
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

3D-PROVER: DIVERSITY DRIVEN THEOREM PROVING
WITH DETERMINANTAL POINT PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

A key challenge in automated formal reasoning is the intractable search space,
which grows exponentially with the depth of the proof. This branching is caused
by the large number of candidate proof tactics which can be applied to a given
goal. Nonetheless, many of these tactics are semantically similar or lead to an
execution error, wasting valuable resources in both cases. We address the prob-
lem of effectively pruning this search, using only synthetic data generated from
previous proof attempts. We first demonstrate that it is possible to generate se-
mantically aware tactic representations which capture the effect on the proving
environment, likelihood of success, and execution time. We then propose a novel
filtering mechanism which leverages these representations to select semantically
diverse and high quality tactics, using Determinantal Point Processes. Our ap-
proach, 3D-Prover, is designed to be general, and to augment any underlying tactic
generator. We demonstrate the effectiveness of 3D-Prover on the miniF2F-valid
and miniF2F-test benchmarks by augmenting the ReProver LLM. We show that
our approach leads to an increase in the overall proof rate, as well as a significant
improvement in the tactic success rate, execution time and diversity.

1 INTRODUCTION

Interactive Theorem Proving, as the name suggests, has traditionally involved a human guiding a
proving system to verify a formal proposition. It has found applications in a wide range of fields,
from secure software (Tan et al., 2019) to the verification of mathematical results (Hales et al.,
2017). There has been significant interest in automating this process, with formalization efforts
requiring a high level of human expertise (Klein et al., 2009). Beyond this, it is considered a ‘grand
challenge’ for AI, requiring a high level of reasoning and planning to be successful (Reddy, 1988).
Even the largest current models struggle with the complexity of the task, with for example GPT-4
only able to solve 13.5% (Thakur et al., 2023) of the high school level miniF2F-test (Zheng et al.,
2021) benchmark. This has motivated the development of specialized models and search algorithms
to address the unique challenges of the domain (Wang et al., 2024; Polu et al., 2022; Jiang et al.,
2022b; Han et al., 2022; First et al., 2023; Zhao et al., 2023; Wang et al., 2023; Whalen, 2016; Wu
et al., 2021b; Wang et al., 2018; Wang & Deng, 2020; Rabe et al., 2020; Polu & Sutskever, 2020;
Mikuła et al., 2023; Loos et al., 2017; Li et al., 2021; Lewkowycz et al., 2022; Jiang et al., 2021;
2022a; Gauthier et al., 2017).

With most non-trivial proofs requiring long chains of correct reasoning, it is a challenge to generate
them in one pass without mistakes. The addition of a search algorithm is common for addressing
this, as is done by the current state-of-the-art DeepSeek-Prover-V1.5 (Xin et al., 2024). Under this
paradigm, candidate tactics are generated and executed in the proving system, which (if successful)
results in new subgoals to prove. This generates a tree of possible proof paths, where a search algo-
rithm selects the most promising nodes to expand. The primary challenge faced by these approaches
is the exponential growth in the number of proof paths, limiting the complexity of the problems that
can be solved efficiently.

Many of the generated tactics are equivalent, modulo variable renaming and other semantics-
preserving transformations. See Figure 1 for a sample search tree from the ReProver (Yang et al.,
2023) system, where several semantically similar paths are explored, wasting valuable resources.
Simple lexical similarity scores fail to cover the semantics (meaning) of a tactic, as captured by the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Error: Unknown
identifier

Figure 1: An example node expansion for a failed ReProver attempt, which our DPP model was able
to prove. Tactics on the left result in the same proof state, tactics on the right result in an error, and
tactics in the centre result in a unique proof state. The high error rate and tactic similarity motivates
our filtering approach, which prunes the search space to give a diverse set of subgoals.

effect of the tactic on the environment. For example, an expression and its negation vary by only a
single character, but have a large semantic difference. It is therefore desirable to filter tactics by their
semantic rather than syntactic diversity. In addition, many tactics lead to an execution error from
the prover. From our experiments with miniF2F, we find approximately 75% of tactics result in an
execution error (Section 2.2). With the execution of tactics in the environment being expensive, this
further restricts the space of proofs which can be explored efficiently.

These challenges motivate our proposed approach, Diversity Driven Determinantal Point Process
Prover (3D-Prover). 3D-Prover adds an extra ‘dimension’ to existing proving systems by including a
filtering mechanism on top of the existing tactic generation and search components. 3D-Prover uses
Determinantal Point Processes (Kulesza, 2012) to prune the proof search space by filtering tactic
candidates to a diverse and high quality subset. The large amount of synthetic data generated from
proof attempts enables us to learn the effect tactics have on the environment, including the likelihood
of an error and the execution time. We leverage this to generate tactic representations which reflect
their semantics, which 3D-Prover uses to filter tactics based on a combination of their diversity and
quality. 3D-Prover allows for a direct tradeoff between search objectives, with hyperparameters
controlling the weighting of error, time and diversity in the filtering process. 3D-Prover is a general
approach which can be used to augment any underlying tactic generator. We demonstrate this by
augmenting the open source ReProver LLM to obtain a significant improvement in the success rate,
execution time and diversity of tactics, and the overall proof success rate.

We summarize our contributions as follows:

• We study the feasibility of learning the environment dynamics of proving systems. We
demonstrate tactic representations which capture the likely effect on the environment, using
them to predict the likelihood of success and execution time of a tactic, as well as the
resulting proof state or error message.

• We propose a novel edge filtering approach using Determinantal Point Processes (Kulesza
& Taskar, 2011), which leverage these representations to select semantically diverse subsets
of quality tactics. Our method is modular and can be used with any underlying tactic model.

• We evaluate our approach by augmenting ReProver (Yang et al., 2023) on the
miniF2F (Zheng et al., 2021) benchmark, where we demonstrate a significant improvement
in the tactic success rate, diversity and overall proof success rate.

1.1 RELATED WORK

There is little prior work on learning the effect of a tactic on the proving environment. Xin et al.
(2024) recently included successful environment responses as an auxiliary learning objective, how-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ever do not investigate the task in detail. We extend this by modeling the error likelihood, error
messages and execution time, which we use to generate useful tactic representations. Several ap-
proaches have used previous proof attempts to improve performance, using the sparse binary signal
from the proof status of a goal (Bansal et al., 2019; Wu et al., 2021a). This has been used to improve
search algorithms, as done in (Lample et al., 2022; Polu et al., 2022; Wang et al., 2023). These
approaches do not consider the diversity of the nodes expanded, with nothing preventing the search
from exploring semantically similar paths. Xin et al. (2024) uses intrinsic reward for exploration by
rewarding new nodes in the search tree. The addition of any node is rewarded equally, even if they
are similar (but not identical) to existing nodes. We instead select tactics based on their diversity
with respect to the resulting nodes. First & Brun (2022) use a diverse ensemble of models to im-
prove proof performance, whereas we focus on diversity with respect to the environment response,
given an arbitrary underlying model (or models).

1.2 BACKGROUND: DETERMINANTAL POINT PROCESSES

Determinantal Point Processes (DPPs) are a class of probabilistic models for sampling subsets from
a ground set Y . They provide an inherent trade-off between the diversity and quality of the sampled
subsets, successfully being applied to this end across a variety of domains (Kulesza, 2012; Hsiao &
Grauman, 2018; Zhang et al., 2016). This motivates their use in our filtering approach (Section 3.2).

In line with Kulesza (2012), for |Y| = n we define the kernel L ∈ Rn×n of a DPP as the Gram
matrix L = BTB for B ∈ Rn×d, where column bi ∈ Rd of B is a vector representing element
i ∈ {1, . . . , n} of Y . These vectors bi are commonly decomposed into a set of unit norm diversity
features ϕi ∈ Rd and quality scores qi ∈ R+, so that bi = qiϕi, ||ϕi|| = 1 for all i ∈ {1, . . . , n}.
The similarity matrix S is then defined as Sij = ϕT

i ϕj . The probability of sampling a subset
A ⊆ Y from a DPP is then proportional to the determinant of the submatrix of L indexed by
A, P(A) ∝ det(LA) = (

∏
i∈A q2i)det(SA). Geometrically, this determinant is the volume of the

parallelepiped spanned by the submatrix LA, which as we see in Figure 3, is maximised based on
a combination of the similarity and length (quality) of the chosen elements. In this way, DPPs
elegantly trade off between the quality and diversity of elements. Normally the size of the sampled
subset |A| is variable, however Kulesza & Taskar (2011) introduce k-DPPs which restricts the size
of the subset to a fixed k ∈ N, and where the probability of sampling A is normalised over subsets
of size k. That is, for a k-DPP, P(A) = det(LA)/

∑
|A′|=k det(LA′).

2 TRANSITION AWARE REPRESENTATION LEARNING

One proof attempt can generate a rather large amount of data. A single pass of the miniF2F-valid
benchmark of 244 proofs results in approximately 500,000 transitions, capturing rich information
about the error likelihood, execution time and resulting proof state or error message. This section ex-
plores the feasibility of using this data to learn how tactics affect the environment. We operationalise
this as a supervised learning task: given a goal and tactic, we predict the error status, execution time
and environment output. We effectively learn these targets from only this synthetic data, and embed
this information into a compact tactic representation. The upshot, as we show in Section 3, is that
these representations can be utilised to improve the performance of subsequent proof attempts.

2.1 TRANSITION MODELS

The result of a proof attempt (formalised in A.1) is the dataset D of transitions {(g, t, s, τ, o)},
which captures the results of applying tactics t ∈ T to goals g ∈ S. The status s ∈ {0, 1}, indicates
a success (1) or failure (0), τ ∈ R gives the execution time of the tactic and the output o ∈ O
is the environment response, which is an error message, new goals to prove, or a proof success.
We propose a method of learning tactic representations e ∈ Rd which capture the result (s, τ, o)
of applying t to g. By using these as diversity features for DPP, we can filter tactics based on the
diversity of their outcomes, before they are executed.

We define our transition model ξ : S × T → [0, 1]× R×O as a mapping from a goal g and tactic
t to an estimate of the status s, time τ and output o. To ensure ξ admits effective representations in
e, we construct it with three components. The Encoder E : S × T → Rd takes the goal g and tactic
t as input, and outputs our representation E(g, t) = e. As e will be used as the diversity feature for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

,

...

...

Encoder
Predictor

Decoder

concat pool

concat

1. Tokenize and combine
goal and tactic

2. Create goal-aware
tactic embedding

3. Train embedding to
encode transition

data

Figure 2: Our COMBINED architecture for learning transition aware tactic embeddings. The tok-
enized tactic t and goal g are concatenated and passed through the Encoder E. A representation
vector e is generated by mean-pooling over the tactic token embeddings t′. The Predictor P takes
this embedding and predicts whether the tactic results in an error (Status), and the execution time
(Time). The Decoder D takes the embedding and goal to predict the environment response (Output),
which is either an error message or new goals to prove. The result is a compact representation of the
tactic which captures its effect on the proving environment, enabling our proposed filtering model.

DPP, it is constrained to have unit norm ||e|| = 1. The Predictor P : Rd → [0, 1]× R maps e to an
error probability for the status and a score for the time prediction, with P (e) = (ŝ, τ̂). The Decoder
D : Rd × S → O maps e and g to the output prediction, such that D(e, g) = ô. The transition
model is then

ξ(g, t) = (P (E(g, t)), D(E(g, t), g)) = (P (e), D(e, g)) = (ŝ, τ̂ , ô). (1)

We note that the Decoder and Predictor can only access information of t through e. Hence our
architecture requires the Encoder to learn an effective representation for e, so that the Decoder and
Predictor can use this to determine the subsequent effect of the tactic on the environment.

2.2 EXPERIMENTS

For our experiments, we use an Encoder-Decoder Transformer for the Decoder D, and an Encoder-
Only Transformer for the Encoder E. We take the pretrained ReProver (Yang et al., 2023) LLM
to initialise both components. We implement the Predictor P as a single hidden layer MLP, with
hidden dimension d/2 (where d = 1472) and two real valued output nodes. The time prediction τ̂
is the output of the first node, and the status prediction ŝ is taken as the sigmoid of the second. We
use this simple Predictor architecture to speed up our filtering algorithm presented in Section 3

We investigate four variations of the transition model ξ. For the COMBINED model (Figure 2),
the tactic is concatenated with the goal, and the embeddings from the Encoder are computed for
all tokens. We then generate a single tactic embedding by mean-pooling over the tactic tokens.
We compare this with the SEPARATE model which encodes the tactic without attending to the
goal. We hypothesise that allowing the tactic tokens to attend to the goal will allow the Encoder to
better represent the semantics of the tactic. To form a naive baseline, we implement a NO TACTIC
model which does not use the tactic at all, and instead uses only the goal tokens. We do this to
account for any inherent patterns in the goal which may be predictive of the outcome, for example a
particular goal which has a high error rate. This allows us to ground our results in the performance
of this baseline, so we can observe the direct effect of the tactic in predictive performance. We also

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

compare with an ALL TOKENS model which uses all tactic tokens for the Decoder without reducing
to a single embedding. We maintain the pooling operation over the tactic tokens for the status and
time prediction tasks, but allow the Decoder to attend to all tokens for the output prediction. We
implement this comparison to see the degree of information loss induced by reducing tactics to a
single vector.

Given αs, ατ , αo ∈ R+, with estimates ŝ, τ̂ , ô and for a minibatch B ⊆ D, we optimise the transition
loss

LT (D, ξ) =
∑

(g,t,s,τ,o)∈B

αsLs(s, ŝ) + ατLτ (τ, τ̂) + αoLo(o, ô). (2)

The hyperparameters αs, ατ , αo control the weighting of the status, time and output losses. For
simplicity, we set these to 1, however they could be tuned to reflect the relative importance of each
task. We use the binary cross-entropy loss Ls for the status prediction, the mean squared error
(MSE) Lτ for the time prediction, and the cross-entropy loss Lo for the output prediction.

We obtain the datasetD from a vanilla ReProver attempt on miniF2F-valid, which results in 498,236
transitions, which we split randomly into 95% training, 5% testing. There is the possibility of
dependence between the splits, as the test set includes goals seen in training with different tactics.
The NO TACTIC baseline should capture any of this, with our results in Section 3.2.1 showing our
representations generalise from miniF2F-valid to miniF2F-test. For the error prediction task, we
reweight classes to account for imbalance, which is approximately 75% error, 25% success. We use
the AdamW optimizer, with a learning rate of 10−5 and a batch size of 1. We train each model for 2
epochs on a single RTX4090, and report the results on the test set.

2.2.1 RESULTS

Output Status Time

Embedding BLEU ROUGE-L F1 Top-4 F1 TPR TNR MSE
ALL TOKENS 0.31 0.38 0.31 0.85 0.82 0.96 0.17

COMBINED 0.33 0.39 0.32 0.88 0.85 0.97 0.16
SEPARATE 0.27 0.34 0.27 0.76 0.71 0.94 0.28

NO TACTIC 0.17 0.22 0.13 0.22 0.14 0.96 0.37

Table 1: Results for predicting unseen environment responses given a goal and tactic, for transi-
tions from miniF2F-valid. The NO TACTIC result forms a baseline to assess the impact of the tactic
representation. We observe that any tactic representation enables far better predictions, and con-
straining these to a single vector (COMBINED and SEPARATE) does not hurt the performance gain.
This demonstrates tactic representations which capture their effect on the environment, enabling our
filtering model in Section 3. Comparing the COMBINED and SEPARATE models, allowing the rep-
resentation to attend to the goal leads to a large improvement.

To assess the Output prediction, we use beam search to generate 4 candidate outputs for each transi-
tion. We use the BLEU (Papineni et al., 2002) and ROUGE-L (Lin, 2004) scores to assess the quality
of the highest scoring beam in comparison to the ground truth, which is either an error message or
a new set of subgoals. We also report the Top-4 accuracy, which is the proportion of samples which
have one beam identical to the ground truth. For the Status prediction task, we take the prediction
as 1 if ŝki > 0.5 and 0 otherwise, reporting the F1 score, true positive rate (TPR) and true negative
rate (TNR). The Time MSE is the mean squared error of the time prediction over the test set.

Table 1 summarises the performance of our transition models on the test set. Our results suggest
tactic representations which capture useful information about their effect on the environment, which
we can see by the clear improvement across all approaches compared to the NO TACTIC baseline.
The higher scores across all metrics of the COMBINED versus the SEPARATE model support our
hypothesis that we can better predict transitions when the tactic embedding attends to the goal. The
ALL TOKENS model, where we allow the Decoder to attend to the full tactic, does not increase per-
formance in comparison to the COMBINED model. This shows that we can effectively represent the
tactic as a single embedding without any loss of information. Our results demonstrate the feasibility

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Initial unit norm tactic embeddings ϕi,
representing the predicted environment response.

(b) Embeddings scaled by quality (qi), giving
vectors qiϕi to be filtered by k-DPP

Figure 3: DPP for tactic filtering. The tactic embeddings from the transition model are scaled by
quality scores, before a subset of tactics are selected using k-DPP. Subsets are chosen proportion-
ally to the area spanned by their elements, giving a combination of quality and diversity. For this
simplified example, we take the 2D PCA projection of embeddings for tactics in Figure 1, setting
the quality to the scaled generator logits. Comparing the shaded areas in (b) and assuming subst c
and rw h1 have been selected, we see that symmetry is favoured over simp [h1]. Although
simp [h1] is scored higher by the generator, it is less diverse with respect to subst c and rw h1.

of learning the environment dynamics of proving systems. To illustrate the difficulty of this task,
we include all prediction examples for the COMBINED model, along with their ground truth, in the
supplementary material.

3 FILTERING MODEL

In the previous section we used synthetic proof data to generate semantically aware tactic represen-
tations, allowing us to predict the likelihood of success, execution time and environment response.
We now take this a step further by using these representations to augment proof search. We begin
by introducing our filtering model 3D-Prover, which prunes tactic candidates based on their quality
and the semantic diversity of their representations. We show that 3D-Prover is able to improve the
performance of the ReProver LLM on the miniF2F-valid and miniF2F-test benchmarks, particularly
when a deeper search configuration is used. We conclude with a multifaceted ablation study show-
ing the effect of our filtering model on the success rate, number of unique responses and execution
time.

3.1 FILTERING MODEL

Algorithm 1 defines our filtering model, 3D-Prover, which maps a list of tactics T from the under-
lying tactic policy π0 to a subset T ′ of size K. We use the Encoder E and Predictor P defined in
Section A.1 to generate unit norm tactic embeddings ϕi and predict the time and error likelihood.
The embeddings ϕi encode the predicted environment response through their direction only, as they
are unit norm (Figure 3). The quality scores qi then scale these tactics based on the underlying model
logits mi, as well as the predicted error likelihood si and execution time τi. We have hyperparame-
ters for the normalisation temperature θ, as well as the error and time weights λs, λτ . The parameter
θ controls the scaling temperature of the model logits, with a higher temperature flattening out the
distribution. It therefore adjusts the diversity bias of the filtering model by reducing the impact of
the quality scores when sampling. We then compute the kernel L from qi and ϕi, and sample a
subset of tactics T ′ using the k-DPP algorithm (Kulesza & Taskar, 2011).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: 3D-Prover

Input : Goal g, candidate tactics T = {ti}Ni=1, filter size K, Encoder E, Predictor P , error
weight λs, time weight λτ , temperature θ, underlying tactic policy π0

Output: Filtered tactics T ′ ⊂ T
// Compute embeddings and scores for each tactic

1 for i in {1, . . . , N} do
2 ϕi ← E(g, ti) ; // Compute tactic embedding
3 (si, τi)← P (ϕi) ; // Compute time and error scores
4 τi ← 1− τi

||τ || , τ = (τ1, .., τN) ; // Normalise time scores

5 mi ← exp(π0(ti|g)/θ)∑N
j=1 exp(π0(tj |g)/θ)

; // Normalise model logits

6 qi ← mi + λssi + λττi ; // Compute quality score

// Filter tactics with k-DPP

7 L← BTB, where B = [q1ϕ1, . . . , qNϕN] ; // Compute kernel matrix
8 Compute eigenvalues λi and eigenvectors vi of L
9 Sample J ⊂ {1, . . . , N} using Algorithm 2 of Kulesza & Taskar (2011),

10 with parameters {(vi, λi)}, k = K
11 return T ′ = {tj}j∈J

3.2 EXPERIMENTS

To test the performance of 3D-Prover, we use ReProver (Yang et al., 2023) as the underlying tactic
policy π0, with the Encoder E and Predictor P components as defined in Section 2. We chose
ReProver as it is a small (∼ 300M parameters), popular and performant open source model, allowing
us to run our experiments in a reasonable timeframe. We run our experiments in Lean 3 (De Moura
et al., 2015) using the BAIT (Lamont et al., 2024) platform with a modified LeanDojo (Yang et al.,
2023) environment, where we set an environment timeout of 600 seconds per proof attempt. We train
a combined transition model on the miniF2F-valid benchmark, and use the Encoder and Predictor
components to generate tactic embeddings and quality scores as per Algorithm 1. We first examine
the performance of 3D-Prover without any hyperparameter tuning, setting λs = λτ = 0, θ = 1. We
then perform ablation studies using miniF2F-valid to examine the influence of the hyperparameters
on the tactic success rate, execution time and diversity of the environment response. For miniF2F-
test, we allow the model four attempts per proof to increase confidence in the results, while for
miniF2F-valid we allow one attempt per configuration to facilitate a wider set of ablations.

We set the search policy for all experiments to be Best First Search (BestFS), where nodes are
expanded in order of their cumulative log probability. For each node selected for expansion, we
generate N = 64 candidate tactics from the underlying ReProver model using beam search with
default settings, as done in the original ReProver implementation. This forms the ground set for
the node, to be sub-sampled by the filtering algorithm. We use beam search decoding because
it is deterministic and so ensures that the ground set for a given node remains fixed across runs,
allowing us to isolate and compare the effect of the filtering algorithm. The filtering algorithm
returns K tactics, which are then executed in the environment and used to update the proof tree, as
outlined in A.1. We test three different levels of filtering, with K ∈ {8, 16, 32}. Lower values of K
correspond to more filtering, for which the choice of filtering algorithm will have a greater impact.
We compare the filtering approach of 3D-Prover, as outlined in Algorithm 1, with two baselines.
The Top-K baseline takes the top K tactics from the ground set as judged by their log probabilities,
corresponding to the top K beams. We take K tactics at random from the ground set to form the
Random baseline, as an exploration-focused comparison.

3.2.1 PROOF PERFORMANCE

Table 2 shows the Pass@1 results of our experiments on miniF2F, which is the number of proofs
successfully found after a single attempt. We observe that 3D-Prover significantly outperforms
both baseline approaches. We also note that Top-K selection performs better than the Random
approach, which is unsurprising. The influence of the filtering algorithm becomes more apparent as
K is decreased, as there are more tactics filtered out. Our results are consistent with this, with the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

miniF2F-test miniF2F-valid

K Top-K Random 3D-Prover Gain Top-K Random 3D-Prover Gain
8 22.4 19.0 ± 0.98 24.4 ± 0.22 +8.9% 21.7 19.3 25.0 +15.2%

16 26.5 25.4 ± 0.39 27.3 ± 0.21 +3.0% 26.6 24.2 29.1 +9.4%

32 27.8 27.4 ± 0.26 28.2 ± 0.25 +1.4% 27.9 27.5 28.7 +2.9%

Table 2: Percentage of proofs found after one attempt (Pass@1) on miniF2F, with K tactics selected
per node, using tactics generated from ReProver. 3D-Prover uses a transition model trained from
miniF2F-valid transitions. For miniF2F-test, we report the mean ± standard error over four runs,
with Top-K being deterministic. The Gain column reports the relative improvement over the Top-K
baseline. Results for no filtering were 27.8% for miniF2F-test and 27.9% for miniF2F-valid. We
observe a clear improvement using 3D-Prover, which increases as more filtering is applied (lower
K). Our results on miniF2F-test show that 3D-Prover can improve search even for proofs out of
distribution of the transition model.

magnitude of improvement given by 3D-Prover increasing for lower values of K. 3D-Prover is able
to outperform both baselines by providing a tradeoff between the quality, as represented by Top-K,
and the diversity of the tactics. The choice of K also controls the depth of the proof search, with
larger K giving broader search, and smaller K deeper search. As most discovered proofs are short
(favouring broad search), the Pass@1 performance for lower values of K is generally lower, however
over multiple attempts it can be beneficial to use deeper searches (see Appendix A.2). Finding deep
proofs has to date been a significant challenge (e.g. Polu et al. (2022)), with the search tree growing
exponentially with the proof depth. The improvement given by 3D-Prover, particularly for deeper
search configurations, is a step towards addressing this.

Tree search should be considered as an augmentation of the base model, with the degree of any
improvement much smaller than what can be found by improving the generator itself. This is unsur-
prising, as the generator forms the base set of candidates for the search to explore. Improved search
algorithms do however have the advantage of being applicable to different base models, which is
important given the rapid advancement of new and better generators. For example, the state-of-
the-art DeepSeek-Prover-V1.5 obtains around 2–4% relative improvements in proof success over
miniF2F-test with its novel tree search algorithm, compared to no search. In comparison, improving
their base model yields a ∼36% relative improvement (Figure 5 and Table 1 in (Xin et al., 2024)).
Similarly, Table 1 from Polu et al. (2022) shows their search approach yielding 0.04-5.7% relative
improvements for miniF2F-valid, with ∼40,000 GPU hours required for their best results. We were
able to find our improvements with significantly less resources, training our transition model on only
a single attempt per proof.

We emphasise that these results were obtained without any hyperparameter tuning, only using the
representations as diversity features and model logits as quality scores. We present ablation studies
looking closer at these hyperparameters, however a comprehensive sweep is prohibitively expensive
with each full attempt taking at least 12h on our hardware. Despite this, we were able to obtain our
improvements without any tuning, demonstrating the effectiveness of our approach. Appendix A.3
details the Pass@1 performance over a small set of hyperparameter configurations, where we found
no significant improvement over the default λs = λτ = 0, θ = 1. We also highlight that the
miniF2F-test results were obtained by training with transitions from miniF2F-valid, showing that
3D-Prover remains effective for proofs out of distribution. The results on miniF2F-valid represent
the more common online scenario, with previous attempts on the same dataset being used to improve
performance (see, for example, Lample et al. (2022); Polu et al. (2022); Bansal et al. (2019)).

3.2.2 ABLATION STUDY

Effect of the Transition Model To demonstrate the utility of our transition model representations,
we compare to an ablated 3D-Prover where the transition model Encoder is replaced by an Autoen-
coder of the same size. The Autoencoder is trained to reconstruct the original tactic, and therefore
generates representations which reflect only the syntax of the tactic. In this way, we can test our hy-
pothesis that semantically aware tactic representations are useful for proofs, justifying the inclusion

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

K Autoencoder Transition Model Gain
8 23.0 25.0 +8.7%

16 27.9 29.1 +4.3%

32 27.0 28.7 +6.3%

Table 3: Percentage of proofs found after one attempt (Pass@1) on miniF2F-valid, comparing 3D-
Prover with a Transition Model Encoder to an Autoencoder trained to reconstruct the original tactics.
We see that 3D-Prover with the Transition Model gives a clear improvement in proof success over
the Autoencoder, demonstrating the utility of our representation architecture in Section 2.

of the transition model. As we observe in Table 3, the performance of 3D-Prover with the transition
model embeddings is indeed superior to that of the Autoencoder across all values of K. This shows
that selecting for diversity with respect to the predicted semantics, rather than the syntax, leads to a
direct improvement in proof performance.

3D-Prover

K Top-K Random λs = 0.1 λs = 0.5

8 39.0 ± 0.1 33.4 ± 0.1 43.3 ± 0.1 56.5 ± 0.1
16 39.0 ± 0.1 30.9 ± 0.1 40.0 ± 0.1 51.7 ± 0.1
32 35.0 ± 0.2 29.7 ± 0.1 35.7 ± 0.1 41.7 ± 0.1

Table 4: Tactic success rate per node for miniF2F-valid (Mean± Standard Error), where λs controls
the error weight of quality score in 3D-Prover. No filtering gives 27.7% ± 0.2%. We see that 3D-
Prover leads to fewer errors on average, which can be controlled by increasing λs.

Success Rate We observe from Table 4 that the success rate of tactics chosen by 3D-Prover is
significantly improved compared to both baselines. We also note that as K decreases, this improve-
ment increases in magnitude, reflecting the heightened influence of the filtering model. We see that
this improvement increases with the error weight λs, which scales the quality scores of tactics by
their predicted probability of success. This suggests the error weight term is directly influencing the
tactic success rate, showing that it is working as intended.

3D-Prover

K Top-K Random θ = 1 θ = 4

8 83.9 ± 0.1 88.6 ± 0.1 90.8 ± 0.0 91.7 ± 0.0
16 77.5 ± 0.1 81.4 ± 0.1 85.9 ± 0.1 86.6 ± 0.1
32 71.1 ± 0.1 72.7 ± 0.1 77.6 ± 0.1 78.1 ± 0.1

Table 5: Percentage of unique environment responses per node in miniF2F-valid (Mean ± Standard
Error). Unique defines either syntactically distinct error messages or responses including at least
one previously unseen subgoal. No filtering results in 63.3% ± 0.2%. θ controls the temperature
of the model scores when calculating quality. We see that 3D-Prover gives a higher diversity of
environment responses, increasing with θ.

Diversity To examine diversity, we first look at the percentage of unique environment responses
to tactics executed per node, including responses with unique errors (Table 5). As it is difficult to
select tactics guaranteed to be successful (Table 4), an exploratory policy should generate tactics
which result in more varied outputs, so as to better explore the space. As a second comparison,
Table 6 quantifies the likelihood of a successful tactic resulting in a new proof path. We restrict only
to successful tactics to account for the discrepancy in success rate between approaches. This gives
directly measures the diversity in terms of generating distinct proof paths to explore. In both cases,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

3D-Prover

K Top-K Random θ = 1 θ = 4

8 85.3 ± 0.1 89.9 ± 0.1 90.1 ± 0.1 91.1 ± 0.1
16 77.5 ± 0.1 84.1 ± 0.1 84.9 ± 0.1 85.5 ± 0.1
32 72.3 ± 0.2 76.3 ± 0.2 76.9 ± 0.2 77.5 ± 0.2

Table 6: Percentage of successful tactics per node resulting in unique subgoal(s) over miniF2F-
valid (Mean ± Standard Error). No filtering gives 67.8% ± 0.3%. θ controls the temperature of
model scores in 3D-Prover when calculating quality. We observe 3D-Prover results in more unique
subgoals per tactic, leading to a more diverse set of proof paths, with larger θ controlling this.

we see that 3D-Prover results in more diverse responses. As intended, increasing the parameter θ
results in further improvements to diversity under these metrics.

3D-Prover

K Top-K Random λτ = 0.1 λτ = 1.0

8 206 ± 0.8 198 ± 0.9 155 ± 0.5 136 ± 0.5
16 220 ± 0.8 218 ± 0.9 176 ± 0.6 152 ± 0.5
32 224 ± 0.8 215 ± 0.8 191 ± 0.7 181 ± 0.6

Table 7: Tactic execution time in milliseconds over miniF2F-valid proof attempts (Mean± Standard
Error). No filtering resulted in 232± 0.9 milliseconds. λτ controls the time weighting of the quality
score in 3D-Prover. 3D-Prover selects faster tactics on average, with larger λτ magnifying this.

Execution Time Table 7 shows the execution time for tactics over miniF2F-valid transitions.
Again we see that 3D-Prover outperforms the baselines, with the improvement increasing with more
filtering. Increasing the time weight λτ results in further reductions to the average execution time,
demonstrating the accuracy of the predictions, and that they can directly result in faster tactics when
filtering. In contrast to the diversity or success rate, it is less obvious why we might prefer faster
tactics. Lample et al. (2022) (Appendix E) observe that preferring faster tactics can prevent the
excessive application of powerful automation tactics such as simp. As these generally take longer
to run, using faster tactics can help models learn underlying proof arguments which are often hidden
by these automations. It can also greatly reduce the number of timeout errors that they cause.

4 CONCLUSION

Future work One might consider structured DPPs (Kulesza, 2012), which operate at the tree level
to select diverse paths, rather than the node level, which selects diverse edges. Continual learning
of the transition model is another avenue, where training on new data as it is generated could lead
to more accurate assessments of diversity and quality. Our approach could also be combined with
a separate search algorithm such as HTPS (Lample et al., 2022), rather than BestFS. Testing larger
models would be a natural extension, for both the transition model and the underlying tactic gen-
erator. Our methodology may also be useful to enhance search in domains beyond formal proving,
such as code generation or game playing.

Summary We introduce 3D-Prover, a method to augment proof search by filtering candidate tac-
tics to generate diverse and high quality subsets. By generating tactic representations which reflect
the response of the proving environment, 3D-Prover is able to filter tactics based on their likely out-
come. We evaluate 3D-Prover by augmenting the ReProver LLM on the standard miniF2F bench-
mark, where we find an improvement in the overall proof success rate (Table 2), particularly for
deeper searches. Our ablation studies confirm the utility of our tactic representations, which allow
the selection of tactics with improved success rates, diversity, and/or execution time. By effectively
pruning the search space, 3D-Prover is a step towards enabling deeper automated proofs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

5 REPRODUCIBILITY STATEMENT

We include in our supplementary material all the code necessary to reproduce our results. The
README file includes the necessary instructions for setting up the environment, data preprocessing,
and the steps required to run our experiments and analysis.

REFERENCES

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An envi-
ronment for machine learning of higher order logic theorem proving. In International Conference
on Machine Learning, pp. 454–463. PMLR, 2019.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating Large
Language Models Trained on Code, 2021. URL https://arxiv.org/abs/2107.03374.
Version Number: 2.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob Von Raumer.
The Lean Theorem Prover (System Description). volume 9195, pp. 378–388, Cham,
2015. Springer International Publishing. ISBN 978-3-319-21400-9 978-3-319-21401-6.
doi: 10.1007/978-3-319-21401-6 26. URL http://link.springer.com/10.1007/
978-3-319-21401-6_26. Book Title: Automated Deduction - CADE-25 Series Title: Lec-
ture Notes in Computer Science.

Emily First and Yuriy Brun. Diversity-driven automated formal verification. In Proceedings of the
44th International Conference on Software Engineering, ICSE ’22, pp. 749–761, New York, NY,
USA, July 2022. Association for Computing Machinery. ISBN 978-1-4503-9221-1. doi: 10.1145/
3510003.3510138. URL https://dl.acm.org/doi/10.1145/3510003.3510138.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-Proof Genera-
tion and Repair with Large Language Models. In Proceedings of the 31st ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2023, pp. 1229–1241, New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9798400703270. doi: 10.1145/3611643.3616243. URL https:
//doi.org/10.1145/3611643.3616243. event-place: San Francisco, CA, USA.

Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. TacticToe: Learning to Reason with HOL4
Tactics. In Thomas Eiter and David Sands (eds.), LPAR-21. 21st International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, volume 46 of EPiC Series in Com-
puting, pp. 125–143. EasyChair, 2017. doi: 10.29007/ntlb. URL /publications/paper/
WsM. ISSN: 2398-7340.

Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Le Truong Hoang,
Cezary Kaliszyk, Victor Magron, Sean Mclaughlin, Tat Thang Nguyen, Quang Truong
Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev,
Thi Hoai An Ta, Nam Trung Tran, Thi Diep Trieu, Josef Urban, Ky Vu, and Roland
Zumkeller. A FORMAL PROOF OF THE KEPLER CONJECTURE. Forum of Math-
ematics, Pi, 5:e2, January 2017. ISSN 2050-5086. doi: 10.1017/fmp.2017.1. URL
https://www.cambridge.org/core/journals/forum-of-mathematics-pi/
article/formal-proof-of-the-kepler-conjecture/
78FBD5E1A3D1BCCB8E0D5B0C463C9FBC. Publisher: Cambridge University Press.

11

https://arxiv.org/abs/2107.03374
http://link.springer.com/10.1007/978-3-319-21401-6_26
http://link.springer.com/10.1007/978-3-319-21401-6_26
https://dl.acm.org/doi/10.1145/3510003.3510138
https://doi.org/10.1145/3611643.3616243
https://doi.org/10.1145/3611643.3616243
/publications/paper/WsM
/publications/paper/WsM
https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC
https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC
https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof Artifact Co-
Training for Theorem Proving with Language Models. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=rpxJc9j04U.

Wei-Lin Hsiao and Kristen Grauman. Creating capsule wardrobes from fashion images. In CVPR,
pp. 7161–7170, 06 2018. doi: 10.1109/CVPR.2018.00748.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. LISA: Language models of
ISAbelle proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, 2021.

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygóźdź,
Piotr Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding Hammers to Integrate Language
Models and Automated Theorem Provers. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022a. URL
https://openreview.net/forum?id=fUeOyt-2EOp.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, Sketch, and Prove: Guiding Formal
Theorem Provers with Informal Proofs. In The Eleventh International Conference on Learn-
ing Representations, September 2022b. URL https://openreview.net/forum?id=
SMa9EAovKMC.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. seL4: formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, SOSP ’09, pp. 207–220, New York,
NY, USA, October 2009. Association for Computing Machinery. ISBN 978-1-60558-752-3. doi:
10.1145/1629575.1629596. URL https://doi.org/10.1145/1629575.1629596.

Alex Kulesza. Determinantal Point Processes for Machine Learning. Foundations and Trends® in
Machine Learning, 5(2–3):123–286, 2012. ISSN 1935-8245. doi: 10.1561/2200000044. URL
http://dx.doi.org/10.1561/2200000044. Publisher: Now Publishers.

Alex Kulesza and Ben Taskar. k-DPPs: fixed-size determinantal point processes. In Proceedings of
the 28th International Conference on International Conference on Machine Learning, ICML’11,
pp. 1193–1200, Madison, WI, USA, June 2011. Omnipress. ISBN 978-1-4503-0619-5.

Sean Lamont, Michael Norrish, Amir Dezfouli, Christian Walder, and Paul Montague. BAIT:
Benchmarking (Embedding) Architectures for Interactive Theorem-Proving. Proceedings of the
AAAI Conference on Artificial Intelligence, 38:10607–10615, March 2024. doi: 10.1609/aaai.
v38i9.28931.

Guillaume Lample, Timothee Lacroix, Marie-anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. HyperTree Proof Search for Neural Theorem
Proving. In Advances in Neural Information Processing Systems, October 2022. URL https:
//openreview.net/forum?id=J4pX8Q8cxHH.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving Quantitative Rea-
soning Problems with Language Models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=IFXTZERXdM7.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. IsarStep: a Benchmark for High-level
Mathematical Reasoning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Pzj6fzU6wkj.

Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summa-
rization Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational
Linguistics. URL https://aclanthology.org/W04-1013.

12

https://openreview.net/forum?id=rpxJc9j04U
https://openreview.net/forum?id=fUeOyt-2EOp
https://openreview.net/forum?id=SMa9EAovKMC
https://openreview.net/forum?id=SMa9EAovKMC
https://doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1561/2200000044
https://openreview.net/forum?id=J4pX8Q8cxHH
https://openreview.net/forum?id=J4pX8Q8cxHH
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=Pzj6fzU6wkj
https://aclanthology.org/W04-1013

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and C. Kaliszyk. Deep Network Guided
Proof Search. In Logic Programming and Automated Reasoning, 2017. URL https://api.
semanticscholar.org/CorpusID:11208402.

Maciej Mikuła, Szymon Antoniak, Szymon Tworkowski, Bartosz Piotrowski, Albert Jiang, Jin Peng
Zhou, Christian Szegedy, Łukasz Kuciński, Piotr Miłoś, and Yuhuai Wu. Magnushammer:
A transformer-based approach to premise selection. In The 3rd Workshop on Mathematical
Reasoning and AI at NeurIPS’23, 2023. URL https://openreview.net/forum?id=
WgaVCqZeIU.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a Method for Automatic
Evaluation of Machine Translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040.

Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem Proving.
2020. doi: 10.48550/ARXIV.2009.03393. URL https://arxiv.org/abs/2009.03393.
Publisher: arXiv Version Number: 1.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. In The Eleventh International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=-P7G-8dmSh4.

Markus Norman Rabe, Dennis Lee, Kshitij Bansal, and Christian Szegedy. Mathematical Reasoning
via Self-supervised Skip-tree Training. October 2020. URL https://openreview.net/
forum?id=YmqAnY0CMEy.

Raj Reddy. Foundations and Grand Challenges of Artificial Intelligence: AAAI Pres-
idential Address. AI Magazine, 9(4):9, December 1988. doi: 10.1609/aimag.
v9i4.950. URL https://ojs.aaai.org/aimagazine/index.php/aimagazine/
article/view/950. Section: Articles.

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens,
and Michael Norrish. The verified CakeML compiler backend. Journal of
Functional Programming, 29:e2, January 2019. ISSN 0956-7968, 1469-7653.
doi: 10.1017/S0956796818000229. URL https://www.cambridge.org/
core/journals/journal-of-functional-programming/article/
verified-cakeml-compiler-backend/E43ED3EA740D2DF970067F4E2BB9EF7D.
Publisher: Cambridge University Press.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An In-
Context Learning Agent for Formal Theorem-Proving, 2023. URL https://arxiv.org/
abs/2310.04353. Version Number: 5.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han
Shi, Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. DT-Solver: Automated Theorem
Proving with Dynamic-Tree Sampling Guided by Proof-level Value Function. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 12632–12646, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
706. URL https://aclanthology.org/2023.acl-long.706.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Zhengying Liu, Qingxing Cao, Yinya Huang, Jing
Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, and Xiaodan Liang. LEGO-Prover: Neural
Theorem Proving with Growing Libraries. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3f5PALef5B.

Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate theorems.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 18146–18157. Curran Associates, Inc.,

13

https://api.semanticscholar.org/CorpusID:11208402
https://api.semanticscholar.org/CorpusID:11208402
https://openreview.net/forum?id=WgaVCqZeIU
https://openreview.net/forum?id=WgaVCqZeIU
https://aclanthology.org/P02-1040
https://arxiv.org/abs/2009.03393
https://openreview.net/forum?id=-P7G-8dmSh4
https://openreview.net/forum?id=-P7G-8dmSh4
https://openreview.net/forum?id=YmqAnY0CMEy
https://openreview.net/forum?id=YmqAnY0CMEy
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/950
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/950
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/verified-cakeml-compiler-backend/E43ED3EA740D2DF970067F4E2BB9EF7D
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/verified-cakeml-compiler-backend/E43ED3EA740D2DF970067F4E2BB9EF7D
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/verified-cakeml-compiler-backend/E43ED3EA740D2DF970067F4E2BB9EF7D
https://arxiv.org/abs/2310.04353
https://arxiv.org/abs/2310.04353
https://aclanthology.org/2023.acl-long.706
https://openreview.net/forum?id=3f5PALef5B

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First Experiments with Neural Translation of
Informal to Formal Mathematics. In Florian Rabe, William M. Farmer, Grant O. Passmore, and
Abdou Youssef (eds.), Intelligent Computer Mathematics, pp. 255–270, Cham, 2018. Springer
International Publishing. ISBN 978-3-319-96812-4.

Daniel Whalen. Holophrasm: a neural Automated Theorem Prover for higher-order logic. 2016. doi:
10.48550/ARXIV.1608.02644. URL https://arxiv.org/abs/1608.02644. Publisher:
arXiv Version Number: 2.

Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. TacticZero: Learn-
ing to Prove Theorems from Scratch with Deep Reinforcement Learning. In Advances
in Neural Information Processing Systems, volume 34, pp. 9330–9342. Curran Asso-
ciates, Inc., 2021a. URL https://proceedings.neurips.cc/paper/2021/hash/
4dea382d82666332fb564f2e711cbc71-Abstract.html.

Yuhuai Wu, Albert Qiaochu Jiang, Jimmy Ba, and Roger Grosse. INT: An Inequality Benchmark for
Evaluating Generalization in Theorem Proving. The Nineth International Conference on Learning
Representations (ICLR), 2021b. doi: 10.48550/ARXIV.2007.02924. URL https://arxiv.
org/abs/2007.02924.

Huajian Xin, Z. Z. Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu,
Liyue Zhang, Xuan Lu, Qiushi Du, Wenjun Gao, Qihao Zhu, Dejian Yang, Zhibin Gou, Z. F. Wu,
Fuli Luo, and Chong Ruan. DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for
Reinforcement Learning and Monte-Carlo Tree Search, 2024. URL https://arxiv.org/
abs/2408.08152. Version Number: 1.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models. In Neural Information Processing Systems (NeurIPS), 2023.

Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman. Video summarization with long short-
term memory. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision
– ECCV 2016, pp. 766–782, Cham, 2016. Springer International Publishing. ISBN 978-3-319-
46478-7.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Decomposing the Enigma: Subgoal-based Demon-
stration Learning for Formal Theorem Proving, 2023. URL https://arxiv.org/abs/
2305.16366.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. miniF2F: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=9ZPegFuFTFv.

A APPENDIX

A.1 PROOF SEARCH SETUP

We first define the space of goals S, tactics T and failures F . For our purposes, these all contain
arbitrary strings, with the goal being a formal proposition, the tactic a command and the failure
an error message. We then define the output space as O := P(S) ∪ F . A proof tree is a DAG
G = (V,E) where V ⊂ S is the set of goals and E the edges between them. A proof attempt for a
goal g0 first initialises the proof tree with V = {g0}, E = ∅. The search policy πS : G×V → R+ is
a distribution over goals given a proof tree, being used to select a goal g to expand. The tactic policy
πT : S×T → R+ is a distribution over tactics given a goal, where N ∈ N tactics are sampled to give
tactics {ti}Ni=1 ⊂ T . The goal, tactic pairs (g, ti) are then passed to the environment E : S×T → O.
For each pair, after τi ∈ R seconds, it returns either a new set of goals g′i ⊂ S or an error, ei ∈ F .
We define this response as the output oi ∈ O. We further define the status si ∈ {0, 1} as 0 if oi ∈ F ,

14

https://proceedings.neurips.cc/paper_files/paper/2020/file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d2a27e83d429f0dcae6b937cf440aeb1-Paper.pdf
https://arxiv.org/abs/1608.02644
https://proceedings.neurips.cc/paper/2021/hash/4dea382d82666332fb564f2e711cbc71-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4dea382d82666332fb564f2e711cbc71-Abstract.html
https://arxiv.org/abs/2007.02924
https://arxiv.org/abs/2007.02924
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2408.08152
https://arxiv.org/abs/2305.16366
https://arxiv.org/abs/2305.16366
https://openreview.net/forum?id=9ZPegFuFTFv

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1 if oi ∈ P(S) and the transition as the tuple (g, ti, si, τi, oi). The proof tree is then updated with
G = G∪ g′i for all g′i, and the associated transitions are added as edges to E. This is repeated until a
proof is found, or a budget is exhausted. A proof of g is found when E(g, ti) = ∅ for any ti, or if all
{g′i} are proven for E(g, ti) = {g′i} ⊂ S. The result of a proof attempt is then the set of transitions
{(gk, tki, ski, τki, oki)} for all selected goals gk and their expanded tactics ti. For simplicity, we
drop the indices to denote the set of transitions as {(g, t, s, τ, o)}.

A.2 PASS@K

K Random 3D-Prover Gain
8 25.7 28.6 +11.3%

16 30.2 31.0 +2.6%

32 29.8 29.8 +0.0%

Table 8: Percentage of proofs found after four attempts (Pass@4) on miniF2F-test, with K tactics
selected per node.

3D-Prover Random

Pass@k K = 8 K = 16 K = 32 K = 8 K = 16 K = 32

1 24.9 27.8 28.6 18.0 21.2 28.1

2 26.1 29.4 29.0 22.9 28.6 29.0

3 26.5 29.8 29.8 24.9 29.4 29.8

4 28.6 31.0 29.8 25.7 30.2 29.8

Table 9: Pass@k rates for proof attempts on miniF2F-test

Table 8 summarises the Pass@4 results for miniF2F-test, which is the number of proofs found at
least once over four attempts, with Table 9 showing the Pass@k up to k = 4. We compare 3D-
Prover to the Random baseline, taking the same four runs from Table 2, where λs = λτ = 0, θ = 1.
With Top-K being deterministic, the Pass@k rate is the same as the Pass@1 rate. Given several
attempts, K = 16 appears to provide a good tradeoff between breadth and depth, performing the
best overall. 3D-Prover maintains a large improvement for K = 8, with a modest improvement for
K = 16.

As discussed by Chen et al. (2021), the Pass@k metric favours exploratory approaches as k in-
creases, at the cost of lower performance for smaller k. This is because, over many attempts, a
highly exploratory approach is more likely to find at least one proof of a given goal, even though
it may find fewer proofs in a single attempt than a more exploitative approach. Further discussion
in Lample et al. (2022) finds that randomly sampling search parameters also improves Pass@k.
With Pass@k being expensive to estimate, we fix our parameters over the four runs to give a more
accurate estimate of Pass@1. Given this, a large scale experiment sampling these hyperparameters
could lead to improved Pass@k results, as Lample et al. (2022) show for their HTPS approach.

A.3 PROOF SUCCESS RATE OVER HYPERPARAMETERS

Table 10 shows the Pass@1 results on miniF2F-valid for 3D-Prover for our limited hyperparame-
ter sweep. These results suggest that a lower time weight λτ leads to better proving results. The
diversity parameter θ hinders performance for the larger value, consistent with what was observed
by Chen et al. (2021), where they observe a tradeoff between exploration and Pass@1. Although
these parameters may not improve Pass@1, different proofs may favour different configurations,
with some requiring e.g. more depth or exploration than others. As discussed above, a higher
Pass@k can usually be obtained by sampling a wide set of these parameters. For the set of hyperpa-
rameters we tested here, we found a cumulative proof rate (or Pass@15) of 32.8% on miniF2F-valid.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(λs, λτ , θ)

K (0.0, 0.0, 1.0) (0.1, 0.1, 1.0) (0.5, 0.1, 1.0) (0.1, 1.0, 1.0) (0.1, 0.1, 4.0)
8 25.0 25.0 25.8 22.5 23.8

16 29.1 28.7 27.9 27.0 26.6

32 28.7 28.3 28.7 27.9 27.0

Table 10: Pass@1 results on miniF2F-valid, over different hyperparameter configurations for 3D-
Prover.

A.4 EMBEDDING DISCUSSION

0 1 2 3 4 5

('simp [<a>nat.proper_divisors, <a>nat.sum_proper_divisors_eq_one_iff_prime]', 0)

('convert <a>nat.sum_proper_divisors_eq_one_iff_prime', 1)

('transitivity', 2)

('rw <a>nat.proper_divisors', 3)

('classical', 4)

('symmetry', 5)

0.00

0.00

0.31

0.94

0.25

0.55

0.47

0.81

0.28

0.42

0.36

0.51

0.31

0.94

0.00

0.00

0.41

0.58

0.21

0.81

0.41

0.48

0.46

0.53

0.25

0.55

0.41

0.58

0.00

0.00

0.45

0.65

0.75

0.74

0.70

0.79

0.47

0.81

0.21

0.81

0.45

0.65

0.00

0.00

0.42

0.51

0.37

0.55

0.28

0.42

0.41

0.48

0.75

0.74

0.42

0.51

0.00

0.00

0.67

0.77

0.36

0.51

0.46

0.53

0.70

0.79

0.37

0.55

0.67

0.77

0.00

0.00
0.0

0.2

0.4

0.6

0.8

Figure 4: Cosine similarity between tactic embeddings resulting in unique subgoals, for a sample
root node in miniF2F-valid. The top value gives the similarity for embeddings from 3D-Prover,
while the bottom gives the similarity for embeddings from an Autoencoder. We see that 3D-Prover
better separates these semantically distinct tactics, in comparison to the Autoencoder, which only
separates based on their syntax.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Cosine Similarity

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

Transition Model
Autoencoder

Figure 5: Distribution of cosine similarity for tactic embeddings resulting in unique subgoals, av-
eraged over root nodes in miniF2F-valid. We see that 3D-Prover gives embeddings which better
separate these semantically distinct tactics, in comparison the the syntax focused embeddings of the
Autoencoder.

Embedding Comparison We now investigate whether the transition model (Figure 2) captures
tactic semantics rather than syntax in its tactic embeddings. To test this, we examine the cosine

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

similarity of tactic embeddings which lead to unique subgoals. Figure 4 takes an example node,
examining all tactics which lead to a unique subgoal. The upper value displays the cosine similarity
given by the transition model, while the lower value displays that given by the Autoencoder in
Section 3.2.2. We observe that in most cases, the similarity given by the transition model is much
lower than that given by the Autoencoder, which is only considering the syntax of the tactic. For
example, the similarity between tactic 3 and 4 is very high for the Autoencoder, given the similar
syntax between the two as they use the same lemma. Despite this similar syntax, the transition
model embeddings show a high degree of dissimilarity, reflecting the different outcome they have
on the environment. We present additional examples in the supplementary code. To generalise
beyond these examples, we ran this comparison over the tactic embeddings which lead to unique
subgoals for all 244 root nodes in minF2F-valid. Figure 5 shows the distribution of the average
cosine similarity for each node, for both the transition model and the Autoencoder. The average
cosine similarity for the transition model embeddings was 0.44 while the Autoencoder gave 0.57.
While this comparison does not account for similarity between the unique subgoals, it is still clear
that the transition model embeddings better separate unique tactics than Autoencoder embeddings
which are based on syntax alone. The result of this is a higher likelihood of 3D-Prover selecting
tactics which give unique subgoals, which as we show in Section 3.2.2, results in the transition
model outperforming the Autoencoder for proof discovery.

Embedding Objective As outlined in Section 2, we train our embeddings to be reflective of the
tactic semantics across all three components of Status, Time and Output. Hence 3D-Prover, which
selects diverse embeddings, may lead to tactics predicted to have errors, where the errors are diverse
in terms of their predicted message. The hyperparameter λs can alleviate this by weighting the
scores based on their likelihood of success. From our experiments (Table 10), there is not necessarily
a benefit to Pass@1 by filtering out strongly based on the predicted error likelihood. To speculate,
the error prediction, although quite good, is imperfect with many false negatives (Table 1). This can
lead to potentially useful tactics being ignored if the error prediction is overly trusted, even though
there is a higher tactic success rate overall as in Table 4. Given these prediction errors, it may be
the case that selecting goals which are predicted to lead to (diverse) errors may be preferable, given
the possibility they result in successful new subgoals. These subgoals may be be quite different
from those previously selected, as they are mispredicted, so are clearly outside the space of tactics
where the transition model is confident about the outcome. Further analysis could be worthwhile
to investigate this. An embedding architecture trained only on successful tactics could be used,
however given the high error rate of tactics, this would ignore a large proportion of the transition
data.

A.5 COMPUTATIONAL OVERHEAD

On our hardware, we found 3D-Prover adds a constant overhead, taking approximately 2x as long for
tactic generation. The majority of this is in generating embeddings for the 64 tactics, which we were
unable to batch on our hardware due to memory constraints. The DPP algorithm itself added almost
no overhead once the embeddings were generated. This could be sped up by batching (if memory
permits), or through a different architecture. For example, the SEPARATE model in Section 2.2 could
be used, where tactics can be batched with much less memory. An augmented architecture which
embeds the goal in isolation, which is then given to the tactic encoder as a single vector, could be
used. This would provide a speed up while allowing some attention between the tactic and the goal,
although not to the degree allowed for by our COMBINED model. As a proof of concept, we used
the COMBINED model as it provides the most goal-aware embeddings to test our filtering algorithm.

A.6 LEANDOJO NOVEL PREMISES EXPERIMENT

We ran an additional experiment on the LeanDojo Novel Premises Yang et al. (2023) benchmark
testing 3D-Prover on a larger dataset. This dataset has 2000 evaluation proofs in comparison to the
244 from miniF2F-valid and miniF2F-test, allowing us to evaluate the performance of 3D-Prover on
a larger scale.

We trained a transition model from a single ReProver attempt on LeanDojo Novel Premises, before
evaluating 3D-Prover with the methodology in Section 3. We set K=32 for 3D-Prover, and compare
to the model with No Filtering (i.e. K=64), and Top-K=32. Additionally, we examine the distribu-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

tion of proof lengths found from this experiment. To account for different proofs of the same goal,
we adjust proof lengths to be the shortest found from any attempt (e.g. if 3D-Prover finds a proof
of length 10, which was found in 3 steps by No Filtering, we count it as length 3). Hence, all proof
lengths reported are the shortest found by any method. We report the number of proofs found by
each approach, organised by the proof length in Table 11.

Proof Length 3D-Prover (K = 32) Top-K (K = 32) No Filtering (K = 64)
1 236 233 237
2 167 162 174
3 134 126 131

4 60 60 54

5 40 29 24

6 7 6 2

7 2 0 0

Total 646 626 622

Pass@1 32.3% 31.3% 31.1%

Table 11: Number of Proofs found on LeanDojo Novel Premises, sorted by proof length.

obtains a relative improvement of 3.2% over Top-K, and a 3.9% relative improvement over No Fil-
tering in terms of the number of proofs found. We see that 3D-Prover finds deeper proofs, while
maintaining a high proof success rate for shallower proofs, unlike Top-K. The No Filtering ap-
proach, as expected, finds the most shallow proofs, however quickly drops off in performance for
deeper proofs. We also note that 3D-Prover found the 2 longest proofs of length 7, with neither
baseline finding any.

18

	Introduction
	Related work
	Background: Determinantal Point Processes

	Transition Aware Representation Learning
	Transition Models
	Experiments
	Results

	Filtering Model
	Filtering Model
	Experiments
	Proof Performance
	Ablation Study

	Conclusion
	Reproducibility Statement
	Appendix
	Proof Search Setup
	Pass@k
	Proof success rate over hyperparameters
	Embedding Discussion
	Computational Overhead
	LeanDojo Novel Premises Experiment

