
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FORMATTING INSTRUCTIONS FOR ICLR 2026
CONFERENCE SUBMISSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning allows models like transformers to adapt to new tasks from a few
examples without updating their weights, a desirable trait for reinforcement learning
(RL). However, existing in-context RL methods, such as Algorithm Distillation
(AD), demand large, carefully curated datasets and can be unstable and costly
to train due to the transient nature of in-context learning abilities. In this work,
we integrated the n-gram induction heads into transformers for in-context RL.
By incorporating these n-gram attention patterns, we considerably reduced the
amount of data required for generalization and eased the training process by making
models less sensitive to hyperparameters. Our approach matches, and in some cases
surpasses, the performance of AD in both grid-world and pixel-based environments,
suggesting that n-gram induction heads could improve the efficiency of in-context
RL.

1 INTRODUCTION

64 128 256 512 1024 2048
Training Goals

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Return

baseline
ngram

Figure 1: Performance comparison for dif-
ferent number of training goals between our
method and Algorithm Distillation (AD), an
in-context reinforcement learning method
[17]. Our method demonstrates similar perfor-
mance with less training goals (128 vs. 512)
and in general outperforms the baseline. See
Section 4 for results.

In-context learning is a powerful ability of pretrained
autoregressive models, such as transformers [30] or
state-space models [12]. In contrast to fine-tuning,
in-context learning is able to effectively solve down-
stream tasks on inference without explicitly updating
the weight of a model, making it a versatile tool for
solving wide range of tasks [1]. Originated in the lan-
guage domain [4], the in-context ability has quickly
found its applications in Reinforcement Learning
(RL) for building agents that can adaptively react
to the changes in the dynamics of the environment.
This trait allows researchers to use In-Context Re-
inforcement Learning (ICRL) as a backbone for the
embodied agents [7] or to benefit from its adapta-
tion abilities for domain recognition in order to build
generalist agents [11, 24].

In-context reinforcement learning methods that learn
from offline datasets were first introduced by Laskin
et al. [17] and Lee et al. [18]. In the former work, Al-
gorithm Distillation (AD), authors propose to distill
the policy improvement operator from a collection of
learning histories of RL algorithms. After pretraining
a transformer on these learning histories, an agent is able to generalize to unseen tasks entirely
in-context. In the latter approach, the authors show it is possible to train adaptive models on datasets
that contain interactions collected with expert policies, provided that the optimal actions for each
state are also available.

Both methods require specifically curated data, which can be demanding to obtain [22]. In addition,
the in-context ability itself is transient [27] and it is difficult to predict its emergence from cross-
entropy loss alone [1], making the training of such models unstable and expensive in terms of training
budget. Our work takes initial steps toward addressing these challenges by introducing modifications

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to the transformer’s attention heads, which can accelerate training and reduce the amount of data
required for in-context learning to emerge.

Induction heads have been shown to be a central mechanism that allows in-context learning in trans-
formers [23]. Edelman et al. [6] studied the emergence of these statistical induction heads on synthetic
data and concluded that transformers obtain a simplicity bias towards plain uni-grams. Akyürek
et al. [2] take a step forward in this direction, demonstrating that in the in-context learning setting,
the attention mechanism develops higher-order induction heads. These heads are responsible for
recognizing and capturing n-grams within a sequence. Authors propose to hardcode this mechanism
into a transformer, creating an n-gram layer which is used as a drop-in replacement for the multi-head
attention mechanism. Intuitively, a transformer benefits from it by not learning this complicated
behavior by itself; rather, it straightforwardly receives an inductive bias that n-gram heads provide.
This approach significantly decreases perplexity even when applied to recurrent sequential models,
indicating that n-grams play a major role in building effective in-context learning models.

In our work, we propose integrating an n-gram induction head into the ICRL model. As we demon-
strate, these heads can improve model performance in low-data settings and reduce hyperparameter
sensitivity while introducing only a few additional hyperparameters that are straightforward to opti-
mize. We provide experimental evidence on Dark Room, Key-to-Door and Miniworld environments,
covering both discrete and visual observation spaces.

To summarize our main contributions, in this paper we show that N-Gram attention heads:

• Decrease the amount of data needed for generalization on novel tasks. By utilizing
n-gram heads, it is possible to reduce the total number of transitions in training data by a
maximum of 27x compared to the original method of Laskin et al. [17]. The results are
presented in Section 4.1.

• Help mitigate hyperparameter sensitivity in ICRL models, contributing to more stable
training. By employing n-gram heads, one may need less time searching for a good set of
hyperparameters. The results are presented in Section 4.2.

• Can be used in the environments with visual observations. However n-grams are
originally found in discrete structures (e.g. natural language texts), we show it is possible to
detect repeating patterns in the sequences of images. The details of the implementation are
presented in Section 2.3 and the results of the experiment are shown in Section 4.3.

2 METHOD

2.1 ALGORITHM DISTILLATION

We build our method on Algorithm Distillation [17] and use it as our baseline. It is an in-context rein-
forcement learning algorithm that distills the policy improvement operator by training a transformer
model on specifically acquired data. As training data, the authors propose to use the learning histories
of many RL algorithms that are trained to solve different tasks in the multi-task environment. After
pretraining on such data, the model is able to solve unseen tasks entirely in-context by interacting
with an environment without explicitly updating weights of the model.

More formally, if we assume that a dataset D consists of learning histories, then

D :=
{
(τg1 , ..., τ

g
n) ∼

[
Asource

g |g ∈ G
] }

,

where τgi = (o1, a1, r1, ..., oT , aT , rT) is a trajectory generated by a source algorithm from Asource
g

for a goal g from a set of all possible goals G, and oi, ai, ri are observations, actions and rewards,
respectively.

Such data might be difficult to obtain, since the aforementioned process requires training thousands
of RL algorithms solving different tasks to obtain enough learning histories. In addition, AD suffers
the same problems as any in-context algorithm. Learning the optimal solution can be delayed by a
tendency of transformers to learn simple structures at first [6]. Moreover, the nature of in-context

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

0 20 40 60

0.5

1.0

Ex
pe

ct
ed

 M
ax

 R
et

ur
n

1k histories

0 20 40 60

0.50

0.96

5k histories

0 20 40 60

0.50

0.98

10k histories

0 20 40 60

0.50

0.68

1.00

Ex
pe

ct
ed

 M
ax

 R
et

ur
n

10 goals

0 20 40 60
hyperparameter assignments

0.5

1.0

20 goals

0 20 40 60

0.5

1.0

30 goals

states
[s, a, r]
baseline

Figure 2: Results on Dark Room. We search through hyperparameters in random order and report
expected maximum performance [5]. We also constrain the number of optimization steps by 10K
and use equal batch size to ensure both methods use the same amount of data. The top row shows
experiments with different number of learning histories, with the total number of training goals fixed.
It is seen that our method needs much less hyperparameter assignments (20 for 1K histories) to
find the optimal model, while the baseline performance increases only asymptotically (full plots are
shown in Appendix D). The number of traning tasks for this experiment is 60. The bottom row
presents experiments with varied number of goals and fixed number of learning histories. Our method
makes it possible to find the optimal hyperparameters with only 15 hyperparameter assignments,
while the baseline fails to work in such low data conditions. However, none of the methods can learn
to generalize from only 10 goals. The number of learning histories for this task is 1K.

ability is unstable and can fade into in-weights regime as the training progresses, considerably
complicating the emergence of adaptation ability [27].

2.2 N-GRAM ATTENTION

To address simplicity bias and improve data efficiency, we include an n-gram attention layer [2] as
one of the transformer layers. This type of layer has been shown to effectively reduce simplicity bias
and enhance in-context performance. Essentially, it directly incorporates the computation of n-gram
statistics into the transformer, instead of relying on them to develop naturally over time. The attention
pattern that is calculated from the input sequence and used in N-Gram Head (NGH) is defined as:

A(n)ij ∝ 1[(∧n
k=1xi−k = xj−k−1)] .

After that, we apply a projection and add a residual to the output:

NGHn
(
hl
)
= W1h

l +W2A(n)⊤hl ,

where n is the length of n-grams, W1 and W2 are learnable projection matrices and hl is an embedding
from a previous transformer layer. In simple terms, we look for n-gram occurrences and with the help
of A(n) attention pattern force gradients to flow only through tokens that co-occur in the sequence.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Following Akyürek et al. [2], we also implement an N-Gram layer, which closely resembles a
traditional transformer layer. The layer consists of a head NGHi that is processed through a MLP
and then added to the residual stream:

NGLn
(
hl
)
= hl + MLP[NGHn(hl)].

In the original paper, the authors used text tokens from the input sequence for n-gram matching. We
lack such an opportunity when dealing with image observations, so we ought to use quantization in
order to enable n-gram matching. The implementation details of the quantization process and how
matching is performed are described in the Section 2.3.

2.3 N-GRAM MATCHING

To find n-grams in environments with a discrete observation space, we use raw input sequence. How-
ever, since we are working in RL setting, the input sequence has a form of (s0, a0, r0, . . . , sn, an, r0),
so in our experiments we tested two approaches. We either compare the equivalence of full transitions
(ai−1, ri−1, si) = (aj−1, rj−1, sj) or just states (si = sj).

In case of pixel-based observations, We cannot directly match raw images, as even slight variations
can result in a mismatch. To address this, we use Vector Quantization (VQ) [29, 9] to quantize
observations into the vectors from a codebook. We pretrain a ResNet [13] encoder-decoder model
with a VQ bottleneck, which is trained to reconstruct the input image. After pretraining, each image
is mapped into a 4 × 4 matrix of indices, and we use these for the n-gram matching. We count a
match only if all the indices in the matrix are equal.

Before training starts, we use the VQ model to label images from a dataset with their indices and then
train both causal and n-gram attention layers simultaneously. During the evaluation, we only make a
forward pass of the VQ model in order to get the latent vectors and indices for n-gram matching.

3 EXPERIMENT SETUP

3.1 ENVIRONMENTS

Figure 3: (Left) The Key-to-Door environ-
ment. The key and the door are shown for
illustrative purposes only; the agent does not
see their location during training. (Right) An
observation from the Miniworld environment.

Dark Room is an MDP grid-world environment with
discrete state and action spaces The grid size is 9× 9,
where an agent has 5 possible actions: up, down, left,
right and do nothing. The goal is to find a target cell,
the location of which is not known to the agent in
advance. The episode length is fixed at 50 time steps,
after which the agent is reset to the middle of the grid.
The reward r = 1 is given for every time step the
agent is on the goal grid, otherwise r = 0. The agent
does not know the position of the goal, hence it is
driven to explore the grid. The environment consists
of 80 goals in total, excluding the starting square.

Dark Key-to-Door is a POMDP environment, sim-
ilar to Dark Room, but with a more complicated task.
The agent first needs to find a square with a key, and

then only to find a door. The reward is given when the key is found (r = 1) and once the door is
opened (also r = 1), after which the episode ends. The agent then resets to a random grid. The
maximum episode length is 50, and since we can control the location of the key and door, there are
around 6.5k possible tasks. The key difference of Key-to-Door compared to Dark Room is that an
agent needs to use the memory to recall whether or not the key was collected to adapt its exploration
strategy and successfully solve the task. We do not provide any hints after the key was collected,
which makes the environment only partially observed.

Both Key-to-Door and Dark Room serve as a good starting point for testing the in-context ability in
an RL setting. Despite its simple grid-structure, AD still needs a substantial amount of data to start

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 50 100 150 200
0.50

1.00

1.50
1.76
2.00

Ex
pe

ct
ed

 M
ax

 R
et

ur
n

500 hist

0 50 100 150 200
hyperparameter assignments

0.50

1.00

1.50
1.79
2.00

750 hist

0 50 100 150 200
0.50

1.00

1.50

1.85
2.00

1000 hist

states
[s, a, r]
baseline

Figure 4: Results on Key-to-Door. We demonstrate the ability of our method to generalize when the
task diversity is limited. We fix the total number of goals with 100, significantly shrinking the number
of learning histories. Keep in mind that for the baseline method to converge to a model with the same
performance, it needs 2048 goals and 2048 learning histories [17]. We show that our method needs
27x less data comparing to baseline (see Appendix B for justification). The baseline method can
no longer converge with that few data and its performance plateaus with the increasing number of
hyperparameter assignments, while N-Gram model shows near-optimal performance.

showing decent performance, and these environments serve as a testbed to show N-Gram Layers help
with data efficiency.

Miniworld is a 3D environment with an RGB 64× 64 images as observations and a discrete action
space. We test our method in two settings of Miniworld, the first resembling Dark Room and the
latter Key-to-Door. The agent can perform three actions: move a step ahead and turn the camera left
or right, no lateral movement is allowed. The episode length is 50 for Miniworld-Dark Room and
100 for Miniworld-Key-to-Door.

The Miniworld-based environments are of special interest, because while it was trivial to search for
n-grams with discrete states, pixel-based observations are not so easily comparable. The details of
n-grams matching for Miniworld are described in Section 2.3.

3.2 EVALUATION PROTOCOL

We set up and follow a specific evaluation protocol to showcase the benefits of using N-Gram layers
in the ICRL setting. We use a random search over the hyperparameter space. Reporting aggregated
hyperparameter search results instead of cherry-picking the best runs allows us to demonstrate the
hyperparameter sensitivity of each method. To ensure that in each experiment a model has processed
an equal amount of data, we fixed the batch size and limited the number of gradient steps during a
run to 10K.

We evaluate the models on previously unseen goals that were not included in the training dataset.
In the Dark Room environment, the number of evaluation goals varies across experiments and
corresponds to all goals excluded from the training set. For instance, if a model is trained on 20 goals,
it is evaluated on the remaining 60 goals. For Key-to-Door evaluation, we use 100 unseen goals and
50 unseen goals for Miniworld Key-to-Door.

To show the difference between our method and the baseline, we choose to report the Expected
Maximum Performance metric (EMP) [5, 16]. By doing so, we do not report the best performance of
a single checkpoint, rather we show the expected maximum performance for a certain computational
budget. Using this approach, we simultaneously compare our method with a baseline in terms of ease
of training and maximum achieved performance. The exact hyperparameter assignment setups are
shown in Appendix C.

3.3 DATA COLLECTION

Algorithm Distillation introduce several requirements on the structure of the data. It should be
comprised of learning histories, i.e. there should be an implicit ordering in data from the least to the
most effective policy. To produce such histories, we used a combination of approaches.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 100 200
0.50

0.75

0.96

Ex
pe

ct
ed

 M
ax

 R
et

ur
n

Miniworld-Dark
30 goals

NGH
baseline

0 50 100
0.50

1.00

1.501.62

2.00

Miniworld Key-to-Door
300 goals

baseline
NGH

hyperparameter assignments

Figure 5: Results on Miniword environments. We show that our method is applicable not only for
environments with discrete observations, but also for the image-based ones. The settings of the
Miniworld environments are similar to Dark Room and Key-to-Door. The main outcome of these
experiments is that we can successfully implement n-gram matching in for images and get similar
results to the discrete environments. The details of the setup are described in Section 4.3. (Left)
We fix the number of tasks in Miniworld-Dark to 30 and the number of learning histories to 50.
The N-Gram layer significantly enhances performance, resulting in nearly-optimal model, while the
baseline quickly saturates around suboptimal return. The evaluation is done on 50 goals. (Right)
For the experiment in Miniworld-Key-to-Door we fix 300 training tasks and 50 learning histories.
The results follow the pattern observed in discrete environments, where the N-Gram layer refines the
performance of the baseline model. We evaluate the models on 100 unseen goals.

For grid-world environments, we use a table Q-Learning algorithm [31] and save (si, ai, ri) transi-
tions. In image-based environments, we use the approach described in Zisman et al. [33]. For this, we
implement an oracle agent and design a decaying noise schedule. It allows us to collect the learning
histories faster than training any model-free RL algorithm from scratch for each task. The rest of the
data collection process remains unchanged.

Throughout the text we use the terms learning histories and tasks. The task is a predefined grid or
a pair of grids an agent must come to upon it receives a reward. The learning history is an ordered
collection of states, actions and rewards an RL algorithm observed (or produced) while learning to
solve a single task. When we say we generated a dataset of n tasks with m learning histories, it
means for each of the task there are at least ⌊m

n ⌋ learning histories per task. Unlike Laskin et al. [17],
we distinguish between tasks and learning histories, as it is often the case with real data when many
trajectories correspond to only a few tasks [32, 8].

4 RESULTS

In this section, we examine how ICRL models can benefit from N-Gram layers and explore potential
challenges associated with their use. We analyze their role in hyperparameter search efficiency, data
efficiency, and applicability to image-based observations. Additionally, we examine whether they
significantly expand the hyperparameter search space or negatively affect baseline performance.

4.1 N-GRAM LAYERS CAN MAKE THE SEARCH FOR OPTIMAL HYPERPARAMETERS QUICKER

In-context learning is known for its instabilities: it is difficult to predict an emergence of in-context
ability from the loss function value [1]; it is transient, meaning that during training it can switch
between in-weight and in-context regimes [27]. Because of these drawbacks, finding a good set
of hyperparameters can be sufficiently delayed, which leads to more resources being spent on
computation. We hypothesize that by including n-gram heads from the start, rather than waiting for
their emergence during training, we can adequately decrease the computational budget and make the
hyperparameter search faster.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To demonstrate the effect of N-Gram layers on the hyperparameter sensitivity of the model, we
perfrorm a random search over the core transformer hyperparameters that do not change the parameter
count of the model. The effect of N-Gram heads is illustrated in Figure 2. In the top row, we fix
the number of training tasks at 60 and vary the number of learning histories. It can be seen that
the model with n-gram layers can find the optimal parameters faster than the baseline model. For
1K learning histories, finding the optimal model requires just over 20 hyperparameter assignments,
while the baseline model needs more than 400. When the number of tasks varies, the baseline model
quickly saturates at suboptimal performance and asymptotically improves thereafter, whereas the
n-gram model reaches optimal performance in about 15 assignments. Full-length plots are available
in Figure 9.

4.2 N-GRAM LAYERS IMPROVE DATA-EFFICIENCY OF ICRL ALGORITHM

In-context reinforcement learning imposes special limitations on data, making them difficult to obtain.
Moreover, the performance of the ICRL model can be affected by meta-parameters of the data [33],
such as the diversity of tasks, the number of learning histories per task, and the learning pace of
data-generating RL algorithm.

In real-world data, there are often many trajectories per task, but the number of distinct tasks is
limited. [32, 8]. In such cases, a desirable quality of the model is its ability to avoid overfitting
on the training data while generalizing to unseen tasks. Our hypothesis here is that incorporating
N-Gram layers into the model can help build a more data-efficient model and enhance generalization
by capturing sequential patterns within trajectories.

To show the effect of N-Gram layers when task diversity in data is low, we set up an experiment in
the Key-to-Door environment, since it possesses 6.5K tasks in total. To simulate low task diversity,
we fix the number of training goals by 100 and sample another 100 unseen goals for evaluation. It can
be observed from Figure 4 that the baseline method is struggling to produce a model that is able to
generalize to unseen goals in such a low data setting. In turn, our method demonstrates performance
on par with what Laskin et al. [17] report in their work. We note that compared to AD, our method
needs 27x less data, detailed computations are provided in Appendix B.

4.3 N-GRAM LAYERS CAN BE USED WITH IMAGES AS OBSERVATIONS

0 50 100

0.75

0.96

Ex
pe

ct
ed

 M
ax

 R
et

ur
n

Miniworld-Dark

NGH: 50 goals
baseline: 60 goals

0 100 200

0.50

1.00

1.50

1.85
2.00

Miniworld-Key-to-Door

baseline: 2k goals
NGH: 2k goals

hyperparameter assignments

Figure 6: Hyperparameter sensitivity. (Left)
Results on Miniworld-Dark. The N-Gram
layer model is trained on 50 goals, the base-
line model is on 60. For evaluation, 20 goals
were used. (Right) Results on Miniworld-
Key-to-Door. Both N-Gram and baseline
models were trained on 2K goals and eval-
uated on 100 unseen goals.

It is relatively straightforward to match n-grams in
discrete settings, like text or grid-world environments.
The problem arises when the observation space is
image-based. We cannot directly compare the images,
as even a slight camera rotation would invalidate a
match; however, they may still correspond to the
same state.

To address this, we need a model that disregards
minor differences in its encoding and instead focuses
on state-representative details, such as the color of the
wall the agent sees and its distance from the wall. We
utilize the Vector Quantization [29] technique for this
reason, the details of n-gram matching are described
in Section 2.3.

We transfer the Dark Room and Key-to-Door setting
into a 3D environment Minigrid, where an agent re-
ceives a 3× 64× 64 RGB image as an observation. We observed similar differences in performance
of the N-Gram and baseline models. N-Gram layer is able to reduce the number of hyperparameter
assignments needed to find a model with near-optimal performance in both Miniworld-Dark (Room,
omitted for brevity) and Miniworld-Key-to-Door environments, see Figure 6. In a low-data regime,
N-Gram layers also improve performance compared to the baseline. As shown in Figure 5, N-Gram
layers enhance performance in both environments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.4 N-GRAM LAYERS DO NOT SIGNIFICANTLY EXPAND HYPERPARAMETER SEARCH SPACE

N-Gram layer introduce new hyperparameters to optimize, such as n-gram length and position of the
layer to which N-Gram layer is inserted. A natural question arises: do these hyperparameters also
require extensive search, and how sensitive is the model to them?

To address this question, we conducted six random hyperparameter searches in Miniworld-Dark,
ablating either the layer position or the n-gram length while keeping one variable fixed. For the
n-gram length search, we fixed the position at [1] (after the first layer), whereas for the layer position
HP search, we set the n-gram length to 1. Following [2], we do not insert N-Gram layer as the first or
last layer. While searching for the optimal n-gram length, we consider ”up to” a given n-gram. For
example, a 2-gram includes both a 1-gram and a 2-gram together. We continue to report the EMP
metric, but here we present only the final value achieved after all hyperparameter assignments (full
plots are available in Appendix D).

Table 1(a) and Table 1(b) show that there is no significant difference between neither the n-gram
length, nor the position of the N-Gram layer inside a transformer. This may indicate that there is little
to no overhead in hyperparameter search caused by introduction of N-Gram layers.

4.5 INSERTING N-GRAM LAYERS DOES NOT HURT THE PERFORMANCE OF A BASELINE
ALGORITHM

Another concern when working with N-Gram layers is whether they can affect the performance of a
baseline model. Hypothetically, this can occur if the quantization model fails to correctly identify
which image observations correspond to the same underlying state, rendering the n-gram matching
mechanism ineffective.

We designed the following experiment to test this hypothesis. Using VQ as an n-gram extraction tool,
we follow the standard procedure described in Section 2.3, with one key modification. After matching,
we shuffle the n-gram attention matrix A(n)ij , effectively simulating a completely ineffective N-Gram
attention layer that selects incorrect observations as n-gram matches. Like in the previous experiment,
we run a random HP search in Miniworld-Dark environment and report the EMP calculated for the
last hyperparameter assigned.

We compare the model with the permuted n-gram mask with the baseline model without the N-Gram
layer, the results are shown in Table 1(c). No significant difference is observed between the two
models, suggesting that when the n-gram matching mechanism is flawed, the model’s performance
remains comparable to that of a model without an N-Gram layer.

5 RELATED WORK

In-context RL. The key feature behind ICRL is the adaptation ability of a pretrained agent [18, 28].
In general, it relies on the transformer’s ability to infer a task from the history of interactions with an
environment. Müller et al. [20] show that transformers are capable of Bayesian inference, which is
known for its applicability to reasoning under uncertainty [10]. Laskin et al. [17] proposed to pretrain
a transformer on the learning histories of RL algorithms which allows it to implicitly learn the policy
improvement operator. During inference on unseen tasks, a transformer is able to improve its policy
by observing a context and inferring a task from it. However, such an approach requires specific
datasets, which may be expensive to collect [22]. To address this, it has been proposed to generate
datasets following the noise curriculum instead of training thousands of RL agents [33], perform
augmentations of existing data [14] or filter out irrelevant data [26]. Our work follows the direction of
loosening data restrictions, but instead of working with data, we introduce a model-centric approach,
making a transformer to demonstrate in-context abilities while operating on a restricted amount of
data.

N-Gram and Transformers. N-Gram statistical models have been known for decades and used in
the statistical approach to language modeling [3, 15]. More recent approaches [25, 19] study the
application of n-grams to transformer models, finding that they can increase overall performance.
Akyürek et al. [2] discover that a transformer implicitly implements the 2-gram attention pattern when
solving the in-context learning task, which authors denote as a higher order of induction head [23].

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

They explicitly implement 1-, 2-, and 3-gram attention layers and observe a significant reduction in
perplexity of the pretrained models. Another work [6] directly investigates the behavior of n-gram
induction heads during the training process. The authors find that transformers are biased towards
simple solutions, thus making it problematic for higher-order induction heads to appear. To our
knowledge, we are the first to apply these findings in a decision-making setting.

6 CONCLUSION AND FUTURE WORK

Table 1:
(a) Ablation on n-gram length

N-Gram max EMP
1-gram 0.74 ± 0.02
2-gram 0.71 ± 0.01
3-gram 0.76 ± 0.05

(b) Ablation on N-Gram layer
position

Position EMP
[1] 0.69 ± 0.03
[2] 0.69 ± 0.02
[1, 2] 0.67 ± 0.005

(c) Comparison of baseline
and a random n-gram mask

Model EMP
Permuted 0.51 ± 0.03
Baseline 0.52 ± 0.02

In our work we show that incorporating n-gram induction heads
can sufficiently ease training of in-context reinforcement learning
algorithms. Our findings are threefold: (i) we show that n-gram
heads can fairly decrease sensitivity to hyperparameters of ICRL
models; (ii) we demonstrate that our method is able to generalize
from much fewer data than the baseline Algorithm Distillation [17]
approach. (iii) however the original n-gram heads were designed
for discrete spaces, we showed it is possible to adapt the approach
to environments with visual observations by utilizing vector quan-
tization techniques. We speculate that n-gram heads are useful in
ICRL due to the imperfect nature of in-context learning itself: a
tendency of transformers to converge to simple solutions first [6],
and the transitivity of the in-context ability itself [27].

Although we believe our findings are promising, there are some limi-
tations of the current work. Further research is needed to investigate
the behavior of N-Gram heads in more comprehensive environments,
e.g. XLand-Minigrid [21] or Meta-World [32]. Additionally, while
image observations account for a significant portion of RL applica-
tions, exploring methods to apply N-Gram heads to proprioceptive
continuous states could provide further insights.

REFERENCES

[1] Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer
Abbas, Azade Nova, John D Co-Reyes, Eric Chu, et al. Many-shot in-context learning. arXiv preprint
arXiv:2404.11018, 2024.

[2] Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Arhitectures
and algorithms. arXiv preprint arXiv:2401.12973, 2024.

[3] Peter F Brown, Vincent J Della Pietra, Peter V Desouza, Jennifer C Lai, and Robert L Mercer. Class-based
n-gram models of natural language. Computational linguistics, 18(4):467–480, 1992.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[5] Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A Smith. Show your work:
Improved reporting of experimental results. arXiv preprint arXiv:1909.03004, 2019.

[6] Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The evolution of
statistical induction heads: In-context learning markov chains. arXiv preprint arXiv:2402.11004, 2024.

[7] Ahmad Elawady, Gunjan Chhablani, Ram Ramrakhya, Karmesh Yadav, Dhruv Batra, Zsolt Kira, and
Andrew Szot. Relic: A recipe for 64k steps of in-context reinforcement learning for embodied ai, 2024.
URL https://arxiv.org/abs/2410.02751.

[8] Quentin Gallouédec, Edward Beeching, Clément Romac, and Emmanuel Dellandréa. Jack of all trades,
master of some, a multi-purpose transformer agent, 2024. URL https://arxiv.org/abs/2402.
09844.

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2410.02751
https://arxiv.org/abs/2402.09844
https://arxiv.org/abs/2402.09844

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

[9] Allen Gersho and Robert M. Gray. Vector quantization and signal compression. In The Kluwer International
Series in Engineering and Computer Science, 1991. URL https://api.semanticscholar.org/
CorpusID:118950728.

[10] Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian reinforcement
learning: A survey. Foundations and Trends® in Machine Learning, 8(5-6):359–483, 2015.

[11] Jake Grigsby, Justin Sasek, Samyak Parajuli, Daniel Adebi, Amy Zhang, and Yuke Zhu. Amago-
2: Breaking the multi-task barrier in meta-reinforcement learning with transformers. arXiv preprint
arXiv:2411.11188, 2024.

[12] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state
spaces, 2022. URL https://arxiv.org/abs/2111.00396.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[14] Louis Kirsch, James Harrison, Daniel Freeman, Jascha Sohl-Dickstein, and Jürgen Schmidhuber. Towards
general-purpose in-context learning agents. Workshop on Distribution Shifts, 37th Conference on Neural
Information . . . , 2023.

[15] R. Kneser and H. Ney. Improved backing-off for m-gram language modeling. In 1995 International
Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 181–184 vol.1, 1995. doi:
10.1109/ICASSP.1995.479394.

[16] Vladislav Kurenkov and Sergey Kolesnikov. Showing your offline reinforcement learning work: Online
evaluation budget matters. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 11729–11752. PMLR, 17–23 Jul 2022.

[17] Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

[18] Jonathan N Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma Brun-
skill. Supervised pretraining can learn in-context reinforcement learning. arXiv preprint arXiv:2306.14892,
2023.

[19] Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-gram: Scaling
unbounded n-gram language models to a trillion tokens. arXiv preprint arXiv:2401.17377, 2024.

[20] Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Transformers
can do bayesian inference. arXiv preprint arXiv:2112.10510, 2021.

[21] Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Artem Sergeevich Agarkov, Viacheslav Sinii, and
Sergey Kolesnikov. Xland-minigrid: Scalable meta-reinforcement learning environments in jax. In
Automated Reinforcement Learning: Exploring Meta-Learning, AutoML, and LLMs, 2024.

[22] Alexander Nikulin, Ilya Zisman, Alexey Zemtsov, Viacheslav Sinii, Vladislav Kurenkov, and Sergey
Kolesnikov. Xland-100b: A large-scale multi-task dataset for in-context reinforcement learning. arXiv
preprint arXiv:2406.08973, 2024.

[23] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben
Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

[24] Andrey Polubarov, Nikita Lyubaykin, Alexander Derevyagin, Ilya Zisman, Denis Tarasov, Alexander
Nikulin, and Vladislav Kurenkov. Vintix: Action model via in-context reinforcement learning. arXiv,
2501.19400, 2025.

[25] Aurko Roy, Rohan Anil, Guangda Lai, Benjamin Lee, Jeffrey Zhao, Shuyuan Zhang, Shibo Wang,
Ye Zhang, Shen Wu, Rigel Swavely, et al. N-grammer: Augmenting transformers with latent n-grams.
arXiv preprint arXiv:2207.06366, 2022.

[26] Thomas Schmied, Fabian Paischer, Vihang Patil, Markus Hofmarcher, Razvan Pascanu, and Sepp
Hochreiter. Retrieval-augmented decision transformer: External memory for in-context rl, 2024. URL
https://arxiv.org/abs/2410.07071.

[27] Aaditya Singh, Stephanie Chan, Ted Moskovitz, Erin Grant, Andrew Saxe, and Felix Hill. The transient
nature of emergent in-context learning in transformers. Advances in Neural Information Processing
Systems, 36, 2024.

[28] Denis Tarasov, Alexander Nikulin, Ilya Zisman, Albina Klepach, Andrei Polubarov, Nikita Lyubaykin,
Alexander Derevyagin, Igor Kiselev, and Vladislav Kurenkov. Yes, q-learning helps offline in-context rl,
2025. URL https://arxiv.org/abs/2502.17666.

[29] Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learn-
ing. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,

10

https://api.semanticscholar.org/CorpusID:118950728
https://api.semanticscholar.org/CorpusID:118950728
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2410.07071
https://arxiv.org/abs/2502.17666

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.
03762.

[31] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.
[32] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine.

Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning. In Conference
on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.10897.

[33] Ilya Zisman, Vladislav Kurenkov, Alexander Nikulin, Viacheslav Sinii, and Sergey Kolesnikov. Emergence
of in-context reinforcement learning from noise distillation. In Proceedings of the 41st International
Conference on Machine Learning, 2024.

11

https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1910.10897

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

B CALCULATION OF TRANSITIONS IN DATA

In appendix I of Laskin et al. [17] they mention that AD is more data-effective than source algorithm
and report the size of a dataset. The total number of data needed to achieve an approximate of 1.81
return on Key-to-Door 1 is reported as

(...) on 2048 Dark Key-to-Door tasks for 2000 episodes each.

The estimate of total number of transitions to generate for AD, considering the maximum length of
an episode in Key-to-Door is 50 steps, equals: 2048× 2000× 50 = 204.8M transitions.

We generate 100 unique training tasks and then sample 750 train task with repetition from the original
100. Then we make 200 training episodes for each task. In total, we get 750 × 200 × 50 = 7.5M
transitions, which is more than 27x less data.

C HP SEARCH SETUPS

We use weights and biases sweep for running sweeps. All of the sweep setups are available by this
clickable link [will be available after de-anonymization].

We also report the setup of hyperparameter sweep in the table below.

The experiments are run on H100 cluster, the experiments took around 40K GPU-hours throughout
the project, including failed runs.

1since no accurate data of plots was published, we used free-to-use WebPlotDigitizer for Fig. 6 in AD paper

12

https://apps.automeris.io/wpd4/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 2: Hyperparameter Configurations
(a) Grid Environments

Parameter Distribution Values

batch size - 1024
embedding dropout Uniform [0.0, 0.9]
seq len - [60, 100, 160, 200]
subsample - [4, 8, 10, 20, 50]
residual dropout Uniform [0.0, 0.5]
ngram head pos - [1], [2], [1, 2]
ngram max - [1, 2]
label smoothing Uniform [0.0, 0.8]
learning rate Log Uniform [1e-4, 1e-2]
weight decay Log Uniform [1e-7, 2e-2]
pre norm - [true, false]
normalize qk - [true, false]
hidden dim - 512
update steps - 10000

(b) MiniWorld environments

Parameter Distribution Values

batch size - 1024
embedding dropout Uniform [0.0, 0.8]
seq len - [100, 150, 200]
subsample - [8, 16, 32]
residual dropout Uniform [0.0, 0.8]
ngram head pos - [1], [2], [1, 2]
ngram max - [1, 2]
label smoothing Uniform [0.0, 0.8]
learning rate Log Uniform [5e-4, 1e-2]
weight decay Log Uniform [1e-7, 2e-2]
pre norm - [true, false]
normalize qk - [true, false]
hidden dim - 512
update steps - 10000

D FULL PLOTS

0 50 100 150
0.50

1.00

1.45

2.00

Ex
pe

ct
ed

 M
ax

 R
et

ur
n

200 hist

0 100 200 300 400
0.50

1.00

1.50

1.79
2.00

500 hist

0 100 200 300 400
0.50

1.00

1.50

1.82
2.00

750 hist

0 100 200 300 400
0.50

1.00

1.50

1.87
2.00

1000 hist

states
[s, a, r]
baseline

hyperparameter assignments

Figure 7: Full length plots for Key-to-Door. For 200 learning histories we halted the random search
early, since it was obvious the performance has stalled.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 200 400

0.5

1.0

Ex
pe

ct
ed

 M
ax

 R
et

ur
n

1k histories

0 200 400

0.5

1.0

5k histories

0 200 400

0.5

1.0

10k histories

0 200 400

0.50

0.73

1.00

Ex
pe

ct
ed

 M
ax

 R
et

ur
n

10 goals

0 200 400
hyperparameter assignments

0.5

1.0

20 goals

0 200 400

0.5

1.0

30 goals

states
[s, a, r]
baseline

Figure 8: Full length plots for Dark Room. Some of the computations halted earlier for the same
reason as in Figure 7

0 50 100
0.00

0.25

0.55
0.70
0.80

1.00

Ex
pe

ct
ed

 M
ax

 R
et

ur
n

Position Ablation

[2]-layers
[1]-layers
[1, 2]-layers

0 50 100
0.00

0.25

0.55

0.76

1.00
Length Ablation

1+2+3-gram
1-gram
1+2-gram

0 50 100
0.00

0.25

0.52

0.80

1.00
Shuffle Ablation

random-permutation
baseline

hyperparameter assignments

Figure 9: Full length plots for ablation experiments in Miniworld-Dark environment.

E PERFORMANCE OF AD ON KEY-TO-DOOR AND DARK ROOM

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 100 200
In-context Episodes

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

Dark Room

0 200 400
In-context Episodes

0.0

0.5

1.0

1.5

2.0

Re
tu

rn

Key-to-Door

0 100 200
In-context Episodes

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

Miniworld - Dark Room

0 100 200
In-context Episodes

0.0

0.5

1.0

1.5

2.0

Re
tu

rn

Miniworld - Key-to-Door

Figure 10: AD performance on Dark Room and Key-to-Door. This plot shows that our implementation
of AD demonstrates optimal performance given the right hyperparameters.

15

	Introduction
	Method
	Algorithm Distillation
	N-Gram Attention
	N-Gram Matching

	Experiment Setup
	Environments
	Evaluation Protocol
	Data Collection

	Results
	N-Gram layers can make the search for optimal hyperparameters quicker
	N-Gram layers improve data-efficiency of ICRL algorithm
	N-Gram layers can be used with images as observations
	N-Gram layers do not significantly expand hyperparameter search space
	Inserting N-Gram layers does not hurt the performance of a baseline algorithm

	Related Work
	Conclusion and Future Work
	Appendix
	Calculation of Transitions in Data
	HP Search Setups
	Full Plots
	Performance of AD on Key-to-Door and Dark Room

