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ABSTRACT

A diffusion model, which is formulated to produce an image using thousands of
denoising steps, usually suffers from a slow inference speed. Existing acceleration
algorithms simplify the sampling by skipping most steps yet exhibit considerable
performance degradation. By viewing the generation of diffusion models as a
discretized integrating process, we argue that the quality drop is partly caused by
applying an inaccurate integral direction to a timestep interval. To rectify this issue,
we propose a timestep aligner that helps find a more accurate integral direction
for a particular interval at the minimum cost. Specifically, at each denoising
step, we replace the original parameterization by conditioning the network on
a new timestep, which is obtained by aligning the sampling distribution to the
real distribution. Extensive experiments show that our plug-in design can be
trained efficiently and boost the inference performance of various state-of-the-art
acceleration methods, especially when there are few denoising steps. For example,
when using 10 denoising steps on the popular LSUN Bedroom dataset, we improve
the FID of DDIM from 9.65 to 6.07, simply by adopting our method for a more
appropriate set of timesteps. Code will be made publicly available.

1 INTRODUCTION

Diffusion probabilistic models (DPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020), known simply as diffusion models, have recently received growing attention due to its efficacy
of modeling complex data distributions (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal &
Nichol, 2021). A DPM first defines a forward diffusion process (i.e., either discrete-time (Ho et al.,
2020; Song et al., 2021) or continuous-time (Song et al., 2020)) by gradually adding noise to data
samples, and then learns the reverse denoising process with a timestep-conditioned parameterization.
Consequently, it usually requires thousands of denoising steps to synthesize an image, which is
time-consuming (Ho et al., 2020; Song et al., 2021; Kong & Ping, 2021).

To accelerate the generation process of diffusion models, a common practice is to reduce the number
of inference steps. For example, instead of a step-by-step evolution from the state of timestep 1,000
to the state of timestep 900, previous works (Song et al., 2020; Ho et al., 2020; Bao et al., 2022)
manage to directly link these two states with a one-time transition. That way, it only needs to evaluate
the denoising network once instead of 100 times, thus substantially saving the computational cost.

A side effect of the above acceleration pipeline is the performance degradation that appears as artifacts
in the synthesized images. In this paper, we aim to identify and address the cause of this side effect.
As the gray dashed line shown in Fig. 1a, the generation process of diffusion models can be viewed
as a discretized integrating process, where the direction of each integral step is calculated by the
pre-learned noise prediction model. To reduce the number of steps, existing algorithms (Song et al.,
2021; Bao et al., 2022; Nichol & Dhariwal, 2021) typically apply the direction predicted for the
initial state for the following timestep interval, as the red line shown in Fig. 1a, resulting in a gap
between the sampling distribution and the real distribution. Karras (Karras et al., 2022) identify
this distribution gap as the truncation error, which accumulates over the whole steps intuitively and
theoretically. As the red line shown in Fig. 1b, the gap between the sampling distribution and the real
distribution increases as the integrating process evolves.

To alleviate the problem arising from skipping steps, we propose a timestep aligner, termed as
DPM-Aligner, which targets at finding a more accurate integral direction for a particular interval.
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Figure 1: Conceptual description of (a) the one-step truncation error, (b) the accumulative truncation
error, and (c) re-aligning the sampling and the real distribution of our DPM-Aligner by replacing
the input timestep from t to τ , by the full-step reverse process (gray dashed line), the baseline
acceleration pipeline (red line), and our proposed method with timestep alignment (green line).

As the green line shown in Fig. 1a, our approach is designed to achieve this purpose efficiently by
searching a more appropriate timestep τ replacing the previous t as the new condition input of the
pre-learned noise prediction model. By doing so, we are able to significantly reduce the one-step
truncation error, and hence the accumulative truncation error, as demonstrated with the green line
in Fig. 1a and Fig. 1b respectively. Our motivation is intuitive – it is based on the observation that
“although the direction estimated from the initial state may not be appropriate for integration on the
interval, the one from some intermediate state can be”, akin to the mean value theorem of integrals. To
obtain this new timestep, we re-align the sampling distribution to the real distribution by optimizing
a specially designed loss function. We theoretically prove the feasibility of DPM-Aligner, and
provide an estimation of the error bound for deterministic sampling algorithms. Experiments using
different numbers of function evaluations (NFE) show that our DPM-Aligner can be used to boost
the sampling quality of various acceleration methods without extra time cost, (e.g., DDIM (Song
et al., 2021), Analytic-DPM (Bao et al., 2022), DPM-solver (Lu et al., 2022), etc.) in a plug-in
fashion. Hence, our work offers a new perspective on accelerating the inference while simultaneously
reducing the quality degradation of diffusion models.

2 RELATED WORK

DPMs and the applications. Diffusion probabilistic model (DPM) is initially introduced by Sohl-
Dickstein et al. (Sohl-Dickstein et al., 2015), where the training is based on the optimization of the
variational lower bound Lvb. Denoising diffusion probabilistic model (DDPM) (Ho et al., 2020)
proposes a re-parameterization trick of DPM and learns the reweighted Lvb. Song et al. (Song
et al., 2020) model the forward process as a stochastic differential equation and introduce continuous
timesteps. With rapid advances in recent studies, DPMs show great potential in various downstream
applications, including speech synthesis (Chen et al., 2020; Kong et al., 2020), video synthesis (Ho
et al., 2022b), super-resolution (Saharia et al., 2021; Li et al., 2022), conditional generation (Choi
et al., 2021), and image-to-image translation (Saharia et al., 2022; Sasaki et al., 2021).

Faster DPMs attempt to explore shorter trajectories rather than the complete reverse process, while
ensuring the synthesis performance compared to the original DPM. Existing methods can be divided
into two categories. The first category includes knowledge distillation (Salimans & Ho, 2022; Luhman
& Luhman, 2021; Song et al., 2023). Although such methods may achieve respectable synthesis
performance with only one-step generation (Song et al., 2023), they require expensive training stages
before they are applied to efficient sampling, leading to poor applicability. The second category
consists of training-free methods suitable for pre-trained DPMs. DDIM (Song et al., 2021) is the first
attempt to accelerate the sampling process using a probability flow ODE (Song et al., 2020). Some
existing methods search for the integration trajectories using grid search (Chen et al., 2020). However,
it is only suitable for a short reverse process due to its exponentially growing time complexity.
Some methods try to search for the trajectories by solving a least-cost-path problem with a dynamic
programming (DP) algorithm or using the analytic solution (Watson et al., 2021; Bao et al., 2022).
Another representative category of fast sampling methods use high-order differential equation (DE)
solvers (Jolicoeur-Martineau et al., 2021; Liu et al., 2022; Popov et al., 2022; Tachibana et al., 2021;
Lu et al., 2022). Saharia et al. (Saharia et al., 2021) and Ho et al. (Ho et al., 2022a) manage to
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Figure 2: Quantitative measurement of the gap between the real and the sampling distribution using
DDIM (Song et al., 2021) and DPM-Solver-2 (Lu et al., 2022). The horizontal axis represents the
timesteps which form a (a) quadratic trajectory with NFE = 10; (b) quadratic trajectory with NFE
= 20; (c) uniform trajectory with NFE = 10; (d) log-SNR trajectory with NFE = 10. We plot the L2

distance between xt and x̃t for the original and the aligned sampler, which are shown in red and blue,
respectively. We also provide an error bound for deterministic sampler theoretically in Theorem 2.

train DPMs using continuous noise level and draw samples by applying a few-step discrete reverse
process. Some GAN-based methods also consider larger sampling step sizes, e.g., in (Xiao et al.,
2022) a multi-modal distribution is learned in a conditional GAN with a large step size. However,
to the best of our knowledge, existing training-free acceleration algorithms are bottlenecked by
the poor sampling performance with extremely few inference steps (e.g., less than 5 steps). Our
DPM-Aligner can be considered as a performance booster for existing training-free acceleration
methods, i.e., it further improves the generation performance.

3 METHOD

3.1 BACKGROUND

Suppose that x0 ∈ RD is a D-dimensional random variable with an unknown distribution q0(x0).
Diffusion probabilistic models (DPMs) (Sohl-Dickstein et al., 2015; Song et al., 2020; Ho et al.,
2020) define a forward process {xt}t∈[0,T ] by gradually adding noise onto x0 with T > 0, such that
for any t ∈ [0, T ], we have the transition distribution:

q0t(xt|x0) = N (xt;αtx0, σ
2
t I), (1)

where αt, σt ∈ R+ are differentiable functions of t with bounded derivatives. The choice of αt, σt is
referred to as the noise schedule. Let qt(xt) be the marginal distribution of xt, DPM ensures that
qT (xT ) ≈ N (xT ;0, σ

2I) for some σ > 0, and the signal-to-noise-ratio (SNR) α2
t /σ

2
t is strictly

decreasing w.r.t. the timestep t (Kingma et al., 2021).

DPMs introduce a neural network ϵθ(xt, t), namely the noise prediction model, to approximate the
score function from the given xt, where the parameter θ can be optimized by the objective below:

Ex0,ϵ,t

[
ωt∥ϵθ(xt, t)− ϵ∥22

]
, (2)

where ωt is the weighting function, ϵ ∼ N (0, I), xt = αtx0 + σtϵ, and t ∼ U [0, T ].

3.2 GAP BETWEEN REAL AND SAMPLING DISTRIBUTIONS

Note that a sampler of DPM builds upon the use of the noise prediction model ϵθ at each timestep t,
which is technically a discretization of an integrating process. At each denoising step, one applies the
noise prediction model ϵθ onto the intermediate result x̃t from the last denoising step together with
its corresponding timestep condition t, i.e. ϵ̃t = ϵθ(x̃t, t). The achieved noise prediction ϵ̃t will be
used as the integral direction towards the next denoised result.

However, recall that during the training of DPM, the noise prediction model ϵθ is trained with the
noisy version of the real data at timestep t, i.e., xt = αtx0 + σtϵ, where ϵ ∼ N (0, I). Intuitively,
due to the error of the DE solver (i.e., SDE solver or ODE solver) using large discretization step sizes,
there is a considerable gap between the distributions of the real distribution of xt and the sampling
distribution of x̃t at each timestep t, which is called the truncation error (Karras et al., 2022). Even
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worse, this error is accumulated progressively during the reverse process, since the gap between the
distributions of xt and x̃t leads to a poor prediction of x̃t−1, in which the truncation error at timestep
t transmits to the next timestep t− 1, which is also claimed by Karras (Karras et al., 2022).

To support this insight, Fig. 1a shows the truncation error at each timestep, in comparison with the
original full-step sampling process. As the gray dashed line in Fig. 1a indicates, in the original
full-step sampling process, the denoised xs comes from a step-by-step denoising refinement starting
at xt, calculated by the results from the noise prediction model at all intermediate timesteps from xt

down to xs. However, the accelerated sampling algorithm (i.e., the red line) uses a large step size and
replaces all the intermediate predicted noises with one single predicted one at the initial timestep, i.e.,
ϵ̃t = ϵθ(x̃t, t). Therefore, each x̃t incurs a truncation error due to a large discretization step sizes.

Furthermore, note that for a sampling process, given the value of x̃T at timestep T and a timestep
t in [0, T ], the DE solver approximates the true xt as x̃t. As the red line indicates in Fig. 1b, since
the local truncation error accumulates at each step, the gap between the sampling distribution of
x̃t and the real distribution of xt increases as t evolves. To gain the insight of the accumulative
error, we conduct a simple experiment to provide convincing evidence of the above observation
using DDIM (Song et al., 2021) and DPM-Solver-2 (Lu et al., 2022) sampler. We first sample
x̃T from CIFAR10 dataset (Krizhevsky & Hinton, 2009) and estimate the true xt sequences using
DDIM sampler with the number of function evaluations (NFE) = 1, 000. Meanwhile, we draw
the approximated x̃t sequences using DDIM and DPM-Solver-2 samplers following the quadratic,
uniform and log-SNR trajectories with NFE = 10 or 20, respectively. Then we calculate the L2

metric of xt − x̃t at each timestep t, in order to demonstrate the gap of the two distributions, the
result is shown in Fig. 2. It is noteworthy that: (1) the gap between xt and x̃t indeed accumulates
as timestep t evolves from T to 0, which indicates that the truncation error at each step makes the
sampling distribution farther and farther away from the real one and severely hurts the final sampling
quality; (2) with the same quadratic trajectory, the larger the NFE is, the smaller the gap between
the real and sampling distributions is; (3) different types of trajectories and different DPM samplers
account for different behaviors of the accumulative truncation error.

3.3 TIMESTEP ALIGNER FOR NOISE PREDICTION MODEL

Recall that in Sec. 3.2 we demonstrate the gap between the real and the sampling distribution. This
gap will damage the quality of the synthesis samples. In this section, we propose the DPM-Aligner
which re-aligns the distribution of approximated x̃t and the input condition timestep t. The solution
and analysis are highly motivated by bridging the gap between the real distribution and sampling
distribution at the same timestep t using the mean value theorem of integrals.

Given the analysis that the sampling distribution of the predicted x̃t fails to follow the real marginal
distribution qt(xt) at each timestep t. Therefore, what we need to do to boost any given acceleration
algorihtm, is to choose an adequate timestep τ , replacing the input for the noise prediction model ϵθ
from t to τ (which is shown in Fig. 1c), such that the sampling distribution of x̃t tends to obey the
distribution qt(xt). This greatly improves the poor performance of the noise prediction model ϵθ,
since ϵθ is trained using paired (xt, t), in which xt obeys the distribution qt(xt) at timestep t.

We first provide a picture of our formulation, as is shown in Fig. 1. In order to reduce the truncation
error caused by inaccurate integral direction and large discretization step size (i.e., the denoised result
x̃s achieved along the red line in Fig. 1a), we target at finding a more accurate integral direction (i.e.,
by replacing ti with re-aligned τi in Fig. 1c) for the interval from xt to xs (i.e., the denoised result
x̃′
s achieved along the green line in Fig. 1a). In this sense, we are able to improve the accuracy of the

noise prediction model and achieve a better integral direction for each interval (i.e., the green line in
Fig. 1b), mitigating the accumulation of the truncation error (i.e., the red line in Fig. 1b).

Formally, for a discretization 0 = t0 < t1 < · · · < tK = T of [0, T ] and a DE solver fθ(xti , ti)
which is responsible to denoise the intermediate x̃ti for one single step, i.e., x̃ti−1

= fθ(x̃ti , ti). For
instance, the DE solver fθ of DDIM (Song et al., 2021) is of the following form:

fθ(x̃ti , ti) =
αti−1

αti

x̃ti −
(
αti−1

σti

αti

− σti−1

)
ϵθ(x̃ti , ti). (3)
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Algorithm 1 Training τi
1: for i = K,K − 1, · · · , 1 do
2: repeat
3: x0 ∼ q0(x0), ϵ ∼ N (0, I)
4: x̃T ← αTx0 + σT ϵ
5: x̃ti ← fθ,τ (fθ,τ (· · · (fθ,τ (x̃T , τK) · · · ), τi+2), τi+1)
6: Take gradient descent step on

∇τi(∥ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x̃ti , ti)∥22)

7: until converged
8: end for

DPM-Aligner will re-align x̃ti and ti, achieving the aligned DE solver fθ,τ by:

x̃′
ti−1

= fθ,τ (x̃ti , τi) :=
αti−1

αti

x̃ti −
(
αti−1σti

αti

− σti−1

)
ϵθ(x̃ti , τi), (4)

where τi is the aligned timestep replacing the previous input condition timestep ti.

Training DPM-Aligner is simple and efficient. Recall that we hope to find a timestep τi replacing
the previous ti, such that the sampling distribution of x̃ti−1 = fθ,τ (x̃ti , τi) tends to follow the real
distribution qti−1(xti−1). Therefore, after determining the number of function evaluations (NFE) K
and its corresponding trajectory 0 = t0 < t1 < · · · < tK = T , the training process is to enforce the
sampling distribution of intermediate x̃ti and the real distribution qti(xti) to coincide.

Concretely, we train the aligned timestep reversely from tK = T down to t1. Given x0 ∼ q0(x0) and
ϵ ∼ N (0, I), the distribution of x̃T approximates the Gaussian distribution, i.e., x̃T = αTx0+σT ϵ ≈
N (0, σ2I). For each i = K,K − 1, · · · , 0, denote by x̃ti the intermediate denoised result using the
aligned DE solver fθ,τ in Eq. (4). The loss function of τi, i = K,K − 1, · · · , 1 is defined as:

Li(τi) = Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x̃ti , ti)∥22

]
. (5)

The training process is summarized in Algorithm 1. It is noteworthy that the training of our method
is in a plug-in fashion. There is no need to modify the parameters of the pre-trained DPMs. Besides,
since it only requires optimization of the τi through a denoising step, the training is extremely efficient
(e.g., DPM-Aligner takes ∼ 1 hour in all of NFE = 10 case on an NVIDIA Tesla A100 GPU).

3.4 THEORETICAL FOUNDATIONS OF DPM-ALIGNER

We first exhibit the relationship between the objective of our method (i.e., Eq. (5)) and that of the
DDPM (i.e., Eq. (2)). Formally, we have the following theorem. Proof is addressed in Appendix A.1.

Theorem 1. Assume that ϵθ is the groundtruth noise prediction model. Then the training process
of DPM-Aligner resembles that of the original DPM, i.e., for i = K,K − 1, · · · , 1, the optimal
τi = argminτi Li(τi) holds the following property:

argmin
τi

Li(τi) = argmin
τi

Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)−

x̃ti − αtix0

σti

∥22
]
. (6)

We then give an error bound for the deterministic sampler, which derives the feasibility of the
DPM-Aligner to re-align each timestep from ti to τi for a DPM. Proof is available in Appendix A.2.

Theorem 2. Under the condition in Theorem 1, and let fθ,τ be a deterministic sampler. Assume that
∥ϵθ(x, t) − ϵθ(y, t)∥2 ⩾ 1

C ∥x − y∥2 for any t and some C > 0. Denote by xgt
ti = xgt

ti (x̃tK ) the
groundtruth intermediate result starting from x̃tK . Then we have the following inequality:

Ex0,ϵ[∥x̃ti−1
− xgt

ti−1
∥2] ⩽ C

( K∑
n=i

Ln(τn)
1
2 +

K∑
l=i

E[∥ϵθ(xgt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)∥2]
)
. (7)
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Figure 3: Quantitative comparison measured by log FID ↓ on CIFAR10 (Krizhevsky & Hinton,
2009) and CelebA 64x64 (Liu et al., 2015), under original DDPM framework. All are evaluated
with different NFEs on the horizontal axis. We apply the quadratic trajectory for DDIM and DDPM,
uniform trajectory for Analytic-DDIM and Analytic-DDPM, while we use log-SNR trajectory for
DPM-Solver-2 on both datasets.

Figure 4: Quantitative comparison measured by log FID ↓ on LSUN Bedroom 256x256 (Yu et al.,
2015), FFHQ 256x256 (Karras et al., 2019), and CelebA-HQ 256x256 (Karras et al., 2018), under
LDM framework. All are evaluated with different NFEs on the horizontal axis. We apply the uniform
trajectory for DDIM and DDPM, and log-SNR trajectory for DPM-Solver-2 on all datasets.

3.5 TRAINING STRATEGY OF DPM-ALIGNER

Recall that we employ a sequential strategy to train each τi for i from K to 1, i.e., each τi needs to be
optimized sequentially. Also, one can train all τi’s simultaneously with Eq. (8) by a parallel strategy:

Lparallel
i (τi) = Ex0,ϵ

[
∥ϵθ(fθ,τ (xti , τi), ti−1)− ϵθ(xti , ti)∥22

]
, (8)

where xti = αtix0 + σtiϵ instead of the intermediate denoised result x̃ti by aligned DE solver. The
parallel strategy is feasible since xti is independent with all τi’s, and one can train τi simultaneously
by sampling different xti on different GPUs. Despite the extra acceleration of the optimization
process, the parallel training strategy will subtly harm the generation performance, which can also be
observed from from Tab. 2 in Sec. 4.3. This is because the achieved sub-optimal τK , · · · , τi+1 fail to
ensure that the sampling distribution of x̃ti matches the real distribution qti(xti). Then fθ,τ (x̃ti , τi)
and fθ,τ (xti , τi) have different distributions. Hence in order to make sure that x̃ti−1 = fθ,τ (x̃ti)
follows qti−1(xti−1), one can only use the biased x̃ti for subsequent training of τi. In other words,
the parallel training strategy will introduce extra error at each denoising step.

4 EXPERIMENTS

In this section, we show that the proposed DPM-Aligner can greatly improve the performance of
the baseline samplers of existing pre-trained DPM acceleration algorithms. We vary different number
of funtion evaluations which is the number of calling the noise prediction model ϵθ. We show the
great improvement of sampling quality in Sec. 4.2, and two different training strategies in Sec. 4.3.

4.1 EXPERIMENTAL SETUPS

Datasets and baselines. We apply our DPM-Aligner to existing fast sampling methods by
prior work, including DDIM (Song et al., 2021), DDPM (Ho et al., 2020), Analytic-DDIM (Bao
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(a) CIFAR10 32x32
(label-conditioned)

(b) ImageNet 64x64
(label-conditioned)

(c) MS-COCO 256x256
(text-conditioned)

Figure 5: Quantitative comparison measured by log FID ↓ on CIFAR10 (Krizhevsky & Hinton,
2009), ImageNet 64x64 (Deng et al., 2009), and MS-COCO 256x256 (Lin et al., 2014), under EDM
and LDM framework on conditional generation task. All are evaluated with different NFEs on the
horizontal axis. We apply the orignally designed trajectory for EDM and linear trajectory for LDM.

et al., 2022), Analytic-DDPM (Bao et al., 2022) and DPM-Solver (Lu et al., 2022). We also apply
DPM-Aligner on EDM (Karras et al., 2022), which is a high-order DE solver with specially
designed noise schedule on CIFAR10 (Krizhevsky & Hinton, 2009) and ImageNet 64x64 (Deng
et al., 2009). For high-resolution DPMs, we introduce the latent diffusion models (LDMs) (Rombach
et al., 2022) as the DPM framework. Particularly, as for DPM-Solver, we employ the 2-order DE
sampler, namely, DPM-Solver-2 instead of the fast version of DPM-Solver proposed by Lu et al. (Lu
et al., 2022). The pre-trained DPMs are trained on CIFAR10 (Krizhevsky & Hinton, 2009), CelebA
64x64 (Liu et al., 2015), LSUN Bedroom 256x256 (Yu et al., 2015), FFHQ 256x256 (Karras et al.,
2019), CelebA-HQ 256x256 (Karras et al., 2018), ImageNet 256x256 (Deng et al., 2009), and
MS-COCO 256x256 (Lin et al., 2014), respectively. It is noteworthy that both EDM on ImageNet
64x64 and LDM on ImageNet 256x256 and MS-COCO 256x256 are conditional generation, which
base on label, label, and text, respectively. DPMs on all seven datasets are trained with linear noise
schedule (Ho et al., 2020). The number of total timesteps T is 1000 for all seven datasets.

Evaluation metrics. We draw 50,000 samples and use Fréchet Inception Distance (FID) (Heusel
et al., 2017) to evaluate the fidelity of the synthesized images. Inception Score (IS) (Salimans et al.,
2016) measures how well a model captures the full ImageNet class distribution while still producing
individual samples of a single class convincingly. To better measure spatial relationships, we introduce
sFID (Nash et al., 2021), rewarding image distributions with coherent high-level structure. Finally,
we use Improved Precision and Recall (Kynkäänniemi et al., 2019) to separately measure sample
fidelity (precision) and diversity (recall).

Implementation details. We train the proposed DPM-Aligner on the platform of PyTorch (Paszke
et al., 2019), in a Linux environment with an NVIDIA Tesla A100 GPU. We use the pre-trained model
of CelebA 64x64 provided in the official implementation (Song et al., 2021), while the pre-trained
models on CIFAR10 is trained by Bao et al. (Bao et al., 2022) with the same U-Net structure as
Nichol & Dhariwal (Nichol & Dhariwal, 2021). For EDMs, we directly use the pre-trained model of
CIFAR10 and ImageNet 64x64 provided in the official implementation. As for LDMs, we use the
pre-trained model of LSUN Bedroom 256x256, FFHQ 256x256, CelebA-HQ 256x256, ImageNet
256x256, and MS-COCO 256x256 provided in the official implementation (Rombach et al., 2022).

4.2 SAMPLE QUALITY

Unconditional generation on CIFAR10 and CelebA. For the strongest baseline, we apply the
quadratic trajectory for DDIM and DDPM on both CIFAR10 and CelebA 64x64 datasets, which
empirically achieves better FID performance than that under uniform trajectory. As for DPM-Solver-2,
we use the log-SNR trajectory following the setup of Lu et al. (Lu et al., 2022). As shown in Fig. 3
with the original DDPM framework, under all trajectories of different number of function evaluations
(NFE) K, our proposed DPM-Aligner consistently improves the sampling performance of the
original DDIM, DDPM, Analytic-DDIM, Analytic-DDPM, and DPM-Solver-2 significantly.

Unconditional generation on LSUN Bedroom, FFHQ, and CelebA-HQ. As for the datasets with
high resolution 256x256, we apply the LDM (Rombach et al., 2022) framework to guarantee the
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Table 1: Quantitative comparison measured by IS ↑, FID ↓, sFID ↓, Precision ↑ and Recall ↑ on
LSUN Bedroom 256, FFHQ 256, CelebA-HQ 256, and ImageNet 256, respectively. All are evaluated
by drawing 50,000 samples via DDIM sampler upon LDM, with 10 function evaluations (NFE = 10).

LSUN Bedroom 256x256, unconditional generation

Method IS ↑ FID ↓ sFID ↓ Precision ↑ Recall ↑
DDIM 2.30 9.46 12.02 0.55 0.34
DDIM + Ours 2.31 5.85 9.44 0.57 0.44

FFHQ 256x256, unconditional generation

Method IS ↑ FID ↓ sFID ↓ Precision ↑ Recall ↑
DDIM 4.00 23.58 14.59 0.63 0.21
DDIM + Ours 4.40 14.80 9.69 0.67 0.32

CelebA-HQ 256x256, unconditional generation

Method IS ↑ FID ↓ sFID ↓ Precision ↑ Recall ↑
DDIM 2.95 18.72 16.68 0.68 0.19
DDIM + Ours 3.20 16.59 15.61 0.67 0.26

ImageNet 256x256, conditional generation

Method IS ↑ FID ↓ sFID ↓ Precision ↑ Recall ↑
DDIM 324.52 10.13 12.52 0.91 0.28
DDIM + Ours 336.94 9.63 7.29 0.92 0.30

Figure 6: Quantitative measurement of the drop of the sampling quality by DDIM, DDPM, and
DPM-Sovler under different types of trajectories. The horizontal axis represents the number of
re-aligned timesteps from tK down to t1 with K = 10 or 15, respectively. The red line shows the
FID drop, while the gray dashed line shows the FID of the baseline sampler.

training efficiency of our algorithm without loss of the synthesis performance. From Fig. 4 one can
conclude that our algorithm achieves even better performance improvement on the high-resolution
datasets. To quantitatively demonstrate the performance improvement of our method, we make further
comparison using more metrics, as shown in Tab. 1. And the qualitative results can be found in Fig. 7,
clearly demonstrating the quality improvement.

High-order sampler generation using EDM. As for high-order DE solver, we apply our method on
EDM (Karras et al., 2022), which introduces the 2nd Heun sampling method on label-conditioned
generation. As demonstrated in Fig. 5, our method improves the generation performance as well,
indicating the great compatibility for the conditional generation tasks under high-order DE solvers.

Label-conditioned generation on ImageNet. As shown in Tab. 1 and Fig. 7, the synthesis
performance of our algorithm surpasses the baseline significantly both qualitatively and quantitatively.

Text-conditioned generation on MS-COCO. As for the most challenging text-conditioned
generation task, the qualitative and quantitative results demonstrated in Fig. 7, Fig. 5, and Tab. 1
confirm the compatibility and capability of our method.

It is noteworthy that the sampling quality improvement is more significant with a small NFE. For
instance, the improvement of FID between DDIM and DDIM+Ours on FFHQ decreases from 8.77 to
1.51 as NFE grows from 10 to 25. This roots in the fact that the larger the NFE is, the smaller the
truncation error is, and hence the smaller the gap between the real and sampling distributions is.

8
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DDIM
NFE = 10

DDIM+
DPM-Aligner

(Ours)
NFE = 10

FID = 9.46

FID = 5.85

LSUN Bedroom 256 ImageNet 256 MS-COCO 256

FID = 10.13

FID = 9.63

FID = 12.64

FID = 11.38

Figure 7: Comprehensive comparison on LSUN Bedroom 256x256 (Yu et al., 2015), ImageNet
256x256 (Deng et al., 2009), and MS-COCO 256x256 (Lin et al., 2014), under original LDM
framework. The three tasks are unconditional, label-conditioned, and text-conditioned generation,
respectively. All are evaluated with 10 NFEs with uniform trajectory and DDIM sampler.

Table 2: Quantitative comparison measured by FID ↓ between sequential and parallel training
strategies of the proposed DPM-Aligner, where all are evaluated by drawing 50,000 samples via
DDIM (Song et al., 2021). We conduct experiments on 5 datasets, i.e., CIFAR10 (Krizhevsky &
Hinton, 2009), CelebA 64x64 (Liu et al., 2015), LSUN Bedroom 256x256 (Yu et al., 2015), FFHQ
256x256 (Karras et al., 2019), and CelebA-HQ 256x256 (Karras et al., 2018). We apply the quadratic
trajectory for CIFAR10 and CelebA 64x64 datasets, and uniform trajectory on the other three datasets.

Dataset CIFAR10 CelebA LSUN Bedroom FFHQ CelebA-HQ

DDIM 13.65 13.53 9.65 23.57 21.81
DDIM + Ours (sequential) 11.77 11.84 6.07 14.80 17.75
DDIM + Ours (parallel) 11.75 12.14 6.08 15.03 18.03

We also confirm the performance improvement by re-aligning the timesteps one by one. As shown
in Fig. 6, by re-aligning the timestep gradually, the FID decreases monotonically, which confirms
the correctness of Theorem 2 and the effectiveness of the proposed method. One can also verify the
effectiveness of the proposed DPM-Aligner from Fig. 2. By applying DPM-Aligner to re-align
the timestep ti gradually, the gap between the sampling and real distribution decreases significantly
at each step for all timestep trajectories, NFEs, and DPM samplers, which demonstrates the strong
capability of correcting the one-step truncation error, and hence the accumulative truncation error.

4.3 TRAINING STRATEGY OF DPM-ALIGNER

Recall that we separately introduce a sequential strategy and a parallel strategy to train each timestep
τi, for i from K to 1 in Sec. 3.5. We deduce that there is a performance gap between the two strategies,
mainly due to the extra error introduced by the parallel strategy at each denoising step. This can also
be observed and concluded from Tab. 2 clearly. Nevertheless, the parallel training strategy achieves on-
par sampling performance, which provides a far more efficient version of DPM-Aligner empirically,
and is extremely significant to train DPM-Aligner of large NFE cases. Therefore, how to improve
the performance of the parallel training strategy will be an interesting avenue for future research.

5 CONCLUSION

In this paper, we propose a plug-in algorithm for more accurate diffusion model acceleration, which
replaces the original timestep to a re-aligned one. We provide a proof to show the feasibility to
achieve a better sampling performance by simply re-aligning the timestep. We also give an estimation
of error bound for the deterministic DE solver theoretically. We conduct comprehensive experiments
to demonstrate significant improvement of sampling quality under different NFEs.
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A PROOFS AND DERIVATIONS

In this section, we will prove the theorems claimed in the main manuscript.

A.1 PROOF OF THEOREM 1

Theorem 1. Assume that ϵθ is the groundtruth noise prediction model. Then the training process
of DPM-Aligner resembles that of the original DPM, i.e., for i = K,K − 1, · · · , 1, the optimal
τi = argminτi Li(τi) holds the following property:

argmin
τi

Li(τi) = argmin
τi

Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)−

x̃ti − αtix0

σti

∥22
]
. (1)

We first claim the following lemmas which are crucial for the proof of Theorem 1.

Lemma 1. Let x0 ∼ q0(x0), and q0t(xt|x0) = N (xt;αtx0, σ
2
t I). Denote by qt(xt) the marginal

distribution of xt. Then we have ∇ log qt(xt) = −E
[
xt−αtx0

σ2
t
|xt

]
.

Proof of Lemma 1. According to the definition of qt(xt), one can notice that ∇ log qt(xt) =
∇xt

log
∫
q0(x0)q0t(xt|x0)dx0. Then we have

∇ log qt(xt) =

∫
q0(x0)∇xt

q0t(xt|x0)dx0∫
q0(x0)q0t(xt|x0)dx0

(2)

=

∫
q0(x0)q0t(xt|x0)∇xt

log q0t(xt|x0)dx0

qt(xt)
(3)

=

∫
q0(x0)q0t(xt|x0)

qt(xt)
∇xt

log q0t(xt|x0)dx0 (4)

=

∫
q(x0|xt)∇xt

log q0t(xt|x0)dx0 (5)

= E[∇xt log q0t(xt|x0)|xt] (6)

= −E
[
xt − αtx0

σ2
t

|xt

]
, (7)

where Eq. (5) comes from Bayes’ rule.

Lemma 2. Let g(xt), h(xt,x0) be integrable functions, then the following equality holds.

Eq(xt)[⟨g(xt),Eq(x0|xt)[h(xt,x0)|xt]⟩] = Eq(xt)[⟨g(xt), h(xt,x0)⟩]. (8)

Proof of Lemma 2. Note that

Eq(xt)[⟨g(xt),Eq(x0|xt)[h(xt,x0)|xt]⟩] =
∫
⟨g(xt),Eq(x0|xt)[h(xt,x0)|xt]⟩p(xt)dxt (9)

=

∫
⟨g(xt),

∫
h(xt,x0)p(x0|xt)dx0⟩p(xt)dxt (10)

=

∫ ∫
⟨g(xt), h(xt,x0)⟩p(x0|xt)p(xt)dx0dxt (11)

=

∫ ∫
⟨g(xt), h(xt,x0)⟩p(x0,xt)dx0dxt (12)

= Eq(xt)[⟨g(xt), h(xt,x0)⟩]. (13)

where Eq. (11) is by linearity of integral.

Then we start to prove the Theorem 1 as below.

13



Under review as a conference paper at ICLR 2024

Proof of Theorem 1. Given the assumption that ϵθ is the groundtruth noise prediction model, we
have ϵθ(xt, t) = E[xt−αtx0

σt
|xt] from Lemma 1. Then we have

Li(τi) = Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x̃ti , ti)∥22

]
(14)

=Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)i∥22 + ∥ϵθ(x̃ti , ti)∥22

]
− 2Ex0,ϵ [⟨ϵθ(fθ,τ (x̃ti , τi), ti−1), ϵθ(x̃ti , ti)− ϵ⟩] (15)

=Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)i∥22 + ∥ϵθ(x̃ti , ti)∥22

]
− 2Ex0,ϵ

[〈
ϵθ(fθ,τ (x̃ti , τi), ti−1),E

[
x̃ti − αtix0

σti

|x̃ti

]〉]
(16)

=Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)∥22 + ∥ϵθ(x̃ti , ti)∥22

]
− 2Ex0,ϵ

[〈
ϵθ(fθ,τ (x̃ti , τi), ti−1),

x̃ti − αtix0

σti

〉]
(17)

=Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)−

x̃ti − αtix0

σti

∥22
]

, + Ex0,ϵ

[
∥ϵθ(x̃ti , ti)∥22 − ∥

x̃ti − αtix0

σti

∥22
]
, (18)

where Eq. (17) is due to Lemma 2. Since ∥ϵθ(x̃ti , ti)∥22 − ∥
x̃ti

−αti
x0

σti
∥22 is independent with τi, we

have

argmin
τi

Li(τi) = argmin
τi

Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)−

x̃ti − αtix0

σti

∥22
]
. (19)

Remark 1. Note that the objective of the original DPM has the following form:

Ex0,ϵ

[
∥ϵθ(xti , ti)− ϵ∥22

]
= Ex0,ϵ

[
∥ϵθ(xti , ti)−

xti − αtix0

σti

∥22
]
, (20)

which has a similar form as the objective in Theorem 1.

A.2 PROOF OF THEOREM 2

Theorem 2. Under the condition in Theorem 1, and let fθ,τ be a deterministic sampler. Assume that
∥ϵθ(x, t) − ϵθ(y, t)∥2 ⩾ 1

C ∥x − y∥2 for any t and some C > 0. Denote by xgt
ti = xgt

ti (x̃tK ) the
groundtruth intermediate result starting from x̃tK . Then we have the following inequality:

Ex0,ϵ[∥x̃ti−1 − xgt
ti−1
∥2] ⩽ C

( K∑
n=i

Ln(τn)
1
2 +

K∑
l=i

E[∥ϵθ(xgt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)∥2]
)
. (21)

Proof of Theorem 2. By the assumption, we have
Ex0,ϵ[∥x̃ti−1

− xgt
ti−1
∥2] ⩽ CEx0,ϵ[∥ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x

gt
ti−1

, ti−1)∥2] (22)

Define ei−1 = ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x
gt
ti−1

, ti−1). Then we can easily derive that

ei−1 =ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x̃ti , ti) + ϵθ(x̃ti , ti)− ϵθ(x
gt
ti , ti)

+ ϵθ(x
gt
ti , ti)− ϵθ(x

gt
ti−1

, ti−1) (23)

=ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x̃ti , ti) + ei + ϵθ(x
gt
ti , ti)− ϵθ(x

gt
ti−1

, ti−1) (24)

=

K−1∑
n=i

(
ϵθ(fθ,τ (x̃tn , τn), tn−1)− ϵθ(x̃tn , tn)

)
+ eK−1

+

K−1∑
l=i

(
ϵθ(x

gt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)
)
, (25)
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where Eq. (24) is due to x̃ti = fθ,τ (x̃ti+1
, τi+1). Since xgt

tK = x̃tK , we have

eK−1 = ϵθ(fθ,τ (x̃tK , τK), tK−1)− ϵθ(x̃tK , tK) + ϵθ(x
gt
tK , tK)− ϵθ(x

gt
tK−1

, tK−1). (26)

Then we have

ei−1 =

K∑
n=i

(
ϵθ(fθ,τ (x̃tn , τn), tn−1)− ϵθ(x̃tn , tn)

)
+

K∑
l=i

(
ϵθ(x

gt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)
)
, (27)

and

E[∥ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x
gt
ti−1

, ti−1)∥2] (28)

⩽
K∑
n=i

E[∥ϵθ(fθ,τ (x̃tn , τn), tn−1)− ϵθ(x̃tn , tn)∥2]

+

K∑
l=i

E[∥ϵθ(xgt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)∥2] (29)

⩽
K∑
n=i

Ln(τn)
1
2 +

K∑
l=i

E[∥ϵθ(xgt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)∥2], (30)

where Eq. (30) is due to Cauchy inequality. Combine Eq. (22) and Eq. (30), we prove the theorem.

B PSEUDO-CODE OF TRAINING PROCESS

Recall that we introduce two different training strategies for the proposed DPM-Aligner, i.e., the
sequenatial strategy and the parallel strategy. We have proved the equivalence of the two training
strategies, and analyzed the performance difference between the two strategies upon DDIM (Song
et al., 2021). In this part, we provide the pseudo-codes of the two training strategies in Algorithm 1
and Algorithm 2.
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Algorithm 1 Pseudo-code of sequential training strategy of DPM-Aligner in a PyTorch-like style.

1 import torch
2
3
4 def sequential_training_loss(x_0, t_list, tau_list, i, tau_i, F, E):
5 """Defines the forward process of one sequential training step.
6
7 Args:
8 x_0: Data inputs, with shape [B, C, H, W].
9 t_list: The preset timestep trajectory from 0 to T.

10 tau_list: The list consist of previously achieved re-aligned timesteps from tau_K to
tau_ip1.

11 i: The index of current timestep tau.
12 tau_i: The timestep to re-align.
13 F: The DE solver to denoise the input ’x’ from timestep ’t’ to timestep ’s’ using re-

aligned input condition ’tau’.
14 E: The noise prediction model with input ’x’ and ’t’.
15 """
16 # Compute the x_T at timestep T.
17 z_T = torch.randn_like(x_0)
18 x_T = alpha_T * x_0 + sigma_T * z_T
19
20 # Compute the denoised intermediate x_t_i
21 x = x_T
22 for tau, t, t_prev in zip(tau_list, t_list[::-1], t_list[-2::-1]):
23 x = F(x, t, t_prev, tau)
24 x_t_i = x
25
26 # Get the current and the previous timestep.
27 t_i, t_im1 = t_list[i], t_list[i - 1]
28
29 # Compute the denoised intermediate x_t_im1 with tau_i
30 x_t_im1 = F(x_t_i, t_i, t_im1, tau_i)
31
32 # Learn the translator.
33 loss = (E(x_t_im1, t_im1) - E(x_t_i, t_i)).square().mean()
34
35 return loss

Algorithm 2 Pseudo-code of parallel training strategy of DPM-Aligner in a PyTorch-like style.

1 import torch
2
3
4 def sequential_training_loss(x_0, t_list, i, tau_i, F, E):
5 """Defines the forward process of one parallel training step.
6
7 Args:
8 x_0: Data inputs, with shape [B, C, H, W].
9 t_list: The preset timestep trajectory from 0 to T.

10 i: The index of current timestep tau.
11 tau_i: The timestep to re-align.
12 F: The DE solver to denoise the input ’x’ from timestep ’t’ to timestep ’s’ using re-

aligned input condition ’tau’.
13 E: The noise prediction model with input ’x’ and ’t’.
14 """
15 # Get the current and the previous timestep.
16 t_i, t_im1 = t_list[i], t_list[i - 1]
17
18 # Compute the x_t_i at timestep t_i.
19 z_t_i = torch.randn_like(x_0)
20 x_t_i = alpha_t_i * x_0 + sigma_t_i * z_t_i
21
22 # Compute the denoised intermediate x_t_im1 with tau_i
23 x_t_im1 = F(x_t_i, t_i, t_im1, tau_i)
24
25 # Learn the translator.
26 loss = (E(x_t_im1, t_im1) - E(x_t_i, t_i)).square().mean()
27
28 return loss
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