
Published as a conference paper at ICLR 2024

PROPER LAPLACIAN REPRESENTATION LEARNING

Diego Gomez, Michael Bowling∗, Marlos C. Machado∗
Department of Computing Science, University of Alberta
Alberta Machine Intelligence Institute (Amii)
∗ Canada CIFAR AI Chair
Edmonton, AB T6G 2R3, Canada
{gomeznor,mbowling,machado}@ualberta.ca

ABSTRACT

The ability to learn good representations of states is essential for solving large re-
inforcement learning problems, where exploration, generalization, and transfer are
particularly challenging. The Laplacian representation is a promising approach
to address these problems by inducing informative state encoding and intrinsic
rewards for temporally-extended action discovery and reward shaping. To obtain
the Laplacian representation one needs to compute the eigensystem of the graph
Laplacian, which is often approximated through optimization objectives compat-
ible with deep learning approaches. These approximations, however, depend on
hyperparameters that are impossible to tune efficiently, converge to arbitrary rota-
tions of the desired eigenvectors, and are unable to accurately recover the corre-
sponding eigenvalues. In this paper we introduce a theoretically sound objective
and corresponding optimization algorithm for approximating the Laplacian repre-
sentation. Our approach naturally recovers both the true eigenvectors and eigen-
values while eliminating the hyperparameter dependence of previous approxima-
tions. We provide theoretical guarantees for our method and we show that those
results translate empirically into robust learning across multiple environments.

1 INTRODUCTION

Reinforcement learning (RL) is a framework for decision-making where an agent continually takes
actions in its environment and, in doing so, controls its future states. After each action, given the
current state and the action itself, the agent receives a reward and a next state from the environment.
The objective of the agent is to maximize the sum of these rewards. In principle, the agent has to visit
all states and try all possible actions a reasonable number of times to determine the optimal behavior.
However, in complex environments, e.g., when the number of states is large or the environment
changes with time, this is not a plausible strategy. Instead, the agent needs the ability to learn
representations of the state that facilitate exploration, generalization, and transfer.

The Laplacian framework (Mahadevan, 2005; Mahadevan & Maggioni, 2007) proposes one such
representation. This representation is based on the graph Laplacian, which, in the tabular case, is a
matrix that encodes the topology of the state space based on both the policy the agent uses to select
actions and the environment dynamics. Specifically, the d−dimensional Laplacian representation is
a map from states to vectors whose entries correspond to d eigenvectors of the Laplacian.

Among other properties, the Laplacian representation induces a metric space where the Eu-
clidean distance of two representations correlates to the temporal distance of their corresponding
states; moreover, its entries correspond to directions that maximally preserve state value informa-
tion (Petrik, 2007). Correspondingly, it has been used for reward shaping (Wu et al., 2019; Wang
et al., 2023), as a state representation for value approximation (e.g., Mahadevan & Maggioni, 2007;
Lan et al., 2022; Wang et al., 2022; Farebrother et al., 2023), as a set of intrinsic rewards for ex-
ploration via temporally-extended actions (see overview by Machado et al., 2023), zero-shot learn-
ing (Touati et al., 2023), and to achieve state-of-the-art performance in sparse reward environments
(Klissarov & Machado, 2023).

When the number of states, |S|, is small, the graph Laplacian can be represented as a matrix and
one can use standard matrix eigendecomposition techniques to obtain its eigensystem and the cor-

1

Published as a conference paper at ICLR 2024

GridRoom-16 GridMaze-19GridRoom-1

Av
er

ag
e

co
si

ne

si
m

ila
rit

y

Gradient steps Gradient steps Gradient steps

Figure 1: Average cosine similarity between the true Laplacian representation and GGDO for dif-
ferent values of the barrier penalty coefficient, averaged over 60 seeds, with the best coefficient
highlighted. The shaded region corresponds to a 95% confidence interval.

responding Laplacian representation. In practice, however, |S| is large, or even uncountable. Thus,
at some point it becomes infeasible to directly compute the eigenvectors of the Laplacian. In this
context, Wu et al. (2019) proposed a scalable optimization procedure to obtain the Laplacian rep-
resentation in state spaces with uncountably many states. Such an approach is based on a general
definition of the graph Laplacian as a linear operator, also introduced by Wu et al. (2019). Im-
portantly, this definition allows us to model the Laplacian representation as a neural network and to
learn it by minimizing an unconstrained optimization objective, the graph drawing objective (GDO).

A shortcoming of GDO, however, is that arbitrary rotations of the eigenvectors of the Laplacian min-
imize the graph drawing objective (Wang et al., 2021). This is, in general, undesirable since rotating
the eigenvectors affect the properties that make them useful as intrinsic rewards (see Appendix C for
more details). As a solution, Wang et al. (2021) proposed the generalized graph drawing objective
(GGDO), which breaks the symmetry of the optimization problem by introducing a sequence of de-
creasing hyperparameters to GDO. The true eigenvectors are the only solution to this new objective.
Despite this, when minimizing this objective with stochastic gradient descent, the rotations of the
smallest eigenvectors1 are still equilibrium points of the generalized objective. Consequently, there
is variability in the eigenvectors one actually finds when minimizing such an objective, depending,
for example, on the initialization of the network and on the hyperparameters chosen.

These issues are particularly problematic because it is impossible to tune the hyperparameters
of GGDO without already having access to the problem solution: previous results, when sweeping
hyperparameters, used the cosine similarity between the true eigenvectors and the approximated
solution as a performance metric. To make matters worse, the best hyperparameters are environ-
ment dependent, as shown in Figure 1. Thus, when relying on GDO, or GGDO, it is impossible
to guarantee an accurate estimate of the eigenvectors of the Laplacian in environments where one
does not know these eigenvectors in advance, which obviously defeats the whole purpose. Finally,
the existing objectives are unable to approximate the eigenvalues of the Laplacian, and existing
heuristics heavily depend on the accuracy of the estimated eigenvectors (Wang et al., 2023).

In this work, we introduce a theoretically sound max-min objective and a corresponding optimiza-
tion procedure for approximating the Laplacian representation that addresses all the aforementioned
issues. Our approach naturally recovers both the true eigenvectors and eigenvalues while eliminat-
ing the hyperparameter dependence of previous approximations. Our objective, which we call the
Augmented Lagrangian Laplacian Objective (ALLO), corresponds to a Lagrangian version of GDO
augmented with stop-gradient operators. These operators break the symmetry between the rota-
tions of the Laplacian eigenvectors, turning the eigenvectors and eigenvalues into the unique stable
equilibrium point of min-max ALLO under gradient ascent-descent dynamics, independently of the
original hyperparameters of GGDO. Besides theoretical guarantees, we empirically demonstrate that
our proposed approach is robust across different environments with different topologies and that it
is able to accurately recover the eigenvalues of the graph Laplacian as well.

2 BACKGROUND

We first review the reinforcement learning setting, before presenting the Laplacian representation
and previous work on optimization objectives for its approximating approximation.

1We refer to the eigenvectors with corresponding smallest eigenvalues as the “smallest eigenvectors”.

2

Published as a conference paper at ICLR 2024

Reinforcement Learning. We consider the setting in which an agent interacts with an environ-
ment. The environment is a reward-agnostic Markov-decision process M = (S,A, P, µ0) with
finite state space S = {1, · · · , |S|},2 finite action space A = {1, · · · , |A|}, transition proba-
bility map P : S × A → ∆(S), which maps a state-action pair (s, a) to a state distribution
P (·|s, a) in the simplex ∆(S), and initial state distribution µ0 ∈ ∆(S). The agent is character-
ized by the policy π : S → ∆(A) that it uses to choose actions. At time-step t = 0, an ini-
tial state S0 is sampled from µ0. Then, the agent samples an action A0 from its policy and, as
a response, the environment transitions to a new state S1, following the distribution P (S0, A0).
After this, the agent selects a new action, the environment transitions again, and so on. The agent-
environment interaction determines a Markov process characterized by the transition matrix Pπ ,
where (Pπ)s,s′ =

∑
a∈A π(s, a)P (s′|s, a) is the probability of transitioning from state s to state s′

while following policy π.

Laplacian Representation. In graph theory, the object of study is a node set V whose elements
are pairwise connected by edges. The edge between a pair of nodes v, v′ ∈ V is quantified by a non-
negative real number wv,v′ , which is 0 only if there is no edge between the nodes. The adjacency
matrix, W ∈ R|V|×|V|, stores the information of all edges such that (W)v,v′ = wv,v′ . The degree
of a node v is the sum of the adjacency weights between v and all other nodes in V and the degree
matrix D ∈ R|V|×|V| is the diagonal matrix containing these degrees. The Laplacian L is defined as
L = D−W, and, just as the adjacency matrix, it fully encodes the information of the graph.

If we consider the state space of an MDP M as the set of nodes, V = S, and W as determined
by Pπ , then we might expect the graph Laplacian to encode useful temporal information about M ,
meaning the number of time steps required to go from one state to another. In accordance with
Wu et al. (2019), we broadly define the Laplacian in the tabular reinforcement learning setting as
any matrix L = I − f(Pπ), where f : R|S|×|S| → Sym|S|(R) is some function that maps Pπ to
a symmetric matrix.3 For example, if Pπ is symmetric, the Laplacian is typically defined as either
L = I−Pπ or L = I−(1−λ)Φλ

π , where Φλ
π = (I−λPπ)

−1 is a matrix referred to as the successor
representation matrix (Dayan, 1993; Machado et al., 2018). In the case where Pπ is not symmetric,
L is usually defined as L = I− 1

2 (Pπ +P⊤
π) to ensure it is symmetric (Wu et al., 2019).

The Laplacian representation, ϕ : S → Rd, maps a state s to d corresponding entries in the set
of 0 < d ≤ |S| smallest eigenvectors of L, i.e., ϕ(s) = [e1[s], · · · , ed[s]]⊤, where ei is the i−th
smallest eigenvector of L and ei[s], its s−th entry (Mahadevan & Maggioni, 2007; Stachenfeld
et al., 2014; Machado et al., 2017).

The Graph Drawing Objective. Given the graph Laplacian L, the spectral graph drawing opti-
mization problem (Koren, 2003) is defined as follows:

min
u1,··· ,ud∈RS

d∑
i=1

⟨ui,Lui⟩ (1)

such that ⟨uj ,uk⟩ = δjk , 1 ≤ k ≤ j ≤ d ,

where ⟨·, ·⟩ is the inner product in R|S| and δjk is the Kronecker delta. This optimization problem has
two desirable properties. The first one is that the d smallest eigenvectors of L are a global optimizer.4
Hence, the Laplacian representation ϕ associated with L is a solution to this problem. The second
property is that both objective and constraints can be expressed as expectations, making the problem
amenable to stochastic gradient descent. In particular, the original constrained optimization problem
(1) can be approximated by the unconstrained graph drawing objective (GDO):

min
u∈Rd|S|

d∑
i=1

⟨ui,Lui⟩+ b

d∑
j=1

d∑
k=1

(
⟨uj ,uk⟩ − δjk

)2
, (2)

2For ease of exposition, we restrict the notation, theorems, and proofs to the finite state space setting.
However, we generalize all of them to the abstract setting in Appendix A.5, where the state space is an abstract
measure space, in a similar fashion as in the work by Wu et al. (2019) and Wang et al. (2021).

3The Laplacian has |S| different real eigenvectors and corresponding eigenvalues only if it is symmetric.
4For proofs in the tabular setting, see the work by Koren (2003) for the case d = 2, and Lemma 1 for

arbitrary d. For the abstract setting, see the work by Wang et al. (2021).

3

Published as a conference paper at ICLR 2024

where b ∈ (0,∞) is a scalar hyperparameter and u = [u⊤
1 , · · · ,u⊤

d]
⊤ is the vector that results from

concatenating the vectors (ui)
d
i=1 (Wu et al., 2019).

The Generalized Graph Drawing Objective. As mentioned before, any rotation of the smallest
eigenvectors of the Laplacian L is a global optimizer of the constrained optimization problem (1).
Hence, even with an appropriate choice of hyperparameter b, GDO does not necessarily approximate
the Laplacian representation ϕ. As a solution, Wang et al. (2021) present the generalized graph
drawing optimization problem:

min
u∈Rd|S|

d∑
i=1

ci⟨ui,Lui⟩ (3)

such that ⟨uj ,uk⟩ = δjk , 1 ≤ k ≤ j ≤ d ,

where c1 > · · · > cd > 0 is a monotonically decreasing sequence of d hyperparameters. Corre-
spondingly, the unconstrained generalized graph drawing objective (GGDO) is defined as:

min
u∈Rd|S|

d∑
i=1

ci⟨ui,Lui⟩+ b

d∑
j=1

d∑
k=1

min(cj , ck)
(
⟨uj ,uk⟩ − δjk

)2
. (4)

Wang et al. (2021) prove that the optimization problem (3) has a unique global minimum that cor-
responds to the smallest eigenvectors of L, for any possible choice of the hyperparameter sequence
(ci)

d
i=1. However, in the unconstrained setting, which is the setting used when training neural net-

works, these hyperparameters do affect both the dynamics and the quality of the final solution.
In particular, Wang et al. (2021) found in their experiments that the linearly decreasing choice
ci = d − i + 1 performed best across different environments. More importantly, under gradient
descent dynamics, the introduced coefficients are unable to break the symmetry and arbitrary rota-
tions of the eigenvectors are still equilibrium points (see Corollary (1) in Section 4).

The Abstract and Approximate Settings. Lastly, the previous optimization problems (1)-(4) can
be generalized to the abstract setting, where S is potentially an uncountable measure space (e.g.,
the continuous space Rn). In practice, the only thing that changes is that finite-dimensional vectors
ui are replaced by real-valued functions ui : S → R,5 and matrices by linear operators that map
these functions to functions in the same space (see Appendix A.5 for a detailed discussion). This
generalization is useful because it allows to introduce function approximators in a principled way.
Specifically, we replace the d functions (u1, · · · , ud) by the parametric model ϕθ : S → Rd, where
θ is a finite dimensional parameter vector. In our case, ϕθ represents a neural network, and θ a
vector containing the weights of the network. This choice allows us to find an approximate solution
by iteratively sampling a transition batch, calculating the corresponding optimization objective, and
propagating the gradients by means of any stochastic gradient descent-based optimizer. In the fol-
lowing chapters we will see why this gradient descent procedure is incompatible with GGDO and
how our proposed objective, ALLO, overcomes this incompatibility in theory and in practice.

3 AUGMENTED LAGRANGIAN LAPLACIAN OBJECTIVE

In this section we introduce a method that retains the benefits of GGDO while avoiding its pitfalls.
Specifically, we relax the goal of having a unique global minimum for a constrained optimization
problem like (3). Instead, we modify the stability properties of the unconstrained dynamics to ensure
that the only stable equilibrium point corresponds to the Laplacian representation.

Asymmetric Constraints as a Generalized Graph Drawing Alternative. We want to break the
dynamical symmetry of the Laplacian eigenvectors that make any of their rotations an equilibrium
point for GDO (2) and GGDO (4) while avoiding the use of hyperparameters. For this, let us consider
the original graph drawing optimization problem (1). If we set d = 1, meaning we try to approximate
only the first eigenvector e1, it is clear that the only possible solution is u∗

1 = e1. This happens
because the only possible rotations are ±e1. If we then try to solve the optimization problem for

5As a consequence, the eigenvectors of the Laplacian are commonly called eigenfunctions. However, tech-
nically speaking, the eigenfunctions are still eigenvectors in the space of square integrable functions.

4

Published as a conference paper at ICLR 2024

d = 2, but fix u1 = e1, the solution will be (u∗
1,u

∗
2) = (e1, e2), as desired. Repeating this process

d times, we can obtain ϕ. Thus, we can eliminate the need for the d hyperparameters introduced by
GGDO by solving d separate optimization problems. To replicate this separation while maintaining
a single unconstrained optimization objective, we introduce the stop-gradient operator J·K in GDO.
This operator does not affect the objective, but it indicates that, when following gradient dynamics,
the real gradient of the objective is not used. Instead, when calculating derivatives, whatever is
inside the operator is assumed to be constant. Specifically, the objective becomes:

min
u∈Rd|S|

d∑
i=1

⟨ui,Lui⟩+ b

d∑
j=1

j∑
k=1

(
⟨uj , JukK⟩ − δjk

)2
. (5)

Note that in addition to the stop-gradient operators, the upper limit in the inner summation is now
the variable j, instead of the constant d. These two modifications ensure that ui changes only to
satisfy the constraints associated to the previous vectors (uj)

i−1
j=1 and itself, but not the following

ones, i.e., (uj)
d
j=i+1. Hence, the asymmetry in the descent direction achieves the same effect as

having d separate optimization problems. In particular, as proved in Lemma 2 in the next section,
the descent direction of the final objective, yet to be defined, becomes 0 only for permutations of a
subset of the Laplacian eigenvectors, and not for any of its rotations.

Augmented Lagrangian Dynamics for Exact Learning. The regularization term added in all of
the previous objectives (2), (4), and (5) is typically referred to as a quadratic penalty with barrier
coefficient b. This coefficient shifts the equilibrium point of the original optimization problems (1)
and (3), and one can only guarantee that the desired solution is obtained in the limit b → ∞ (see
Chapter 17 by Nocedal & Wright, 2006). In practice, one can increase b until a satisfactory solution
is found. However, not only is there no direct metric to tell how close one is to the true solution, but
also an extremely large b is empirically bad for neural networks when optimizing GDO or GGDO.
As a principled alternative, we propose the use of augmented Lagrangian methods. Specifically, we
augment the objective (5) by adding the original constraints, multiplied by their corresponding dual
variables, (βjk)1≤k≤j≤d. This turns the optimization problem into the following max-min objective,
which we call the augmented Lagrangian Laplacian objective (ALLO):

max
β

min
u∈Rd|S|

d∑
i=1

⟨ui,Lui⟩+
d∑

j=1

j∑
k=1

βjk

(
⟨uj , JukK⟩ − δjk

)
+ b

d∑
j=1

j∑
k=1

(
⟨uj , JukK⟩ − δjk

)2
, (6)

where β = [β1,1, β2,1, β2,2, · · · , βd,1, · · · , βd,d] ∈ Rd(d+1)/2 is a vector containing all of the dual
variables. There are two reasons to introduce the additional linear penalty, which at first glance do
not seem to contribute anything that the quadratic one is not adding already. First, for an appropri-
ately chosen b, the equilibria of the max-min objective (6) corresponds exactly to permutations of the
smallest Laplacian eigenvectors, and only the sorted eigenvectors are a stable solution under gradi-
ent ascent-descent dynamics. Second, the optimal dual variables β∗ are proportional to the smallest
Laplacian eigenvalues, meaning that with this single objective one can recover naturally both eigen-
vectors and eigenvalues of L (see the next section for the formalization of these claims). Moreover,
the calculation of the linear penalty is a byproduct of the original quadratic one. This means that the
computational complexity is practically unaltered, beyond having to update (and store) O(d2) dual
parameters, which is negligible considering the number of parameters in neural networks.

Something to note is that the standard augmented Lagrangian has been discussed in the literature as
a potential approach for learning eigenvectors of linear operators, but dismissed due to lack of em-
pirical stability (Pfau et al., 2019). ALLO overcomes this problem through the introduction of the
stop-gradient operators, which are responsible for breaking the symmetry of eigenvector rotations,
in a similar way as how gradient masking is used in spectral inference networks (Pfau et al., 2019).

Barrier Dynamics. For the introduced max-min objective to work, in theory, b has to be larger
than a finite value that depends on L. Moreover, if f(Pπ) in the definition of L is a stochastic matrix,
which is the case for all definitions mentioned previously, one can exactly determine a lower bound
for b, as proved in the next section. In practice, however, we found that increasing b is helpful for
final performance. In our experiments, we do so in a gradient ascent fashion, just as with the dual
variables.

5

Published as a conference paper at ICLR 2024

4 THEORETICAL RESULTS

To prove the soundness of the proposed max-min objective, we need to show two things: 1) that the
equilibria of this objective correspond to the desired eigensystem of the Laplacian, and 2) that this
equilibria is stable under stochastic gradient ascent-descent dynamics.

As an initial motivation, the following lemma deals with the first point in the stationary setting.
While it is known that the solution set for the graph drawing optimization problem (1) corresponds to
the rotations of the smallest eigenvectors of L, the Lemma considers a primal-dual perspective of the
problem that allows one to relate the dual variables with the eigenvalues of L (see the Appendix for a
proof). This identification is relevant since previous methods are not able to recover the eigenvalues.
Lemma 1. Consider a symmetric matrix L ∈ R|S|×|S| with increasing, and possibly repeated,
eigenvalues λ1 ≤ · · · ≤ λ|S|, and a corresponding sequence of eigenvectors (ei)

|S|
i=1. Then, given a

number of components, 1 ≤ d ≤ |S|, the pair (u∗
i)

d
i=1, (β

∗
jk)1≤k≤j≤d, where u∗

i = ei and β∗
jk =

−λjδjk, is a solution to the primal-dual pair of optimization problems corresponding to the spectral
graph drawing optimization problem (1). Furthermore, any other primal solution corresponds to a
rotation of the eigenvectors (ei)di=1.

Now that we know that the primal-dual pair of optimization problems associated to (1) has as a
solution the smallest eigensystem of the Laplacian, the following Lemma shows that the equilibria
of the max-min objective (6) coincides only with this solution, up to a constant, and any possible
permutation of the eigenvectors, but not with its rotations.
Lemma 2. The pair u∗,β∗ is an equilibrium pair of the max-min objective (6), under gradient
ascent-descent dynamics, if and only if u∗ coincides with a subset of eigenvectors of the Laplacian
(eσ(i))

d
i=1, for some permutation σ : S → S , and β∗

jk = −2λσ(j)δjk.

Proof. Denoting L the objective (6), we have the gradient ascent-descent dynamical system:
ui[t+ 1] = ui[t]− αprimal · gui

(u[t],β[t]) , ∀1 ≤ i ≤ d,

βjk[t+ 1] = βjk[t] + αdual ·
∂L
∂βjk

(u[t],β[t]) , ∀1 ≤ k ≤ j ≤ d ,

where t ∈ N is the time index, αprimal, αdual > 0 are step sizes, and gui
is the gradient of L with

respect to ui, considering the stop-gradient operator. We avoid the notation ∇ui
L to emphasize that

gui is not a real gradient, but a direction that ignores what is inside the stop-gradient operator.

The equilibria of our system satisfy u∗
i [t+ 1] = u∗

i [t] and β∗
jk[t+ 1] = β∗

jk[t]. Hence,

gui
(u∗,β∗) = 2Lu∗

i +

i∑
j=1

βiju
∗
j + 2b

i∑
j=1

(⟨u∗
i ,u

∗
j ⟩ − δij)u

∗
j = 0 , ∀1 ≤ i ≤ d, (7)

∂L
∂βjk

(u∗,β∗) = ⟨u∗
j ,u

∗
k⟩ − δjk = 0 , ∀1 ≤ k ≤ j ≤ d . (8)

We proceed now by induction over i, considering that Equation (8) tells us that u∗ corresponds to
an orthonormal basis. For the base case i = 1 we have:

gu1(u
∗,β∗) = 2Lu∗

1 + β1,1u
∗
1 = 0 .

Thus, we can conclude that u1 is an eigenvector eσ(1) of the Laplacian, and that β1,1 corresponds to
its eigenvalue, specifically β1,1 = −2λσ(1), for some permutation σ : S → S . Now let us suppose
that uj = eσ(j) and βjk = −2λσ(j)δjk for j < i. Equation (8) for i then becomes:

gui(u
∗,β∗) = 2Lu∗

i + βiiu
∗
i +

i−1∑
j=1

βijeσ(j) = 0 .

In general, we can express u∗
i as the linear combination u∗

i =
∑|S|

j=1 cijeσ(j) since the eigenvectors
of the Laplacian form a basis. Also, given that ⟨uj ,uk⟩ = 0, we have that cij = 0 for j < i. Hence,

2

|S|∑
j=i

cijLeσ(j) + βii

|S|∑
j=i

cijeσ(j) +

i−1∑
j=1

βijeσ(j) =

|S|∑
j=i

cij(2λσ(j) + βii)eσ(j) +

i−1∑
j=1

βijeσ(j) = 0 .

6

Published as a conference paper at ICLR 2024

By orthogonality of the eigenvectors, we must have that each coefficient is 0, implying that βij = 0
and either cij = 0 or βii = −2λσ(j). The last equation allows us to conclude that a pair (cij , cik)
can only be different to 0 simultaneously for j, k such that λσ(j) = λσ(k), i.e., ui lies in the subspace
of eigenvectors corresponding to the same eigenvalue, where each point is in itself an eigenvector.
Thus, we can conclude, that ui = eσ(i) and βij = −2λiδij , as desired.

As a corollary to Lemma 2, let us suppose that we fix all the dual variables to 0, i.e., βjk = 0. Then,
we will obtain that the constraints of the original optimization problem (1) must be violated for any
possible equilibrium point (see the Appendix for a proof). This explains why optimizing GGDO in
Equation (4) may converge to undesirable rotations of the Laplacian eigenvectors, even when the
smallest eigenvectors are the unique solution of the original constrained optimization problem.

Corollary 1. The point u∗ is an equilibrium point of objectives (2) or (4), under gradient descent
dynamics, if and only if, for any 1 ≤ i ≤ d, there exists a 1 ≤ j ≤ d such that ⟨u∗

i ,u
∗
j ⟩ ̸= δij . That

is, the equilibrium is guaranteed to be different to the eigenvectors of the Laplacian.

Finally, we prove that even when all permutations of the Laplacian eigenvectors are equilibrium
points of the proposed objective (6), only the one corresponding to the ordered smallest eigenvectors
and its eigenvalues is stable (see Appendix D for empirical confirmation), in contrast with GGDO.

Theorem 1. The only permutation in Lemma 2 that corresponds to an stable equilibrium point of
the max-min objective (6) is the identity permutation, under an appropriate selection of the barrier
coefficient b, if the highest eigenvalue multiplicity is 1. That is, there exist a finite barrier coefficient
such that u∗

i = ei and β∗
jk = −2λjδjk correspond to the only stable equilibrium pair, where λi is

the i−th smallest eigenvalue of the Laplacian and ei its corresponding eigenvector. In particular,
any b > 2 guarantees stability.

Proof Sketch. Complete proof is in the Appendix. We have that gui
and ∂L/∂βjk define the chosen

ascent-descent direction. Concatenating these vectors and scalars in a single vector g(u,β), the
stability of the dynamics can be determined from the Jacobian matrix J(g). Specifically, if all the
eigenvalues of this matrix have a positive real part in the equilibrium pair u∗,β∗, we can conclude
that the equilibrium is stable. If there is one eigenvalue with negative real part, then it is unstable
(see Chicone, 2006; Sastry, 2013; Mazumdar et al., 2020). As proved in the Appendix, for any pair
1 ≤ i < j ≤ |S|, there exists a real eigenvalue proportional to λσ(j) − λi. This means that, unless
the σ permutation is the identity, there will be at least one negative eigenvalue and the equilibrium
corresponding to this permutation will be unstable.

5 EXPERIMENTS

We evaluate three different aspects of the proposed max-min objective: eigenvector accuracy, eigen-
value accuracy, and the necessity of each of the components of the proposed objective.6

GridRoom-1 GridRoom-16 GridMaze-19

Figure 2: Grid environments. Color is the 2nd
smallest Laplacian eigenvector learned by ALLO.

Eigenvector Accuracy. We start by consider-
ing the grid environments shown in Figure 2.
We generate 200, 000 transition samples in
each of them from a uniform random policy and
a uniform initial state distribution. We use the
(x, y) coordinates as inputs to a fully-connected
neural network ϕθ : R2 → Rd, parameterized
by θ, with 3 layers of 256 hidden units to ap-
proximate the d−dimensional Laplacian repre-
sentation ϕ, where d = 11. The network is trained using stochastic gradient descent with our
objective (see Wu et al., 2019), for the same initial barrier coefficients as in Figure 1.

Figure 3 shows the average cosine similarity of eigenvectors found using ALLO compared to the
true Laplacian eigenvectors. In all three environments, it learns close approximations of the smallest

6Accompanying code is available here: https://github.com/tarod13/laplacian_dual_
dynamics.

7

https://github.com/tarod13/laplacian_dual_dynamics
https://github.com/tarod13/laplacian_dual_dynamics

Published as a conference paper at ICLR 2024

GridRoom-16 GridMaze-19GridRoom-1

Av
er

ag
e

co
si

ne

si
m

ila
rit

y

Gradient steps Gradient steps Gradient steps

Figure 3: Average cosine similarity between the true Laplacian and ALLO for different initial values
of the barrier coefficient b, averaged over 60 seeds, with the best coefficient highlighted. The shaded
region corresponds to a 95% confidence interval.

d−eigenvectors in fewer gradient updates than GGDO (see Figure 1) and without a strong depen-
dence on the chosen barrier coefficients.

As a second and more conclusive experiment, we select the barrier coefficient with the best perfor-
mance for GGDO across the three previous environments (b = 2.0), and the best barrier increasing
rate, αbarrier, for our method across the same environments (αbarrier = 0.01). Then, we use these
values to learn the Laplacian representation in 12 different grid environments, each with different
number of states and topology (see Figure 6 in the Appendix), and we consider both the (x, y) and
pixel-based representations (each tile of the grid corresponds to a pixel), with 1 million samples.

Figure 4A compares the average cosine similarities obtained with each method for the (x, y) rep-
resentation (see detailed results for both representations in Appendix E). In particular, it shows the
mean difference of the average cosine similarities across 60 seeds. Noticeably, the baseline fails
completely in the two smallest environments (i.e., GridMaze-7 and GridMaze-9), and it also
fails partially in the two largest ones (i.e., GridMaze-32 and GridRoom-64). In contrast, ALLO
finds close approximations of the true Laplacian representation across all environments, with the
exception of GridRoomSym-4, where it still found a more accurate representation than GGDO.
These results are statistically significant for 9 out of 12 environments, with a p-value threshold of
0.01 (see Table 1 in the Appendix). Again, this suggests that the proposed objective is successful in
removing the untunable-hyperparameter dependence observed in GGDO.

Eigenvalue Accuracy. The dual variables of ALLO should capture the eigenvalues of their associ-
ated eigenvectors. Here, we quantify how well they approximate the true eigenvalues in the same 12
grid environments as in Figure 4A. In particular, we compare our eigenvalue accuracy against those
found with a simple alternative method (Wang et al., 2023), based on GGDO and on Monte Carlo
approximations. Figure 4B shows that the average relative error for the second to last eigenvalues,
meaning all except one, is consistently larger across all environments when using the alternative
approach, with a significance level of 0.01. This is not surprising given the poor results in eigen-
vector accuracy for GGDO. However, in several environments the error is high even for the smallest
eigenvalues, despite GGDO approximations being relatively more accurate for the associated eigen-
vectors. Across environments and across the eigenspectrum, our proposed objective provides more
accurate estimates of the eigenvalues (see Appendix F for the exact values).

Ablations. ALLO has three components that are different from GGDO: (1) the stop-gradient as
a mechanism to break the symmetry, (2) the dual variables that penalize the linear constraints and
from which we extract the eigenvalues of the graph Laplacian, and (3) the mechanism to mono-
tonically increase the barrier coefficient that scales the quadratic penalty. Our theoretical results
suggest that the stop-gradient operation and the dual variables are necessary, while increasing the
barrier coefficient could be helpful, eventually eliminating the need for the dual variables if all one
cared about was to approximate the eigenvectors of the graph Laplacian, not its eigenvalues. In this
section, we perform ablation studies to validate whether these insights translate into practice when
using neural networks to minimize our objective. Specifically, in GridMaze-19, we compare the
average cosine similarity of ALLO, with the same objective but without dual variables, and with
GGDO, which does not use dual variables, nor the stop gradient, nor the increasing coefficients. For
completeness, we also evaluate GGDO objective with increasing coefficients.

8

Published as a conference paper at ICLR 2024

A

Di�erence of means (avg. cosine similarity)

B

Figure 4: Difference of cosine similarities when approximating eigenvectors (A), and of relative
errors for eigenvalues (B). Error bars show the standard deviation of the differences. GR and GM
stand for GridRoom and GridMaze. black bars correspond to p-values below 0.01.

The curves in each panel of Figure 5 represent the different methods we evaluate, while the different
panels evaluate the impact of different rates of increase of the barrier coefficient. Our results show
that increasing the barrier coefficients is indeed important, and not increasing it (as in GDO and
GGDO) actually prevents us from obtaining the true eigenvectors. It is also interesting to observe
that the rate in which we increase the barrier coefficient matters empirically, but it does not prevent
our solution to obtain the true eigenvectors. The importance of the stop gradient is evident when one
looks at the difference in performance between GGDO and ALLO (and variants), particularly when
not increasing the barrier coefficients. Finally, it is interesting to observe that the addition of the dual
variables, which is essential to estimate the eigenvalues of the graph Laplacian, does not impact the
performance of our approach. Based on our theoretical results, we conjecture the dual variables add
stability to the learning process in larger environments, but we leave this for future work.

Gradient steps

Av
er

ag
e

co
si

ne

si
m

ila
rit

y

Gradient steps Gradient steps Gradient steps

Figure 5: Average cosine similarity for different objectives in the environment GridMaze-19, for
initial barrier coefficient b = 0.1, and for different barrier increase rates αbarrier.

6 CONCLUSION

In this paper we introduced a theoretically sound min-max objective that makes use of stop-gradient
operators to turn the Laplacian representation into the unique stable equilibrium point of a gradi-
ent ascent-descent optimization procedure. We showed empirically that, when applied to neural
networks, the objective is robust to the same untunable hyperparameters that affect alternative ob-
jectives across environments with diverse topologies. In addition, we showed how the objective
results in a more accurate estimation of the Laplacian eigenvalues when compared to alternatives.

As future work, it would be valuable to better understand the theoretical impact of the barrier coeffi-
cient in the optimization process. Since we can now obtain the eigenvalues of the graph Laplacian, it
would be also interesting to see how they could be leveraged, e.g., as an emphasis vector for feature
representations or as a proxy for the duration of temporally-extended actions discovered from the
Laplacian. Finally, it would be exciting to see the impact that having access to a proper approxi-
mation of the Laplacian will have in algorithms that rely on it (e.g., Wang et al., 2023; Klissarov &
Machado, 2023).

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We thank Alex Lewandowski for helpful discussions about the Laplacian representation, Martin
Klissarov for providing an initial version of the baseline (GGDO), and Adrian Orenstein for provid-
ing useful references on augmented Lagrangian techniques. The research is supported in part by the
Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada CIFAR AI
Chair Program, and the Digital Research Alliance of Canada.

REFERENCES

Carmen Chicone. Ordinary Differential Equations with Applications. Springer, 2006.

Peter Dayan. Improving Generalization for Temporal Difference Learning: The Successor Repre-
sentation. Neural Computation, 5(4):613–624, 1993.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin,
Pablo Samuel Castro, and Marc G. Bellemare. Proto-Value Networks: Scaling Representation
Learning with Auxiliary Tasks. In International Conference on Learning Representations (ICLR),
2023.

Yuu Jinnai, Jee Won Park, David Abel, and George Dimitri Konidaris. Discovering Options for Ex-
ploration by Minimizing Cover Time. In International Conference on Machine Learning (ICML),
2019.

Martin Klissarov and Marlos C. Machado. Deep Laplacian-based Options for Temporally-Extended
Exploration. In International Conference on Machine Learning (ICML), 2023.

Yehuda Koren. On Spectral Graph Drawing. In International Computing and Combinatorics Con-
ference (COCOON), 2003.

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G. Bellemare. On the
Generalization of Representations in Reinforcement Learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2022.

Marlos C. Machado, Marc G Bellemare, and Michael Bowling. A Laplacian Framework for Option
Discovery in Reinforcement Learning. In International Conference on Machine Learning (ICML),
2017.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption Discovery through the Deep Successor Representation. In International
Conference on Learning Representations (ICLR), 2018.

Marlos C. Machado, Andre Barreto, Doina Precup, and Michael Bowling. Temporal Abstraction
in Reinforcement Learning with the Successor Representation. Journal of Machine Learning
Research, 24(80):1–69, 2023.

Sridhar Mahadevan. Proto-value Functions: Developmental Reinforcement Learning. In Interna-
tional Conference on Machine Learning (ICML), 2005.

Sridhar Mahadevan and Mauro Maggioni. Proto-value Functions: A Laplacian Framework for
Learning Representation and Control in Markov Decision Processes. Journal of Machine Learn-
ing Research, 8(10):2169–2231, 2007.

Eric Mazumdar, Lillian J Ratliff, and S Shankar Sastry. On Gradient-Based Learning in Continuous
Games. SIAM Journal on Mathematics of Data Science, 2(1):103–131, 2020.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Spinger, 2006.

Marek Petrik. An Analysis of Laplacian Methods for Value Function Approximation in MDPs. In
International Joint Conference on Artificial Intelligence (IJCAI), 2007.

David Pfau, Stig Petersen, Ashish Agarwal, David G. T. Barrett, and Kimberly L. Stachenfeld.
Spectral Inference Networks: Unifying Deep and Spectral Learning. In International Conference
on Learning Representations (ICLR), 2019.

10

Published as a conference paper at ICLR 2024

Shankar Sastry. Nonlinear Systems: Analysis, Stability, and Control. Springer, 2013.

Kimberly L. Stachenfeld, Matthew Botvinick, and Samuel J. Gershman. Design Principles of the
Hippocampal Cognitive Map. Advances in Neural Information Processing Systems (NeurIPS),
2014.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does Zero-Shot Reinforcement Learning Exist?
In International Conference on Learning Representations (ICLR), 2023.

Han Wang, Archit Sakhadeo, Adam M. White, James Bell, Vincent Liu, Xutong Zhao, Puer Liu,
Tadashi Kozuno, Alona Fyshe, and Martha White. No More Pesky Hyperparameters: Offline
Hyperparameter Tuning for RL. Transactions on Machine Learning Research, 2022, 2022.

Kaixin Wang, Kuangqi Zhou, Qixin Zhang, Jie Shao, Bryan Hooi, and Jiashi Feng. Towards Bet-
ter Laplacian Representation in Reinforcement Learning with Generalized Graph Drawing. In
International Conference on Machine Learning (ICML), 2021.

Kaixin Wang, Kuangqi Zhou, Jiashi Feng, Bryan Hooi, and Xinchao Wang. Reachability-Aware
Laplacian Representation in Reinforcement Learning. In International Conference on Machine
Learning (ICML), 2023.

Yifan Wu, George Tucker, and Ofir Nachum. The Laplacian in RL: Learning Representations with
Efficient Approximations. In International Conference on Learning Representations (ICLR),
2019.

A ADDITIONAL THEORETICAL DERIVATIONS

A.1 PROOF OF LEMMA 1

Proof. Let βjk ∈ R denote the dual variables associated to the constraints of the optimization
problem (1), and L be the corresponding Lagrangian function:

L((ui)i, (βjk)k≤j) :=

d∑
i=1

⟨ui,Lui⟩+
d∑

j=1

j∑
k=1

βjk(⟨uj ,uk⟩ − δjk) .

Then, any pair of solutions (u∗
i)i, (β

∗
jk)k≤j must satisfy the Karush-Kunh-Tucker conditions. In

particular, the gradient of the Lagrangian should be 0 for both primal and dual variables:

∇ui
L((u∗

i)i, (β
∗
jk)k≤j) = 2Lu∗

i + 2β∗
iiu

∗
i +

i−1∑
k=1

β∗
iku

∗
k +

d∑
j=i+1

β∗
jiu

∗
j = 0 , ∀ 1 ≤ i ≤ d ; (9)

∇βjk
L((u∗

i)i, (β
∗
jk)k≤j) = ⟨u∗

j ,u
∗
k⟩ − δjk = 0 , ∀ 1 ≤ k ≤ j ≤ d . (10)

The Equation (10) does not introduce new information since it only asks again for the solution set
(u∗

i)
d
i=1 to form an orthonormal basis. Equation (9) is telling us something more interesting. It asks

Lu∗
i to be a linear combination of the vectors (u∗

i)
d
i=1, i.e., it implies that L always maps u∗

i back
to the space spanned by the basis. Since this is true for all i, the span of (u∗

i)
d
i=1 must coincide with

the span of the eigenvectors (eσ(i))di=1, for some permutation σ : S → S, as proved in Proposition
1, also in the Appendix. Intuitively, if this was not the case, then the scaling effect of λj along some
eσ(j) would take points that are originally in span(u∗

i)
d
i=1 outside of this hyperplane.

Since we know that the span of the desired basis is span(eσ(i))di=1, for some permutation σ : S → S,
we can restrict the solution to be a set of eigenvectors of L. The function being minimized then
becomes

∑d
i=1 λσ(i), which implies that a primal solution is the set of d smallest eigenvectors.

Now, any rotation of this minimizer results in the same loss and is also in span(ei))di=1, which
implies that any rotation of these eigenvectors is also a primal solution.

Considering the primal solution where u∗
i = ei, Equation (9) becomes:

∇ui
L((ei)i, (β∗

jk)k≤j) = 2(λi + β∗
ii)ei +

i−1∑
k=1

β∗
ikek +

d∑
j=i+1

β∗
jiej = 0 , ∀ 1 ≤ i ≤ d .

11

Published as a conference paper at ICLR 2024

Since the eigenvectors are normal to each other, the coefficients all must be 0, which implies that
the corresponding dual solution is β∗

ii = −λi and β∗
jk = 0 for j ̸= k.

A.2 PROPOSITION 1

Proposition 1. Let T ∈ RS×S be a symmetric matrix, u1, · · · ,uS ∈ RS and λ1, · · · , λS ∈ R be its
eigenvectors and corresponding eigenvalues, and e1, · · · , ed ∈ RS be a d−dimensional orthonor-
mal basis of the subspace E := span((ei)i). Then, if E is closed under the operation of T, i.e.,
T(E) ⊆ E , there must exist a d−dimensional subset of eigenvectors {v1, · · · ,vd} ⊆ {u1, · · · ,uS}
such that E coincides with their span, i.e., E = span((vi)i) = span((ei)i).

Proof. Let w ̸= 0 be a vector in E . Then, by definition of E , it can be expressed as a linear
combination w =

∑d
i=1 αiei, where αi ∈ R, and at least one of the coefficients is non-zero. Let us

consider now the operation of T on w in terms of its eigenvectors. Specifically, we can express it as

Tw =

S∑
j=1

λj⟨uj ,w⟩uj ,

which, by linearity of the inner-product, becomes

Tw =

S∑
j=1

(
λj

d∑
i=1

αi⟨uj , ei⟩

)
uj .

Considering the hypothesis that E is closed under T, we reach a necessary condition:

S∑
j=1

(
λj

d∑
i=1

αi⟨uj , ei⟩

)
uj

!
=

d∑
i=1

βiei , (11)

where βi ∈ R, and at least one of them is non-zero.

We proceed by contradiction. Let us suppose that there does not exist a d−dimensional subset of
eigenvectors {v1, · · · ,vd} such that E = span((vi)i). Since the eigenvectors form a basis of the
whole space, we can express each ei as linear combinations of the form

ei =

S∑
j=1

cijui =

S∑
j=1

⟨uj , ei⟩uj .

So, supposing that E does not correspond to any eigenvector subspace, there must exist d′ > d
different indices j1, · · · , jd′ and corresponding pairs (ik, jk) such that cikjk ̸= 0. If this was not the
case, this would imply that all the ei lie in the span of some subset of d or less eigenvectors, and so
E would correspond to this span.

Hence, we have that the coefficients αi are arbitrary and that at least d + 1 inner products are not
zero. This implies that w lies in a subspace of dimension at least d+1 spanned by the d′ eigenvectors
v1, · · · ,vd′ with vk = ujk . Now, the condition in Equation (11) requires this subspace to be the
same as E , but this is not possible since E is d−dimensional. Thus, we can conclude that there must
exist a basis of d eigenvectors v1, · · · ,vd of T such that E = span((vi)i) = span((ei)i).

A.3 PROOF OF COROLLARY 1

Proof. Taking the gradient of GGDO (4), referred to as L here, leads us to a similar expression as
in Equation (7) for a pair (u,β = 0) and index i:

∇ui
L(u) = 2ciLui +

d∑
j=1

βijuj︸ ︷︷ ︸
=0

+2b

d∑
j=1

cij(⟨ui,uj⟩ − δij)uj ,

12

Published as a conference paper at ICLR 2024

where cij is some constant function of ci and cj . Comparing with the proof of Lemma 1 in A.1, we
can notice that there are two key differences: the dual sum

∑d
j=1 βijuj is now 0, and the indices in

the barrier term
∑d

j=1 cij(⟨ui,uj⟩ − δij)uj go now from 1 to d, as opposed to only 1 to i. If we
require the gradient to be 0 as well, meaning that u is an equilibrium point, then we have that:

Lui =

d∑
j=1

Cij(⟨ui,uj⟩ − δij)uj ,

for some non-zero constants Cij . That is, the vector Lui has to lie in the subspace spanned by the
d vectors u1, · · · ,ud. This is only possible, however, if at least 1 of the coefficients ⟨ui,uj⟩ − δij
is different from 0 for some j. But then, this means that the restrictions of the original optimization
problem are violated in any possible equilibrium point.

A.4 PROOF OF THEOREM 1

Proof. Let us define the following vectors defining the descent directions for u and β:

gu =


gu1

gu2

...
gud

 , gβ =



∂L
∂β1,1

∂L
∂β2,1

∂L
∂β2,2

...
∂L

∂βd,1

...
∂L

∂βd,d


.

Then, the global ascent-descent direction can be represented by the vector

g =

[
gu

−gβ

]
.

To determine the stability of any equilibrium point of the ascent-descent dynamics introduced in
Lemma 2, we only need to calculate the Jacobian of g, the matrix J := J(g) whose rows correspond
to the gradients of each entry of g, and determine its eigenvalues (Chicone, 2006).

We proceed to take the gradients of Equation 7 and 8:

Jij(u,β) := (∇ui
guj

(u,β)⊤)⊤ (12)

=



2L+ βiiI+ 2b
[
(⟨ui,ui⟩ − 1)I+ 2ui ⊗ ui

]
+ 2

i−1∑
k=1

buk ⊗ uk , if i = j ;

βijI+ 2b
(
⟨ui,uj⟩I+ ui ⊗ uj

)
, if i > j ;

0 , if i < j ;

Jkβij (u,β) :=

(
−∇uk

∂L
∂βij

(u,β)

)⊤

= −u⊤
j δik − u⊤

i δjk ; (13)

Jβjki(u,β) :=
∂

∂βjk
gui(u,β) = 2uiδijδik + ukδij(1− δjk) ; (14)

Jβkℓβij (u,β) :=
∂2L

∂βkℓ∂βij
(u,β) = 0 . (15)

13

Published as a conference paper at ICLR 2024

Then, we have that in any equilibrium point u∗,β∗, i.e., in a permutation σ of the Laplacian eigen-
system (as per Lemma 2), the Jacobian satisfies:

Jij(u
∗,β∗) =



2L− 2λiI+ 4beσ(i) ⊗ eσ(i) + 2
i−1∑
k=1

beσ(k) ⊗ eσ(k) , if i = j ;

2beσ(i) ⊗ eσ(j) , if i > j ;

0 , if i < j ;

Jkβij (u
∗,β∗) = −e⊤σ(j)δik − e⊤σ(i)δjk ;

Jβjki(u
∗,β∗) = 2eσ(i)δijδik + eσ(k)δij(1− δjk) ;

Jβkℓβij
(u∗,β∗) = 0 .

Now, we determine the eigenvalues of this Jacobian. For this, we need to solve the system:

Jv = ηv , (16)

where η denotes an eigenvalue of the Jacobian and v, its corresponding eigenvector.

To facilitate the solution of this system, we use the following notation:

v =

[
w

ν

]
, vu =


w1

w2

...
wd

 , ν =



ν1,1

ν2,1

ν2,2

...

νd,1

...

νd,d


,

where wi ∈ R|S|, for all 1 ≤ i ≤ d, and νjk ∈ R, for all 1 ≤ k ≤ j ≤ d. With this, the eigenvalue
system (16) becomes:

∑d
j=1 Jjiwj +

∑d
j=1

∑j
k=1 Jβjkiνjk = ηwi ∀ 1 ≤ i ≤ d

∑d
k=1 Jkβij

wk = ηνij ∀ 1 ≤ j ≤ i ≤ d

. (17)

Since the Laplacian eigenvectors form a basis, we have the decomposition wi =
∑|S|

j=1 cijeσ(j),

for some sequence of reals (cij)
|S|
j=1. Hence, replacing the values of the Jacobian components in the

upper equation of the system (17), we obtain:

i−1∑
j=1

2b(eσ(i) ⊗ eσ(j))wj +

(
2L− 2λiI+ 4beσ(i) ⊗ eσ(i) + 2

i−1∑
k=1

beσ(k) ⊗ eσ(k)

)
wi + · · ·

· · ·+
d∑

j=1

j∑
k=1

(
2eσ(i)δijδik + eσ(k)δij(1− δjk)

)
νjk − ηwi = 0

=⇒ 2

i−1∑
j=1

bcjieσ(j) + 2

|S|∑
j=1

(λj − λi)cijeσ(j) + 4beσ(i) +

i−1∑
j=1

bcijeσ(j) + · · ·

14

Published as a conference paper at ICLR 2024

· · ·+ 2νiieσ(i) +

i−1∑
k=1

νikeσ(k) − η

|S|∑
j=1

cijeσ(j) = 0 .

Since the eigenvectors form a basis, we have that each coefficient in the sum of terms we have must
be 0. Hence, we obtain the following conditions:

cij [2(λσ(j) − λi) + 2b− η] = 2bcji − νij , ∀ 1 ≤ j < i ≤ d

cii(4b− η) = −2νii , ∀ 1 ≤ i ≤ d

cij [2(λσ(j) − λi)− η] = 0 , ∀ 1 ≤ i < j ≤ |S|

. (18)

Each of these conditions specify the possible eigenvalues of the Jacobian matrix J. First and fore-
most, the third condition tells us that η = 2(λσ(j) − λi) is an eigenvalue independent of b, for any
possible pair i ≤ j. Since we are supposing the eigenvalues are increasing with their index, for the
eigenvalues to be positive, the permutation σ : S → S must preserve the order for all indexes, which
only can be true for the identity permutation. That is, all the Laplacian eigenvector permutations that
are not sorted are unstable.7

In addition, deriving the rest of the eigenvalues from the remaining two conditions in (18) and the
second set of equations of the system (17), we obtain a lower bound for b that guarantees the stability
of the Laplacian representation. In particular, from the second set of equations of the system (17)
we can obtain a relationship between the coefficients cij and cji with νij , for all 1 ≤ j ≤ i ≤ d:

d∑
k=1

Jjβijwk =

d∑
k=1

(
− e⊤σ(j)δik − e⊤σ(i)δjk

)(|S|∑
ℓ=1

ckℓeσ(ℓ)

)
= −cij − cji = ηνij . (19)

Replacing this into the second condition in (18) we get that η = 2b ± 2
√
b2 − 1. These set of

eigenvalues (two for each i) always have a positive real part, as long as b is strictly positive. In
addition, if b ≥ 1, we get purely real eigenvalues, which are associated with a less oscillatory
behavior (see (Sastry, 2013)).

Finally, if we assume that η ̸= 2(λσ(i) − λj) for j < i (i.e., η is not an eigenvalue already
considered), we must have that cji = 0, and so, by (19), −cij = ηνij . Replacing this into
the first condition in (18), we get that η = (λσ(j) − λi) + b ±

√
[(λσ(j) − λi) + b]2 − 1 ≥

−2 + b −
√
[(λσ(j) − λi) + b]2 − 1. Thus, if b is larger than the maximal eigenvalue difference

for the first d eigenvalues of L, we have guaranteed that these eigenvalues of the Jacobian will be
positive. Furthermore, since the eigenvalues are restricted to the range [0, 2], we have that b > 2
ensures a strict stability of the Laplacian representation.

A.5 ABSTRACT SETTING

For sake of completeness, we now discuss how Lemma 2 and Theorem 1 are affected when we
consider an abstract measure state space.

Abstract measure state spaces. First, our state space is now a triple (S,Σ, ρ), where S is a set
of states, Σ is an appropriate σ−algebra contained in the power set P(S) and whose elements are
those sets of states that can be measured, and ρ : Σ → [0, 1] is a valid probability measure for
the pair (S,Σ). Also, for clarity, let us denote now the state distribution P (s, a) corresponding to
the state-action pair (s, a) as P(·|s, a). In this manner, while the policy π remains the same, the
Markov process induced by it cannot be represented anymore by a matrix Pπ . In its place, we have
now the transition probability map Pπ : S → ∆(S),8 defined by Pπ(·|s) =

∑
a∈A π(a|s)P(·|s, a).

7Note that this conclusion only apply to the case where there are no repeated eigenvalues. This is the case
since otherwise η = 0 is an eigenvalues and then the Hartman-Grobman theorem that allows to conclude
stability is not conclusive.

8The simplex ∆(S) refers here to the set of probability measures defined over (S,Σ).

15

Published as a conference paper at ICLR 2024

Moreover, associated with each transition probability measure Pπ(·|s) for s ∈ S, there is a transition
probability density, pπ(·|s) : S → [0,∞), defined as the Radon-Nikodym derivative pπ(s

′|s) =
dPπ(·|s)

dρ

∣∣∣
s′

. This is the same to say that the probability of reaching a state in the set B ⊂ S, starting

from state s, is the integral of the density in B: Pπ(B|s) =
∫
B pπ(s

′|s)ρ(ds′).

Abstract Laplacian. Second, let us consider the vector space of square ρ-integrable functions
L2(ρ) = {u ∈ RS :

∫
S u(s)2ρ(ds) < ∞}. The measure ρ naturally induces an inner-product in

this space, ⟨·, ·⟩ρ : L2(ρ) × L2(ρ) → [0,∞), defined as ⟨v1, v2⟩ρ =
∫
S v1(s)v2(s)ρ(ds), which is

the expected correlation of the input vectors v1, v2 ∈ L2(ρ) under the measure ρ. With this, we can
define the transition operator Pπ : L2(ρ) → L2(ρ) as:

[Pπv](s) =

∫
S
v(s′)pπ(s

′|s)ρ(ds′) .

Note that, just as the original transition matrix Pπ mapped vectors in R|S| to itself, the transition
operator does the same in L2(ρ). Hence, it is its abstract analogous and, correspondingly, we can
define the abstract graph Laplacian as the square ρ-integrable linear operator L = I − f(Pπ) in
End(L2(ρ)), where I is the identity linear operator and f : End(L2(ρ)) → End(L2(ρ)) is a function
that maps Pπ to a self-adjoint square ρ-integrable linear operator f(Pπ).9 That a linear operator is
self-adjoint means, essentially, that its corresponding density with respect to ρ is symmetric. Thus,
this restriction is equivalent to ask that L is a symmetric matrix in the finite-dimensional case.
Hence, when pπ(s

′|s) ̸= pπ(s|s′), we can define f in such a way that the density of f(Pπ) is
1
2 (pπ(s|s

′) + pπ(s
′|s)) (see Equation 4 by Wu et al., 2019).

Extension of Lemma 2. After the introduced redefinitions, ALLO takes the exact same functional
form as in Equation (6):

max
β

min
u1,··· ,ud∈L2(ρ)

d∑
i=1

⟨ui, Lui⟩ρ +
d∑

j=1

j∑
k=1

βjk

(
⟨uj , JukK⟩ρ − δjk

)
+ · · · (20)

· · ·+ b

d∑
j=1

j∑
k=1

(
⟨uj , JukK⟩ρ − δjk

)2
.

In the abstract setting, and in general, we can define the differential DF of a linear operator F as:

DF (u)[v] =
d

dt
L(u+ tv)

∣∣
t=0

= lim
t→∞

L(u+ tv)− Lu

t
.

Now, let us fix the dual variables β, an index 1 ≤ i ≤ d, and the functions uj with j ̸= i, We denote
our ALLO objective with these fixed values by Fi = Fi(β, (uj)j ̸=i) : L2(ρ) → L2(ρ). Then, the
change of this operator at the function ui in a direction vi, with step size t, where the stop gradient
operators affect t now,10 is:

Fi(ui + tvi) =

[∑
j ̸=i

⟨uj , Luj⟩ρ +
i−1∑
j=1

j∑
k=1

βjk

(
⟨uj , JukK⟩ρ − δjk

)
+ · · ·

· · ·+
d∑

j=i+1

j∑
k=1
k ̸=i

βjk

(
⟨uj , JukK⟩ρ − δjk

)
+ b

i−1∑
j=1

j∑
k=1

(
⟨uj , JukK⟩ρ − δjk

)2
+ · · ·

· · ·+ b

d∑
j=i+1

j∑
k=1
k ̸=i

(
⟨uj , JukK⟩ρ − δjk

)2]
+ ⟨ui + tvi, L(ui + tvi)⟩ρ + · · ·

9End(L2(ρ)) denotes the space of endomorphisms of L2(ρ), i.e., the space of linear operators between
L2(ρ) and itself.

10This means that Jui + tviK = JuiK = ui.

16

Published as a conference paper at ICLR 2024

· · ·+ βii

(
⟨(ui + tvi), Jui + tviK⟩ρ − δii

)
+ b
(
⟨(ui + tvi), Jui + tviK⟩ρ − δii

)2
+ · · ·

· · ·+
i−1∑
k=1

βik

(
⟨(ui + tvi), JukK⟩ρ − δik

)
+

i−1∑
k=1

b
(
⟨(ui + tvi), JukK⟩ρ − δik

)2
+ · · ·

· · ·+
d∑

j=i+1

βji

(
⟨uj , Jui + tviK⟩ρ − δji

)
+

d∑
j=i+1

b
(
⟨uj , Jui + tviK⟩ρ − δji

)2

= Fi(ui) + t

[
2⟨ui, Lvi⟩ρ + βii⟨ui, vi⟩ρ + 2b⟨ui, vi⟩ρ

(
⟨(ui, JuiK⟩ρ − δii

)
+ · · ·

· · ·+
i−1∑
k=1

βik⟨uk, vi⟩ρ + 2

i−1∑
k=1

b⟨uk, vi⟩ρ
(
⟨ui, JukK⟩ρ − δik

)]
+O(t2) .

Hence, we can conclude that its differential, DFi, is given by:

DFi(ui)[vi] = lim
t→∞

Fi(ui + tvi)− Fi(u− i)

t

= 2⟨ui, Lvi⟩ρ + βii⟨ui, vi⟩ρ + 2b⟨ui, vi⟩ρ
(
⟨(ui, JuiK⟩ρ − δii

)
+ · · ·

· · ·+
i−1∑
k=1

βik⟨uk, vi⟩ρ + 2

i−1∑
k=1

b⟨uk, vi⟩ρ
(
⟨ui, JukK⟩ρ − δik

)

=

〈
vi , 2Lui + βiiui + 2b

(
⟨ui, JuiK⟩ρ − δii

)
ui +

i−1∑
k=1

βikuk + · · ·

· · ·+ 2b

i−1∑
k=1

(
⟨ui, JukK⟩ρ − δik

)
uk

〉
ρ

=

〈
vi , 2Lui +

i∑
k=1

βikuk + 2b

i∑
k=1

(
⟨ui, uk⟩ρ − δik

)
uk

〉
ρ

.

Now, we have that the gradient in an arbitrary inner-product vector space is defined as the vector
∇F (u) such that DF (u)[v] = ⟨v,∇F (u)⟩ρ. That is, the gradient of ALLO with respect to ui, given
the stop gradient operators, denoted as gi(β, (ui)

d
i=1), is:

gi(β, (ui)
d
i=1) := ∇Fi(ui) = 2Lui +

i∑
k=1

βikuk + 2b

i∑
k=1

(
⟨ui, uk⟩ρ − δik

)
uk .

We can note that this expression is exactly equivalent to the one obtained in the finite dimensional
case in Equation (7). Similarly, one can derive an analogous to Equation (8), and, since the proof of
Lemma 2 only depends on the properties of the inner product, and not a specific inner product, we
can conclude that Lemma 2 applies to the general abstract setting as well. In particular, we have that
the set of permutations of d eigenvectors of the Laplacian is equal to the equilibria of the gradient
ascent-descent dynamics for ALLO.11

Extension of Theorem 1. By analogy with the previous derivation, we can obtain the Hessian of
Fi with respect to uj , considering the stop gradients (i.e., the gradient of gi), by replacing matrices

11Note that our derivation is exactly the same one would follow to calculate the gradient in the finite dimen-
sional case if one only uses the definitions of differential and gradient. Under this light, the fact that we are
considering abstract spaces instead of finite dimensional ones seems irrelevant for Lemma 2.

17

Published as a conference paper at ICLR 2024

with their linear operator counterparts in Equations (12)-(15). Then, since the Laplacian is a self-
adjoint square ρ-integrable linear operator, typically called Hilbert-Schmidt integral operator, it is
also a compact operator. Thus, any vector can be expressed as a countable sum of eigenvectors, i.e.,
there are potentially infinite, but at most countable eigenvectors, and so the steps from Equation (17)
to Equation (19) still hold, due to the spectral theory of compact operators.

18

Published as a conference paper at ICLR 2024

B ENVIRONMENTS

GridRoom-1 GridRoom-16 GridMaze-19 GridRoom-64

GridMaze-7GridMaze-9 GridMaze-32GridMaze-26

GridRoom-4 GridRoomSym-4 GridRoom-32 GridMaze-17

Figure 6: Grid environments where the Laplacian representation is learned with both GGDO and
ALLO. Color corresponds to the second smallest eigenvector of the Laplacian learned by ALLO.

C LEARNED EIGENVECTORS

Figure 7: Second to seventh Laplacian eigenvectors in increasing order for the environment
GridRoom-64. The top row corresponds to ALLO, while the bottom one to GGDO. The green
bounding boxes indicate the location of a local minimum or maximum.

Figure 7 shows the difference between the smallest eigenvectors of the Laplacian (those learned via
ALLO) and rotations of them (those learned via GGDO). One can note how, in general, the rotations
present two characteristics: they have more local minima and local maxima, and their location is
distributed irregularly in the state space. The first characteristic is relevant considering that the
eigenvectors are used as reward functions to discover options, i.e., temporally-extended actions, that

19

Published as a conference paper at ICLR 2024

have as sink states these critical states. The more sink states, the shorter the trajectories associated
with an induced option, and, as a result, the less exploration.

Similarly, the irregularity is a manifestation of eigenvectors of different temporal scales being com-
bined, which affects the temporal distance induced by the Laplacian representation. In particular, as
studied by Wang et al. (2023), if each eigenvector is normalized by their corresponding eigenvalue,
the representation distance corresponds exactly to the (square root of the) temporal distance. How-
ever, the eigenvalues, which are a measure of the temporal scale (see Jinnai et al., 2019), are only
defined for the original eigenvectors. Hence, the distance induced by the permutations cannot be
normalized and, as a result, it is not as suitable for reward shaping.

D LEARNING WITH RANDOM PERMUTATIONS

Av
er

ag
e

co
si

ne

si
m

ila
rit

y

Gradient steps

Figure 8: Average cosine similarity between the true Laplacian representation and ALLO for
αbarrier = 0.01, averaged over 60 seeds. Each 20,000 gradient steps the coordinates of the Laplacian
representation are randomly permuted. The shaded region corresponds to a 95% confidence interval.

As an additional sanity check for Theorem 1, Figure 8 shows the evolution of the cosine similarity for
the 12 grid environments considered under random permutations. Specifically, each 20,000 gradient
steps a random permutation is sampled and then the output coordinates of the approximator ϕθ are
permuted accordingly. If any arbitrary permutation (or rotation) of the Laplacian eigenvectors were
stable, the cosine similarity would decrease after the permutation and it would not increase again.
On the contrary, we can observe how in each case learning is as successful as in the initial cycle
without permutations.

E AVERAGE COSINE SIMILARITY COMPARISON

In addition to the results considered in Figure 4, Figure 9b shows the cosine similarity for each of
the components of the Laplacian representation. It is worth noting that in some environments (e.g.,
GridRoom-32 and GridMaze-32) GGDO struggles with the first 2 eigenvectors, which are the
most relevant to induce options for exploration.

As a supplementary robustness test, we changed the state representation used as input to the neural
network. In particular, we used a pixel representation where each tile in the subplots of Figure 6
corresponds to a single pixel. In this way, the inputs ranged from a size of 7 × 9 × 3 to a size of
41× 41× 3. Correspondingly, we added two convolutional layers with no pooling, stride of 2, and
kernel size of 3 to the previous fully connected network.

Figure 10 contains analogous cosine similarity comparisons to those observed in Figure 9 for the
(x, y) state representation. There are three main differences with the previous results. First, the
average cosine similarity difference (Figure 10a) is now only significant in 7 out of 12 environments,
instead of 9 of 12 (see Tables 1 and 2), but the difference is higher for several environments (e.g.,
GridRoom-32 and GridRoom-1). Second, ALLO only finds the true Laplacian representation

20

Published as a conference paper at ICLR 2024

Di�erence of means (avg. cosine similarity)

(a) Average cosine similarity across the d components.

(b) Cosine similarity for each of the components. GR and GM stand for GridRoom and
GridMaze. black bars correspond to p-values below 0.01.

Figure 9: Cosine similarity difference between ALLO and GGDO when using the (x, y)
state representation. Error bars show the standard deviation of the differences, defined as√

σ2
ALLO/nALLO + σ2

GGDO/nGGDO, where σ denotes the sample standard deviation, and n the num-
ber of seeds (= 60 in all cases).

in 6 out of 12 environments, as opposed to 11 out of 12. From those 6 where perfect learning is not
achieved, 4 have a cosine similarity above 0.9, one corresponds to the same environment where the
Laplacian representation was not perfectly learned before, and there is one for which the similarity
is only 0.61. Focusing on these results, we observed that ALLO was able to recover the Laplacian
representation for some seeds, but for others the output of the neural network collapsed to a constant.

21

Published as a conference paper at ICLR 2024

This suggests that maintaining the same hyperparameters with the new state representation and
convolutional layers could have resulted in divergence problems unrelated to ALLO. Lastly, we can
observe (see Figure 10b) that GGDO fails more frequently, in contrast with the (x, y) representation
case, in finding the smallest non-constant eigenvector (e.g., in GridRoom-16 and GridRoom-1),
supporting the hypothesis that GGDO is not scalable to more complex settings, as opposed to ALLO,
and preventing the use of the Laplacian for exploration.

Di�erence of means (avg. cosine similarity)

(a) Average cosine similarity across the d components.

(b) Cosine similarity for each of the components. GR and GM stand for GridRoom and
GridMaze. black bars correspond to p-values below 0.01.

Figure 10: Cosine similarity difference between ALLO and GGDO when using the pixel
state representation. Error bars show the standard deviation of the differences, defined as√

σ2
ALLO/nALLO + σ2

GGDO/nGGDO, where σ denotes the sample standard deviation, and n the num-
ber of seeds (∈ [50, 60] in all cases).

22

Published as a conference paper at ICLR 2024

Env ALLO GGDO t-statistic p-value

GridMaze-17 0.9994 (0.0002) 0.9993 (0.0003) 0.641 0.262
GridMaze-19 0.9989 (0.0006) 0.9936 (0.0185) 2.218 0.015
GridMaze-26 0.9984 (0.0007) 0.9331 (0.0517) 9.770 0.000
GridMaze-32 0.9908 (0.0161) 0.8014 (0.0901) 16.018 0.000
GridMaze-7 0.9996 (0.0002) 0.2959 (0.0159) 343.724 0.000
GridMaze-9 0.9989 (0.0007) 0.3755 (0.0081) 596.775 0.000
GridRoom-1 0.9912 (0.0003) 0.9906 (0.0003) 9.691 0.000

GridRoom-16 0.9990 (0.0004) 0.9980 (0.0023) 3.297 0.001
GridRoom-32 0.9982 (0.0010) 0.9857 (0.0266) 3.647 0.000
GridRoom-4 0.9965 (0.0052) 0.9073 (0.0063) 84.136 0.000

GridRoom-64 0.9917 (0.0059) 0.7617 (0.0834) 21.326 0.000
GridRoomSym-4 0.8411 (0.0742) 0.8326 (0.0855) 0.581 0.281

Table 1: Average cosine similarities for ALLO and GGDO when using the (x, y) state repre-
sentation. The sample average is calculated using 60 seeds. The standard deviation is shown in
parenthesis and the maximal average is shown in boldface when the difference is statistically signif-
icant, meaning the associated p-value is smaller than 0.01.

Env ALLO GGDO t-statistic p-value

GridRoom-16 0.9992 (0.0003) 0.7836 (0.3897) 4.251 0.000
GridRoom-1 0.9914 (0.0002) 0.7114 (0.4199) 5.080 0.000
GridMaze-9 0.9988 (0.0013) 0.3773 (0.0064) 720.882 0.000
GridMaze-19 0.9789 (0.1354) 0.9480 (0.2032) 0.926 0.178
GridRoom-32 0.9073 (0.2591) 0.3795 (0.4183) 7.917 0.000
GridMaze-26 0.9330 (0.2214) 0.8466 (0.2358) 1.935 0.028
GridMaze-17 0.9995 (0.0001) 0.9687 (0.1658) 1.429 0.079
GridMaze-32 0.6198 (0.3056) 0.5810 (0.3745) 0.598 0.276

GridRoomSym-4 0.8434 (0.0743) 0.8407 (0.0686) 0.197 0.422
GridMaze-7 0.9997 (0.0002) 0.3015 (0.0211) 253.863 0.000
GridRoom-4 0.9965 (0.0076) 0.8950 (0.1065) 7.297 0.000
GridMaze-11 0.9349 (0.0496) 0.3975 (0.0592) 52.931 0.000

Table 2: Average cosine similarities for ALLO and GGDO when using the pixel state representa-
tion. The sample average is calculated using 60 seeds. The standard deviation is shown in paren-
thesis and the maximal average is shown in boldface when the difference is statistically significant,
meaning the associated p-value is smaller than 0.01.

23

Published as a conference paper at ICLR 2024

F AVERAGE EIGENVALUES

Env True ALLO GGDO

GridRoomSym-4 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0540 0.0429 (0.0003) 0.0395 (0.0003)
0.0540 0.0434 (0.0003) 0.0387 (0.0003)
0.1068 0.0863 (0.0005) 0.0703 (0.0005)
0.4502 0.4034 (0.0007) 0.0531 (0.0007)
0.4507 0.4045 (0.0007) 0.0529 (0.0007)
0.4507 0.4054 (0.0007) 0.0524 (0.0007)
0.4512 0.4066 (0.0008) 0.0520 (0.0008)
0.4915 0.4479 (0.0008) 0.0156 (0.0008)
0.4951 0.4513 (0.0007) 0.0121 (0.0007)
0.4951 0.4526 (0.0008) 0.0108 (0.0008)

GridRoom-16 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0016 0.0017 (0.0000) 0.0016 (0.0000)
0.0063 0.0055 (0.0000) 0.0051 (0.0000)
0.0139 0.0116 (0.0001) 0.0111 (0.0001)
0.0242 0.0199 (0.0002) 0.0189 (0.0002)
0.0367 0.0301 (0.0002) 0.0279 (0.0002)
0.0511 0.0420 (0.0002) 0.0382 (0.0002)
0.0663 0.0546 (0.0003) 0.0482 (0.0003)
0.0832 0.0688 (0.0005) 0.0591 (0.0005)
0.1007 0.0836 (0.0006) 0.0691 (0.0006)
0.1161 0.0969 (0.0005) 0.0774 (0.0005)

GridMaze-9 0.0000 0.0001 (0.0000) 0.0000 (0.0000)
0.1582 0.1154 (0.0006) 0.0962 (0.0006)
0.3083 0.2354 (0.0011) 0.1159 (0.0011)
0.4899 0.3961 (0.0015) 0.0181 (0.0015)
0.6613 0.5674 (0.0020) 0.0000 (0.0020)
0.7529 0.6692 (0.0024) 0.0000 (0.0024)
0.7777 0.6986 (0.0023) 0.0000 (0.0023)
0.8266 0.7585 (0.0027) 0.0000 (0.0027)
0.8613 0.8038 (0.0028) 0.0000 (0.0028)
0.8768 0.8251 (0.0029) 0.0000 (0.0029)
0.8796 0.8292 (0.0029) 0.0000 (0.0029)

GridMaze-7 0.0000 0.0001 (0.0000) 0.0000 (0.0000)
0.1833 0.1325 (0.0006) 0.1034 (0.0006)
0.4622 0.3645 (0.0011) 0.0437 (0.0011)
0.5208 0.4186 (0.0010) 0.0000 (0.0010)
0.7148 0.6158 (0.0012) 0.0000 (0.0012)
0.7958 0.7084 (0.0014) 0.0000 (0.0014)
0.8392 0.7621 (0.0014) 0.0000 (0.0014)
0.8549 0.7826 (0.0017) 0.0000 (0.0017)
0.8739 0.8076 (0.0015) 0.0000 (0.0015)
0.8934 0.8347 (0.0016) 0.0000 (0.0016)
0.9091 0.8572 (0.0018) 0.0000 (0.0018)

GridRoom-32 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0008 0.0010 (0.0000) 0.0008 (0.0000)
0.0018 0.0019 (0.0000) 0.0017 (0.0000)
0.0039 0.0036 (0.0000) 0.0031 (0.0000)
0.0065 0.0057 (0.0001) 0.0053 (0.0001)
0.0135 0.0114 (0.0001) 0.0105 (0.0001)
0.0161 0.0135 (0.0001) 0.0124 (0.0001)
0.0200 0.0167 (0.0001) 0.0151 (0.0001)
0.0270 0.0223 (0.0002) 0.0206 (0.0002)
0.0284 0.0236 (0.0002) 0.0212 (0.0002)
0.0364 0.0301 (0.0002) 0.0265 (0.0002)

GridRoom-64 0.0000 0.0000 (0.0000) 0.0001 (0.0000)
0.0004 0.0007 (0.0000) 0.0006 (0.0000)
0.0010 0.0012 (0.0000) 0.0009 (0.0000)
0.0016 0.0017 (0.0000) 0.0017 (0.0000)
0.0020 0.0021 (0.0000) 0.0015 (0.0000)
0.0021 0.0022 (0.0000) 0.0018 (0.0000)
0.0035 0.0033 (0.0000) 0.0031 (0.0000)
0.0041 0.0038 (0.0000) 0.0034 (0.0000)
0.0063 0.0055 (0.0000) 0.0051 (0.0000)
0.0090 0.0078 (0.0001) 0.0072 (0.0001)
0.0097 0.0084 (0.0001) 0.0078 (0.0001)

Env True ALLO GGDO

GridMaze-32 0.0000 0.0000 (0.0000) 0.0001 (0.0000)
0.0000 0.0007 (0.0001) 0.0004 (0.0001)
0.0004 0.0008 (0.0000) 0.0006 (0.0000)
0.0013 0.0015 (0.0000) 0.0010 (0.0000)
0.0037 0.0035 (0.0000) 0.0033 (0.0000)
0.0043 0.0040 (0.0000) 0.0038 (0.0000)
0.0058 0.0053 (0.0001) 0.0050 (0.0001)
0.0063 0.0056 (0.0001) 0.0053 (0.0001)
0.0075 0.0067 (0.0001) 0.0059 (0.0001)
0.0099 0.0085 (0.0001) 0.0080 (0.0001)
0.0148 0.0126 (0.0001) 0.0118 (0.0001)

GridMaze-26 0.0000 0.0000 (0.0000) 0.0001 (0.0000)
0.0005 0.0008 (0.0000) 0.0007 (0.0000)
0.0034 0.0032 (0.0000) 0.0030 (0.0000)
0.0039 0.0037 (0.0001) 0.0035 (0.0001)
0.0048 0.0044 (0.0001) 0.0039 (0.0001)
0.0058 0.0051 (0.0001) 0.0048 (0.0001)
0.0094 0.0080 (0.0001) 0.0078 (0.0001)
0.0129 0.0109 (0.0001) 0.0105 (0.0001)
0.0156 0.0131 (0.0001) 0.0130 (0.0001)
0.0195 0.0164 (0.0002) 0.0154 (0.0002)
0.0255 0.0213 (0.0002) 0.0201 (0.0002)

GridMaze-17 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0029 0.0027 (0.0000) 0.0026 (0.0000)
0.0116 0.0097 (0.0001) 0.0094 (0.0001)
0.0257 0.0212 (0.0001) 0.0199 (0.0001)
0.0448 0.0368 (0.0002) 0.0331 (0.0002)
0.0682 0.0562 (0.0003) 0.0490 (0.0003)
0.0952 0.0790 (0.0004) 0.0647 (0.0004)
0.1251 0.1045 (0.0005) 0.0809 (0.0005)
0.1572 0.1327 (0.0005) 0.0950 (0.0005)
0.1907 0.1624 (0.0006) 0.1065 (0.0006)
0.2249 0.1937 (0.0007) 0.1163 (0.0007)

GridMaze-19 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0016 0.0016 (0.0000) 0.0014 (0.0000)
0.0058 0.0051 (0.0000) 0.0048 (0.0000)
0.0068 0.0059 (0.0001) 0.0056 (0.0001)
0.0140 0.0117 (0.0001) 0.0111 (0.0001)
0.0232 0.0192 (0.0002) 0.0177 (0.0002)
0.0365 0.0300 (0.0002) 0.0283 (0.0002)
0.0403 0.0332 (0.0003) 0.0306 (0.0003)
0.0516 0.0425 (0.0004) 0.0390 (0.0004)
0.0559 0.0461 (0.0003) 0.0416 (0.0003)
0.0821 0.0679 (0.0004) 0.0567 (0.0004)

GridRoom-4 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0490 0.0392 (0.0003) 0.0357 (0.0003)
0.0576 0.0462 (0.0003) 0.0416 (0.0003)
0.1122 0.0908 (0.0005) 0.0732 (0.0005)
0.3905 0.3448 (0.0014) 0.0923 (0.0014)
0.4420 0.3963 (0.0009) 0.0592 (0.0009)
0.4531 0.4080 (0.0010) 0.0517 (0.0010)
0.4585 0.4139 (0.0010) 0.0451 (0.0010)
0.4787 0.4348 (0.0008) 0.0283 (0.0008)
0.4917 0.4489 (0.0010) 0.0152 (0.0010)
0.5209 0.4802 (0.0008) 0.0000 (0.0008)

GridRoom-1 0.0000 0.0000 (0.0000) 0.0000 (0.0000)
0.0895 0.0728 (0.0003) 0.0610 (0.0003)
0.0895 0.0735 (0.0004) 0.0629 (0.0004)
0.1643 0.1372 (0.0005) 0.0986 (0.0005)
0.2801 0.2412 (0.0006) 0.1175 (0.0006)
0.2801 0.2425 (0.0005) 0.1183 (0.0005)
0.3277 0.2868 (0.0007) 0.1128 (0.0007)
0.3277 0.2884 (0.0007) 0.1134 (0.0007)
0.4376 0.3980 (0.0009) 0.0622 (0.0009)
0.4622 0.4229 (0.0008) 0.0432 (0.0008)
0.4622 0.4244 (0.0008) 0.0419 (0.0008)

Table 3: Average eigenvalues for ALLO and GGDO. For each environment, the true eigenvalues are
shown in decreasing order, from the 2nd one up to the 11th. The sample averages are calculated
using 60 seeds and in parenthesis are the standard deviations.

24

	Introduction
	Background
	Augmented Lagrangian Laplacian Objective
	Theoretical results
	Experiments
	Conclusion
	Additional theoretical derivations
	Proof of Lemma 1
	Proposition 1
	Proof of Corollary 1
	Proof oF Theorem 1
	Abstract setting

	Environments
	Learned eigenvectors
	Learning with random permutations
	Average cosine similarity comparison
	Average eigenvalues

