samples and hinders the network from excessive memoriza-
tion of one-hot labels with a regularization term. Specifically, we denote the ensemble prediction of

1Note that we argue the one-hot labels are noisy when used in AT, but do not argue the ground-truth labels
of the dataset are noisy, which is different from a previous work (Sanyal et al., 2021).
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Table 1: Test accuracy (%) of several methods on CIFAR-10, CIFAR-100, and SVHN under the `∞ norm with
ε = 8/255 based on the ResNet-18 architecture. We choose the best checkpoint according to the highest robust
accuracy on the test set under PGD-10.

Method Natural Accuracy PGD-10 PGD-1000 C&W-1000 AutoAttack
Best Final Diff Best Final Diff Best Final Diff Best Final Diff Best Final Diff

PGD-AT 83.75 84.82 -1.07 52.64 44.92 7.72 51.22 42.74 8.48 50.11 43.63 7.48 47.74 41.84 5.90
PGD-AT+TE 82.35 82.79 -0.44 55.79 54.83 0.96 54.65 53.30 1.35 52.30 51.73 0.57 50.59 49.62 0.97

TRADES 81.19 82.48 -1.29 53.32 50.25 3.07 52.44 48.67 3.77 49.88 48.14 1.74 49.03 46.80 2.23
TRADES+TE 83.86 83.97 -0.11 55.15 54.42 0.73 53.74 53.03 0.71 50.77 50.63 0.14 49.77 49.20 0.57

(a) The evaluation results on CIFAR-10.

Method Natural Accuracy PGD-10 PGD-1000 C&W-1000 AutoAttack
Best Final Diff Best Final Diff Best Final Diff Best Final Diff Best Final Diff

PGD-AT 57.54 57.51 0.03 29.40 21.75 7.65 28.54 20.63 7.91 27.06 21.17 5.89 24.72 19.34 5.38
PGD-AT+TE 56.45 57.12 -0.67 31.74 30.24 1.50 31.27 29.80 1.47 28.27 27.36 0.91 26.30 25.34 0.96

TRADES 57.98 56.32 1.66 29.93 27.70 2.23 29.51 26.93 2.58 25.46 24.42 1.04 24.61 23.40 1.21
TRADES+TE 59.35 58.72 0.63 31.09 30.12 0.97 30.54 29.45 1.09 26.61 25.94 0.67 25.27 24.55 0.72

(b) The evaluation results on CIFAR-100.

Method Natural Accuracy PGD-10 PGD-1000 C&W-1000 AutoAttack
Best Final Diff Best Final Diff Best Final Diff Best Final Diff Best Final Diff

PGD-AT 89.00 90.55 -1.55 54.51 46.97 7.54 52.22 42.85 9.37 48.66 44.13 4.53 46.61 38.24 8.37
PGD-AT+TE 90.09 90.91 -0.82 59.74 59.05 0.69 57.71 56.46 1.25 54.55 53.94 0.61 51.44 50.61 0.83

TRADES 90.88 91.30 -0.42 59.50 57.04 2.46 52.78 50.17 2.61 52.76 50.53 2.23 40.36 38.88 1.48
TRADES+TE 89.01 88.52 0.49 59.81 58.49 1.32 58.24 56.66 1.58 54.00 53.24 0.76 51.45 50.16 1.29

(c) The evaluation results on SVHN.

a training sample xi as pi, which is updated in each training epoch as pi ← η ·pi+(1−η) ·fθ(xi),
where η is the momentum term. The training objective of PGD-AT with TE can be expressed as

min
θ

n∑
i=1

max
x′
i∈S(xi)

{
L(fθ(x′i), yi) + w · ‖fθ(x′i)− p̂i‖22

}
, (7)

where p̂i is the normalization of pi as a probability vector and w is a balancing weight. TE can
be similarly integrated with TRADES with the same regularization term. The network would learn
to fit relatively easy samples with one-hot labels in the initial training stage, as shown in Fig. 7(a).
After the learning rate decays, the network can keep assigning low confidence for hard samples with
the regularization term in Eq. (7) and avoid fitting one-hot labels. Therefore, the proposed algorithm
enables to learn under label noise in AT and alleviates the robust overfitting problem.

5 EMPIRICAL EVALUATION ON MITIGATING ROBUST OVERFITTING

In this section, we provide the experimental results on CIFAR-10, CIFAR-100 (Krizhevsky & Hin-
ton, 2009), and SVHN (Netzer et al., 2011) datasets to validate the effectiveness of our proposed
method. Code is available at https://github.com/dongyp13/memorization-AT.

Training details. We adopt the common setting that the perturbation budget is ε = 8/255 under
the `∞ norm in most experiments. We consider PGD-AT and TRADES as two typical AT baselines
and integrate the proposed TE approach into them, respectively. We use the ResNet-18 (He et al.,
2016) model as the classifier in most experiments. In training, we use the 10-step PGD adversary
with α = 2/255. The models are trained via the SGD optimizer with momentum 0.9, weight decay
0.0005, and batch size 128. For CIFAR-10/100, we set the learning rate as 0.1 initially which is
decayed by 0.1 at 100 and 150 epochs with totally 200 training epochs. For SVHN, the learning rate
starts from 0.01 with a cosine annealing schedule for a total number of 80 training epochs. In our
method, We set η = 0.9 and w = 30 along a Gaussian ramp-up curve (Laine & Aila, 2017).

Evaluation results. We adopt PGD-10, PGD-1000, C&W-1000 (Carlini & Wagner, 2017), and
AutoAttack (Croce & Hein, 2020b) for evaluating adversarial robustness rigorously. AutoAttack is
a strong attack to evaluate model robustness, which is composed of an ensemble of diverse attacks,
including APGD-CE (Croce & Hein, 2020b), APGD-DLR (Croce & Hein, 2020b), FAB (Croce
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& Hein, 2020a), and Square attack (Andriushchenko et al., 2020). To show the performance of
robust overfitting, we report the test accuracy on the best checkpoint that achieves the highest robust
test accuracy under PGD-10 and the final checkpoint, as well as the difference between these two
checkpoints. The results of PGD-AT, TRADES, and the combinations of them with our proposed
approach (denoted as PGD-AT+TE and TRADES+TE) on the CIFAR-10, CIFAR-100, and SVHN
datasets are shown in Table 1.

Figure 8: The natural and robust test accuracy curves (under PGD-
10) of PGD-AT, TRADES, and their extensions by integrating the
proposed TE approach. The models are trained on CIFAR-10 un-
der the `∞ norm with ε = 8/255 based on the ResNet-18 archi-
tecture.

We can observe that the differences
between best and final test accuracies
of our method are reduced to around
1%, while the accuracy gaps of PGD-
AT and TRADES are much larger.
It indicates that our method largely
eliminates robust overfitting. Due to
being less affected by robust over-
fitting, our method achieves higher
robust accuracies than the baselines.
We also show the learning curves of
these methods in Fig. 8. We consis-
tently demonstrate the effectiveness
of our method on different network
architectures (including WRN-34-10
and VGG-16) and threat models (including `2 norm), which will be shown in Appendix C.2.

Discussion and comparison with related works. Our method is kind of similar to the label smooth-
ing (LS) technique, which is studied in AT (Pang et al., 2021). Recent works have also introduced
the smoothness in training labels and model weights (Chen et al., 2021; Huang et al., 2020), which
can alleviate robust overfitting to some extent. The significant difference between our work and
them is that we provide a reasonable explanation for robust overfitting—one-hot labels are noisy
for AT, while previous methods did not give such an explanation and could be viewed as solutions
to our identified problem. To empirically compare with these methods, we conduct experiments
on CIFAR-10 with the ResNet-18 network. Under the PGD-AT framework, we compare with the
baseline PGD-AT, PGD-AT+LS, self-adaptive training (SAT) (Huang et al., 2020), and knowledge
distillation with stochastic weight averaging (KD-SWA) (Chen et al., 2021). We also adopt the Co-
teaching approach (Han et al., 2018) adapted to PGD-AT, which jointly trains two models using the
filtered samples given by each other. The results under the adopted attacks are presented in Table 2.
Although various techniques can alleviate robust overfitting, our method achieves better robustness
than the others, validating its effectiveness. For Co-teaching, though robust overfitting is alleviated,
the performance is worse than our proposed method due to the reduction of training data.

Table 2: Test accuracy (%) of the proposed method and other methods on CIFAR-10 under the `∞ norm with
ε = 8/255 based on the ResNet-18 architecture.

Method Natural Accuracy PGD-10 PGD-1000 C&W-1000 AutoAttack
Best Final Diff Best Final Diff Best Final Diff Best Final Diff Best Final Diff

PGD-AT 83.75 84.82 -1.07 52.64 44.92 7.72 51.22 42.74 8.48 50.11 43.63 7.48 47.74 41.84 5.90
PGD-AT+LS 82.68 85.16 -2.48 53.70 48.90 4.80 52.56 46.31 6.25 50.41 46.06 4.35 49.02 44.39 4.63
SAT 82.81 81.86 0.95 53.81 53.31 0.50 52.41 52.00 0.41 51.99 51.71 0.28 50.21 49.73 0.48
KD-SWA 84.84 85.26 -0.42 54.89 53.80 1.09 53.31 52.45 0.86 51.48 50.91 0.57 50.42 49.83 0.59
Co-teaching 81.94 82.22 -0.28 51.27 50.52 0.75 50.15 49.12 1.03 50.85 49.86 0.99 49.60 48.49 1.11
PGD-AT+TE 82.35 82.79 -0.44 55.79 54.83 0.96 54.65 53.30 1.35 52.30 51.73 0.57 50.59 49.62 0.97

6 CONCLUSION

In this paper, we demonstrate the capacity of DNNs to fit adversarial examples with random labels by
exploring memorization in adversarial training, which also poses open questions on the convergence
and generalization of adversarially trained models. We validate that some AT methods suffer from a
gradient instability issue and robust generalization can hardly be explained by complexity measures.
We further identify a significant drawback of memorization in AT related to the robust overfitting
phenomenon—robust overfitting is caused by memorizing one-hot labels in adversarial training. We
propose a new mitigation algorithm to address this issue, with the effectiveness validated extensively.
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A ADDITIONAL EXPERIMENTS ON MEMORIZATION IN AT

In this section, we provide additional experiments on the memorization behavior in AT. All of the
experiments are conducted on NVIDIA 2080 Ti GPUs. The source code of this paper is submitted
as the supplementary material, and will be released after the review process.

A.1 MEMORIZATION OF PGD-AT AND TRADES

A.1.1 DIFFERENT TRAINING SETTINGS

We first demonstrate that the different memorization behaviors between PGD-AT and TRADES can
be generally observed under various settings.

(a) PGD-AT (b) TRADES

Figure A.1: The natural and robust training accuracies of PGD-AT and TRADES on CIFAR-100 when trained
on true or random labels.

(a) PGD-AT (b) TRADES

Figure A.2: The natural and robust training accuracies of PGD-AT and TRADES on SVHN when trained on
true or random labels.

Datasets. Similar to Fig. 2, we show the accuracy curves of PGD-AT and TRADES when trained on
true or random labels on CIFAR-100 (Krizhevsky & Hinton, 2009) in Fig. A.1 and on SVHN (Netzer
et al., 2011) in Fig. A.2. We consistently observe that PGD-AT fails to converge with random labels,
while TRADES can successfully converge, although it does not reach 100% accuracy on SVHN.

Model architectures. We then consider other network architectures, including the DenseNet-121
model (Huang et al., 2017) and the deep layer aggregation (DLA) model (Yu et al., 2018). The
corresponding results are shown in Fig. A.3. The similar results can be observed, although it may
take more training epochs to make TRADES converge with the smaller DenseNet-121 network.
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(a) DenseNet-121 (b) DLA

Figure A.3: The natural and robust training accuracies of PGD-AT and TRADES on CIFAR-10 with different
architectures when trained on random labels.

Figure A.4: The natural and robust training accuracies of PGD-AT and TRADES on CIFAR-10 under the
`2-norm threat model when trained on random labels.

Threat models. We further consider the `2-norm threat model, in which we set ε = 1.0 and α =
0.25 in the 10-step PGD adversary. The learning curves of PGD-AT and TRADES are shown in
Fig. A.4, which also exhibit similar results.

Perturbation budget. We study the memorization behavior in AT with different perturbation bud-
gets ε. In Fig. A.5, we show that when the perturbation budget is ε = 16/255 (`∞ norm), TRADES
trained on random labels can still converge. But when we set a larger budget (e.g., ε = 32/255),
both PGD-AT and TRADES cannot obtain near 100% robust training accuracy. We also find under
this condition, even AT trained on true labels cannot get 100% robust training accuracy, indicating
that the gradient instability issue discussed in Sec. 3.2 results in the convergence problem.

In summary, our empirical observation that PGD-AT and TRADES perform differently when trained
on random labels is general across multiple datasets, network architectures, and threat models.

A.1.2 LEARNING CURVES UNDER DIFFERENT NOISE RATES

We show the learning curves of PGD-AT and TRADES under varying levels of label noise in
Fig. A.6 and Fig. A.7, respectively. In this experiment, we adopt the weight decay and data augmen-
tation for regularizations. We can see that the network achieves maximum accuracy on the test set
before fitting the noisy training set. Thus the model learns easy and simple patterns first before fit-
ting the noise, similar to the finding in ST (Arpit et al., 2017). It can also be observed that under 80%
noise rate, PGD-AT fails to converge. Note that when the noise rate is 0%, the network is trained
on true labels, but the robust test accuracy also decreases after a certain epoch. This phenomenon is
called robust overfitting (Rice et al., 2020), which is studied in Sec. 4.
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(a) PGD-AT (b) TRADES

Figure A.5: The natural and robust training accuracies of PGD-AT and TRADES on CIFAR-10 with ε =
16/255 when trained on true or random labels.

Figure A.6: Accuracy curves of PGD-AT under different noise rates on CIFAR-10.

Figure A.7: Accuracy curves of TRADES under different noise rates on CIFAR-10.

A.1.3 EXPLICIT REGULARIZATIONS

We consider three common regularizers, including data augmentation, weight decay, and dropout
(Srivastava et al., 2014). We train the models based on TRADES on true and random labels with
several combinations of explicit regularizers. As shown in Table A.1, the explicit regularizations do
not significantly affect the model’s ability to memorize adversarial examples with random labels.

A.2 MORE RESULTS ON THE CONVERGENCE OF AT

A.2.1 TRAINING CONFIGURATIONS

We study different training configurations on PGD-AT with random labels. We consider various
factors as follows. These experiments are conducted on CIFAR-10.

• Model capacity. Recent work suggests that model size is a critical factor to obtain better
robustness (Madry et al., 2018; Xie & Yuille, 2020). A possible reason why PGD-AT fails
to converge with random labels may also be the insufficient model capacity. Therefore, we
try to use larger models, including WRN-34-20 (which is used in Rice et al. (2020)) and
WRN-70-16 (which is used in Gowal et al. (2020)). However, using larger models under
this setting cannot solve the convergence problem.
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Table A.1: The training accuracy, test accuracy, and generalization gap (%) of TRADES when trained on true or
random labels, with and without explicit regularizations, including data augmentation (random crop and flip),
weight decay (0.0002), and dropout (0.2).

Labels Data Weight Dropout Training Accuracy Test Accuracy Generalization Gap
Augmentation Decay Natural Robust Natural Robust Natural Robust

true 7 7 7 99.73 99.65 77.53 37.47 22.20 62.18
true 3 7 7 99.57 97.03 82.91 45.37 16.93 51.66
true 7 3 7 99.59 99.53 77.31 38.94 22.28 60.59
true 7 7 3 99.65 99.40 79.96 39.86 19.69 59.54
true 3 3 7 99.50 97.28 84.26 49.16 15.24 48.12
true 7 3 3 99.41 99.20 80.28 41.64 19.13 57.56

random 7 7 7 99.80 99.55 9.79 0.15 90.01 99.40
random 3 7 7 99.36 86.10 9.71 0.24 89.65 85.86
random 7 3 7 99.84 99.53 10.13 0.23 89.71 99.30
random 7 7 3 99.15 92.23 9.04 0.17 90.11 92.06
random 3 3 7 99.25 69.62 9.67 0.24 89.58 69.38
random 7 3 3 99.38 81.57 9.54 0.19 89.84 81.38

• Attack steps. We adopt the weaker FGSM adversary (Goodfellow et al., 2015) for training.
We also adopt the random initialization trick as argued in Wong et al. (2020) and adjust the
step size as α = 10/255, yielding the fast adversarial training method (Wong et al., 2020).
However, fast AT still cannot converge.

• Optimizer. We try to use various optimizers, including the SGD momentum optimizer,
the Adam optimizer (Kingma & Ba, 2015), and the nesterov optimizer (Nesterov, 1983);
different learning rate schedules, including the piecewise decay and cosine schedules, and
different learning rates (0.1 and 0.01), but none of these attempts make PGD-AT converge.

• Perturbation budget. The perturbation budget ε is an important factor to affect the conver-
gence of PGD-AT. When ε approaches 0, PGD-AT would degenerate into standard training,
which can easily converge (Zhang et al., 2017). Hence we try different values of ε, and find
that PGD-AT can converge with a smaller ε (e.g., ε = 1/255) but cannot converge when
ε ≥ 2/255.

A.2.2 GRADIENT STABILITY UNDER COSINE SIMILARITY

In Fig. 4(a), we show the gradient change of PGD-AT, TRADES, and the clean CE loss under the `2
distance. We further show the cosine similarity between the gradients at θ and θ + λd in Fig. A.8.
The cosine similarity is also averaged over all data samples. The results based on cosine similarity
are consistent with the results based on the `2 distance, showing that the gradient of PGD-AT changes
more abruptly.

A.2.3 THE FAILURES OF AT UNDER REALISTIC SETTINGS

We find that some AT methods (e.g., PGD-AT) suffer from a gradient instability issue, which re-
sults in the convergence problem when trained on random labels. Under other realistic setting, our
analysis may also be valuable.

First, PGD-AT fails to converge under 80% noise rate. We think that the unstable gradients can
overwhelm the useful gradients given by clean examples. To prove it, we train the models under
80% uniform label noise, by either PGD-AT or standard training (ST) on natural examples. We
then select 100 training images with wrong labels and another 100 training images with true labels
for evaluation. Similarly, we calculate the gradient norm of the cross-entropy loss w.r.t. model
parameters of each method. We show the results in Fig. A.9. For AT, the gradient norm of clean
examples is larger than that of noisy examples at beginning, which makes the model learn to classify.
However, for PGD-AT, the gradient norm of clean examples is almost the same as that of noisy
examples (the two curves overlap together). And the unstable gradients provided by noisy examples
would overwhelm the useful gradients given by clean examples, making the network fail to converge.
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Figure A.8: The cosine similarity between the gradi-
ents at θ and θ + λd of different losses, where θ are
initialized, λ ∈ [−0.05, 0.05].

Figure A.9: The gradient norm of PGD-AT and
ST given clean examples or noisy examples, when
trained on 80% uniform label noise.

Second, when the perturbation budget is large (e.g., ε = 64/255), PGD-AT cannot converge with
true labels, while TRADES can achieve about 50% training accuracies. This can also be explained
by our convergence analysis that the gradient is very unstable in PGD-AT with a larger perturbation
budget, making it fail to converge.

A.3 MORE DISCUSSIONS ON THE GENERALIZATION OF AT

As shown in Table A.1, when trained on true labels, although the regularizers can help to reduce the
generalization gap, the model without any regularization can still generalize non-trivially. The three
explicit regularizations do not significantly affect the model’s ability to memorize adversarial exam-
ples with random labels. In consequence, the explicit regularizers are not the adequate explanation
of generalization. By inspecting the learning dynamics of AT under different noise rates in Fig. A.6
and Fig. A.7, the network achieves maximum accuracy on the test set before fitting the noisy train-
ing set, meaning that the model learns simple patterns (i.e., clean data) before memorizing the hard
examples with wrong labels, similar to the observation in standard training (Arpit et al., 2017). The
results suggest that optimization by itself serves as an implicit regularizer to find a model with good
generalization performance.
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Figure A.10: The natural and robust testing accuracies of TRADES on CIFAR-10 with different initialization
strategies and training methods.

A recent work (Liu et al., 2020b) points out that in standard training, pre-training on random labels
can lead to substantial performance degeneration of subsequent SGD training on true labels, while
adding regularizations can overcome the bad initialization caused by pre-training with random la-
bels. In this paper, we further investigate whether this finding can generalize to adversarial training.
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As PGD-AT cannot converge with random labels, we adopt TRADES to conduct experiments. Fol-
lowing Liu et al. (2020b), we consider two initialization strategies — random initialization and
adversarial initialization generated by training on random labeling of the training data. We also con-
sider two training methods — vanilla SGD training and SOTA SGD training with data augmentation
(random crops and flips), weight decay, and momentum. The results are shown in Fig. A.10. It can
be seen that with vanilla SGD, the adversarial initialization can lead to worse performance than the
random initialization. But with the regularization techniques, the models with different initializa-
tions converge to nearly the same test accuracy. The results are consistent with the findings in Liu
et al. (2020b).

B PROOF OF THEOREM 1

Proof. Recall that J (x, y,θ) = maxx′∈S(x) L(fθ(x′), y) is the adversarial loss of PGD-AT. First,
we have

‖∇θJ (x, y,θ1)−∇θJ (x, y,θ2)‖2
=‖∇θJ (x, y,θ1)−∇θL(fθ1

(x), y)−
∇θJ (x, y,θ2) +∇θL(fθ2(x), y)+

∇θL(fθ1(x), y)−∇θL(fθ2(x), y)‖2
≤‖∇θJ (x, y,θ1)−∇θL(fθ1

(x), y)‖2+

‖∇θJ (x, y,θ2)−∇θL(fθ2
(x), y)‖2+

‖∇θL(fθ1(x), y)−∇θL(fθ2(x), y)‖2.

(B.1)

From the assumption, for any x ∈ Rd and x′ ∈ S(x), we have

‖∇θL(fθ(x′), y)−∇θL(fθ(x), y)‖2 ≤ K‖x′ − x‖p ≤ εK,

due to the definition of S(x). We also note that J (x, y,θ) is the maximal cross-entropy loss L
within S(x), such that we have

‖∇θJ (x, y,θ)−∇θL(fθ(x), y)‖2 ≤ εK. (B.2)

Combining Eq. (B.1) and Eq. (B.2), we can obtain Eq. (5).

Note that the bound is tight since the all the equalities can be reached.

Remark 1. We note that a recent work (Liu et al., 2020a) gives a similar result on gradient stability.
The difference is that they assume the loss function satisfies an additional Lipschitzian smoothness
condition as

‖∇θL(fθ1
(x), y)−∇θL(fθ2

(x), y)‖2 ≤ Kθ‖θ1 − θ2‖2,
where Kθ is another constant. Then they prove that

‖∇θJ (x, y,θ1)−∇θJ (x, y,θ2)‖2 ≤ Kθ‖θ1 − θ2‖2 + 2εK.

It can be noted that with this new assumption, we can simply obtain this result by Theorem 1.
Therefore, Theorem 1 is a more general result of the previous one.

B.1 THEORETICAL ANALYSIS FOR TRADES

Note that TRADES adopts the KL divergence in its adversarial loss. The KL divergence is defined
on two predicted probability distributions over all classes, as

D(fθ(x)‖fθ(x′)) =
∑

y∈{1,...,C}

fθ(x)y · log
fθ(x)y
fθ(x′)y

.

However, based on the local Lipschitz continuity assumption of the clean cross-entropy loss (which
is only concerned with the predicted probability of the true class) in Eq. (4), we cannot derive a
similar theoretical bound on the gradient stability of TRADES as in Eq. (5). Therefore, we need to
make a different assumption on the KL divergence. For example, suppose the gradient of the KL
divergence satisfies

‖∇θD(fθ(x)‖fθ(x′))‖2 ≤ K ′‖x′ − x‖p,
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for any x ∈ Rd, x′ ∈ S(x), and any θ, where K ′ is another constant. We denote the adversarial loss
of TRADES as J ′(x, y,θ), then we have

‖∇θJ ′(x, y,θ1)−∇θJ ′(x, y,θ1)‖2
≤‖∇θL(fθ1

(x), y)−∇θL(fθ2
(x), y)‖2+

β‖∇θ max
x′∈S(x)

D(fθ1(x)‖fθ1(x′))‖2+

β‖∇θ max
x′∈S(x)

D(fθ2
(x)‖fθ2

(x′))‖2

≤‖∇θL(fθ1(x), y)−∇θL(fθ2(x), y)‖2 + 2βεK ′.

Although we can derive a similar bound on gradient stability of TRADES, this bound is not directly
comparable to Eq. (5) since we cannot find the relationship between K and K ′. However, our
empirical analysis on gradient magnitude in Sec. 3.2 has shown that TRADES is dominated by the
clean cross-entropy loss at the initial training epochs, thus the gradient stability of the TRADES loss
will be similar to that of the clean cross-entropy loss, as also revealed in Fig. 4(a). Therefore, the
gradient of TRADES would be relatively stable.

C FULL EXPERIMENTS ON ROBUST OVERFITTING

C.1 ADDITIONAL EXPERIMENTS ON EXPLAINING ROBUST OVERFITTING

Figure C.1: The robust test accuracy of TRADES un-
der various perturbation budgets ε.

Figure C.2: The adversarial loss of WRN-28-10 and
ResNet-18 trained by PGD-AT on 500 samples sorted
by the loss of the first model (i.e., WRN-28-10).

First, we show the robust test accuracy curves of TRADES under various perturbation budgets in
Fig. C.1. It can also be observed that when the perturbation budget is small, robust overfitting does
not occur.

Second, we show that the “hard” training examples with higher adversarial loss values are consistent
across different model architectures. We train one WRN-28-10 model and one ResNet-18 model
based on PGD-AT. We then calculate the adversarial loss for each training sample for these two
models. We show the adversarial loss on 500 samples sorted by the loss of the first model (i.e., WRN-
28-10) in Fig. C.2. It can be seen that the samples with lower adversarial losses of the first model
also have relatively lower losses of the second one and vice versa. The Kendall’s rank coefficient of
the adversarial loss between the two models is 0.78 in this case.

Third, we visualize the hard training examples with high adversarial loss values in Fig. C.3. It can
be seen that these examples are difficult to recognize and their labels may be wrong. Therefore, the
one-hot labels for these hard training examples can be noisy for AT, leading to the robust overfitting
problem.
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Figure C.3: The hard training examples with high adversarial loss values.

Table C.1: Test accuracy (%) of several methods using different model architectures and threat models. We
choose the best checkpoint according to the highest robust accuracy on the test set under PGD-10.

Methods Networks Norms Natural Accuracy PGD-10
Best Final Diff Best Final Diff

PGD-AT WRN-34-10

`∞ (ε = 8/255)

86.58 86.83 -0.25 55.83 49.52 6.31
PGD-AT+TE WRN-34-10 85.43 85.10 0.33 59.30 56.63 2.67

PGD-AT VGG-16 79.60 81.26 -1.66 48.52 43.02 5.50
PGD-AT+TE VGG-16 78.19 79.13 -0.94 52.06 51.29 0.77

PGD-AT

ResNet-18 `2 (ε = 128/255)

88.82 88.96 -0.14 69.05 65.96 3.09
PGD-AT+TE 87.95 88.20 -0.25 72.58 71.93 0.65

TRADES 86.50 86.57 -0.07 70.22 66.07 4.15
TRADES+TE 88.42 88.60 -0.18 72.72 72.43 0.29

C.2 ADDITIONAL EXPERIMENTS ON MITIGATING ROBUST OVERFITTING

We show the results of our proposed methods on other network architectures (including WRN-
34-10 and VGG-16) and threat models (including `2 norm) in Table C.1. The results consistently
demonstrate the effectiveness of the proposed method.

We further show the results of PGD-AT, PGD-AT+TE, TRADES, and TRADES+TE on CIFAR-10
over 3 runs in Table C.2.
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Table C.2: Test accuracy (%) of several methods on CIFAR-10 under the `∞ norm with ε = 8/255 based on
the ResNet-18 architecture. We show the mean/std of the results over 3 runs.

Method Natural Accuracy
Best Final Diff

PGD-AT 83.76 ± 0.02 84.93 ± 0.26 -1.17 ± 0.29
PGD-AT+TE 82.36 ± 0.18 82.69 ± 0.14 -0.33 ± 0.31

TRADES 81.34 ± 0.15 82.70 ± 0.21 -1.36 ± 0.36
TRADES+TE 83.66 ± 0.19 83.89 ± 0.09 -0.23 ± 0.21

Method PGD-10
Best Final Diff

PGD-AT 52.62 ± 0.10 44.91 ± 0.01 7.71 ± 0.11
PGD-AT+TE 55.74 ± 0.17 54.82 ± 0.23 0.92 ± 0.07
TRADES 53.25 ± 0.07 50.48 ± 0.23 2.77 ± 0.16
TRADES+TE 54.93 ± 0.16 54.04 ± 0.19 0.89 ± 0.13

Method PGD-1000
Best Final Diff

PGD-AT 51.26 ± 0.03 42.72 ± 0.06 8.54 ± 0.06
PGD-AT+TE 54.54 ± 0.27 53.01 ± 0.34 1.53 ± 0.24
TRADES 52.24 ± 0.20 48.74 ± 0.17 3.50 ± 0.13
TRADES+TE 53.55 ± 0.16 52.93 ± 0.07 0.62 ± 0.11

Method C&W-1000
Best Final Diff

PGD-AT 50.24 ± 0.12 43.59 ± 0.07 6.65 ± 0.19
PGD-AT+TE 52.31 ± 0.01 51.67 ± 0.12 0.64 ± 0.11
TRADES 49.83 ± 0.05 48.11 ± 0.04 1.72 ± 0.02
TRADES+TE 50.80 ± 0.02 50.61 ± 0.07 0.19 ± 0.08

Method AutoAttack
Best Final Diff

PGD-AT 47.85 ± 0.17 41.62 ± 0.16 6.23 ± 0.26
PGD-AT+TE 50.37 ± 0.22 49.36 ± 0.24 1.01 ± 0.03
TRADES 48.86 ± 0.18 46.73 ± 0.07 2.13 ± 0.11
TRADES+TE 49.40 ± 0.27 48.77 ± 0.21 0.63 ± 0.05
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