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Abstract

By ensuring differential privacy in the learning algorithms, one can rigorously mitigate
the risk of large models memorizing sensitive training data. In this paper, we study two
algorithms for this purpose, i.e., DP-SGD and DP-NSGD, which first clip or normalize
per-sample gradients to bound the sensitivity and then add noise to obfuscate the exact
information. We analyze the convergence behavior of these two algorithms in the non-
convex empirical risk minimization setting with two common assumptions and achieve a
rate O

(
4
√

d log(1/δ)
N2ϵ2

)
of the gradient norm for a d-dimensional model, N samples and (ϵ, δ)-

DP, which improves over previous bounds under much weaker assumptions. Specifically, we
introduce a regularizing factor in DP-NSGD and show that it is crucial in the convergence
proof and subtly controls the bias and noise trade-off. Our proof deliberately handles the
per-sample gradient clipping and normalization that are specified for the private setting.
Empirically, we demonstrate that these two algorithms achieve similar best accuracy while
DP-NSGD is comparatively easier to tune than DP-SGD.

1 Introduction

Modern applications of machine learning strongly rely on training models with sensitive datasets, including
medical records, real-life locations, browsing histories and so on. These successful applications raise an
unavoidable risk of privacy leakage, especially when large models are shown to be able to memorize training
data (Carlini et al., 2020). Differential Privacy (DP) is a powerful and flexible framework (Dwork et al.,
2006b) to quantify the influence of each individual and reduce the privacy risk. Specifically, we study the
machine learning problem in the formalism of minimizing empirical risk privately:

min
x∈Rd

f(x) ≜ Eξ[ℓ(x, ξ)] = 1
N

N∑
i=1

ℓ(x, ξi), (1)

where the objective f(x) is an empirical average of losses evaluated at each data point ξ and ξ is sampled
uniformly from the given dataset {ξi, 1 ≤ i ≤ N}①.

In order to provably achieve the privacy guarantee, one popular algorithm is differentially private stochastic
gradient descent or DP-SGD for abbreviation, which clips per-sample gradients with a preset threshold and
perturbs the gradients with Gaussian noise at each iteration. Formally, given a set of gradients {g(i), i ∈ S ⊂
[N ]} where S can be thought of as a set of indices of gradients in a mini-batch and g(i) = ∇xℓ(x, ξi) is the
gradient computed with some data point i, a threshold c > 0, a learning rate η > 0 and a noise multiplier σ,
the updating rule of DP-SGD goes from x to the following

x+ = x − η

(
1

|S|
∑
i∈S

h̄(i)g(i) + z̄

)
, (2)

①Our method later uses uniform sub-sampling without replacement to construct mini-batches. Thus, the second equality in
1 is exact.
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where z̄ ∼ N (0, c2σ2Id) is an isotropic Gaussian noise and h̄(i) = min{1, c/∥g(i)∥} is the per-sample clipping
factor. Intuitively speaking, the per-sample clipping procedure controls the influence of one individual. DP-
SGD (Abadi et al., 2016) has made a benchmark impact in deep learning with differential privacy, which is
also referred to as the gradient perturbation approach. Despite being applied into many fields (Hassan et al.,
2019; Ji et al., 2014), it has also been extensively studied from many aspects, e.g., convergence (Bassily
et al., 2014; Yu et al., 2020), privacy analysis (Abadi et al., 2016), adaptive clipping threshold (Asi et al.,
2021; Andrew et al., 2019; Pichapati et al., 2019), hyperparameter choices (Li et al., 2021; Papernot et al.,
2020a; Papernot & Steinke, 2021; Mohapatra et al., 2021) and so forth (Bu et al., 2020; 2021; Papernot
et al., 2020b).

Another natural option to achieve differential privacy is normalized gradient with perturbation, which we
coin “DP-NSGD”. It normalizes per-sample gradients to control individual contribution and then adds noise
accordingly. The update formula is the same as (2) except replacing h̄(i) with a per-sample normalization
factor

h(i) = 1
r + ∥g(i)∥

, (3)

and replacing z̄ with z ∈ N (0, σ2Id) since each sample’s influence is normalized to be 1. In (3), we introduce
a regularizer r > 0, which not only addresses the issue of ill-conditioned division but also controls the bias and
noise trade-off as we will see in the analysis. A concurrent work of ours Bu et al. (2023) also proposed exactly
the same method, but their theoretical results are based on different assumptions, while the experimental
findings are mutually supportive.

An intuitive thought that favor DP-NSGD is that the clipping threshold is hard to choose due to the changing
statistics of the gradients over the training trajectory (Andrew et al., 2019; Pichapati et al., 2019). In more
details, the injected Gaussian noise ηz̄ in (2) is proportional to the clipping threshold c and this noise
component would dominate over the gradient component

∑
h̄(i)g(i)/|S|, when the gradients ∥g(i)∥ ≪ c are

getting small as optimization algorithm iterates, thus hindering the overall convergence. DP-NSGD aims to
alleviate this problem by replacing h̄(i) in (2) with a per-sample gradient normalization factor h(i) in (3),
thus enhancing the signal component g(i) when it is small.

It is obvious that both clipping and normalization introduce bias② that might prevent the optimizers from
converging (Chen et al., 2020; Zhao et al., 2021). Most of previous works on the convergence of DP-SGD
(Bassily et al., 2014; Asi et al., 2021; Yu et al., 2020) neglect the effect of such biases by assuming a global
gradient upper bound of the problem, which does not exist for the cases of deep neural network models.
Chen et al. (2020) have made a first attempt to understand gradient clipping, but their results strongly rely
on a symmetric assumption which is not that realistic.

In this paper, we consider both the effect of per-sample normalization/clipping and the injected Gaus-
sian perturbation in the convergence analysis. If properly setting the hyperparameters, we achieve an
O
(

4
√

d log(1/δ)
N2ϵ2

)
convergence rate of the gradient norm for the general non-convex objective with a d-

dimensional model, N samples and (ϵ, δ)-DP, under only two weak assumptions (L0, L1)-generalized smooth-
ness (Zhang et al., 2020b) and (τ0, τ1)-bounded gradient variance. These assumptions are very mild as they
allow the smoothness coefficient and the gradient variance growing with the norm of gradient, which is widely
observed in the setting of deep learning.

Our contributions are summarized as follows.

• For the differentially private empirical risk minimization, we establish the convergence rate of the
DP-NSGD and the DP-SGD algorithms for general non-convex objectives with (L0, L1)-smoothness
condition and (τ0, τ1)-bounded gradient variance, and explicitly characterizes the bias of the per-
sample clipping or normalization. In particular, our utility bounds match the best convergence rates
that are available, even under weakened conditions.

②Here bias means that the expected descent direction differs from the true gradient ∇f .
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Table 1: Expected gradient norm bounds (the smaller, the better) for non-convex empirical risk minimization with/without (ϵ, δ)-DP
guarantee. All the algorithms assume certain bound on gradient noises, which may be different from one another. Notations: N, T and
d are the number of samples, iterations and parameters, respectively. All bounds should be read as O(·) and log 1

δ is omitted.

Algorithm Smoothness Condition on gradient
estimate g

Bias handled
in analysis⋄ Gradient norm bound

SGD
Ghadimi & Lan (2013) L E∥g − ∇f∥2 ≤ V N/A O

(
1√
T

+
√

V
4√

T

)
Clipped SGD
Zhang et al. (2020b) (L0, L1) E∥g − ∇f∥2 ≤ V

√
O
(

V 2
√

T
+ V 3/2

4√
T

)
DP-NormFedAvg
Das et al. (2021) L quasar-Convex

√
O
(

DX
√

d

Nϵ + Ei∥x∗
i − x∗∥

)†

DP-GD
Wang et al. (2019a) L ∥g∥ ≤ τ a.s. × O

(
4
√

d
N2ϵ2

)
DP-SRM
Wang et al. (2023) L ∥g∥ ≤ τ a.s. × O

(
4
√

d
N2ϵ2

)
DP-GD/RMSprop/Adam
Zhou et al. (2020) L ∥g∥ ≤ τ a.s. × O

(
4
√

d
N2ϵ2

)
DP-(N)SGD
Bu et al. (2023) (concurrent) L

E∥g − ∇f∥2 ≤ V
g centrally symmetric around its mean

√
O
(

4
√

d
N2ϵ2

)
DP-(N)SGD (Ours) (L0, L1) ∥g − ∇f∥ ≤ τ0 + τ1∥∇f∥ a.s.

√
O
(

4
√

d
N2ϵ2

)‡

† More remarks on this line are packed in Appendix A.
‡ To be preciser, Corollary 3.5 suggests DP-SGD achieving exactly this rate, but Corollary 3.3 also adds another non-vanishing term for

DP-NSGD.
⋄ When analyzing the utility theoretically, most previous works in the literature of differentially private optimization do not address the

influence of gradient clipping/regularization. Accordingly, they usually assume a much stronger condition that ∥g∥ ≤ τ a.s.

• For the DP-NSGD algorithm, we introduce a regularizing factor which turns out to be crucial in the
convergence analysis and induces interesting trade-off between the bias due to normalization and
the decaying rate of the upper bound.

• We identify one key difference in the proofs of DP-NSGD and DP-SGD. As the gradient norm
approaches zero, DP-NSGD cannot guarantee the function value to drop along the expected descent
direction, and introduce a non-vanishing term that depends on the regularizer and the gradient
variance.

• We evaluate the empirical performance of DP-NSGD and DP-SGD respectively on deep models with
(ϵ, δ)-DP and show that they both can achieve comparable accuracy but the former is easier to tune
than the later.

The paper is organized as follows. After introducing the problem setup in Section 2, we present the algorithms
and theorems in Section 3 and show numerical experiments on vision and language tasks in Section 4. We
make concluding remarks in Section 5.

2 Problem Setup

2.1 Notations

Denote the private dataset as D = {ξi, 1 ≤ i ≤ N}. The loss ℓ(x, ξi) is defined for every model parameter
x ∈ Rd and data record ξi. In the sequel, ∥x∥ is denoted as the ℓ2 norm of a vector x ∈ Rd, without other
specifications. From time to time, we interchangeably use ∇xℓ(x, ξi) and g(i) to denote the gradient of ℓ(·, ·)
w.r.t. x evaluated at (x, ξi). We are given an oracle to draw a mini-batch B of data for each iteration. Our
target is to minimize the empirical average loss (1) satisfying (ϵ, δ)-differential privacy .
Definition 2.1 ((ϵ, δ)-DP, (Dwork et al., 2006a)). A randomized mechanism M guarantees (ϵ, δ)-
differentially privacy if for any two neighboring input datasets D ∼ D′ (D′ differ from D by substituting
one record of data) and for any subset of output S it holds that Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ.
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Besides, we also define the following notations to illustrate the bound we derived. We write f(·) = O(g(·)),
f(·) = Ω(g(·)) to denote f(·)/g(·) is upper or lower bounded by a positive constant. We also write f(·) =
Θ(g(·)) to denote that f(·) = O(g(·)) and f(·) = Ω(g(·)). Throughout this paper, we use E to represent
taking expectation over the randomness of optimization procedures: drawing noisy gradients estimates g
and adding extra Gaussian perturbation z. In the meantime, Ek takes conditional expectation given xk, the
k-th iterate of our optimization algorithm.

In the settings of non-convex loss functions f(x) in x, we measure the utility of some algorithm via bounding
the expected minimum gradient norm E [min0≤k<T ∥∇f(xk)∥]. If we want to measure utility via bounding
function values, an extra convex condition or its weakened versions are essential. See Section 2.3 for more
discussion on the last point.

2.2 Assumptions on Smoothness and Variance

Definition 2.2. We say that a continuously differentiable function f(x) is (L0, L1)-generalized smooth, if
for all x, y ∈ Rd, we have ∥∇f(x) − ∇f(y)∥ ≤ (L0 + L1∥∇f(x)∥)∥x − y∥.

Firstly appearing in Zhang et al. (2020b), a similar condition is derived via empirical observations that
the operator norm ∥∇2f(x)∥ of the Hessian matrix increases with the gradient norm ∥∇f(x)∥ in training
language models. If we set L1 = 0, then Definition 2.2 turns into the usually assumed L-smoothness. Our
first assumption below comprises of this relaxed notion of smoothness, Definition 2.2, and that f(x) is lower
bounded.
Assumption 2.1. We assume that f(x) is (L0, L1)-generalized smooth, as defined in Definition 2.2. We
also set the function value to be lower bounded, f∗ = infx∈Rd f(x). For notational convenience, write
Df ≜ f(x0) − f∗ < ∞ as the gap in function value between the initialization x0 and the lower bound.

Many optimization studies necessitate the initialization point x0, to be sufficiently close to the optimal point
x∗, in terms of Euclidean distance; that is, they require an upper bound on DX ≜ ∥x0 − x∗∥. However, this
assumption may obscure some dependence on the dimension, as DX tends to scale with the dimension of
the model. In our context, such assumptions are not necessary.

Moreover, to handle the stochasticity in gradient estimates, we employ the following almost sure upper bound
on the gradient variance as another assumption.
Assumption 2.2. For all x ∈ Rd, E[∇xℓ(x, ξ)] = ∇f(x). Furthermore, there exists τ0 > 0 and 0 ≤ τ1 < 1,
such that it holds ∥∇xℓ(x, ξ)−∇f(x)∥ ≤ τ0+τ1∥∇f(x)∥ almost surely for ξ drawn from the data distribution.

Since we are focusing on the problem of empirical risk minimization, Assumption 2.2 turns out to be a
condition onto the dataset D = {ξi, 1 ≤ i ≤ N} that there exist constants (τ0, τ1) uniform in x such that
∥∇xℓ(x, ξi) − ∇f(x)∥ ≤ τ0 + τ1∥∇f(x)∥ for all 1 ≤ i ≤ N . We note that similar almost-surely bounds on
the gradient noises have been assumed in Wang et al. (2019a; 2023); Zhou et al. (2020). In comparison,
Assumption 2.2 is a weakened version: it allows the deviation ∥∇xℓ(x, ξ) − ∇f(x)∥ grows with respect to
the gradient norm ∥∇f(x)∥, which matches practical observation more closely. This almost-surely type
of assumption seems unavoidable for analyzing DP optimization algorithms otherwise the sensitivity of an
individual is out of control. One alternative option in literature is adding light-tailed conditions on the
distribution of ∇xℓ(x, ξ) (Fang et al., 2022).

Outside the context of empirical risk minimization, we can also find meaningful examples for which Assump-
tion 2.2 holds and is more reasonable to the concrete setting.
Example 2.3. We provide a natural setting in which our Assumption 2.2 provably holds. Consider a linear
model v = wT x∗ + u and MSE loss ℓ(x, v, w) = 1

2 |v − wT x|2, where v ∈ R is the response and w ∈ Rd

comprises of predictors. Here u denotes mean-zero uncorrelated noise E[uw] = 0,E[u] = 0. By normalizing,
we assume |v| ≤ Cv and ∥w∥ ≤ Cw are both bounded, and E[wwT ] has positive minimum eigenvalue
λmin > 0.

In this setup, we find
∇xℓ(x, v, w) = (wT x − v)w = wwT (x − x∗) − uw
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and ∇L(x) = Ev,w∇xℓ(x, v, w) = E[wwT ](x − x∗). Consequently, we will have

∥∇xℓ(x, v, w)∥ ≤ Cw(Cw∥x∗∥ + Cv) + C2
w∥x − x∗∥ ≤ τ0 + τ1∥∇L(x)∥

almost surely for v, w, where τ0 = Cw(Cw∥x∗∥ + Cv) and τ1 = C2
w/λmin.

2.3 Related Works

Apart from the literature mentioned in Section 1, there are a large body of works related to our study. We
briefly review part of them as follows.

Private Deep Learning: Many papers have made attempts to theoretically analyze gradient perturbation
approaches in various settings, including (strongly) convex (Chaudhuri & Monteleoni, 2009; Wang et al.,
2017; Kuru et al., 2020; Yu et al., 2020; Asi et al., 2021; Kamath et al., 2022; Wang et al., 2022) or non-
convex (Wang et al., 2019a; 2022; Zhou et al., 2020; Wang et al., 2023) objectives. However, these papers
did not take gradient clipping into consideration, and simply treat DP-SGD as SGD with extra Gaussian
noise. Chen et al. (2020) made a first attempt to understand gradient clipping, but their results strongly
rely on a symmetric assumption which is considered as unrealistic, which is used in a concurrent work (Bu
et al., 2023) of ours to establish the convergence of DP-NSGD.

As for algorithms involving normalizing, Das et al. (2021) studied DP-NormFedAvg, a client-level DP opti-
mizer. More detailed remarks are packed up in Appendix A.

These mentioned results are hard to compare due to the differences of the settings, assumptions and algo-
rithms. We present a part of them in Table 1. Full discussions and comparisons are packed up in Appendix A.

Non-Convex Stochastic Optimization: Ghadimi & Lan (2013) established the convergence of random-
ized SGD for non-convex optimization. The objective is assumed to be L-smooth and the randomness on
gradients is assumed to be light-tailed with factor V . We note that the rate O(V/ 4

√
T ) has been shown to

be optimal in the worst-case under the same condition (Arjevani et al., 2019).

Outside the privacy community, understanding gradient normalization and clipping is also crucial in analyz-
ing adaptive stochastic optimization methods, including AdaGrad (Duchi et al., 2011), RMSProp (Hinton
et al., 2012), Adam (Kingma & Ba, 2014) and normalized SGD (Cutkosky & Mehta, 2020). However,
with the average of a mini-batch of gradient estimates being clipped, this batch gradient clipping differs
greatly from the per-sample gradient clipping in the private context. Zhang et al. (2020b) and Zhang et al.
(2020a) showed the superiority of batch gradient clipping with and without momentum respectively under
(L0, L1)-smoothness condition for non-convex optimization. Due to a strong connection between clipping
and normalization, we also assume this relaxed condition in our analysis. We further explore this condition
for some specific cases in great details. Zhang et al. (2020c) studied SGD with gradient clipping under
heavy-tailed condition for gradient estimation. Cutkosky & Mehta (2021) found that a fine integration of
clipping, normalization and momentum, can overcome heavy-tailed gradient variances via a high-probability
bound. Jin et al. (2021) discovered that normalized SGD with momentum is also distributionally robust.
Significant advancements have been made in understanding convergence rates for non-convex objectives from
the perspective of differentially private Riemannian optimization, as highlighted by Han et al. (2022); Utpala
et al. (2022a;b) in their improved differentially private frameworks. Notably, many problems are, in fact,
geodesically convex, and these frameworks offer utility bounds on the expected empirical excess risk.

3 Normalized/Clipped Stochastic Gradient Descent with Perturbation

In this section, we first present the algorithms DP-NSGD and DP-SGD, and their privacy guarantees. Then
we establish their convergences, respectively, with proof sketches. In the end, we analyze the biases of these
algorithms and verify them with experiments.

3.1 Algorithms and Their Privacy Guarantees

5



Under review as submission to TMLR

Algorithm 1 Differentially Private Normalized Stochastic Gradient Descent, DP-NSGD
1: Input: initial point x0; number of epochs T ; default learning rates ηk; mini batch size B; noise multiplier

σ; regularizer r.
2: for k = 0 to T − 1 do
3: Draw a mini-batch Sk of size B and compute individual gradients gi

k at point xk where i ∈ Sk.
4: For i ∈ Sk, compute per-sample normalizing factor

h
(i)
k = 1

r + ∥g
(i)
k ∥

.

5: Draw zk ∼ N (0, σ2Id) and update the parameters by

xk+1 = xk − ηk

(
1
B

∑
i∈Sk

h
(i)
k g

(i)
k + zk

)
.

6: end for

Since no literature formally displays DP-NSGD in a centralized setting, we present it in Algorithm 1. Com-
pared to the usual SGD update, DP-NSGD contains two more steps: per-sample gradient normalization, i.e.,
multiplying g

(i)
k with h

(i)
k , and noise injection, i.e., adding zk. The normalization well controls each sample’s

contribution to the update and the noise obfuscates the exact information.

The well-known DP-SGD (Abadi et al., 2016) replaces the normalization with clipping, i.e., replacing h
(i)
k

with h̄
(i)
k = min {1, c/∥gk∥} and replacing zk with z̄k ∼ N (0, c2σ2Id) in Algorithm 1. DP-SGD introduces a

new hyper-parameter, the clipping threshold c.

To facilitate the common practice in private deep learning, we adopt uniform sub-sampling without replace-
ment for both theory and experiments, instead of Poisson sub-sampling originally adopted in DP-SGD
(Abadi et al., 2016). Due to this difference, the following lemma shares the same expression as Theorem 1 in
Abadi et al. (2016), but requires a new proof. Deferred in Appendix E, this simple proof combines amplified
privacy accountant by sub-sampling in Bun et al. (2018) with the tight composition theorem for Renyi DP
(Mironov et al., 2019).
Lemma 3.1 (Privacy Guarantee). Provided that B < 0.1N , there exists absolute constants c1, c2 > 0 so
that DP-SGD and DP-NSGD are (ϵ, δ)-differentially private for any ϵ < c1B2T/N2 and δ > 0 if we choose
σ ≥ c2

√
T log(1/δ)

Nϵ .

3.2 Convergence Guarantee of DP-NSGD

For the DP-NSGD (Algorithm 1), we have the following convergence result.
Theorem 3.2. Suppose that the objective f(x) satisfies Assumption 2.1 and 2.2. Given any noise multiplier
σ and a regularizer r > τ0, we run DP-NSGD (Algorithm 1) using constant learning rate

η =
√

2
(L1(r + τ0) + L0)Tdσ2 , (4)

with sufficiently many iterations T (larger than some constant determined by (σ2, d, L, τ, r), as specified in
Lemma C.2). We can obtain the following upper bound on gradient norm

E
[

min
0≤k<T

∥∇f(xk)∥
]

≤ C

(
4

√
(Df + 1)2r3dσ2

T
+ 4

√
1

Tr3dσ2

)
+ 8(r + 2τ0)τ2

0
r(r + τ0)(1 − τ1)3 , (5)

where C is a constant depending on the gradient variance coefficients (τ0, τ1) and the objective smoothness
coefficients (L0, L1).

6



Under review as submission to TMLR

Theorem 3.2 is a general convergence for normalized SGD with perturbation. To achieve (ϵ, δ)-differential
privacy, we can choose proper noise multiplier σ and iterations T .

Corollary 3.3. Under the same conditions of Theorem 3.2, we use σ = c2

√
T log 1

δ /(Nϵ) with c2 from
Lemma 3.1 and set T ≥ O(N2ϵ2/(r3d log 1

δ )). If we have sufficiently many samples (larger than some
constant determined by (ϵ, δ, d, L, τ, r, B), as specified in Lemma C.3), there holds the following privacy-
utility trade-off

E
[

min
0≤k<T

∥∇f(xk)∥
]

≤ C ′ 4

√
dr3 log(1/δ)

N2ϵ2 + 8(r + 2τ0)τ2
0

r(r + τ0)(1 − τ1)3 , (6)

where C ′ is a constant depending on the gradient variance coefficients (τ0, τ1), the objective smoothness
coefficients (L0, L1), the function value gap Df and the batch size B.

There are two major obstacles to prove this theorem. One is to handle the normalized gradients, which is
solved by carefully using r and dividing the range of ∥∇f(xk)∥ into two cases. The other is to handle the
Gaussian perturbation z, whose variance σ2 could even grow linearly with T . This is solved by setting the
learning rate η proportionally to 1/σ in (4). Combining two steps together, we reach the privacy-utility
trade-off in Corollary 3.3.

Compared to the usual notion of L-smoothness, the (L0, L1)-smooth condition not only relaxes the allowed
function class, but also offers a “tighter” upper bound. This is due to that for a concrete objective function,
adopting (L0, L1)-smoothness might fit its landscape better so that L0, L1 are both much smaller than the
L corresponding to a classical condition (which is the global Lipschitz constant on ∇f). See Zhang et al.
(2020b) for more discussion on this condition.

Proof Sketch of Theorem 3.2. We firstly establish a descent inequality as in Lemma B.2 via exploiting the
(L0, L1)-generalized smooth condition in Assumption 2.1,

Ek [f(xk+1)] − f(xk) ≤ − ηEk [⟨hk∇f(xk), gk⟩]︸ ︷︷ ︸
A

+ L0 + L1∥∇f(xk)∥
2 η2

(
dσ2 + Ek ∥hkgk∥2

)
︸ ︷︷ ︸

B

.

In the above expression, we use Ek to denote taking expectation of {g
(i)
k , i ∈ Sk} and zk conditioned on the

past, especially xk. Next, in Lemma C.1, we upper bound the second order term B by a constant O(η2)
plus a term like ηEk

[
hk∥∇f(xk)∥2], which is compatible to A. In order to find simplified lower bound for

A, we separate the time index {0, 1, · · · , T − 1} into two cases U :=
{

0 ≤ k < T : ∥∇f(xk)∥ ≥ τ0
1−τ1

}
and

Uc. Specifically, in Lemma B.3, we find that for k ∈ U , the first order term A is Ω(η∥∇f(xk)∥) (see (17)
in Appendix B); for k /∈ U , the first order term A is Ω(η(∥∇f(xk)∥2/r − τ3

0 /r2)) (see (18) in Appendix B).
Then our result follows from summing up descent inequalities and scaling η deliberately.

There is rich literature investigating the convergence properties of normalized gradient methods in the non-
private non-convex optimization setting. These results heavily rely on the following inequality to control the
amount of descent

−
〈

∇f(xk), gk

∥gk∥

〉
≤ −∥∇f(xk)∥ + 2∥gk − ∇f(xk)∥. (7)

Based on this inequality, one unavoidably needs to control the error term ∥gk − ∇f(xk)∥ well to have the
overall convergence. In practice, You et al. (2019) used large batch size B ∼ O(T ) to reduce the variance.
However, this trick cannot be applied in the private setting due to per-sample gradient processing, e.g.,
clipping or normalization. Cutkosky & Mehta (2020) and Jin et al. (2021) use momentum techniques with a
properly scaled weight decay and obtain a convergence rate E∥∇f(xT )∥ = O(1/ 4

√
T ), which is comparable

with the usual SGD in the non-convex setup (Ghadimi & Lan, 2013). However, momentum techniques do not
apply well in the private setting either, because we only have access to previous descent directions with noise
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due to the composite differential privacy requirement. As far as we know, there is no successful application
of momentum in the private community, either practically or theoretically. Our analysis is able to deal with
this issue, mainly because clipping / normalization is applied in a per-sample manner.

In this paper, we view the regularizer r as a tunable hyperparameter, and make our upper bound decay
as fast as possible O(1/ 4

√
T ) by tuning r. However, due to the restrictions imposed by privacy protection,

we are unable to properly exploit large batch size or momentum to reduce variance as in previous works,
thus leaving a strictly positive term O(τ2

0 /r) in the right hand side of Theorem 3.2 and Corollary 3.3.
Another observation is that r trades off between the non-vanishing bound O(τ2

0 /r) and the decaying term
O
(

4
√

dr3 log 1
δ /(N2ϵ2)

)
.

3.3 Convergence Guarantee of DP-SGD

We now turn our attention to DP-SGD with per-sample gradient clipping, whose convergence is given by
the following theorem.
Theorem 3.4. Suppose that the objective f(x) satisfies Assumption 2.1 and 2.2. Given any noise multiplier
σ > 0 and any clipping threshold c > 2τ0/(1 − τ1), we run DP-SGD using constant learning rate

η =
√

2
(L1(c + τ0) + L0)Tdc2σ2 , (8)

with sufficiently many iterations T (larger than some constant determined by (σ2, d, L, τ, c) respectively,
specified in Lemma D.2). We can obtain the following upper bound on gradient norms

E
[

min
0≤k<T

∥∇f(xk)∥
]

≤ C

(
4

√
(Df + 1)2c3dσ2

T
+ 4

√
1

Tc2(c + τ0)dσ2

)
, (9)

where we employ a constant C only depending on the gradient variance coefficients (τ0, τ1) and the objective
smoothness coefficients (L0, L1).

Combining Theorem 3.4 and Lemma 3.1, we have a characterization for the privacy-utility trade-off of
(ϵ, δ)-DP.
Corollary 3.5. Under the same conditions of Theorem 3.4, we use σ = c2

√
T log(1/δ)/(Nϵ) with c2 from

Lemma 3.1 and set T ≥ O(N2ϵ2/(c3d log 1
δ )). If we have sufficiently many samples (larger than some

constant determined by (ϵ, δ, d, L, τ, c, B), as specified in Lemma D.3), there holds the following privacy-
utility trade-off

E
[

min
0≤k<T

∥∇f(xk)∥
]

≤ C ′ 4

√
dc3 log(1/δ)

N2ϵ2 , (10)

where C ′ is a constant depending on the gradient variance coefficients (τ0, τ1), the objective smoothness
coefficients (L0, L1), the function value gap Df and the batch size B.

Note that this corollary only holds under the condition that c > 2τ0/(1 − τ1), so it does not imply that we
should try taking the clipping threshold c as small as possible. Under our current conditions, it is generally
hard to find an optimal c in theory. In practice, people should not take c too small, otherwise it will incur an
additional bias term. Intuitively, if c is extremely small, almost every individual gradient would be clipped,
then the algorithm behaves similarly to its normalized version with r = 0.

By comparing Corollary 3.5 and Corollary 3.3, the most significant distinction of DP-SGD from DP-NSGD
is that clipping does not induce a non-vanishing term O(τ2

0 /r) as what we obtained in Corollary 3.3. This
distinction is because A := ηE [⟨∇f, hg⟩] and Ā := ηE

[
⟨∇f, h̄g⟩

]
behave quite differently in some cases (see

details in Lemmas B.3 & B.5 of Appendix B).

Specifically, when ∥∇f∥ is larger than τ0/(1 − τ1), we know ⟨∇f, g⟩ ≥ 0. Therefore, the following ordering

c

c + ∥g∥
≤ min

{
1,

c

∥g∥

}
≤ 2c

c + ∥g∥
(11)

8



Under review as submission to TMLR

guarantees A and Ā to be equivalent to Ω(η∥∇f∥). Here (11) can be obtained by considering two cases
c > ∥g∥ and c ≤ ∥g∥ separately. When the gradient norm ∥∇f∥ is small, the inner-product ⟨∇f, g⟩ could
be of any sign, and we can only have A = Ω

(
η
(
∥∇f∥2/r − τ3

0 /r2)) and Ā = Ω
(
η
(
∥∇f∥2)) instead. As

A controls the amount of descent within one iteration for DP-NSGD, the non-vanishing term appears. We
here provide a toy example of the distribution of g to further illustrate the different behaviors of A and Ā.
Example 3.1. Consider a simple distribution on e ≜ g − ∇f :

P
(

e = τ0∇f

∥∇f∥

)
= 1

3 , P
(

e = − τ0∇f

2∥∇f∥

)
= 2

3 .

This distribution certainly satisfies Assumption 2.2 with τ1 = 0. We calculate the explicit formula of A for
this case,

A = η(∥∇f∥3 + (3r + τ0/2)∥∇f∥2 − τ2
0 ∥∇f∥/2)

3(r + τ0 + ∥∇f∥)(r + τ0/2 − ∥∇f∥) .

For ∥∇f(xk)∥ ≤ τ2
0 /(10r), we have A < 0. The function value may not decrease along E[hg] in this case and

the learning curves are expected to fluctuate adversely. This example also supports that the lower bound
Ω
(
η
(
∥∇f∥2/r − τ3

0 /r2)) on A is optimal. In contrast, for the clipping operation, as long as ∥∇f∥ ≤ c − τ0,
we have h̄ ≡ 1 and therefore Ā = η∥∇f∥2.

As pointed out in the Example 3.1, the training trajectories of DP-NSGD fluctuate more adversely than
DP-SGD, since A can be of any sign while Ā stays positive. This difference is also observed empirically (see
Figure 1) that the training loss of normalized SGD with r = 0.01 (close to normalization) fluctuates more
than that of the clipped SGD with c = 1③.

Comparison to a concurrent work. In the meantime of submitting our research to ArXiv, another group
of researchers Bu et al. (2023) also achieved the same order of convergence rates but under markedly different
assumptions. As displayed in Table 1, they use a stronger and more conventional notion of L-smoothness
for the objective function. On the other hand, the assumptions on the gradient noise cannot be compared
directly between theirs and ours. Our Assumption 2.2 is “stricter" than theirs in the sense that g − ∇f is
bounded almost surely, whereas Bu et al. (2023) only require a bounded second moment. However, they
make an additional distributional assumption that g is centrally symmetric around its mean, which firstly
appears in Chen et al. (2020) with supportive empirical evidence.

3.4 On the Biases from Normalization and Clipping

In this section, we further discuss how gradient normalization and clipping affect the overall convergences
of the private algorithms. The influence is two-folded: one is that clipping/normalization induces bias, i.e.,
the gap between true gradient ∇f and clipped/normalized gradient; the other is that the added Gaussian
noise for privacy may scale with the regularizer r and the clipping threshold c.

The Induced Bias. When writing the objective as an empirical average f(x) =
∑

i ℓ(x, ξi)/N , the true
gradient is ∇f(x) = 1

N

∑N
i=1 g(i). Then both expected descent directions of Normalized SGD and Clipped

SGD

E[hg] = 1
N

N∑
i=1

g(i)

r + ∥g(i)∥
, E[h̄g] = 1

N

N∑
i=1

g(i) min
{

1,
c

∥g(i)∥

}
,

deviate from the true gradient ∇f(x). This means that the normalization or the clipping induces biases
compared with the true gradient. A small regularizer r or a small clipping threshold c induces large biases,
while a large r or c could reduce such biases. This can be seen from the training loss curves of different
values of c and r in Figure 1, whose implementation details are in Section 4. Although theoretically the bias
itself hinders convergence, the biases affect the accuracy curves differently for clipped SGD and normalized
SGD. The accuracy curves of clipped SGD vary with the value of c while the value of r makes almost no
impact on the accuracy curves of normalized SGD. This phenomenon extends to the private setting (look at
the accuracy curves in Figure 2).

③c = 1 makes the magnitude of clipped SGD similar as normalized SGD and hence the comparison is meaningful.

9
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Figure 1: Left: Training loss and training accuracy curves of Clipped SGD. Right: Training loss and training
accuracy curves of Normalized SGD. Both are trained with ResNet20 on CIFAR10 task.
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Figure 2: Left: Training loss and training accuracy curves of DP-SGD. Right: Training loss and training
accuracy curves of DP-NSGD. Task: ResNet20 on CIFAR10 with ϵ = 8, δ = 1e-5.
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A qualitative explanation would be as follows. After several epochs of training, well-fitted samples ξ (those
already been classified correctly) yield small gradients g and not-yet-fitted samples ξ′ (those not been correctly
classified) yield large gradients g′. Typically, c is set on the level of gradient norms, while r is for regularizing
the division. As the training goes, more and more samples are fitted well enough and their gradients
would become small (He et al., 2023). While both normalized SGD and clipped SGD tend to amplify the
significance of instances with small gradients (well-fitted samples), the amplification effect of normalized SGD
is generally more pronounced than that of clipped SGD unless the clipping threshold is set to be extremely
small. Moreover, normalized SGD achieves comparable accuracy but incurs higher loss than clipped SGD.
We call for a future investigation towards understanding this phenomenon thoroughly. Specific to the setting
r ≈ 0, c = 1 in Figure 1, normalized SGD normalizes all g(i) to be with a unit norm, while clipped SGD
would not change gradients with small norms.

From a theoretical perspective, to give a finer-grained analysis of the bias, imposing further assumptions to
control γ may be a promising future direction. For example, Chen et al. (2020) made an attempt towards
this aspect, but their assumption is a bit artificial and not intuitive. Sankararaman et al. (2020) proposed
a concept gradient confusion, defined as γ = − min{⟨g(i), g(j)⟩ : i ̸= j} to approximately quantify how
per-sample gradients align to each other.

The Added Noises for Privacy Guarantee. For gradient clipping, the added noise (Gaussian perturba-
tion) z̄ ∼ N (0, c2σ2Id) is proportional to c, while for gradient normalizing z ∼ N (0, σ2Id) keeps invariant
with r. This suggests that when tuning DP-SGD, η needs to vary with c, in order to control the noise
component ηz̄ in each update. In contrast, DP-NSGD is robust under different scales of r, and thus is easier
to tune intuitively. Extensive experiments in Section 4 support this intuition empirically.

4 Experiments

This section conducts experiments to demonstrate the efficacy of Algorithm 1 and compare the behavior of
DP-SGD and DP-NSGD empirically.

Additional remarks on privacy accountant. Our implementation of DP-SGD follows the privacy anal-
ysis in Abadi et al. (2016) that uses Poisson sampling. We note that many existing implementations of
DP-SGD use shuffle data instead of Poisson sampling to enforce stochasticity. Shuffle data is easier to
implement but using it would create a mild discrepancy with the analysis in Abadi et al. (2016). Formal
privacy analysis of shuffle data requires privacy amplification by shuffling Koskela et al. (2023); Wang (2023);
Feldman et al. (2023).

4.1 Tuning Vision Models

One example for the proof of concept is training a ResNet20 (He et al., 2016) with CIFAR-10 dataset. As in
literature (Yousefpour et al., 2021; Davody et al., 2020; Yu et al., 2020), we replace all batch normalization
layers with group normalization (Wu & He, 2018) layers for easily computing the per-sample gradients. The
non-private accuracy for CIFAR-10 is 90.4%. We compare the performances of DP-NSGD and DP-SGD
with a wide range of hyper-parameters and different learning rate scheduling rules. All experiments can be
run on a single Tesla V100 with 16GB memory. The ResNet20 has 270K trainable parameters.

Hyperparameter choices. We first fix the privacy budget ϵ = {2.0, 4.0, 8.0}, δ = 10−5, which corresponds
to setting the noise multiplier σ = {3.6, 2.0, 1.2} for the case of batch size 1000 and number of epochs 100
with Rényi differential privacy accountant (Abadi et al., 2016; Mironov et al., 2019). There are tighter
privacy accountants (Gopi et al., 2021) that can save ϵ for the same noise multiplier. We then fix the weight
decay to be 0 and use the classical learning rate scheduling strategy that multiplies the initial lr with 0.1
at epoch 50 and 0.01 at epoch 75 respectively. The hyperparameters to tune are the initial learning rate
lr and the clip threshold c for DP-SGD, where lr takes values {0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2} and c takes
values {0.1, 0.4, 1.6, 6.4, 12.8}. At the same time, the hyperparameters to tune for DP-NSGD are the initial
learning rate lr and the regularizer r, where lr takes values {0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2} and r takes values
{0.0001, 0.001, 0.01, 0.1, 1.0}. We compare the validation accuracy of DP-SGD and DP-NSGD via heatmaps
of the above hyperparameter choices in Figure 3. We can see that the performance of DP-NSGD is rather
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stable for the regularizer taking values from 10−4 to 1.0 and it is mostly affected by the learning rate. This
is in sharp contrast with the case of DP-SGD where the performance depends on both the learning rate and
the clip threshold in a complicated way. This suggests that it may be easier to tune the hyperparameters
for DP-NSGD than that for DP-SGD, which may help save the privacy budget for tuning hyperparameters
(Papernot & Steinke, 2021).
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Figure 3: Experiments for ResNet20 on CIFAR10 task. Upper: Accuracy heatmap of DP-NSGD with varying
lrs and regularizers. Lower: Accuracy heatmap of DP-SGD with varying lrs and clipping thresholds. The
DP parameters are δ = 10−5 and ϵ = 2.0, 4.0, 8.0 from left to right.

We also run the above setting with the cyclic learning rate scheduling with min-lr = 0.02 and max-lr = 1.0.
The best accuracy number are of DP-NSGD and DP-SGD can be as good as 66, which is comparable with
the number achieved with model architecture modification in Papernot et al. (2020b).

4.2 Fine-tuning Large Language Models

We use the pretrained RoBERTa model (Liu et al., 2019)④, which has 125M parameters (RoBERTa-Base)
and fine-tune them except the embedding layer for SST-2 classification task (Wang et al., 2018). We adopt
the setting as in Li et al. (2021): full-precision training with the batch size 1000 and the number of epochs
10.

Hyperparameter choice: For privacy parameters, we use ϵ = 8, δ = 1e-5. With Renyi differential privacy
accountant, this corresponds to setting the noise multiplier 0.635. We compare the behavior of DP-SGD
and that of DP-NSGD. For DP-SGD, we search the clipping threshold c from {0.1, 0.5, 2.5, 12.5, 50.0} and
the lr from {0.05, 0.1, 0.2, 0.4, 0.8, 1.6}. For the DP-NSGD, we search the learning rate lr over the same set
of DP-SGD and the regularizer r from {1e-3, 1e-2, 1e-1, 1., 10.0}.

We have similar observation in Figure 4 that the performance of DP-NSGD is rather stable for the regularizer
and the learning rate, which indicates that it could be easier to tune than DP-SGD.

④The model and checkpoints can be found at https://github.com/pytorch/fairseq/tree/master/examples/roberta.
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Figure 4: Experiments of fine-tuning RoBERTa on SST-2 task. Left: Accuracy heatmap of DP-NSGD with
varying learning rates and regularizers. Right: Accuracy heatmap of DP-SGD with varying learning rates
and clipping thresholds.

Notably, the concurrent study by Bu et al. (2023) has conducted extensive experiments, supporting observa-
tions that both DP-SGD and DP-NSGD achieve comparable performance. Furthermore, it was also found
that DP-NSGD is comparatively easier to tune.

5 Concluding Remarks

In this paper, we have studied the convergence of two algorithms, i.e., DP-SGD and DP-NSGD, for differen-
tially private non-convex empirical risk minimization. We have achieved a rate that significantly improves
over previous literature under similar setup and have analyzed the bias induced by the clipping or normal-
izing operation. As for future directions, it is very interesting to consider the convergence theorems under
stronger assumptions on the gradient distribution.
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Appendices
A More Literature on Private Optimization

Private Non-convex Empirical Risk Minimization: This line of works (Wang et al., 2019a; 2023;
Zhou et al., 2020) study GD, RMSprop and Adam for centralized differentially private non-convex empirical
risk minimization minx f(x) =

∑N
i=1 ℓ(x, ξi)/N . As our Table 1 suggests, all these algorithms achieve the

state-of-the-art on the utility upper bound O
(

4
√

d/(N2ϵ2)
)

, under the following assumption.

Assumption A.1 (Previous assumption for non-convex DP ERM). There exists L, G > 0 such that for any
ξ, the loss function x 7→ ℓ(x, ξ) is L-smooth (∥∇2

xℓ(x, ξ)∥ ≤ L) and G-Lipschitz (∥∇xℓ(x, ξ)∥ ≤ G).

In direct comparison, our assumptions are much weaker:

• Assumption 2.1 only requires the expected loss function f(x) to satisfy certain smoothness condition;

• Assumption 2.2 with τ0 = 2G, τ1 = 0 covers the cases of Assumption A.1.

In these works, the Lipschitz condition of the loss gradient ∇xℓ(x, ξ) is vital since it allows to ignore the
effect of gradient clipping when analyzing convergence, thus unable to provide theoretical understanding
towards this tunable hyper parameter.

We manage to obtain best available utility bounds for the problem of non-convex DP ERM, even under
weakened assumptions. More importantly, our weakened assumptions are not only closer to real-life neural
network training, but also more suitable to show the distinctions between DP-SGD and DP-NSGD, as shown
in Corollaries 3.5 & 3.3.

Private Convex Optimization with Heavy-tailed Data: In comparison with DP-ERM, private convex
optimization (DP-SCO) (Bassily et al., 2014) privately minimizes the population risk

min
x

f̃(x) := Eξ∼P [ℓ(x, ξ)],

given i.i.d. samples ξ1, . . . , ξN ∼ P, where P is the underlying true distribution not solely the empirical
one. Typically, the loss x 7→ ℓ(x, ξ) is assumed to be convex for any ξ. For this problem, the utility is thus
measured by EξN

1 ,M[f̃(xoutput)], where expectation is taken over both the dataset and the algorithm itself.

Many papers have investigated the problem of DP-SCO (Chaudhuri & Monteleoni, 2009; Wang et al., 2017;
Kuru et al., 2020; Yu et al., 2020; Asi et al., 2021), but all of them adopt the Lipschitz condition on the
loss gradient ∇xℓ(x, ξ) to avoid considering gradient clipping. In contrast to our Assumption 2.2, recent
progresses (Wang et al., 2020; Kamath et al., 2022; Hu et al., 2022) in DP SCO, weakened the Lipschitz
condition to a heavy-tailed assumption, namely the k-th bounded moment condition on each coordinate
∇xℓ(x, ξ)j , j ∈ [d] of the gradient estimation (for example, (Kamath et al., 2022, Definition 2.11)). These
works still have to assume the expected gradients to be uniformly bounded Eξ∼P [∇xℓ(x, ξ)] for every x, e.g.
the 6th assertion in (Kamath et al., 2022, Assumption 2.11). In contrast, our setting is able to illustrate the
differences of clipping and normalizing based methods.

From an algorithmic perspective, Wang et al. (2020); Kamath et al. (2022); Hu et al. (2022) proposed methods
involving a sophisticated mean oracle in Kamath et al. (2020) to estimate the expected gradients, while this
mean oracle still employs clipping with respect to a preset threshold. Specifically, to handle the ill-behaved
gradients, methods from Kamath et al. (2022) process each coordinate separately, by firstly partitioning the
selected batch and then taking median over the clipped means of each disjoint parts. These techniques might
be helpful in addressing non-convex DP ERM with heavy-tailed conditions.

Private Federated Learning In recent years, private federated learning also draws lots of attention. Since
our work focuses on centralized DP, we only mention a few related works in this direction. Das et al.
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(2021) studied DP-NormFedAvg, a client-level DP optimizer in a federated setting. Their optimizer, DP-
NormFedAvg, uses vanilla GD for each client and normalizes the contribution of every client to unit-norm.
Sharing similar motivation with our centralized DP-NSGD, their contributions are roughly credited to DP-
NSGD. Their convergence analysis is based on one-point/quasar convexity and L-smoothness. Specifically
for the bound shown in the 4th line of Table 1, ∥x(i) − x∗∥ measures heterogeneity via the distance between
the i-th client’s local minimizer x(i) to the global minimizer x∗, and DX ≜ ∥x0 − x∗∥.

Following Chen et al. (2020), DP-FedAvg with clipping is analyzed in Zhang et al. (2021), with symmetric
gradient distribution assumption. Additionally, a recent preprint (Lowy et al., 2022) also investigates private
non-convex federated learning, but based on local/shuffle differential privacy.

B Prerequisite Lemmas

The following is a standard lemma for (L0, L1)-generalized smooth functions, and it can be obtained via
Taylor’s expansion. Throughout this appendix, we use Ek to denote taking expectation of {g

(i)
k , i ∈ Sk} and

zk conditioned on the past, especially xk.
Lemma B.1 (Lemma C.4, Jin et al. (2021)). A function f : Rd → Rd is (L0, L1)-generalized smooth, then
for any x, x+ ∈ Rd,

f(x+) ≤ f(x) +
〈
∇f(x), x+ − x

〉
+ L0 + L1∥∇f(x)∥

2 ∥x+ − x∥2.

Lemma B.2. For any k ≥ 0, we use gk to denote another realization of the underlying distribution behind
the set of i.i.d. unbiased estimates {g

(i)
k : i ∈ Sk}. If we run DP-NSGD iteratively, the trajectory would

satisfy the following bound:

Ek [f(xk+1)] − f(xk) ≤ − ηEk [⟨hk∇f(xk), gk⟩]

+ L0 + L1∥∇f(xk)∥
2 η2

(
dσ2 + Ek ∥hkgk∥2

)
. (12)

Proof. The updating rule of our iterative algorithm could be summarized as

xk+1 = xk − η

(
1
B

∑
i∈Sk

h
(i)
k g

(i)
k + zk

)
, zk ∼ N (0, σ2Id).

By taking expectation Ek conditioned on the past, we rewrite the first-order term in Lemma B.1 into

Ek [⟨∇f(x), xk − xk+1⟩] = ηEk [⟨hk∇f(xk), gk⟩] . (13)

In the same manner, we bound the second-order term by

Ek∥xk+1 − xk∥2 = η2dσ2 + η2

B2Ek

∥∥∥∥∥∑
i∈Sk

h
(i)
k g

(i)
k

∥∥∥∥∥
2

≤ η2
(

dσ2 + Ek ∥hkgk∥2
)

, (14)

where the last inequality follows from an elementary Cauchy-Schwarz inequality,∥∥∥∥∥∑
i∈Sk

h
(i)
k g

(i)
k

∥∥∥∥∥
2

≤ B
∑
i∈Sk

∥∥∥h
(i)
k g

(i)
k

∥∥∥2
.

Plug (13) and (14) into Lemma B.1 to obtain the desired result.

Remark B.1. This lemma implies that mini batch size B does not affect expected upper bounds, due to
per-sample gradient normalization. We need to point out that B could still influence high-probability upper
bounds, and call for future investigations.
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In Section C.1, we will upper bound the second-order term L0+L1∥∇f(xk)∥
2 η2

(
dσ2 + Ek ∥hkgk∥2

)
by a sum

of αηhk∥∇f(xk)∥ (for some 0 < α < 1) and another term of O(η2) via a proper scaling of η. We firstly
present the following lemma to provide a simplified lower bound for the first-order terms

ηEk [⟨hk∇f(xk), gk⟩] − ηαEk[hk]∥∇f(xk)∥2. (15)

Lemma B.3 (Lower bound first-order terms for normalizing). Define a function A : R+ → R as

A(s) =


(

τ0

r(1 − τ1) + 2τ0
− α

1 − τ1

)
s, if s ≥ τ0

1 − τ1
;

(1 − α)(1 − τ1)
r(1 − τ1) + 2τ0

s2 − 4τ3
0

r(r + τ0)(1 − τ1)3 , otherwise.
(16)

Then we have
ηEk [⟨hk∇f(xk), gk⟩] − ηαEk[hk]∥∇f(xk)∥2 ≥ ηA(∥∇f(xk)∥).

Proof. We prove this lemma via separating the range of ∥∇f(xk)∥. When ∥∇f(xk)∥ ≥ τ0/(1 − τ1), then

⟨∇f(xk), gk⟩ = ∥∇f(xk)∥2 + ⟨∇f(xk), gk − ∇f(xk)⟩
≥(1 − τ1)∥∇f(xk)∥2 − τ0∥∇f(xk)∥ ≥ 0,

followed by

ηEk [⟨hk∇f(xk), gk⟩] − ηαEk[hk]∥∇f(xk)∥2

=Ek

[
η ⟨∇f(xk), gk⟩

r + ∥gk∥

]
− Ek

[
αη

(r + ∥gk∥)∥∇f(xk)∥2
]

≥Ek

[
η ⟨∇f(xk), gk⟩

r + τ0 + (1 + τ1)∥∇f(xk)∥

]
− α

1 − τ1
η∥∇f(xk)∥

= η ∥∇f(xk)∥2

r + τ0 + (1 + τ1)∥∇f(xk)∥ − α

1 − τ1
η∥∇f(xk)∥

≥
(

τ0

r(1 − τ1) + 2τ0
− α

1 − τ1

)
η∥∇f(xk)∥. (17)

When ∥∇f(xk)∥ < τ0/(1 − τ1), we have ∥gk − ∇f(xk)∥ ≤ τ0 + τ1∥∇f(xk)∥ ≤ τ0/(1 − τ1) as well. Then we
decompose the first-order terms by

ηEk [⟨hk∇f(xk), gk⟩] − ηαEk[hk]∥∇f(xk)∥2

=(1 − α)ηEk[hk]∥∇f(xk)∥2 + Ek

[
η ⟨∇f(xk), gk − ∇f(xk)⟩

r + ∥gk∥

]
.

On one hand, we know

hk = 1
r + ∥gk∥

≥ 1
r + τ0 + (1 + τ1)∥∇f(xk)∥ ≥ 1 − τ1

r(1 − τ1) + 2τ0
.

On the other hand, we also have

Ek

[
η ⟨∇f(xk), gk − ∇f(xk)⟩

r + ∥gk∥

]
=Ek

[
η ⟨∇f(xk), gk − ∇f(xk)⟩

r + τ0 + (1 + τ1)∥∇f(xk)∥

]
+ Ek

[
η [(1 + τ1)∥∇f(xk)∥ + τ0 − ∥gk∥] ⟨∇f(xk), gk − ∇f(xk)⟩

(r + ∥gk∥)(r + τ0 + (1 + τ1)∥∇f(xk)∥)

]
≥ − η

4τ3
0

r(r + τ0)(1 − τ1)3 .
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Therefore, we have

ηEk [⟨hk∇f(xk), gk⟩] − ηαEk[hk]∥∇f(xk)∥2

≥η

[
(1 − α)(1 − τ1)
r(1 − τ1) + 2τ0

∥∇f(xk)∥2 − 4τ3
0

r(r + τ0)(1 − τ1)3

]
. (18)

Combine both cases to derive the required lemma.

We then establish similar results for gradient clipping based algorithms, whose updating rule is described by
(2). Firstly, we mimic the proof of Lemma B.2 and derive without proof the following lemma.
Lemma B.4. For any k ≥ 0, we use gk to denote another realization of the underlying distribution behind
the set of i.i.d. unbiased estimates {g

(i)
k : i ∈ Sk}. If we run DP-SGD iteratively, the trajectory would satisfy

the following bound:

Ek [f(xk+1)] − f(xk) ≤ − ηEk

[
⟨h̄k∇f(xk), gk⟩

]
+ L0 + L1∥∇f(xk)∥

2 η2
(

dc2σ2 + Ek

∥∥h̄kgk

∥∥2)
. (19)

Then, we provide another lemma for clipping, similar to Lemma B.3.
Lemma B.5 (Lower bound first-order terms for clipping). Define a function B : R+ → R as

B(s) =


(

τ0c

c(1 − τ1) + 2τ0
− α

1 − τ1

)
s, if s ≥ τ0

1 − τ1
;

(1 − α)s2, otherwise.
(20)

If we take c ≥ 2τ0/(1 − τ1), then

ηEk

[
⟨h̄k∇f(xk), gk⟩

]
− ηαEk[h̄k]∥∇f(xk)∥2 ≥ ηB(∥∇f(xk)∥).

Proof. Recall that h̄k is defined as

h̄k = min
{

1,
c

∥gk∥

}
≥ c

c + ∥gk∥
.

Again, we take the strategy of separting the range of ∥∇f(xk)∥. When ∥∇f(xk)∥ ≥ τ0/(1 − τ1), we know
⟨∇f(xk), gk⟩ ≥ 0, followed by

ηEk

[
⟨h̄k∇f(xk), gk⟩

]
− ηαEk[h̄k]∥∇f(xk)∥2

≥Ek

[
ηc ⟨∇f(xk), gk⟩

c + ∥gk∥

]
− Ek

[
αη

∥gk∥
∥∇f(xk)∥2

]
≥Ek

[
ηc ⟨∇f(xk), gk⟩

c + τ0 + (1 + τ1)∥∇f(xk)∥

]
− α

1 − τ1
η∥∇f(xk)∥

= ηc ∥∇f(xk)∥2

c + τ0 + (1 + τ1)∥∇f(xk)∥ − α

1 − τ1
η∥∇f(xk)∥

≥
(

τ0c

c(1 − τ1) + 2τ0
− α

1 − τ1

)
η∥∇f(xk)∥.

Otherwise, when ∥∇f(xk)∥ < τ0/(1 − τ1) ≤ (c − τ0)/(1 + τ1) where the second inequality follows from
c ≥ 2τ0/(1 − τ1), we know

∥gk∥ ≤ τ0 + (1 + τ1)∥∇f(xk)∥ ≤ c.

Therefore in this case, h̄k = 1 and

ηEk

[
⟨h̄k∇f(xk), gk⟩

]
− ηαEk[h̄k]∥∇f(xk)∥2 = (1 − α)η∥∇f(xk)∥2.

Combine both cases to conclude the desired lemma.
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C Proofs for DP-NSGD

In this section, we provide a rigorous convergence theory for normalized stochastic gradient descent with
perturbation. An unavoidable error between gk and ∇f(xk) is a central distinction between stochastic and
deterministic optimization methods. We begin with an explicit decomposition for (12)

Ek [f(xk+1)] − f(xk)
≤ −ηEk [hk] ∥∇f(xk)∥2 − ηEk [⟨hk∇f(xk), gk − ∇f(xk)⟩]

+ L0 + L1∥∇f(xk)∥
2 η2

(
Ek

[
h2

k ∥∇f(xk)∥2
]

+ 2Ek

[
h2

k⟨gk − ∇f(xk), ∇f(xk)⟩
])

+ L0 + L1∥∇f(xk)∥
2 η2

(
dσ2 + Ek

[
h2

k ∥gk − ∇f(xk)∥2
])

. (21)

C.1 Upper Bound Second-order Terms

In theory, we need to carefully distinguish these terms accourding to their orders of η, as the first order term
Ek [⟨hk∇f(xk), gk⟩] controls the amount of descent mainly. We show that the second order terms could be
bounded by first order terms via a proper scaling of η, in the following technical lemma.
Lemma C.1. For any 0 < α < 1 to be determined explicitly later, if

η ≤ min
(

(r − τ0)α
4L0

,
(1 − τ1)α

4L1
,

α

6L1dσ2

)
(22)

then we have
L0 + L1∥∇f(xk)∥

2 η2dσ2 ≤ L0 + L1(r + τ0)
2 η2dσ2 + αηhk

4 ∥∇f(xk)∥2, (23)

(L0 + L1∥∇f(xk)∥)η2h2
k⟨∇f(xk), gk − ∇f(xk)⟩

≤ (L0(1 − τ1) + L1τ0)τ2
0

r2(1 − τ1)3 η2 + αηhk

4 ∥∇f(xk)∥2, (24)

L0 + L1∥∇f(xk)∥
2 η2h2

k∥gk − ∇f(xk)∥2

≤ (L0(1 − τ1) + L1τ0)τ2
0

2r2(1 − τ1)3 η2 + αηhk

4 ∥∇f(xk)∥2, (25)

L0 + L1∥∇f(xk)∥
2 η2h2

k∥∇f(xk)∥2 ≤ αηhk

4 ∥∇f(xk)∥2. (26)

Remark C.1. These bounds are proved by separating the range of ∥∇f(xk)∥. When it is smaller than some
threshold, we can obtain an upper bound of O(η2). Otherwise, when ∥∇f(xk)∥ is greater than the threshold,
hk is of order Ω(1/∥∇f(xk)∥), then the left hand terms are all of order O(η2hk∥f(x)∥2). Therefore we scale
η small enough to make left hand terms smaller than αηhk∥f(x)∥2/4. At last, we sum up the respective
upper bounds together to conclude the lemma.
Remark C.2. Moreover, we remark that the thresholds chosen during proof (r + τ0 for proving (23) and
τ0/(1 − τ1) for proving (24) and (25)) are quite artificial. A thorough investigation towards these thresholds
would definitely improve the dependence on the constants (L0, L1, τ0, τ1), but would not affect our main
argument.

Proof. In fact, this lemma can be proved in an obvious way by separating into different cases.

(i) If ∥∇f(xk)∥ ≤ r + τ0, it directly follows that L1∥∇f(xk)∥η2dσ2/2 ≤ L1(r + τ0)η2dσ2/2; otherwise, if
∥∇f(xk)∥ > r + τ0, we know

hk = 1
r + ∥gk∥

≥ 1
r + τ0 + (τ1 + 1)∥∇f(xk)∥ ≥ 1

3∥∇f(xk)∥ ,
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therefore η ≤ α/(6L1dσ2) directly yields

L1∥∇f(xk)∥η2dσ2

2 ≤ ηαhk∥∇f(xk)∥2

4 .

Then (23) follows from summing up these two cases.

(ii) If ∥∇f(xk)∥ ≤ τ0/(1 − τ1), then ∥gk − ∇f(xk)∥ ≤ τ0 + τ1∥∇f(xk)∥ ≤ τ0/(1 − τ1) and hk ≤ 1/r, which
yield

(L0 + L1∥∇f(xk)∥)η2h2
k⟨∇f(xk), gk − ∇f(xk)⟩ ≤ (L0(1 − τ1) + L1τ0)τ2

0
r2(1 − τ1)3 η2,

L0 + L1∥∇f(xk)∥
2 η2h2

k∥gk − ∇f(xk)∥2 ≤ (L0(1 − τ1) + L1τ0)τ2
0

2r2(1 − τ1)3 η2.

Otherwise, if ∥∇f(xk)∥ > τ0/(1 − τ1), we note that ∥gk∥ ≥ −τ0 + (1 − τ1)∥∇f(xk)∥ and

hk(L0 + L1∥∇f(xk)∥) ≤ L0 + L1∥∇f(xk)∥
r − τ0 + (1 − τ1)∥∇f(xk)∥ ≤ max

(
L0

r − τ0
,

L1

1 − τ1

)
.

Consequently, once η ≤ α

4 min
(

r − τ0

L0
,

1 − τ1

L1

)
, we have

(L0 + L1∥∇f(xk)∥)η2h2
k⟨∇f(xk), gk − ∇f(xk)⟩

≤ max
(

L0

r − τ0
,

L1

1 − τ1

)
η2hk∥∇f(xk)∥2 ≤ ηαhk

4 ∥∇f(xk)∥2,

and
L0 + L1∥∇f(xk)∥

2 η2h2
k∥gk − ∇f(xk)∥2

≤1
2 max

(
L0

r − τ0
,

L1

1 − τ1

)
η2hk∥∇f(xk)∥2 ≤ ηαhk

4 ∥∇f(xk)∥2.

We obtain (24) and (25) via summing up respective bounds for two cases.

(iii) The last bound (26) can be derived directly by

L0 + L1∥∇f(xk)∥
2 η2h2

k∥∇f(xk)∥2

≤ max
(

L0

r − τ0
,

L1

τ1

)
η2

2 hk∥∇f(xk)∥2

≤ηαhk

4 ∥∇f(xk)∥2

via setting η ≤ α

2 min
(

r − τ0

L0
,

τ1

L1

)
.

In conclusion, it suffices to set η ≤ min
(

(r − τ0)α
4L0

,
(1 − τ1)α

4L1
,

α

6L1dσ2

)
to obtain these bounds.

In the sequel, we will use this lemma only with

α = α0 := τ0(1 − τ1)
2r(1 − τ1) + 4τ0

<
1
4 (27)

Lemma C.2. In the statement of Theorem 3.2, we take η =
√

2
L1(r+τ0)T dσ2 . Then the condition (22) in

Lemma C.1 holds as long as we run the algorithm long enough i.e. T ≥ C
(
σ2, τ, L, d, r

)
.

23



Under review as submission to TMLR

Proof. We see that

η =
√

2
L1(r + τ0)Tdσ2 ≤ min

(
(r − τ0)α0

4L0
,

(1 − τ1)2α0

4L1
,

α0

6L1dσ2

)
is equivalent to

T ≥ max
(

32L2
0

(r − τ0)2α2
0L1(r + τ0)dσ2 ,

32L1

τ2
1 α2

0(r + τ0)dσ2 ,
72L1d

α2
0(r + τ0)

)
.

C.2 Final Procedures in Proof

Proof of Theorem 3.2. Equipped with Lemmas B.3 ,C.1 and C.3, we further wrote the one step inequality
(21) into

ηA(∥∇f(xk)∥)

≤ f(xk) − Ek [f(xk+1)] + η2
(

(L1(r + τ0) + L0)dσ2

2 + 3(L0(1 − τ1) + L1τ0)τ2
0

2r2(1 − τ1)3 η2
)

. (28)

We then separate the time index into

U =
{

k < T : ∥∇f(xk)∥ ≥ τ0

1 − τ1

}
and Uc = {0, 1, · · · , T − 1}\U . Given this, we derive from (17) that for any k ∈ U ,

τ0

2r(1 − τ1) + 4τ0
η∥∇f(xk)∥

≤Ek [f(xk+1)] − f(xk) + η2
(

(L1(r + τ0) + L0)dσ2

2 + 3(L0(1 − τ1) + L1τ0)τ2
0

2r2(1 − τ1)3

)
.

Similarly, together with α0 ≤ 1/4, (18) deduces that for any k ∈ Uc,

η

[
3(1 − τ1)

4r(1 − τ1) + 8τ0
∥∇f(xk)∥2 − 4τ3

0
r(r + τ0)(1 − τ1)3

]
≤Ek [f(xk+1)] − f(xk) + η2

(
(L1(r + τ0) + L0)dσ2

2 + 3(L0(1 − τ1) + L1τ0)τ2
0

2r2(1 − τ1)3

)
.

Sum these inequalities altogether to have

1
r + 2τ0

max
{

τ0

2T

∑
k∈U

∥∇f(xk)∥,
3(1 − τ1)

4T

∑
k /∈U

∥∇f(xk)∥2

}

≤Df

Tη
+ η

(L1(r + τ0) + L0)dσ2

2 + η
3(L0(1 − τ1) + L1τ0)τ2

0
2r2(1 − τ1)3 + 4τ3

0
r(r + τ0)(1 − τ1)3

|Uc|
T

.

In order to optimize the first two terms, we set

η =
√

2
(L1(r + τ0) + L0)Tdσ2 . (29)

We then define

∆ =(Df + 1)
√

(L1(r + τ0) + L0)dσ2

2T
+ 4τ3

0
r(r + τ0)(1 − τ1)3

+ 3(L0 + L1τ0)τ2
0

2r2(1 − τ1)3

√
2

(L1(r + τ0) + L0)Tdσ2 .
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Recall that σ2 can have some dependence on T , so actually these three terms are O(σ/
√

T ), O(1/(
√

Tσ))
and O(1) respectively. Then we further have

E
[

min
0≤k<T

∥∇f(xk)∥
]

≤E

min


√

1
|U|

∑
k∈Uc

∥∇f(xk)∥2,
1

|U|
∑
k /∈U

∥∇f(xk)∥




≤ max
{√

8(r + 2τ0)
3(1 − τ1) ∆,

2(r + 2τ0)
τ0

∆
}

, (30)

where the second inequality follows from the fact that either |U| ≥ T/2 or |Uc| ≥ T/2. In the end, we capture
the leading terms in this upper bound to have

E
[

min
0≤k<T

∥∇f(xk)∥
]

≤ O

(
4

√
(Df + 1)2(L1(r + τ0) + L0)(r + 2τ0)2dσ2

T (1 − τ1)2

)

+ O


√√√√√ 2(r + 2τ0)2

(L1(r + τ0) + L0)Tdσ2
3(L0 + L1τ0)τ2

0
2r2(1 − τ1)4 + 8(r + 2τ0)τ2

0
r(r + τ0)(1 − τ1)3

 .

Lemma C.3. In the statement of Corollary 3.3, we take η =
√

2
(L1(r+τ0)+L0)T dσ2 , σ = c2

√
T log 1

δ /(Nϵ)
and T ≥ O(N2ϵ2/(r3d log 1

δ )). Then the condition in Lemma C.2 holds as long as we have enough samples
i.e. N ≥ C (ϵ, δ, τ, L, B, d, r).

Proof. It is more straight-forward to verify the condition (22) directly. Firstly, we plug σ2 = c2
2T log(1/δ)

N2ϵ2 from
Lemma 3.1 into the formula of η to have

η =
√

2
(L1(r + τ0) + L0)Tdσ2 = Nϵ

c2T

√
2

(L1(r + τ0) + L0)d log(1/δ)

≤ α0N2ϵ2

6L1dc2
2T log(1/δ) = α0

6L1dσ2

as long as we have enough samples

N ≥ 6c2L1

ϵα0

√
2d log(1/δ)

L1(r + τ0) + L0
.

Other conditions

η = Nϵ

c2T

√
2

(L1(r + τ0) + L0)d log(1/δ) ≤ min
{

(r − τ0)α0

4L0
,

(1 − τ1)α0

4L1

}
holds as long as we run the algorithm long enough

T

N
≥ min

{
L0

r − τ0
,

L1

τ1

}
4ϵ

α0c2

√
2

(L1(r + τ0) + L0)d log(1/δ) . (31)

The last requirement (31) naturally holds due to T ≥ O(N2ϵ2/(r3d log 1
δ )).
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Proof of Corollary 3.3. Moreover, we take the limit T ≥ O(N2ϵ2/(B2r3d log 1
δ )) to derive the privacy-utility

trade-off

E
[

min
0≤k<T

∥∇f(xk)∥
]

≤ O

(
4

√
(Df + 1)2(L1(r + τ0) + L0)d log(1/δ)

N2ϵ2 + 8(r + 2τ0)τ3
0

r(r + τ0)(1 − τ1)3

)
,

ending the proof.

D Proofs for DP-SGD

In this section, we prove the convergence theorem for DP-SGD following the roadmap outlined in Section C.
To start with, we extend (19) into

Ek [f(xk+1)] − f(xk)
≤ −ηEk

[
h̄k

]
∥∇f(xk)∥2 − ηEk

[
⟨h̄k∇f(xk), gk − ∇f(xk)⟩

]
+ L0 + L1∥∇f(xk)∥

2 η2
(
Ek

[
h̄2

k ∥∇f(xk)∥2
]

+ 2Ek

[
h̄2

k⟨gk − ∇f(xk), ∇f(xk)⟩
])

+ L0 + L1∥∇f(xk)∥
2 η2

(
dc2σ2 + Ek

[
h̄2

k ∥gk − ∇f(xk)∥2
])

. (32)

D.1 Upper Bound Second-order Terms

In the same spirit as Lemma C.1, we provide an upper bound for the second-order terms in the following
lemma.
Lemma D.1. For any 0 < α < 1 to be determined explicitly later, if

η ≤ min
{

α

6L1dcσ2 ,
α(1 − τ1)

2L0(1 − τ1) + 4L1τ0
,

ατ0(1 − τ1)
4c(L0(1 − τ1) + 2L1τ0)

}
, (33)

then we have

L0 + L1∥∇f(xk)∥
2 η2dc2σ2 ≤ L1(c + τ0) + L0

2 η2dc2σ2 + αηh̄k

4 ∥∇f(xk)∥2, (34)

(L0 + L1∥∇f(xk)∥)η2h̄2
k⟨∇f(xk), gk − ∇f(xk)⟩

≤ 2(L0(1 − τ1) + 2L1τ0)τ2
0

(1 − τ1)3 η2 + αηh̄k

4 ∥∇f(xk)∥2, (35)

L0 + L1∥∇f(xk)∥
2 η2h̄2

k∥gk − ∇f(xk)∥2

≤ 2(L0(1 − τ1) + 2L1τ0)τ2
0

(1 − τ1)3 η2 + αηh̄k

4 ∥∇f(xk)∥2, (36)

L0 + L1∥∇f(xk)∥
2 η2h̄2

k∥∇f(xk)∥2 ≤ αηh̄k

4 ∥∇f(xk)∥2. (37)

Proof. In fact, this lemma can be proved in an obvious way by separating into different cases.

(i) If ∥∇f(xk)∥ ≤ c + τ0, it directly follows that L1∥∇f(xk)∥η2dσ2/2 ≤ L1(c + τ0)η2dc2σ2/2; otherwise, if
∥∇f(xk)∥ > c + τ0, we know

h̄k = min
{

1,
c

∥gk∥

}
≥ c

c + ∥gk∥
≥ c

c + τ0 + (τ1 + 1)∥∇f(xk)∥ ≥ c

3∥∇f(xk)∥
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therefore η ≤ α/(6L1dcσ2) directly yields

L1∥∇f(xk)∥η2dc2σ2

2 ≤ ηαh̄k∥∇f(xk)∥2

4 .

Then (34) follows from summing up these two cases.

(ii) If ∥∇f(xk)∥ ≤ 2τ0/(1 − τ1), then ∥gk − ∇f(xk)∥ ≤ τ0 + τ1∥∇f(xk)∥ ≤ 2τ0/(1 − τ1) and h̄k ≤ 1, which
yield

(L0 + L1∥∇f(xk)∥)η2h̄2
k⟨∇f(xk), gk − ∇f(xk)⟩ ≤2(L0(1 − τ1) + 2L1τ0)τ2

0
(1 − τ1)3 η2,

L0 + L1∥∇f(xk)∥
2 η2h̄2

k∥gk − ∇f(xk)∥2 ≤2(L0(1 − τ1) + 2L1τ0)τ2
0

(1 − τ1)3 η2.

Otherwise, if ∥∇f(xk)∥ > 2τ0/(1 − τ1), we note that ∥gk − ∇f(xk)∥ ≤ 1+τ1
2 ∥∇f(xk)∥ and ∥gk∥ ≥

1−τ1
2 ∥∇f(xk)∥. Moreover,

h̄k(L0 + L1∥∇f(xk)∥)

≤ c(L0 + L1∥∇f(xk)∥))
∥gk∥

≤ 2c(L0 + L1∥∇f(xk)∥))
(1 − τ1)∥∇f(xk)∥

≤ cL0

τ0
+ 2cL1

1 − τ1
.

Consequently, once η ≤ α

4
τ0(1 − τ1)

c(L0(1 − τ1) + 2L1τ0) , we have

(L0 + L1∥∇f(xk)∥)η2h̄2
k⟨∇f(xk), gk − ∇f(xk)⟩

≤
(

cL0

τ0
+ 2cL1

1 − τ1

)
η2h̄k∥∇f(xk)∥2

≤ηαh̄k

4 ∥∇f(xk)∥2,

and
L0 + L1∥∇f(xk)∥

2 η2h̄2
k∥gk − ∇f(xk)∥2

≤1
2 max

(
cL0

τ0
+ 2cL1

1 − τ1

)
η2h̄k∥∇f(xk)∥2

≤ηαh̄k

4 ∥∇f(xk)∥2.

We obtain (35) and (36) via summing up respective bounds for two cases.

(iii) We firstly derive a bound on h̄k(L0 + L1∥∇f(xk)∥). When ∥∇f(xk)∥ ≤ 2τ0/(1 − τ1), we know h̄k(L0 +
L1∥∇f(xk)∥) ≤ L0(1−τ1)+2L1τ0

1−τ1
. Otherwise, we know h̄k(L0 + L1∥∇f(xk)∥) ≤ cL0

τ0
+ 2cL1

1−τ1
. The last

bound (37) can be derived directly by

L0 + L1∥∇f(xk)∥
2 η2h̄2

k∥∇f(xk)∥2

≤ max
(

L0(1 − τ1) + 2L1τ0

1 − τ1
,

cL0

τ0
+ 2cL1

1 − τ1

)
η2

2 h̄k∥∇f(xk)∥2 ≤ ηαh̄k

4 ∥∇f(xk)∥2

via setting η ≤ α

2 min
(

1 − τ1

L0(1 − τ1) + 2L1τ0
,

τ0(1 − τ1)
c(L0(1 − τ1) + 2L1τ0)

)
.
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In general, the four inequalities hold as long as we ensure (33).

Explanations in Remarks C.1 and C.2 also explain the motivations behind this proof. In the sequel, we will
use this lemma only with

α = α0 := τ0(1 − τ1)
c(1 − τ1) + 2τ0

<
1
2 . (38)

Lemma D.2. In the statement of Theorem 3.4, we take η =
√

2
(L1(c+τ0)+L0)T dc2σ2 . Then the condition (33)

in Lemma D.1 holds as long as we run the algorithm long enough i.e. T ≥ C
(
σ2, τ, L, d, c

)
.

Proof. We see that

η =
√

2
(L1(c + τ0) + L0)Tdc2σ2 ≤ min

{
α0

6L1dcσ2 ,
α0(1 − τ1)

2L0(1 − τ1) + 4L1τ0
,

α0τ0(1 − τ1)
4c(L0(1 − τ1) + 2L1τ0)

}
is equivalent to

T ≥ 2
(L1(c + τ0) + L0)dc2σ2 max

{
6L1dcσ2

α
,

2L0(1 − τ1) + 4L1τ0

α(1 − τ1) ,
4c(L0(1 − τ1) + 2L1τ0)

ατ0(1 − τ1)

}2

.

D.2 Final Procedures in Proof

Proof of Theorem 3.4. Equipped with Lemmas B.5, D.1 and D.3, we further wrote the one step inequality
(32) into

ηB(∥∇f(xk)∥) ≤f(xk) − Ek [f(xk+1)]

+ η2
(

(L1(c + τ0) + L0)dc2σ2

2 + 4(L0(1 − τ1) + 2L1τ0)τ2
0

(1 − τ1)3 η2
)

. (39)

We then separate the time index into

U =
{

k < T : ∥∇f(xk)∥ ≥ τ0

1 − τ1

}
and Uc = {0, 1, · · · , T − 1}\U . Given this, we derive from (39) that for any k ∈ U ,

τ0(c − 1)
c(1 − τ1) + 2τ0

η∥∇f(xk)∥

≤f(xk) − Ek [f(xk+1)] + η2
(

(L1(c + τ0) + L0)dc2σ2

2 + 4(L0(1 − τ1) + 2L1τ0)τ2
0

(1 − τ1)3 η2
)

.

Similarly, together with α0 ≤ 1/2, (18) deduces that for any k ∈ Uc,

1
2η∥∇f(xk)∥2

≤f(xk) − Ek [f(xk+1)] + η2
(

(L1(c + τ0) + L0)dc2σ2

2 + 4(L0(1 − τ1) + 2L1τ0)τ2
0

(1 − τ1)3 η2
)

.

Sum these inequalities altogether to have

max
{

τ0(c − 1)
c(1 − τ1) + 2τ0

1
T

∑
k∈U

∥∇f(xk)∥,
1

2T

∑
k /∈U

∥∇f(xk)∥2

}

≤ (f(x0) − f∗)
Tη

+ η
(L1(c + τ0) + L0)dc2σ2

2 + η
4(L0(1 − τ1) + 2L1τ0)τ2

0
(1 − τ1)3 .

28



Under review as submission to TMLR

We minimize the sum of first two terms by setting

η =
√

2
(L1(c + τ0) + L0)Tdc2σ2 . (40)

We then define

∆ = (Df + 1)
√

(L1(c + τ0) + L0)dc2σ2

2T
+ 4(L0 + 2L1τ0)τ2

0
(1 − τ1)3

√
2

(L1(c + τ0) + L0)Tdc2σ2 . (41)

Recall σ2 can grow with T , so these two terms are O(σ/
√

T ), O(1/(σ
√

T )) respectively. Then we further
have

E
[

min
0≤k<T

∥∇f(xk)∥
]

≤ E

min


√

1
|U|

∑
k∈Uc

∥∇f(xk)∥2,
1

|U|
∑
k /∈U

∥∇f(xk)∥




≤ max
{√

4∆,
2(c + 2τ0)
τ0(c − 1) ∆

}
, (42)

where the second inequality follows from the fact that either |U| ≥ T/2 or |Uc| ≥ T/2. In the end, we capture
the leading terms in this upper bound to have

E
[

min
0≤k<T

∥∇f(xk)∥
]

≤O

(
4

√
(Df + 1)2(L1(c + τ0) + L0)dc2σ2

2T

)

+ O


√√√√√ 2

(L1(c + τ0) + L0)Tdc2σ2
(L0 + 2L1τ0)τ0

(1 − τ1)3

 .

Lemma D.3. In the statement of Corollary 3.5, we take η =
√

2
(L1(c+τ0)+L0)T dc2σ2 , σ =

c2B
√

T log(1/δ)/(Nϵ) and T ≥ O(N2ϵ2/(B2c3d log 1
δ )). Then the condition in Lemma D.2 holds as long as

we have enough samples i.e. N ≥ C (ϵ, δ, τ, L, B, d, c).

Proof. It is more straight-forward to verify the condition (22) directly. Firstly, we plug σ2 = c2
2T log(1/δ)

N2ϵ2 from
Lemma 3.1 into the formula of η to have

η =
√

2
(L1(c + τ0) + L0)Tdc2σ2 = Nϵ

c2T

√
2

(L1(c + τ0) + L0)dc2 log(1/δ)

≤ α0N2ϵ2

6L1dc2c2
2T log(1/δ) = α0

6L1dc2σ2

as long as we have enough samples

N ≥ 6L1cc2

ϵα0

√
2d log(1/δ)

L1(c + τ0) + L0
.

Other conditions

η = Nϵ

cc2T

√
2

(L1(c + τ0) + L0)d log(1/δ)

≤ min
{

α0(1 − τ1)
2L0(1 − τ1) + 4L1τ0

,
α0τ0(1 − τ1)

4c(L0(1 − τ1) + 2L1τ0)

}
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holds as long as we run the algorithm long enough

T

N
≥ min

{
1,

2c

τ0

}
2(L0(1 − τ1) + 2L1τ0)ϵ

cc2α0(1 − τ1)

√
2

(L1(c + τ0) + L0)d log(1/δ) . (43)

The last requirement (43) naturally holds due to T ≥ O(N2ϵ2/(B2c3d log 1
δ )).

Proof of Corollary 3.5. Moreover, we take the limit T ≥ O(N2ϵ2/(B2c3d log 1
δ )) to derive the privacy-utility

trade-off

E
[

min
0≤k<T

∥∇f(xk)∥
]

≤ O

(
4

√
(Df + 1)2(L1(c + τ0) + L0)dc2 log(1/δ)

N2ϵ2

)
,

ending the proof.

E Proof for Privacy Guarantee

This section presents a simple proof for Lemma 3.1. To begin with, we formally introduce the functional
view of Renyi Differential Privacy below. Define a functional as

ϵM(α) ≜ sup
D,D′

Dα(M(D)∥M(D′)) = sup
D,D′

1
α − 1 logEθ∼M(D′)

[(
M(D)(θ)
M(D′)(θ)

)α]
, α ≥ 1 (44)

where M(D) denotes the distribution of the output with input D and M(D)(θ) refers to the density at θ of
this distribution. The following propositions clarify several notions of differential privacy in the literature.
Proposition E.1. Let M be a randomized mechanism.

(i) If and only if ϵM(∞) ≤ ϵ, then M is ϵ-(pure)-DP (Dwork et al., 2014).

(ii) If and only if ϵM(α) ≤ ϵ, then M is (α, ϵ)-RDP (Renyi differential privacy) (Mironov, 2017).

(iii) For any (ϵ, δ), if there exists α ≥ 1 such that δ ≥ exp[(α − 1)(ϵM(α) − ϵ)], then M is (ϵ, δ)-DP (Abadi
et al., 2016, Theorem 2).

Here we also restate the composition theorem for Renyi differential privacy.
Proposition E.2 (Proposition 1, Mironov (2017)). Let M = MT ◦ MT −1 ◦ · · · ◦ M1 be defined in an
interactively compositional way, then for any fixed α ≥ 1,

ϵM(α) ≤
T∑

i=1
ϵMi

(α).

DP-SGD and DP-NSGD under our consideration can both be decomposed into T composition of sub-
sampled Gaussian mechanism with uniform sampling without replacement, denoted as Gaussian(σ) ◦
subsample(N, B). We write the privacy-accountant functional, (44), of this building-block mechanism as
ϵ̂(α).

It is widely known that the sole Gaussian mechanism has ϵGaussian(σ)(α) = α/(2σ2), Table II in Mironov
(2017), when the ℓ2-sensitivity of the unperturbed mechanism is normalized to 1. The sub-sampled Gaussian
mechanism is much more complicated and draws many previous efforts. In particular, Abadi et al. (2016);
Mironov et al. (2019) study Poisson sub-sampling, which is less popular in practical sub-sampling; Wang
et al. (2019b) proposed a general bound for any uniformly sub-sampled RDP mechanisms, but their bound
is a bit loose when restricted to Gaussian mechanisms. Thankfully, Bun et al. (2018) developed a general
privacy-amplification bound for any uniformly sub-sampled tCDP mechanisms, which is satisfying for our
later treatment. Specifically, we specify Theorem 11 in Bun et al. (2018) to the Gaussian mechanism, to get
the following proposition.
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Proposition E.3 (Privacy Amplification by Uniform Sub-sampling without Replacement). For the very
mechanism Gaussian(σ) ◦ subsample(N, B) with B < 0.1N , we have the following privacy accountant

ϵM(α) ≤ 7γ2α

σ2 , ∀α ≤ σ2

2 log
(

1
γ

)
, (45)

with γ = B/N .

Proof of Lemma 3.1. We denote whole composited mechanism as M. We view the summation of
clipped/normalized gradients as the unperturbed mechanism, so the Gaussian noise we add is N (0, σ2B2c2)
for DP-SGD and N (0, σ2B2). However, their respective privacy guarantee are still the same, since DP-SGD
has ℓ2 sensitivity c while DP-NSGD has ℓ2 sensitivity 1. By Propositions E.2 and E.3, we have

ϵM(α) ≤ 7Tγ2α

B2σ2 , ∀α ≤ B2σ2

2 log
(

1
γ

)
.

Further by Proposition E.1(iii), DP-SGD is (ϵ, δ)-DP if there exists α ≤ B2σ2

2 log
(

1
γ

)
such that

7Tγ2α/(B2σ2) ≤ϵ/2,

exp(−(α − 1)ϵ/2) ≤δ.

Plus, we find that when ϵ = c1γ2T , we can satisfy all these conditions by setting

σ ≥ c2
γ
√

T log(1/δ)
Bϵ

for some explicit constants c1 and c2.
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