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Abstract

Large language models (LLMs) have exhibited
considerable cross-lingual generalization abil-
ities, whereby they implicitly transfer knowl-
edge across languages. However, the transfer
is not equally successful for all languages,
especially for low-resource ones, which poses
an ongoing challenge. It is unclear whether
we have reached the limits of implicit cross-
lingual generalization and if explicit knowl-
edge transfer is viable. In this paper, we
investigate the potential for explicitly aligning
conceptual correspondence between languages
to enhance cross-lingual generalization. Using
the syntactic aspect of language as a testbed,
our analyses of 43 languages reveal a high
degree of alignability among the spaces of
structural concepts within each language for
both encoder-only and decoder-only LLMs. We
then propose a meta-learning-based method to
learn to align conceptual spaces of different
languages, which facilitates zero-shot and few-
shot generalization in concept classification and
also offers insights into the cross-lingual in-
context learning phenomenon. Experiments on
syntactic analysis tasks show that our approach
achieves competitive results with state-of-the-
art methods and narrows the performance
gap between languages, particularly benefiting
those with limited resources.

1 Introduction

Cross-lingual generalization entails repurposing
the knowledge acquired in one language to another
with little supervision, thereby mitigating the
digital language divide. Despite the vast variations
across languages, it is possible to identify corre-
sponding concepts among them, which provides
a basis for cross-linguistic generalization (Croft,
1991; Haspelmath, 2010, 2021). This has been
instantiated by frameworks such as Universal
Dependencies (UD) (de Marneffe et al., 2021),
where the structural concepts including word
classes (e.g., “noun” and “verb”) and grammatical

relations (e.g., “subject” and “object”) are defined
in a cross-linguistically consistent way. While
large language models (LLMs) have demonstrated
their capacity to induce these concepts within
individual languages (Tenney et al., 2019; Liu
et al., 2019; Chi et al., 2020; Linzen and Baroni,
2021), they encounter difficulties in generalizing
the knowledge across languages (Joshi et al., 2020;
Blasi et al., 2022; Majewska et al., 2022). This
raises questions about whether LLMs are able to
capture the underlying conceptual correspondence
and how to harness the knowledge for improved
generalization.

Previous work has shown that cross-linguistic
similarities are automatically captured in the
representation space of LLMs, enabling zero-shot
cross-lingual transfer (Pires et al., 2019; Wu and
Dredze, 2019; Chi et al., 2020; Papadimitriou
et al., 2021; Muller et al., 2021; Xu et al.,
2022). Efforts have been made to further enhance
their generalization by exploiting high-resource
languages for parameter and information sharing
(Üstün et al., 2020; Nooralahzadeh et al., 2020;
Choenni et al., 2023) or enforcing alignment
between languages (Cao et al., 2019; Schuster et al.,
2019; Sherborne and Lapata, 2022), whereas these
approaches typically rely on structural and lexical
similarities between languages and fall short when
dealing with low-resource languages distant from
high-resource ones (Ponti et al., 2021; de Lhoneux
et al., 2022). With the ever-increasing size of
LLMs, recent work has explored methods to elicit
the multilingual ability of LLMs via in-context
learning (Winata et al., 2021; Tanwar et al., 2023),
alleviating the cost of parameters updates, but
the generalization performance lags behind and is
highly sensitive to prompt design (Lai et al., 2023;
Ahuja et al., 2023). Overall, the generalization is
predominantly realized implicitly and it remains
unclear whether the commonalities shared across
languages have been fully exploited.



In this paper, we investigate the potential to
explicitly leverage the conceptual correspondence
between languages for cross-lingual generalization.
We focus on the structural concepts outlined in
UD, which are at the core of syntactic analyses
across languages (Croft, 1991) and have shown to
be learned by LLMs, offering a valuable testbed for
our analyses. For each language, we learn a linear
transformation of an LLM’s representation space,
which defines a conceptual space where samples
can be classified by their distances to prototypes
for each concept. Concepts represented by the
LLM are then regarded as clusters discernible from
others based on their prototypes. Analyses across
43 typologically distinct languages reveal a high de-
gree of alignability among their conceptual spaces,
indicating that the conceptual correspondence is
implicitly established in LLMs (Section 2). We
then present a meta-learning-based method that
learns to explicitly align different languages with
limited data available, facilitating zero-shot and
few-shot generalization in concept classification.
We demonstrate the effectiveness of our approach
for both encoder-only (Section 3) and decoder-only
LLMs (Section 4), achieving encouraging results
especially for low-resource languages.

In summary, our contributions are as follows:
1) We demonstrate that the conceptual correspon-
dence between languages, in terms of the structural
concepts defined in UD, is implicitly established
in both encoder-only and decoder-only LLMs.
2) We propose a meta-learning-based approach
to explicitly aligning conceptual correspondence
between different languages, enabling cross-lingual
generalization in zero-shot and few-shot scenarios
without requiring parameter updates to the LLMs.
Our method achieves competitive results with state-
of-the-art methods and reduces the performance
gap between languages, particularly benefiting
low-resource ones. 3) Our approach provides
insights into the cross-lingual in-context learning
phenomenon. Integrated with the prompt-based
learning paradigm, it achieves promising gains in
generalizing to novel languages.1

2 Correspondence between Structural
Concepts within Different Languages

This section investigates whether Transformer-
based LLMs are able to induce the conceptual

1Our code is available at https://github.com/
ningyuxu/structural_concepts_correspondence.

correspondence between different languages from
plain text, which could lay the foundation for better
cross-lingual generalization. Concretely, we first
derive structural concepts within individual lan-
guages, and then evaluate whether these concepts
are readily alignable across languages.

2.1 Method
Deriving concepts Let D =

{
xi, yi

}N

i=1
denote

a dataset consisting of N feature-label pairs in a
language L, where the features xi ∈ Rn are n-
dimensional representations yielded by LLMs and
the labels yi ∈ {1, · · · ,K} are the corresponding
structural concept, and Dk is the set of samples
with label k. We compute an m-dimensional
prototype ck ∈ Rm for each concept k by learning
a linear transformation A ∈ Rn×m, such that

ck =
1

|Dk|
∑

(xi,yi)∈Dk

Axi, (1)

and the label of a feature x can be identified with
respect to its distances to the prototypes in the
transformed representation space. Specifically, the
probability that x is an instance of concept k is
given by

pA (y = k | x) = exp (−d (Ax, ck))∑
k′ exp (−d (Ax, ck′))

, (2)

where d (·, ·) is the squared Euclidean distance.
The parameters of the transformation, the matrix
A, is learned by minimizing the negative log
probability LA = − log pA (y = k | x) of the gold
concept k through gradient descent. Our probing
method is inspired by Prototypical Networks (Snell
et al., 2017), but we constrain the transformation to
be linear as our goal is to investigate the geometry
of LLMs, akin to Hewitt and Manning (2019).

Measuring Alignability We employ two com-
plementary methods to measure the alignabil-
ity between structural concepts in different lan-
guages: representational similarity analysis (RSA)
(Kriegeskorte et al., 2008) and Procrustes analysis.
RSA is non-parametric and has been widely
used for measuring the degree of topological
alignment between representation spaces based
on their (dis)similarity matrices (Kriegeskorte
and Diedrichsen, 2019). Procrustes analysis
evaluates the extent to which two spaces can be
aligned linearly by finding the optimal orthogonal
transformation.

https://github.com/ningyuxu/structural_concepts_correspondence
https://github.com/ningyuxu/structural_concepts_correspondence
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Figure 1: Alignability between structural concepts (word classes) in different languages measured by RSA and
Procrustes analysis, which is significantly higher than baselines. (The results for all languages, along with the
alignability between grammatical relations, are presented in Appendix A.2.)

Given two languages L1 and L2 with K shared
structural concepts, we derive prototypes for
each concept, which serve as parallel points that
allows for comparison among different languages.
Infrequently used concepts with fewer than 20
samples are excluded for our analysis. For RSA,
we compute a dissimilarity matrix M ∈ RK×K for
each language, where the entry Mi,j = d (ci, cj)
is the distance between the ith and jth prototypes
(1 ≤ i, j ≤ K). The alignability is computed as
the Spearman’s correlation between the lower
diagonal portion of the two matrices, ranging from
−1 to 1. For Procrustes analysis, we evaluate
the fitness of the linear transformation through the
average proportion of explained variance.

2.2 Setup
Model We use Multilingual BERT (mBERT)
(Devlin et al., 2019) and LLaMA 7B model
(Touvron et al., 2023) for our experiments. Both are
pretrained on multiple languages without explicit
cross-lingual information, enabling us to probe
the cross-linguistic knowledge induced exclusively
from raw text. A linear transformation A ∈ Rn×m

with varying m is trained to project the features
x ∈ Rn yielded by the LLM into an m-dimensional
space, whereby we test what rank of transformation
is needed to extract structural concepts.

Data The data used in all our experiments is
from UD v2.10 (Zeman et al., 2022). For mBERT,
we select 43 typologically distinct languages that
represent a diverse range of language families. For
LLaMA, we test it on 20 languages, including one
that is not included in its pretraining corpus for
comparison.2

Baselines The alignability between the structural
concepts in two languages should contrast with

2See Appendix E for the languages and treebanks we use.
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Figure 2: Accuracy in identifying word classes (POS)
and grammatical relations (REL) averaged across
different languages, with the linear transformation
constrained to varying maximum dimensionality. The
colored bands denote 95% confidence intervals. Struc-
tural concepts can be identified based on prototypes
within a relatively low-dimensional space.

cases where the structure of their spaces is
deformed. Given the prototypes for K structural
concepts derived from two languages, we construct
the following baselines: (i) RP, which randomly
swaps each prototypes for another in one of the two
languages; (ii) RC, where we randomly select a
sample of each concept instead of their prototypes
in one language; (iii) RS, where we randomly
select K samples in one language.

2.3 Results

Structural concepts can be identified based
on prototypes The structural concepts includ-
ing word classes and grammatical relations can
be successfully distinguished according to their
distances to the prototypes (Figure 2)3. The
structural information can be effectively encoded
within a relatively low-dimensional space, which
varies across different models. We note that
more expressive probing models are needed to
extract structural concepts, especially grammatical
relations, from LLaMA; we leave exploration of

3We take the 7th layer of mBERT here as it is most effective
in encoding structural information (Appendix A.1).



this to future work.

Structural concepts are readily alignable across
languages Figure 1 depicts the alignablity be-
tween the structural concepts in different languages.
Both word classes and grammatical relations are
highly correlated across languages and can be
approximately aligned through an orthogonal trans-
formation (rotation, reflection, etc.). Moreover, the
alignability is significantly higher than baselines,
reinforcing that the conceptual correspondence
between languages is reflected in the representation
space.

2.4 Discussion
It has been suggested that word embeddings in
different languages are approximately isometric
and can be aligned through a linear transformation
(Mikolov et al., 2013; Lample et al., 2018; Schuster
et al., 2019). However, the meaning of each indi-
vidual words, rather than the underlying concepts
(Youn et al., 2016; Xu et al., 2020), might not
be indeed alignable across languages (Thompson
et al., 2020), and enforcing such alignment can hurt
downstream performance (Glavaš et al., 2019; Wu
and Dredze, 2020). We here propose to establish
the alignment based on conceptual correspondence
that can serve as yardsticks for cross-linguistic
comparison (Haspelmath, 2021), and the structural
concepts defined in UD are generally designed to
meet the need.

The alignability of structural concepts across dif-
ferent languages is relatively consistent, providing
evidence that their correspondence implicitly en-
coded in LLMs, though not well aligned. However,
variations remain between different language pairs.
Besides subtle cross-linguistic differences with
regard to the structural concepts (e.g., Ponti et al.,
2018), this might result from i) the lack of sufficient
data in the UD treebank for approximating the
prototypes, and ii) the degenerate representation
spaces of certain languages, which has been at-
tributed to factors including inadequate pretraining
data and deficiencies in tokenization methods for
specific languages (Vulić et al., 2020; Rust et al.,
2021; Blaschke et al., 2023; Purkayastha et al.,
2023). The disparities among languages are also
reflected in our experiment results regarding the
classification of structural concepts, especially for
languages not well represented in the pretraining
corpora4.

4See Appendix A.1 for details.

3 Aligning Conceptual Correspondence
for Cross-Lingual Generalization

The previous section shows that the universal
structural concepts are readily alignable in the
LLMs. Next, we investigate how to leverage the
knowledge for cross-lingual generalization. We
rely on meta-learning to learn to align conceptual
correspondence between different languages in
both zero-shot and few-shot scenarios, analyzing
how different factors including the number of
available examples and the languages used for
meta-training may impact the generalization.

3.1 Method

Learning to align with a few examples We first
derive prototypes cSk from a source language LS
following the method in Section 2.1, and then learn
to align samples in different languages with cSk via
meta-learning. We employ a composite function
F = gα ◦ fϕ to establish the alignment. The
function fϕ : Rn → Rm with parameters ϕ is
language-agnostic and projects features yielded by
LMs into an m-dimensional space, where samples
belonging to each concept in a target language
LT are expected to cluster around their prototypes
cTk . As shown in Section 2.3, an orthogonal
transformation suffices to align the prototypes in
two languages while preserving the geometry of the
original spaces. We thus use a language-specific
linear mapping gα : Rm → Rm to convert cTk
into prototypes cSk , which allows us to identify the
structural concepts according to

pF (y = k | x) = exp(−d(F (x),cSk ))∑
k′ exp(−d(F (x),cS

k′))
. (3)

The parameters are together optimized by minimiz-
ing the negative log-probability of the gold concept
k. We use labeled data in multiple languages to
learn the function F during meta-training. The
language-agnostic function fϕ is optimized over
the entire training procedure, and the language-
specific function gα is learned separately for
different languages. During meta-testing, fϕ is
kept fixed while gα is learned from scratch using
the provided examples.

Aligning with unified prototypes for zero-shot
generalization In the zero-shot setting, instead of
being given a few examples to learn the alignment,
we rely on meta-learning to establish unified
prototypes for each concept. We learn a linear



sr† ga† be br∗ cy† fo∗ gsw∗ kk mr† pcm∗ sa∗ ta† te† tl wbp∗ yo AVG STD
UDAPTER - - 96.9 72.2 69.7 79.6 65.9 83.4 66.5 54.7 42.2 70.3 84.2 78.4 34.1 63.7 58.4 0.214
M28-0 92.2 71.4 90.3 75.4 69.9 84.6 64.7 77.2 79.3 37.7 45.2 73.1 78.2 73.8 51.6 61.0 56.6 0.212
M28-10 94.3 73.9 89.3 79.4 73.4 85.1 68.8 79.0 80.1 43.8 49.4 77.5 80.2 80.5 54.6 63.1 59.0 0.208
M28-50 95.2 75.9 90.7 81.1 76.9 86.3 70.6 79.8 79.0 64.3 52.0 79.5 80.3 83.7 58.8 67.0 62.5 0.183
M43-0 96.2 86.8 90.3 73.9 88.5 83.8 63.4 77.7 87.5 47.3 46.0 81.3 90.4 70.0 49.3 58.0 57.9 0.228
M43-10 95.8 86.6 89.5 80.3 87.3 84.9 69.0 80.2 86.7 54.5 48.7 81.9 90.0 78.6 53.9 62.2 60.8 0.211
M43-50 96.4 87.0 91.6 82.3 88.9 85.7 72.2 80.3 88.6 70.6 49.8 81.5 90.0 82.8 58.8 66.7 64.4 0.187

Table 1: The zero-shot and few-shot generalization performance on POS tagging for a subset of languages unseen
during meta-training and low-resource languages. Languages marked with “∗” are not included in the pretraining
corpus. “†” indicates that the language is involved in meta-training for M43. AVG and STD denotes the average
accuracy and standard deviation respectively for 30 low-resource languages. (The results for all languages, together
with the performance on the classification of grammatical relations, are given in Appendix B.)

mapping hω : Rm → Rm to convert cSk to
unified prototypes cωk = h

(
cSk

)
and use a language-

agnostic function fϕ to match samples with them.
The classification is then performed based on
d (fϕ (x) , c

ω
k ). We optimize the parameters during

meta-training and directly apply the models to other
languages for meta-testing.

3.2 Setup
Model We derive representations from the 7th

layer of mBERT. The language-agnostic function
fϕ is parameterized by a 2-layer perceptron with h
hidden units that projects the features derived from
mBERT to an m-dimensional space. We set h =
256 and m = 32 for word class identification, i.e.,
part-of-speech (POS) tagging. For grammatical
relation, we set h = 384 and m = 64.

Data To investigate the impact of languages
involved in meta-training on performance, we
examine two distinct settings: i) M28 with 28
high-resource languages included in meta-training
and ii) M43 with 15 additional languages, which
are primarily low-resource ones. Unless otherwise
stated, we use English as the source language.
The languages and datasets used here is shown
in Appendix E.

Evaluation We randomly select N sentences
from the training set of a target language5 as the
support set, and evaluate the model on its test set in
terms of accuracy. We vary N from 0 to 200 to test
the number of sentences needed for generalization.

Baselines We compare our method with the
following baselines: (i) FT The mBERT model
is fine-tuned with the N available sentences in the
target language, with a linear classifier on top of

5For languages without training sets, we select sentences
from their test sets and evaluate on the remaining data.
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Figure 3: Accuracy of M28 in identifying word
classes in languages used during meta-training (depicted
by bluish lines) and novel languages encountered
during meta-testing (depicted by reddish lines) given
N sentences. (The results for the classification of
grammatical relations are shown in Appendix B.)

it as the task-specific layer. (ii) UDapter, which
is a state-of-the-art multilingual parser (Üstün
et al., 2022) that extends mBERT with adapters
whose parameters are generated based on language
embeddings from URIEL (Littell et al., 2017).

3.3 Results

Explicit alignment benefits low-resource lan-
guages Our method achieves competitive results
with UDAPTER without any parameter updates
to the LLM (Table 1), and even surpasses it for
some languages distant from high-resource ones
like Marathi (mr) and Warlpiri (wbp). Moreover,
our method helps mitigate the performance gap
between different languages, as shown in the
reduced standard deviation among languages.

Meta-learning supports efficient alignment
Comparing M28 and M43, we observe that, by
incorporating low-resource languages like Marathi
(mr) into meta-training, even with limited data6,
substantial performance gains can be achieved

6The training set of Marathi consists of only 373 sentences.



without compromising performance in other
languages. This suggests that the inclusion of
diverse languages in meta-training is critical
for learning to derive conceptual spaces from
LLMs. Based on the knowledge meta-learned from
various languages, the model efficiently learns to
align unseen languages with little supervision and
optimizes at about 50 sentences, in contrast to
FT (Figure 3), supporting the effectiveness of our
method.

3.4 Discussion

Our results taps into the potential for aligning
systems possessing common structure, which has
shown to support generalization even in the absence
of explicit supervision (Roads and Love, 2020;
Aho et al., 2022). Previous work has suggested
that word embeddings in different languages are
automatically aligned through joint pretraining
(Cao et al., 2019; Conneau et al., 2020). In terms
of structural concepts, their correspondence is
reflected in the geometry of pretrained LLMs and
have been aligned to a certain extent (Chi et al.,
2020). However, the alignment is not optimal
and can be improved with a few examples, as
suggested by Lauscher et al. (2020). Our approach
may be expanded to other aspects of language
and, by utilizing the knowledge acquired via self-
supervision, it is promising to better accommodate
the rich linguistic diversity despite the scarcity of
labeled data.

4 Aligning Conceptual Correspondence
during In-Context Learning

In this section, we further explore whether the
correspondence between structural concepts can
be harnessed for cross-lingual generalization in the
in-context learning setting. Specifically, we first
show that the cross-lingual syntactic abilities of
LLMs can be elicited through in-context learning.
We then rely on our method to probe the underlying
mechanisms and further enhance the cross-lingual
generalization by aligning the structural concepts
within different languages.

4.1 Method

Learning cross-lingual structural concepts in
context We focus on the POS tagging task and
use the structured prompting method proposed by
Blevins et al. (2022) to evaluate the few-shot in-
context learning ability of LLMs (Figure 4), where

LLM

LLM Head

Input: Please let me know .
Output: Please⇒INTJ let⇒VERB me⇒PRON know⇒VERB .⇒PUNCT

Input: The houses are new .
Output: The⇒DET houses⇒NOUN are⇒AUX new⇒ADJ .⇒PUNCT

Input: That would be fun .
Output: That⇒PRON would⇒AUX be⇒AUX fun⇒

Demonstration

Query

Meta-Learned Head

NOUN ADJDET VERB AUX ...

NOUN ADJDET VERB AUX ...

Figure 4: Sequence tagging via structured prompting.
The classification of structural concepts is performed in
a sequential manner.

the model is given a small number of demonstration
examples and then required to label additional sen-
tences in either the same language or a different one.
During in-context learning, an LLM is provided
with N pairs of sentences and tagged sequences
as task demonstrations and a query sentence to be
labeled. It is then required to iteratively tag the
words. Specifically, given an input sequence ℓ with
N demonstration examples and the query sentence
S = s1, . . . , sn, at each time step t, the LLM M
encodes [ℓ; st] and generate the label of st with
ĉt = argmaxc PM (c | ℓ, st). The input sequence
is then updated with the predicted label ĉt and the
following word st+1 appended to the end of ℓ.

Probing underlying mechanisms Firstly, we
take the demonstration examples as query sen-
tences, and evaluate the accuracy of the LLM in
classifying these examples. We then investigate
whether the representation space contextualized
by the demonstrations effectively serves as a
conceptual space where samples can be classified
based on their distances to prototypes for each
concept. We use the N demonstration examples as
query sentences and obtain their representations ht

at time step t for generating the label ĉt, whereby
we construct a dataset D = {xi, yi}Ni=1 based on
ht and the gold label ct. We follow the approach in
Section 2.1 to probe the extent to which structural
concepts can be derived from the contextualized
representation space, with the exception that the
linear transformation is an identity matrix. Finally,
we modify the labels and languages provided
in demonstrations to assess whether our results
generalize across different settings.

Meta-learning for better generalization Our
analysis demonstrates that the LLM learns to ac-
curately label the demonstration examples through



in-context learning, but the generalization per-
formance falls short in both monolingual and
cross-lingual settings. We thus rely on our meta-
learning-based method to improve the LLM’s
generalization ability. As previously mentioned,
we obtain prototypes by utilizing the demonstration
examples as query sentences, and then learn to
align representations of other query sentences,
contextualized by these demonstrations, with the
prototypes. This resembles the zero-shot setting
in Section 3.1, but we discard the linear mapping
applied to the prototypes, as the prototypes
themselves are projected into a contextualized
representation space and serve as good anchor
points. During meta-learning, we introduce varying
demonstration examples to construct different
training episodes, and the model is directly applied
across different contexts for meta-testing.

4.2 Setup

Model We use LLaMA-7B as the underlying
LLM. The network used for meta-learning resem-
bles the one described in Section 3.2, which is a
2-layer perceptron with a hidden layer of size 512.

Data We employ 24 languages for our exper-
iments, among which 5 languages are used for
meta-training. We represent each POS tag with the
token corresponding to the surface form of the label
defined in UD by default (UPOS), e.g., “NOUN”.
We investigate three additional settings where the
label forms are modified: i) SHFL, which shuffles
the surface forms of the labels, ii) PXY, which
uses proxy labels where each class is represented
by an arbitrary token—we employ capital alphabet
letters here, and iii) WORD, which uses words as
labels, e.g., “adverb”7.

Evaluation We randomly select 9 sentences
from the training set in a source language as
demonstrations, ensuring they cover the label space
if possible. For in-context learning, the LLM
is evaluated on 50 randomly selected sentences
from the test set for each language. We report
the average accuracy across 10 runs, where a
sample is considered correctly labeled only if
the first word the LLM generates after seeing
the delimiter matches the form of the gold
label. In terms of the probing and meta-learning
experiments, we focus on the setting where

7The languages and datasets are listed in Appendix E, and
the detailed label forms can be found in Appendix C.

UPOS SHFL PXY WORD

ICL 99.4 99.4 99.9 99.2
Proto 92.7 93.5 99.3 96.1

Table 2: Accuracy in POS tagging in English (en) for
demonstrations taken as query sentences. ICL denotes
the performance achieved through in-context learning,
and Proto for classification based on prototypes
computed based on our method.

da de en es hi ja pl tr zh
Language

0.0
0.2
0.4
0.6
0.8

A
cc

ur
ac

y

EN
Mono
Meta

Figure 5: The few-shot generalization performance
on POS tagging in the monolingual (MONO) and
cross-lingual (EN) in-context learning settings, with
English as the source language. META denotes our
meta-learning-based method. Error bars represent the
standard deviation calculated from 10 runs. Languages
marked with “∗” are not included in the pretraining
corpus. “†” indicates that the language is involved in
meta-training for META. (The results for all languages
are presented in Appendix C.2.)

the demonstrations provided are in English and
perform 10 runs for each language with 50 query
sentences randomly sampled from the training
set of UD. The evaluation set for each language
consists of 10 runs under similar settings, with
the exception that the query sentences are sampled
from the test set of UD.

4.3 Results

LLM successfully learns to label the demonstra-
tion examples, but with limited generalization
abilities Table 2 shows that the LLM is able to
accurately label demonstration examples, regard-
less of changes in the label forms. Moreover, the
contextualized representations of the demonstra-
tions can be effectively classified based on the
prototypes, indicating a good conceptual space
for them. However, the performance significantly
decreases when generalizing to unseen sentences,
and the cross-lingual generalization performance
can be even worse (Figure 5).

Aligning with demonstrations supports general-
ization Through learning to align with prototypes
derived from a few demonstration examples, our
method achieves remarkable gains in generaliza-
tion for both monolingual and cross-lingual scenar-



ios (Figure 5). Extending the inclusion of diverse
languages in our method holds promise for further
improving cross-lingual generalization, particularly
for languages that are not well represented in
the meta-training languages, like Japanese (ja).
These findings support the effectiveness of our
method even in the face of variations introduced
by changes in demonstrations, and suggest that
better generalization performance can be achieved
through explicit alignment.

4.4 Discussion

While in-context learning has shown an efficient
way to leverage LLMs for various downstream
tasks and enables few-shot generalization (Brown
et al., 2020; Winata et al., 2022), the underlying
mechanisms remain unclear. Previous research
has suggested that prompting can be regarded as
probing knowledge from LLMs (Li et al., 2022a;
Blevins et al., 2022; Alivanistos et al., 2022), but
the performance is sensitive to prompt engineering,
including factors such as the label space and the
input distribution (Zhao et al., 2021; Lu et al., 2022;
Min et al., 2022; Mishra et al., 2022). We here
investigate the representation space of LLMs and
find the demonstrations are effectively learned by
them despite changes in the label forms. These
demonstrations establishes a conceptual space with
which we may align different samples. Our
findings are in line with Olsson et al. (2022),
suggesting that LLMs learn to match the patterns
in the context, and offer insights into improving the
generalization abilities of LLMs beyond prompt
design.

5 Related Work

Probing linguistic knowledge Pretrained LLMs
have shown able to induce sophisticated linguistic
knowledge via self-supervision (Manning et al.,
2020; Linzen and Baroni, 2021). As evidenced
by probing analyses, structural information in-
cluding word classes, grammatical relations and
syntactic parse trees can be decoded from their
representations to a remarkable extent (Conneau
et al., 2018; Blevins et al., 2018; Liu et al.,
2019; Tenney et al., 2019; Clark et al., 2019;
Hewitt and Manning, 2019; Eisape et al., 2022).
Expanded to the multilingual setting, these models
automatically capture nuanced similarities and
differences between languages (Chi et al., 2020;
Papadimitriou et al., 2021; Singh et al., 2019;

Bjerva and Augenstein, 2021; Xu et al., 2022), en-
abling efficient zero-shot cross-lingual transfer. We
here further explore whether the correspondence
between structural concepts are reflected in LLMs’
representation space, which could potentially be
harnessed for better generalization.

Cross-lingual generalization While multilin-
gual LLMs are capable of zero-shot cross-lingual
transfer across various tasks (Pires et al., 2019;
Wu and Dredze, 2019; Winata et al., 2021), the
performance is sensitive to linguistic diversity.
Efforts have been made to facilitate generalization
to low-resource languages by learning proper
information sharing (Ammar et al., 2016; Üstün
et al., 2020; Nooralahzadeh et al., 2020) and
optimizing data selection (Ponti et al., 2018; Lin
et al., 2019; Glavaš and Vulić, 2021), but problems
remain when it comes to outlier languages for
which there is no high-resource related ones
(Blasi et al., 2022). Another line of work strives
to overcome the language barriers by imposing
alignment of word embeddings (Lample et al.,
2018; Ruder et al., 2019; Schuster et al., 2019; Cao
et al., 2019). While the alignment typically ensures
that semantically and syntactically similar words
are clustered together, it is left implicit whether
the underlying conceptual correspondence between
languages are properly aligned.

Meta-learning for generalization Meta-
learning has showcased great success in enabling
effective generalization. Through the process of
learning to learn, namely, improving learning over
multiple learning episodes (Wang et al., 2020;
Huisman et al., 2021; Hospedales et al., 2022), it
facilitates rapid adaptation to novel contexts with
limited data available. Prior work has exploited
methods including Model-Agnostic Meta-Learning
(Finn et al., 2017), Reptile (Nichol et al., 2018)
and Prototypical Networks (Snell et al., 2017)
for improved cross-lingual generalization (Ponti
et al., 2021; Langedijk et al., 2022; Sherborne and
Lapata, 2023; Cattan et al., 2021). Our method
is similar to Prototypical Networks, but instead
of estimating prototypes with the few available
samples for each class, we derive prototypes from
a source language and learn to align different
languages with them, verifying the conceptual
correspondence captured by LLMs.



6 Conclusion

We have demonstrated that multilingual LMs
are able to induce the correspondence between
structural concepts within different languages
without any explicit supervision. This knowledge
is encoded in their geometry and can be exploited
for generalization, whereby we rely on meta-
learning to learn to align different languages with
minimal examples available. Our approach can
be used to evaluate the correspondence between
different systems that has been acquired by LLMs,
and explicitly leverage them for sample-efficient
generalization, suggesting a new path toward mea-
suring and manipulating the knowledge encoded
in LLMs. Future research may generalize it to
other contexts (e.g., other modalities) to probe
the commonalities and differences shared between
systems and develop more sophisticated way for
alignment and generalization.

Limitations

Our goal in this work is to measure the underlying
conceptual correspondence between languages en-
coded in LLMs, and leverage it for generalization.
While we have demonstrated the effectiveness of
our approach, it is only a first step toward the
more general goal. The foremost limitation of
our approach is that it relies on the comparable
concepts defined by linguists and manually created
datasets to derive proper features for analyses.
Continued research could expand upon it to other
tasks where prior knowledge of association is
available and explore how different kinds of
alignment impact the performance of LMs.

Despite the correspondence, our findings suggest
that the alignability as well as the generalization
performance still varies across languages, though
not as pronounced as in the zero-shot cross-
lingual transfer scenario. These variations may be
attributed to factors like nuanced cross-linguistic
differences, degraded representation space for
some low-resource languages and insufficient task-
specific data. Further investigation is needed to
fully understand the cause of these disparities
and how they can be reduced to improve the
generalization abilities of pretrained LMs, e.g., how
to improve the representation spaces of individual
languages.
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Cenel-Augusto Perez, Natalia Perkova, Guy Perrier,
Slav Petrov, Daria Petrova, Andrea Peverelli, Jason
Phelan, Jussi Piitulainen, Tommi A Pirinen, Emily
Pitler, Barbara Plank, Thierry Poibeau, Larisa Pono-
mareva, Martin Popel, Lauma Pretkalnin, a, Sophie
Prévost, Prokopis Prokopidis, Adam Przepiórkowski,
Tiina Puolakainen, Sampo Pyysalo, Peng Qi,
Andriela Rääbis, Alexandre Rademaker, Mizanur
Rahoman, Taraka Rama, Loganathan Ramasamy,
Carlos Ramisch, Fam Rashel, Mohammad Sadegh
Rasooli, Vinit Ravishankar, Livy Real, Petru Rebeja,
Siva Reddy, Mathilde Regnault, Georg Rehm, Ivan
Riabov, Michael Rießler, Erika Rimkutė, Larissa
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A Additional Materials for
Correspondence between Structural
Concepts in Transformers

A.1 Identification of Structural Concepts
Based on Prototypes

Representations of structural concepts Given
an input sequence ℓ of n tokens wℓ

1:n, an LLM
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Figure 6: Accuracy in identifying word classes of
different languages across different layers of mBERT.

produces contextual representations hℓ
1:n for each

of the token wℓ
i (i = 1, . . . , n). We take the

representation hℓ
i corresponding to the word wℓ

i

as the feature of its word class. The feature of the
grammatical relation between a head-dependent
pair of words

(
wℓ

head, w
ℓ
dep

)
is given by the

difference between their representations:

rℓ(head,dep) = hℓ
head − hℓ

dep, (4)

akin to previous works (Hewitt and Manning, 2019;
Chi et al., 2020; Xu et al., 2022). The features and
corresponding labels constitute the datasets D ={
xi, yi

}N

i=1
, whereby we derive each structural

concept k and measure the alignablity between
languages (Section 2.1).

Validation of method The middle layers of
BERT-like models have shown most effective
in encoding syntactic information (Hewitt and
Manning, 2019; Chi et al., 2020). We validate
this applies to our setting through probing the
different layers of mBERT. Besides, to ensure that
our method reflects the information about structural
concepts encoded in the representation space, we
compare the performance in classification with the
following baselines: 1) LAYER0, the 0th layer of
mBERT, where no contextual information is given;
and 2) RAND, a model shares the same architecture
as mBERT with its weights randomized8. For
these experiments, we set the maximum rank of the
probe model to 768 to maximally extract relevant
information encoded in the representations.

Results The 7th and 8th layers of the model
are most effective in encoding the grammatical
relations (Figure 7). For word classes, performance
is relatively consistent from the 3rd to 9th layer
except for some low-resource languages like

8As the performance of RAND is approximately equal
across different layers, we consistently select the 7th layer for
our analysis.
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Figure 7: Accuracy in identifying grammatical relations
of different languages across different layers of mBERT.
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Figure 8: The distribution of the accuracy in deriving
word classes from the 7th layer of mBERT, along with
two baselines. The x-axis denotes the accuracy, of
which the distribution is derived from the results in 43
languages. The Wilcoxon test shows that the 7th layer
exhibits a significantly higher performance (W = 0.0,
p = 2.27× 10−13).

Marathi (mr) and Tamil (ta) (Figure 6). We
thus take the 7th layer for our experiments. The
comparison with the two baselines (Figure 8 and
Figure 9) supports the efficacy of our method in
deriving prototypes of structural concepts while
reflecting the geometry of LMs.

Moreover, we also observe disparities between
languages reflected in the classification of struc-
tural concepts. As shown in Figure 6 and Figure 7,
the performance on low-resource languages like
Marathi and Tamil consistently lags behind, indicat-
ing insufficient representation of these languages
in LLMs.

A.2 Alignability between Structural Concepts
in Different Languages

Details of evaluation We use RSA and Pro-
crustes analysis9 (PA) to measure the alignability
between structural concepts in different languages.
The RSA between two languages is evaluated
through the Spearman’s rank correlation between

9https://docs.scipy.org/doc/scipy/reference/
generated/scipy.spatial.procrustes.html
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Figure 9: The distribution of the accuracy in deriving
grammatical relations from the 7th layer of mBERT,
along with two baselines. The x-axis denotes the
accuracy, of which the distribution is derived from the
results in 43 languages. The Wilcoxon test shows that
the 7th layer exhibits a significantly higher performance
(W = 0.0, p = 2.27× 10−13).
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Figure 10: The alignability between word classes within
different languages in mBERT measured by RSA.
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Figure 11: The alignability between word classes within
different languages in mBERT measured by Procrustes
analysis.
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Figure 12: The alignability between grammatical rela-
tions within different languages in mBERT measured
by RSA.
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Figure 13: The alignability between grammatical rela-
tions within different languages in mBERT measured
by Procrustes analysis.

the lower diagonal portion of their dissimilarity
matrices. The fitness of the linear transformation
derived from PA is evaluated through the average
proportion of explained variance10.

Details of baselines Given the prototypes for K
structural concepts derived from two languages L1

and L2, we construct the following three baselines:
(i) RP, which randomly swaps each prototypes
for another in one of the two languages; (ii) RC,
where we randomly select a sample of each concept
instead of their prototypes in one language; (iii)
RS, where we randomly select K samples in one
language. Each baseline thus creates a different
mapping between two languages, and we test 100

10https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.r2_score.html.
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Figure 14: The alignability between grammatical rela-
tions within different languages in LLaMA measured
by RSA.

bg ca da de en es fr hr hu it nl pl pt ro ru sl sr sv uk

ca
da
de
en
es
fr
hr
hu
it
nl
pl
pt
ro
ru
sl
sr
sv
uk
zh

Grammatical Relations, PA, LLaMA

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 15: The alignability between grammatical rela-
tions within different languages in LLaMA measured
by Procrustes analysis.

random mappings per baseline. We employ the
Wilcoxon test to assess whether the alignability
between a language pair in LLMs, computed based
on our method, is significantly higher than these
baselines.

Results The alignability between all 43 lan-
guages in mBERT with regard to word classes is
shown in Figure 10 (RSA) and Figure 11 (PA).
Figure 12 (RSA) and Figure 13 (PA) show the
results for grammatical relations in mBERT. In
terms of LLaMA, the results for word classes
are shown in Section 2.3, and the results for
grammatical relations are depicted in Figure 14
(RSA) and Figure 15 (PA). The alignability in
mBERT and LLaMA is both significantly higher
than the baselines, with p < 0.001 for almost all

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
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Figure 16: Accuracy of M28 in identifying grammatical
relations in languages used during meta-training
(depicted by bluish lines) and novel languages
encountered during meta-testing (depicted by reddish
lines) given N sentences.

language pairs. The only exception arises when
comparing the alignability with RC, where the
samples are randomly taken from the same class
(Table 3).

B Additional Materials for Aligning
Conceptual Correspondence for
Cross-Lingual Generalization

For POS tagging, Table 6 shows our results on 30
low-resource languages compared with UDAPTER.
Results on other languages are shown in Table 7.
The results for the classification of grammatical
relations are shown in Figure 16, Table 8 and
Table 9.

Additionally, we present the average accuracy
and standard deviation for both low-resource and
high-resource languages, as shown in Table 4 and
Table 5. With an increasing number of available
examples, our approach demonstrates consistent
improvements and helps mitigate the performance
gap across diverse languages.

C Additional Materials for Aligning
Conceptual Correspondence during
In-Context Learning

C.1 Experimental Details

Label forms The label forms used in our experi-
ments are as follows:

• UPOS: ADJ, ADP, ADV, AUX, CCONJ,
DET, INTJ, NOUN, NUM, PART, PRON,
PROPN, PUNCT, SCONJ, SYM, VERB, X.

• SHFL: PUNCT, DET, AUX, ADJ, PRON, X,
PART, CCONJ, INTJ, NUM, SCONJ, ADV,
SYM, VERB, PROPN, ADP, NOUN.

• PXY: A, B, C, D, E, F, G, H, I, J, K, L, M, N,
O, P, Q.

• WORD: adjective, adposition, adverb, aux-
iliary, coordinating_conjunction, determiner,
interjection, noun, numeral, particle, pro-
noun, proper_noun, punctuation, subordinat-
ing_conjunction, symbol, verb, other.

Languages for meta-training We employ five
languages for meta-training, including bg, en, fi, fr,
ru. The other languages and datasets used in our
experiments are shown in Appendix E.

C.2 Full Results

Figure 17 presents the full results for our meta-
learning-based methods across 24 languages.

D Implementation Details

Large language models We use Multilingual
BERT (bert-base-multilingual-cased)11 and
LLaMA-7B (llama-7b-hf)12 for all our experi-
ments.

Deriving structural concepts from LLMs For
all our experiments that derive structural concepts
from LLMs through a linear transformation, we
train the linear probe with a batch size of 8 and
a max sequence length of 128 for 20 epochs, and
validate it at the end of each epoch. We select
the model performing the best on the development
set. We use the Adam optimizer with β1 = 0.9,
β2 = 0.999, and a weight decay of 1× 10−6. The
learning rate is set to 1× 10−4.

Learning to align conceptual correspondence
Our meta-learning-based method follows the pro-
cedure described above to derive prototypes for
each concept. Subsequently, the networks are
trained for 50 epochs, with a maximum sequence
length of 128. During meta-training, given m
languages, each epoch consists of m× 50 training
episodes. These episodes are constructed using N
labeled sentences as the support set and 30 labeled
sentences as the query set. The method we use
here bears resemblance to Li et al. (2022b). The
parameters of the network are optimized through
the Adam optimizer, with β1 = 0.9, β2 = 0.999,
and a weight decay of 1 × 10−4. The learning

11https://huggingface.co/
bert-base-multilingual-cased.

12https://huggingface.co/decapoda-research/
llama-7b-hf.

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/decapoda-research/llama-7b-hf
https://huggingface.co/decapoda-research/llama-7b-hf


Model L1 L2 Concept Measure Baseline p-value
mBERT ar el POS RSA RC p = 0.040 < 0.05
mBERT ar nl POS RSA RC p = 0.030 < 0.05
mBERT ko de POS RSA RC p = 0.009 < 0.01
mBERT ko de POS RSA RC p = 0.009 < 0.01
mBERT ar mr POS PA RC p = 0.130
mBERT en vi POS PA RC p = 0.002 < 0.005
mBERT ko vi POS PA RC p = 0.616
LLaMA bg de POS PA RC p = 0.027 < 0.05
LLaMA bg fr POS PA RC p = 0.007 < 0.01

Table 3: Exceptions where the alignability between the language pair exceeds a significance threshold of p < 0.001.

LR-AVG LR-STD HR-AVG HR-STD AVG STD
UDAPTER 58.4 0.2135 97.0 0.0113 70.0 0.2516
M28-0 56.6 0.2118 90.8 0.0480 66.9 0.2379
M28-10 59.0 0.2075 89.2 0.0581 68.1 0.2245
M28-30 61.5 0.1874 90.7 0.0507 70.3 0.2080
M28-50 62.5 0.1834 91.0 0.0478 71.1 0.2032
M43-0 57.9 0.2280 90.9 0.0468 67.9 0.2446
M43-10 60.8 0.2111 89.6 0.0596 69.5 0.2229
M43-30 63.0 0.1942 90.6 0.0541 71.4 0.2079
M43-50 64.4 0.1869 91.1 0.0495 72.5 0.2003

Table 4: The average accuracy (AVG) and standard deviation (STD) with regard to POS tagging measured across
the languages used in UDAPTER, where the low-resource languages (LR) are the 30 languages listed in Table 6
and the high-resource languages (HR) include: ar, en, eu, fi, he, hi, it, ja, ko, ru, sv, tr and zh. AVG and STD are
computed over all languages. While our method lags behind UDAPTER in terms of high-resource languages, its
demonstrates an increasing performance on low-resource ones when provided with additional examples. Moreover,
the gap between different languages becomes smaller, especially for M28, which does not involve any low-resource
languages in meta-training.

rate is set to 5 × 10−5. The hidden layer dropout
probability is 0.33.

Note that as the conceptual correspondence
holds across languages for concepts with (Sec-
tion 2.3) for concepts with more than (or equal
to) 20 samples, concepts with fewer than 20
samples in either the source or target languages
are excluded during meta-training. During meta-
testing, examples belonging to these categories are
considered as misclassified.

Aligning conceptual correspondence during in-
context learning For meta-learning during in-
context learning, our networks are trained for 100
epochs with each consists of m × 10 episodes,
where m = 5 is the number of languages involved
in training. The parameters of the network are
optimized through the Adam optimizer, with β1 =
0.9, β2 = 0.999, and a weight decay of 1× 10−4.
The learning rate is set to 5 × 10−4. The hidden

layer dropout probability is 0.33.

E Data

The data used in all our experiments is from UD
v2.10 (Zeman et al., 2022)13. We follow the split
of training, development and test set in it.

Data for measuring correspondence between
structural concepts within different languages
In terms of measuring the correspondence between
structural concepts within different languages
(Section 2), we use 28 languages for mBERT,
including af, ar, bg, ca, cy, de, el, en, es, et, eu,
fa, fi, fr, ga, he, hi, hu, hy, id, is, it, ja, ko, lt, lv, mr,
nl, no, pl, pt, ro, ru, sk, sr, sv, ta, te, tr, uk, ur, vi
and zh. For LLaMA, we test on 20 languages: bg,
ca, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl,

13https://lindat.mff.cuni.cz/repository/xmlui/
handle/11234/1-4758.

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-4758
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-4758


LR-AVG LR-STD HR-AVG HR-STD AVG STD
M28-0 53.1 0.1870 84.7 0.0525 62.6 0.2151
M28-10 57.6 0.1648 83.2 0.0667 65.3 0.1848
M28-30 59.9 0.1609 84.9 0.0610 67.4 0.1802
M28-50 60.8 0.1597 85.6 0.0564 68.3 0.1780
M43-0 52.5 0.2080 81.4 0.0717 61.3 0.2222
M43-10 58.6 0.1739 82.6 0.0741 65.8 0.1869
M43-30 60.5 0.1681 84.6 0.0622 67.8 0.1822
M43-50 61.7 0.1662 85.7 0.0559 68.9 0.1799

Table 5: The average accuracy (AVG) and standard deviation (STD) with regard to the classification of grammatical
relations measured across different languages, where the low-resource languages (LR) are the 30 languages listed
in Table 6 and the high-resource languages (HR) include: ar, en, eu, fi, he, hi, it, ja, ko, ru, sv, tr and zh. AVG
and STD are computed over all languages. Our method demonstrates an increasing performance on low-resource
ones when provided with additional examples. Moreover, the gap between different languages becomes smaller,
especially for M28, which does not involve any low-resource languages in meta-training.
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Figure 17: The few-shot generalization performance on POS tagging in the monolingual (MONO) and cross-lingual
(EN) in-context learning settings, with English as the source language. META denotes our meta-learning-based
method. Error bars represent the standard deviation calculated from 10 runs. Languages marked with “∗” are not
included in the pretraining corpus. “†” indicates that the language is involved in meta-training for META.

sr, sv, uk and zh.

Data for aligning conceptual correspondence for
cross-lingual generalization The 28 languages
involved in the meta-training of M28 are: ar, bg,
ca, de, es, et, eu, fa, fi, fr, he, hi, is, it, ja, ko, lv,
nl, no, pl, pt, ro, ru, sk, sv, tr, uk and zh. For M43,
the 15 additional languages used for meta-training
include: af, cy, el, en, ga, hu, hy, id, lt, mr, sr,
ta, te, ur and vi. Both are evaluated on a total of
72 languages, which involves the 43 languages for
meta-training and another 29 languages: aii, akk,
am, be, bho, bm, br, bxr, cs, da, fo, gsw, gun, hsb,
kk, kmr, koi, kpv, krl, mdf, myv, olo, pcm, sa, sl, tl,
wbp, yo and yue.

Data for aligning conceptual correspondence
during in-context learning The experiments
with in-context learning encompass 24 languages,
including bg, ca, da, de, en, es, fr, hr, hu, it, nl, pl,

pt, ro, ru, sl, sr, sv, uk and zh, among which zh, fi,
hi, ja, tr are not included in the pretraining corpus.

Detailed language information Table 10 and
Table 11 provide detailed information on the
languages utilized in our experiments, including
their respective language codes, sizes of the UD
datasets, and language families.



aii∗ akk∗ am∗ be bho∗ bm∗ br∗ bxr∗ cy† fo∗ gsw∗ gun∗ hsb∗ kk kmr∗

UDAPTER 14.8 20.4 10.9 96.9 63.1 35.8 72.2 65.6 69.7 79.6 65.9 36.3 78.8 83.4 48.8
M28-0 14.6 21.9 20.9 90.3 62.5 32.7 75.4 60.1 69.9 84.6 64.7 12.9 73.5 77.2 42.4
M28-10 22.1 30.0 14.9 89.3 63.3 35.7 79.4 60.5 73.4 85.1 68.8 14.9 75.3 79.0 48.1
M28-30 24.5 34.1 23.8 91.0 64.2 37.9 81.3 59.7 75.2 85.6 70.5 31.6 76.0 79.8 49.2
M28-50 24.3 36.5 29.7 90.7 64.6 40.7 81.1 60.0 76.9 86.3 70.6 29.0 75.8 79.8 48.6
M28-100 - - 44.4 91.8 65.9 43.8 82.7 59.6 77.6 86.9 - 33.9 75.8 79.6 49.1
M28-200 - - 49.0 92.6 66.2 48.9 83.4 59.8 78.6 87.0 - 36.5 75.8 79.6 49.1
M43-0 19.0 21.0 7.5 90.3 62.0 33.6 73.9 59.5 88.5 83.8 63.4 16.6 73.9 77.7 43.1
M43-10 30.9 28.1 14.1 89.5 62.4 36.7 80.3 59.8 87.3 84.9 69.0 17.7 74.6 80.2 46.1
M43-30 27.8 35.0 32.0 91.1 63.7 40.0 81.2 59.4 88.1 85.2 70.0 24.8 75.6 80.2 47.9
M43-50 26.9 37.6 41.7 91.6 64.8 42.2 82.3 59.2 88.9 85.7 72.2 29.8 75.5 80.3 48.5
M43-100 - - 39.5 91.9 65.2 45.2 83.1 59.6 89.4 86.5 - 32.4 75.5 80.1 47.0
M43-200 - - 44.0 92.7 65.7 49.8 83.9 59.5 89.6 86.7 - 34.1 75.5 80.1 48.1

koi∗ kpv∗ krl∗ mdf∗ mr† myv∗ olo∗ pcm∗ sa∗ ta† te† tl wbp∗ yo yue∗

UDAPTER 48.9 36.7 78.3 54.7 66.5 52.8 76.6 54.7 42.2 70.3 84.2 78.4 34.1 63.7 66.3
M28-0 44.8 36.8 72.7 50.4 79.3 51.3 67.0 37.7 45.2 73.1 78.2 73.8 51.6 61.0 71.1
M28-10 46.6 39.3 73.1 51.1 80.1 51.6 66.3 43.8 49.4 77.5 80.2 80.5 54.6 63.1 72.8
M28-30 48.8 41.1 75.0 52.1 80.3 51.9 66.0 55.5 50.8 78.0 81.4 82.0 59.2 64.9 73.8
M28-50 51.0 41.7 76.7 51.7 79.0 52.7 66.0 64.3 52.0 79.5 80.3 83.7 58.8 67.0 75.3
M28-100 - 43.1 76.5 52.4 81.6 52.6 66.3 71.3 51.3 79.5 82.1 83.3 - 68.0 75.9
M28-200 - 45.8 79.5 52.5 81.6 53.7 66.3 76.3 55.2 79.7 82.1 - - 70.7 77.1
M43-0 47.4 36.6 71.8 49.9 87.5 51.3 65.7 47.3 46.0 81.3 90.4 70.0 49.3 58.0 70.4
M43-10 51.9 41.7 72.5 50.3 86.7 51.5 65.9 54.5 48.7 81.9 90.0 78.6 53.9 62.2 72.0
M43-30 53.7 42.6 75.5 52.6 88.6 51.9 65.2 65.7 48.9 81.2 89.2 82.0 54.2 63.9 74.4
M43-50 53.2 42.8 76.0 52.2 88.6 51.6 65.0 70.6 49.8 81.5 90.0 82.8 58.8 66.7 75.2
M43-100 - 43.2 76.3 52.9 88.8 52.4 65.2 74.2 51.1 81.4 90.7 83.3 - 67.6 76.6
M43-200 - 44.4 78.7 53.7 88.8 53.7 65.2 77.2 54.0 82.0 90.3 - - 71.2 77.8

Table 6: The zero-shot and few-shot generalization performance on POS tagging for 30 low-resource languages.
Languages marked with “∗” are not included in the pretraining corpus. “†” indicates that the language is involved
in meta-training for M43. The UD dataset for some languages comprises less than 100 or 200 sentences, and the
few-shot performance for these languages is left unspecified.



af† ar bg ca cs‡ da‡ de el en† es et eu fa fi fr
UDAPTER - 96.8 - - - - - - 97.0 - - 95.7 - 97.3 -
M28-0 89.8 93.0 96.2 95.8 92.1 89.5 93.3 88.4 84.7 94.4 91.0 90.0 92.8 92.0 95.4
M28-10 91.3 89.5 96.2 96.0 92.6 91.1 92.9 90.1 86.2 93.9 91.0 88.7 90.5 91.5 95.7
M28-30 91.6 92.5 96.3 96.5 93.4 91.5 92.9 91.2 88.2 94.5 91.5 89.4 91.5 92.2 95.9
M28-50 91.8 93.5 96.6 96.7 94.0 92.4 93.3 91.6 87.8 94.7 91.7 90.0 93.1 92.1 96.1
M28-100 92.8 93.8 96.7 96.9 94.3 92.8 93.4 91.9 89.0 94.9 92.0 90.2 93.2 92.5 96.1
M28-200 93.6 93.8 96.8 97.1 94.5 92.9 93.8 92.7 89.4 95.1 92.2 90.4 93.4 92.5 96.2
M43-0 93.4 92.5 96.0 95.6 92.4 89.4 93.0 94.6 91.9 94.1 90.5 89.4 92.4 91.4 95.2
M43-10 93.2 89.1 95.5 95.8 93.2 90.6 93.0 94.0 91.0 94.2 91.0 89.1 91.3 91.1 95.4
M43-30 94.3 92.3 96.1 96.4 93.6 91.8 93.0 94.4 92.0 94.8 90.9 89.3 92.3 91.8 95.5
M43-50 95.0 92.8 96.3 96.5 93.9 92.3 93.4 95.0 92.5 94.5 91.4 89.6 92.4 91.8 95.7
M43-100 95.4 93.3 96.5 96.6 94.5 92.6 93.5 95.3 92.7 94.8 91.8 89.7 92.8 92.2 95.8
M43-200 95.7 93.3 96.8 97.1 94.6 92.9 93.7 95.6 93.0 95.2 92.0 90.0 93.2 92.1 96.1

ga† he hi hu† hy† id† is it ja ko lt† lv nl no pl
UDAPTER - 97.1 97.4 - - - - 98.3 97.0 96.5 - - - - -
M28-0 71.4 93.0 92.4 84.0 83.1 82.1 94.2 96.2 93.5 78.8 84.9 90.7 93.2 93.6 94.4
M28-10 73.9 90.2 91.4 86.3 83.9 86.7 93.3 96.5 92.5 72.9 85.0 89.6 91.9 92.6 92.7
M28-30 75.2 91.9 92.0 88.0 84.6 87.6 93.7 96.7 93.0 76.9 86.1 90.5 92.7 93.3 93.6
M28-50 75.9 92.8 92.1 89.4 84.1 88.1 93.8 96.6 93.2 78.3 86.1 90.7 92.8 93.5 94.1
M28-100 76.9 93.2 92.9 89.6 85.3 89.2 94.5 96.8 93.8 79.6 86.6 91.0 93.7 94.0 94.9
M28-200 77.8 93.4 93.2 90.0 85.8 89.8 94.6 96.8 93.8 79.9 86.8 91.2 94.1 94.2 95.5
M43-0 86.8 92.5 92.2 91.6 88.8 91.1 93.4 96.1 93.0 77.8 89.3 90.2 92.1 93.2 94.1
M43-10 86.6 90.9 91.2 91.4 88.4 91.5 92.7 95.9 92.3 71.8 87.4 89.8 91.8 91.0 92.8
M43-30 86.9 91.8 91.8 92.0 89.1 91.5 93.1 96.3 93.0 75.0 89.1 90.7 93.0 92.7 93.6
M43-50 87.0 92.3 92.5 92.4 88.4 91.8 93.5 96.3 93.1 77.4 89.5 90.4 93.0 93.1 94.0
M43-100 87.5 92.9 92.8 92.2 89.3 92.1 93.8 96.6 93.2 78.6 90.2 90.6 93.8 93.6 94.7
M43-200 87.8 93.1 93.1 92.6 89.9 92.4 94.0 96.8 93.4 79.1 90.4 91.0 94.1 94.1 95.4

pt ro ru sk sl‡ sr† sv tr uk ur† vi† zh
UDAPTER - - 98.9 - - - 98.4 95.1 - - - 95.1
M28-0 95.2 94.9 94.7 92.6 88.5 92.2 95.1 85.0 93.8 81.3 67.1 91.5
M28-10 95.0 94.3 93.0 91.6 90.5 94.3 95.1 82.9 92.9 82.8 69.4 89.6
M28-30 95.8 95.1 95.6 92.2 91.7 94.6 95.3 84.3 93.6 84.1 70.2 91.2
M28-50 96.1 95.1 95.0 93.4 92.0 95.2 95.2 84.6 93.8 84.2 71.7 91.7
M28-100 96.4 95.2 95.7 93.5 92.7 95.4 95.8 85.0 94.3 85.8 75.4 92.1
M28-200 96.4 95.6 95.9 94.0 93.1 95.8 95.8 84.9 94.6 86.9 78.7 92.4
M43-0 94.9 94.4 94.7 92.5 89.5 96.2 94.9 84.4 93.5 89.6 86.3 90.6
M43-10 94.5 94.3 94.4 91.2 90.7 95.8 95.3 83.7 93.2 88.4 79.3 89.2
M43-30 95.4 94.6 94.7 93.0 91.8 96.5 95.5 83.8 94.0 89.6 82.8 90.7
M43-50 95.7 94.9 95.6 94.1 92.7 96.4 95.2 83.8 93.7 89.7 85.3 91.1
M43-100 95.9 95.0 96.0 94.2 92.9 97.0 95.4 84.3 94.6 90.1 87.7 91.6
M43-200 96.1 95.3 96.1 94.4 93.4 97.1 95.7 84.7 94.9 90.2 88.5 91.9

Table 7: The zero-shot and few-shot generalization performance on POS tagging for 42 other languages. By default,
these languages are used for meta-training. Languages marked with “†” is involved in meta-training for M43 but
not for M28. “‡” indicates that the language is excluded from meta-training for both M28 and M43.



aii∗ akk∗ am∗ be bho∗ bm∗ br∗ bxr∗ cy† fo∗ gsw∗ gun∗ hsb∗ kk kmr∗

M28-0 33.3 20.8 18.2 86.6 53.2 28.7 73.4 35.6 69.0 84.5 66.2 20.9 67.3 71.1 45.6
M28-10 43.7 29.3 47.7 86.2 58.3 37.4 77.3 36.2 71.4 85.3 68.2 27.1 68.2 72.1 48.7
M28-30 49.0 34.8 48.3 86.9 61.8 42.1 78.8 37.1 73.8 86.0 70.5 30.5 68.5 72.8 49.4
M28-50 49.7 39.9 47.8 87.3 63.3 46.0 79.5 36.9 75.1 85.9 71.7 34.0 68.3 72.8 49.9
M28-100 - - 48.5 87.8 63.9 48.6 80.2 37.0 76.4 87.2 - 36.4 68.5 72.8 49.6
M28-200 - - 48.4 88.3 65.7 53.7 81.4 37.0 77.1 87.5 - 37.5 68.5 72.8 49.6
M43-0 40.0 22.0 18.4 86.0 48.0 29.6 73.5 18.1 80.5 84.5 64.0 19.8 60.9 61.7 44.0
M43-10 46.8 28.4 46.7 87.0 55.6 37.3 77.7 36.9 78.9 85.5 69.1 26.6 67.8 72.5 49.0
M43-30 49.0 36.2 47.5 86.6 61.7 40.3 79.3 37.3 81.6 85.8 71.1 30.1 68.5 73.2 49.7
M43-50 51.2 40.0 45.9 87.5 62.9 44.0 79.9 37.3 81.9 86.2 72.6 34.7 68.4 73.2 49.7
M43-100 - - 49.9 88.4 64.4 49.8 80.0 37.3 82.8 86.4 - 36.8 68.5 73.2 49.4
M43-200 - - 50.2 88.5 65.1 53.8 80.6 37.2 83.1 87.3 - 38.0 68.4 73.2 49.4

koi∗ kpv∗ krl∗ mdf∗ mr† myv∗ olo∗ pcm∗ sa∗ ta† te† tl wbp∗ yo yue∗

M28-0 48.2 38.5 64.7 49.7 71.5 48.3 44.1 32.5 44.3 65.2 75.5 72.9 53.3 54.5 55.1
M28-10 51.2 40.3 65.7 52.4 76.6 49.3 44.4 35.1 47.2 70.8 74.2 77.8 63.1 59.1 63.7
M28-30 54.1 42.2 68.6 53.1 75.8 51.2 44.4 37.2 48.1 72.9 77.1 80.2 71.6 61.9 66.9
M28-50 54.7 42.7 70.3 52.8 76.1 51.7 44.3 37.4 45.7 75.0 79.1 81.5 73.9 63.1 68.5
M28-100 - 45.7 68.4 53.5 77.9 52.6 44.2 39.4 48.1 75.0 78.5 81.6 - 64.0 70.6
M28-200 - 47.0 69.5 54.2 76.9 53.7 44.2 41.6 51.7 76.0 78.5 - - 66.2 72.3
M43-0 49.3 39.1 63.2 49.4 77.4 48.3 21.8 34.6 43.4 75.6 82.5 73.4 55.6 55.2 56.9
M43-10 52.9 40.3 66.0 51.0 78.7 48.8 43.5 37.2 47.1 75.5 81.7 79.6 66.0 59.6 63.2
M43-30 52.3 43.5 68.5 53.5 77.9 50.7 44.0 38.4 47.2 77.7 81.0 81.9 71.2 60.9 67.4
M43-50 55.2 43.5 69.4 53.3 80.3 51.4 44.0 38.8 47.6 77.1 82.9 82.0 76.1 63.3 69.2
M43-100 - 44.6 70.7 52.6 80.6 52.4 43.8 40.2 46.0 78.3 82.7 81.6 - 64.7 70.8
M43-200 - 45.7 70.8 54.7 81.6 54.0 44.0 42.0 50.0 78.7 83.6 - - 66.9 71.8

Table 8: The zero-shot and few-shot generalization performance on the classification of grammatical relations for
30 low-resource languages. Languages marked with “∗” are not included in the pretraining corpus. “†” indicates
that the language is involved in meta-training for M43. The UD dataset for some languages comprises less than 100
or 200 sentences, and the few-shot performance for these languages is left unspecified.



af† ar bg ca cs‡ da‡ de el en† es et eu fa fi fr
M28-0 78.3 85.7 90.8 89.1 87.7 86.5 89.2 88.1 84.3 89.6 83.9 82.6 88.8 85.1 91.9
M28-10 81.1 84.1 88.7 89.2 88.4 86.4 89.4 91.0 86.6 89.3 83.5 81.4 86.8 84.0 92.2
M28-30 82.4 85.1 90.8 90.1 89.2 87.3 89.9 91.8 88.1 91.0 84.3 82.3 87.6 85.3 92.7
M28-50 83.0 86.2 91.2 90.7 89.4 88.2 90.2 92.2 87.5 91.9 84.5 83.0 89.1 85.4 93.0
M28-100 85.2 86.4 92.0 91.2 89.7 88.3 90.0 92.5 88.8 92.1 84.6 83.9 89.6 86.2 93.3
M28-200 86.0 86.6 92.3 91.9 90.1 88.6 90.2 92.9 89.7 92.5 85.2 84.3 90.2 86.5 93.4
M43-0 85.1 84.0 89.6 88.1 87.6 86.8 88.1 92.3 86.1 88.8 81.9 80.7 81.8 83.5 91.6
M43-10 84.9 84.0 89.4 89.1 88.6 87.3 88.9 92.5 88.8 89.3 82.1 81.0 86.6 83.4 92.0
M43-30 87.0 84.2 90.8 90.0 89.1 87.3 89.9 93.4 89.5 91.7 83.0 81.9 87.5 84.3 92.5
M43-50 87.4 85.7 90.8 90.5 89.2 87.4 90.0 93.8 90.4 91.8 83.4 82.8 88.6 85.4 92.7
M43-100 87.8 85.8 91.6 91.1 89.7 87.9 90.1 94.2 91.3 92.0 84.3 83.2 89.2 85.6 93.2
M43-200 88.3 86.3 92.1 91.6 90.1 88.1 90.2 94.4 91.5 92.3 84.7 83.8 89.8 86.0 93.3

ga† he hi hu† hy† id† is it ja ko lt† lv nl no pl
M28-0 64.6 83.0 86.7 80.5 77.9 74.0 81.9 93.0 85.4 72.7 79.1 84.0 89.4 90.5 88.6
M28-10 67.8 81.2 84.6 83.0 78.4 77.2 77.8 92.5 84.3 66.8 80.6 83.1 89.1 89.7 87.8
M28-30 70.1 83.4 86.7 84.4 79.2 78.7 81.2 93.7 86.8 69.9 81.3 84.3 89.9 90.6 89.0
M28-50 70.8 84.6 87.1 85.4 80.1 79.7 82.3 93.8 87.4 71.5 80.8 84.4 89.8 90.7 89.3
M28-100 71.4 85.8 87.7 86.2 80.1 81.0 83.7 94.0 89.0 74.9 82.0 85.3 90.5 91.5 90.0
M28-200 72.5 86.0 88.3 86.8 80.8 81.9 84.5 94.3 89.7 76.1 82.3 85.6 91.0 91.6 90.6
M43-0 75.8 80.0 78.9 84.1 80.0 79.1 78.0 92.7 76.3 65.4 80.9 82.8 87.6 88.8 87.9
M43-10 75.5 81.2 84.1 86.5 80.5 81.7 77.5 93.1 81.0 64.8 81.7 82.9 88.8 88.7 87.4
M43-30 77.3 83.2 86.8 87.3 81.5 83.4 80.5 93.3 85.7 69.5 81.9 84.0 89.8 90.8 89.0
M43-50 78.0 84.0 87.4 87.4 81.6 84.5 81.3 93.6 87.3 72.4 83.4 84.2 89.9 90.9 88.6
M43-100 78.0 85.1 87.9 88.0 82.5 85.1 83.0 94.1 87.8 74.3 84.1 85.3 90.4 91.3 89.8
M43-200 79.0 85.7 88.3 88.3 83.0 85.6 83.9 94.5 88.6 75.1 84.4 85.6 91.0 91.5 90.4

pt ro ru sk sl‡ sr† sv tr uk ur† vi† zh
M28-0 89.1 88.8 91.2 90.7 87.5 88.4 91.0 78.4 88.6 75.3 59.5 81.4
M28-10 91.4 88.3 91.5 88.9 88.1 90.0 90.6 76.5 87.9 76.0 65.9 77.8
M28-30 93.0 89.2 92.2 91.0 89.4 90.1 91.3 77.9 88.3 77.5 68.4 81.6
M28-50 93.4 89.4 92.0 91.2 89.8 91.5 91.6 78.7 89.4 77.7 69.3 83.8
M28-100 93.7 90.4 92.1 92.4 90.5 91.8 91.9 80.0 89.9 80.0 70.7 85.2
M28-200 93.8 90.6 92.7 92.9 90.8 92.0 92.1 80.2 90.5 80.9 72.8 86.1
M43-0 87.6 87.6 90.4 90.4 87.1 90.7 89.7 75.0 87.6 73.0 68.6 76.2
M43-10 90.4 87.9 91.2 90.6 87.6 91.5 90.1 76.6 88.2 81.4 72.9 74.2
M43-30 92.3 89.2 92.0 91.2 89.9 92.2 90.9 77.1 89.5 82.6 75.4 81.7
M43-50 92.9 89.4 91.8 91.6 89.9 92.5 91.2 78.4 89.5 83.1 75.9 83.1
M43-100 93.4 89.9 92.5 93.0 90.0 93.1 91.8 78.9 90.2 83.4 77.4 84.5
M43-200 93.9 90.4 92.6 93.2 90.8 93.5 92.0 79.8 90.4 84.0 78.5 85.4

Table 9: The zero-shot and few-shot generalization performance on classifying grammatical relations for 42 other
languages. By default, these languages are used for meta-training. Languages marked with “†” is involved in
meta-training for M43 but not for M28. “‡” indicates that the language is excluded from meta-training for both
M28 and M43.



Language Abbr. Language Family UD Treebanks Train Test
Arabic ar Afro-Asiatic.Semitic PADT 6,075 680
Bulgarian‡ bg IE.Balto-Slavik BTB 8,907 1,116
Catalan‡ ca IE.Romance AnCora 13,123 1,846
German‡ de IE.Germanic GSD 13,814 977
English‡ en IE.Germanic EWT 12,543 2,077
Spanish‡ es IE.Romance GSD 14,187 426
Estonian et Uralic.Finnic EDT 24,632 3,214
Basque eu Basque BDT 5,396 1,799
Persian fa IE.Indo-Iranian PerDT 26,196 1,455
Finnish‡ fi Uralic.Finnic TDT 12,217 1,555
French‡ fr IE.Romance GSD 14,449 416
Hebrew he Afro-Asiatic.Semitic HTB 5,241 491
Hindi‡ hi IE.Indo-Iranian HDTB 13,304 1,684
Icelandic is IE.Germanic Modern 5,376 768
Italian‡ it IE.Romance ISDT 13,121 482
Japanese‡ ja Japonic GSD 7,050 543
Korean ko Koreanic Kaist 23,010 2,287
Latvian lv IE.Balto-Slavic LVTB 12,521 2,325
Dutch‡ nl IE.Germanic Alpino 12,289 596
Norwegian no IE.Germanic Nynorsk 14,174 1,511
Polish‡ pl IE.Balto-Slavic PDB 17,722 2,215
Portuguese‡ pt IE.Romance GSD 9,615 1,200
Romanian‡ ro IE.Romance RRT 8,043 729
Russian‡ ru IE.Balto-Slavic GSD 3,850 601
Slovak sk IE.Balto-Slavic SNK 8,483 1,061
Swedish‡ sv IE.Germanic Talbanken 4,303 1,219
Turkish‡ tr Turkic.Oghuz BOUN 7,803 979
Ukrainian‡ uk IE.Balto-Slavik IU 5,496 892
Chinese (Mandarin)‡ zh Sino-Tibetan.Sinitic GSDSimp 3,997 500

Table 10: Languages and UD Treebanks involved in the meta-training of M28, which are typically high-resource
languages. English is employed as the source language. Languages marked with “‡” are included in the experiments
of in-context learning. The phylogenetic information is obtained from Glottolog (Hammarström et al., 2022). IE
stands for the Indo-European family.



Language Abbr. Language Family UD Treebank Train Test
Afrikaans† af IE.Germanic AfriBooms 1,315 425
Assyrian∗ aii Afro-Asiatic.Semitic AS 0 57
Akkadian∗ akk Afro-Asiatic.Semitic PISANDUB 0 101
Amharic∗ am Afro-Asiatic.Semitic ATT 0 1,074
Belarusian be IE.Balto-Slavic HSE 22,853 1,077
Bhojpuri∗ bho IE.Indo-Iranian BHTB 0 357
Bambara∗ bm Mande.Western Mande CRB 0 1,026
Breton∗ br IE.Celtic KEB 0 888
Buryat∗ bxr Mongolic-Khitan.Mongolic BDT 19 908
Czech cs IE.Balto-Slavic PDT 68,495 10,148
Welsh† cy IE.Celtic CCG 976 953
Danish‡ da IE.Germanic DDT 4,383 565
Greek† el IE.Greek GDT 1,662 456
Faroese∗ fo IE.Germanic OFT 0 1,208
Irish† ga IE.Celtic IDT 4,005 454
Swiss German∗ gsw IE.Germanic UZH 0 100
Mbya Guarani∗ gun Tupian.Maweti-Guarani Thomas + Dooley 0 98 + 1,046
Croatian‡ hr IE.Balto-Slavik SET 6,914 1,136
Upper Sorbian∗ hsb IE.Balto-Slavik UFAL 23 623
Hungarian†‡ hu Uralic.Hungarian Szeged 910 449
Armenian† hy IE.Armenic ArmTDP 1,974 277
Indonesian† id Austronesian.Malayo-Polynesian GSD 4,482 557
Kazakh kk Turkic.Kipchak KTB 31 1,047
Kurmanji∗ kmr IE.Indo-Iranian MG 20 734
Komi-Permyak∗ koi Uralic.Permian UH 0 100
Komi-Zyrian∗ kpv Uralic.Permian Lattice 0 663
Karelian∗ krl Uralic.Finnic KKPP 0 228
Lithuanian† lt IE.Balto-Slavik ALKSNIS 2,341 684
Moksha∗ mdf Uralic.Mordvin JR 0 342
Marathi† mr IE.Balto-Slavik UFAL 373 47
Erzya∗ myv Uralic.Mordvin JR 0 1714
Livvi∗ olo Uralic.Finnic KKPP 19 106
Naija∗ pcm IE.Germanic NSC 7,278 972
Sanskrit∗ sa IE.Indo-Iranian UFAL 0 230
Slovenian‡ sl IE.Balto-Slavik SSJ 10,903 1,282
Serbian†‡ sr IE.Balto-Slavik SET 3,328 520
Tamil† ta Dravidian.South TTB 400 120
Telugu† te Dravidian.South MTG 1,051 146
Tagalog tl Austronesian.Malayo-Polynesian TRG 0 128
Urdu† ur IE.Indo-Iranian UDTB 4,043 535
Vietnamese† vi Austroasiatic.Vietic VTB 1,400 800
Warlpiri∗ wbp Pama-Nyungan.Desert Nyungic UFAL 0 55
Yoruba∗ yo Atlantic-Congo.Volta-Congo YTB 0 318
Cantonese∗ yue Sino-Tibetan.Sinitic HK 0 1,004

Table 11: The remaining languages and their UD treebanks that are employed in our experiments. Languages
marked with “†” are involved in the meta-training of M43. “∗” indicates that the language is not included in the
pretraining corpus of mBERT. “‡” shows that the language is included in the experiments of in-context learning. The
phylogenetic information is obtained from Glottolog (Hammarström et al., 2022). IE stands for the Indo-European
family.


