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Figure 1: Compared to the QA tasks in existing VQA (Antol et al., 2015) and EQA (Das et al.,
2018a) datasets, the models to answer EQA tasks in our EQA-MX dataset require the reasoning of
questions with multimodal expressions (verbal and nonverbal gestures).

ABSTRACT

Humans predominantly use verbal utterances and nonverbal gestures (e.g., eye
gaze and pointing gestures) during natural interactions. For instance, pointing
gestures and verbal information is often required to comprehend questions such as
“what object is that?” Thus, this question-answering (QA) task involves complex
reasoning of multimodal expressions (verbal utterances and nonverbal gestures).
However, prior works have explored QA tasks in non-embodied settings, where
questions solely contain verbal utterances from a single verbal and visual per-
spective. In this paper, we have introduced 8 novel embodied question answering
(EQA) tasks to develop learning models to comprehend embodied questions with
multimodal expressions. We have developed a novel large-scale dataset, EQA-
MX, with over 8 million diverse embodied QA data samples involving multimodal
expressions from multiple visual and verbal perspectives. To learn salient multi-
modal representations from discrete verbal embeddings and continuous wrappings
of multiview visual representations, we propose a vector-quantization (VQ) based
multimodal representation learning model, VQ-Fusion, for EQA tasks. Our exten-
sive experimental results suggest that VQ-Fusion can improve the performance of
existing visual-language models up to 13% across EQA tasks.

1 INTRODUCTION

Understanding human instructions is crucial for autonomous agents to effectively collaborate with
humans (Chen et al., 2021; Kratzer et al., 2020; Islam et al., 2022b;a). To develop models for instruc-
tion comprehension, several tasks have been designed, such as referring expression comprehension
(Yang et al., 2019b; Yu et al., 2016; Kamath et al., 2021; Akula et al., 2021; Chen et al., 2020a), spa-
tial relations grounding (Yang et al., 2019a; Viethen & Dale, 2008; Achlioptas et al., 2020; Liu et al.,
2022), and visual question answering (Antol et al., 2015; Gao et al., 2015; Yu et al., 2015; Zhu et al.,
2016; Krishna et al., 2017; Kafle et al., 2018; Gurari et al., 2018). Notably, VQA has gained sig-
nificant attention due to its complex reasoning demands, such as answering questions about object
presence and category using visual cues (Antol et al., 2015; Goyal et al., 2017; Lee et al., 2022).

Numerous synthetic and real-world datasets exist for VQA, yet their sole focus on verbal questions is
a crucial limitation, contrasting with natural multimodal expressions (verbal utterances and nonver-
bal gestures) used in inquiries. Studies affirm that nonverbal gestures often provide complementary
information for understanding verbal questions (McNeill, 2012; Corkum & Moore, 1998; Butter-
worth et al., 2002; Scaife & Bruner, 1975; Colonnesi et al., 2010; Iverson & Goldin-Meadow, 2005;
Kita, 2003; Liszkowski et al., 2004; Chen et al., 2021). For example, in a scene with two differently
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Table 1: Comparison of the QA datasets. Existing VQA and EQA datasets do not contain nonver-
bal gestures (NV), multiple verbal (V) perspectives (MVP), contrastive (C) and ambiguous (A) data
samples. ‡ Embodied (E) interactions refer to humans interacting using multimodal expressions. †

Embodied interactions refer to an agent navigating in an environment. Please check the supple-
mentary for a detailed comparison with other related datasets.

Datasets V NV E EQA MVP Views C A No. of
Images

No. of
SamplesExo Ego Top

VQA (Antol et al., 2015) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 204k 614k
KB-VQA (Wang et al., 2015) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 0.7k 5k
FBQA (Wang et al., 2017) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 2k 5k
VQA-MED (Hasan et al., 2018) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 2k 6k
DocVQA (Mathew et al., 2021) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 12k 50k
GRiD-3D (Lee et al., 2022) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 8k 445k
VIMA (Jiang et al., 2022) ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 650k 650k
EQA † (Das et al., 2018a) ✓ ✗ ✓† ✓† ✗ ✗ ✓† ✗ ✗ ✗ 5k 5k
MT-EQA † (Das et al., 2018a) ✓ ✗ ✓† ✓† ✗ ✗ ✓† ✗ ✗ ✗ 19k 19k
EQA-MX ‡ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 750k 8,243k

colored balls, a pointing gesture can clarify questions like “what is the color of that ball?” The
absence of nonverbal interactions in prior VQA datasets makes them less suitable for developing
models to comprehend question-answering (QA) tasks in embodied settings.

Following VQA, embodied question-answering (EQA) tasks have recently been studied in the liter-
ature (Yu et al., 2019; Luo et al., 2019; Gordon et al., 2018; Tan et al., 2020). EQA can be bifurcated
based on embodied interactions: the first centers on an agent, like a virtual robot, navigating to
answer verbal questions (Das et al., 2018a), solely incorporating verbal queries. The second encom-
passes multimodal expressions, where humans interact with the environment using verbal utterances
and gestures (Chen et al., 2021; Islam et al., 2022a). Adopting the latter definition, we designed EQA
tasks to comprehend questions using multimodal expressions (verbal uttrances and nonverbal ges-
tures) in embodied settings. For instance, an EQA task may involve pointing to an object and asking
“what is that object?” requiring reasoning over multimodal expressions to answer the question.

A notable limitation in many existing VQA and EQA datasets is the singular perspective (either
speaker or observer) of verbal utterances, unlike real-world interactions where where people use
both perspective interchangeably. For instance, a speaker’s question, ”What is the object to the right
of the red mug?” could be interpreted as left of the red mug from an observer’s perspective. This
lack of multiple perspectives in existing datasets hinders the development of robust QA models.

Similarly, existing VQA and EQA models answer questions from a single visual perspective (Li
et al., 2019; Kim et al., 2021; Lu et al., 2019). Multiple views provide complementary informa-
tion, and varying camera angles capture interactions differently. Aligning visual representations
before merging with verbal ones can aid in developing generalized representations and robust com-
prehension across perspectives. Moreover, the inconsistency of embedding structures, particularly
continuous visual and discrete verbal representations, can lead to sub-optimal representations.

To address the shortcomings of existing VQA and EQA datasets, we have extended an embodied
simulator to develop a large-scale novel dataset, EQA-MX, for comprehending EQA tasks (Table 9).
We have addressed the limitations of existing multimodal fusion approaches and developed a mul-
timodal learning model for EQA tasks, VQ-Fusion, using vector quantization (VQ). The VQ-based
bottleneck plays a key role in disentangling the continuous visual representations into discrete em-
beddings and enables salient fusion with discrete verbal representations. We use a shared codebook
in VQ to align multiview representations and learn the unified concept shared among multiple views.
We highlight our key contributions below:

• We developed a large-scale dataset (EQA-MX) with multimodal expressions from various verbal
and visual perspectives to reduce perspective bias and enhance model generalizability.

• We designed 8 new EQA tasks blending multimodal questions (verbal and gestural) to be ad-
dressed using visual context in an embodied setting.

• We designed a VQ-based multimodal fusion method to align continuous visual and discrete verbal
representations and extract salient representations across multiple visual and verbal perspectives.

• Our extensive experimental analyses indicate that our proposed model, VQ-Fusion, can help to
improve the performance of EQA tasks up to 13%.
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Figure 2: EQA tasks for a sample data from EQA-MX. Top-row: data distribution for each task in
EQA-MX (left) and an embodied interaction with multiple visual perspectives (right). Bottom-row:
name of the task (left), example questions and answers for the given task based on the visual scene
above (middle), and the set of possible answers (right).

2 RELATED WORK

Visual Question Answering: Many datasets have been developed to study visual question-
answering tasks (Gao et al., 2015; Zhu et al., 2016; Liu et al., 2019; Krishna et al., 2017; Wang
et al., 2015; 2017; Kembhavi et al., 2016; Kahou et al., 2017; Kafle et al., 2018; Gurari et al., 2018;
Hasan et al., 2018; Huang et al., 2018; Andreas et al., 2016; Chou et al., 2020; Hudson & Manning,
2019; Mishra et al., 2019). These datasets primarily involve answering verbal questions using the
visual scene as context. For example, Antol et al. (2015) developed a VQA dataset and introduced
QA tasks involving an image and verbal questions about the image. This dataset contains both
real-world images from the MS-COCO dataset (Lin et al., 2014) as well as synthetic virtual scenes
containing clipart. Ren et al. (2015) generated synthetic QA pairs using an algorithm that converts
image descriptions into QA form. Recently, a few datasets have been developed containing multi-
modal expressions (Schauerte & Fink, 2010; Islam et al., 2022b). For example, Chen et al. (2021)
developed a dataset for referring expression comprehension tasks in embodied settings, where a
human uses multimodal expressions to refer to an object.

Several visual-language (VL) models have been developed for VQA tasks and were consequentially
evaluated on these datasets (Radford et al., 2021; Lu et al., 2019; Tan & Bansal, 2019; Chen et al.,
2020a). For example, Liunian et al. (Li et al., 2019) developed VisualBERT to answer a question
using the visual context by learning multimodal representations from visual and verbal embeddings.
Kim et al. (Kim et al., 2021) designed a VL Transformer model (ViLT) with monolithic processing
of visual inputs to learn VL representations without regional supervision of object detection.

Embodied Question Answering (EQA): EQA tasks are often designed as agents (e.g., virtual
robots) navigating in an environment to answer a verbal question. For example, Das et al. (2018a)
developed a synthetic dataset, where a virtual robot navigates the environment and gathers visual in-
formation from an egocentric view to answer a verbal question. Yu et al. (2019) extend this dataset
and include questions with multiple targets, such as finding multiple objects through navigation.
However, some works have used embodied interactions to refer to comprehending referring expres-
sions (Islam et al., 2022b; Chen et al., 2021). We follow this definition of embodied interaction.

Several models have been developed for existing EQA tasks. For instance, Das et al. (2018b) in-
troduced a modular model for learning a policy to navigate and answer verbal questions, while Gao
et al. (2021) utilized a transformer-based model to generate scene memory tokens as exploration
clues. These models aim to develop a navigation policy for answering verbal questions.

Most current VQA and EQA studies focus on understanding solely verbal questions, contrasting
our goal of comprehensively understanding multimodal expressions (verbal utterances and gestures)
in embodied settings. Moreover, existing models fuse disparate embedding structures (continuous
visual and discrete verbal representations), potentially leading to sub-optimal VL representations.
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3 EMBODIED QUESTION ANSWERING TASKS

(a) Questions length in words. (b) Verbal perspective (PG).

(c) Object locations with respect to spatial relations.

Figure 3: EQA-MX Dataset Analysis: (a) demon-
strates varied question lengths in the EQA-MX dataset,
indicating differing contextual information across EQA
tasks. (b) presents data sample ratios of different verbal
perspectives for the perspective grounding (PG) task.
(c) depicts object locations in relation to different spa-
tial relations, showing the EQA-MX dataset’s non-bias
towards verbal and visual perspectives due to insepa-
rable object locations. For detailed analysis, refer to
the supplementary materials.

We have created 8 novel EQA tasks: Ex-
istence Prediction (EP), Object Grounding
(OG), Perspective-Aware Object Ground-
ing (POG), Object Counting (OC), Object
Attribute Query (OAQ), Object Attribute
Compare (OAC), Perspective Grounding
(PG), and Relation Grounding (RG). Sim-
ilar tasks have been developed in prior
works (Antol et al., 2015; Lee et al., 2022;
Wang et al., 2017; Yu et al., 2016; Ren
et al., 2015; Zhu et al., 2016), however,
those tasks involve only verbal questions.
We are the first to design QA tasks in em-
bodied settings where a human avatar asks
questions using verbal utterances and non-
verbal gestures in a virtual environment.
Each task has multiple sub-templates for
variation (described further in the supple-
mentary materials). In Fig. 2, we provide
samples of these EQA tasks.

Existence Prediction (EP): The EP task
involves determining whether the scene
contains a particular object with specific
attributes (e,g., color, location). Complet-
ing this task requires knowledge of object
appearances as well as a holistic under-
standing of the scene.

Object Grounding (OG): In the OG task, the object category is determined based on the question
by utilizing multimodal expressions. This task also involves understanding which perspective the
question is asked from (i.e., speaker, observer, neutral).

Perspective-Aware Object Grounding (POG): Similar to the OG task, the POG task involves
determining which object is being referred to. However, this task also includes the verbal perspective
in the question (speaker, observer, neutral). This is done intentionally to determine how much of an
impact verbal perspective has on performance.

Object Counting (OC): In the OC task, the number of objects in a scene is asked based on different
spatial relations. To understand this, different objects in the visual scene must be attended to and
spatial relations given in the verbal question must be used to determine whether or not certain objects
have that attribute prior to counting.

Object Attribute Query (OAQ): The OAQ task involves determining the color of a given object
that is queried for, which can be helpful in scenarios where humans are interested in learning partic-
ular characteristics of an object. The spatial location and the color of the object must be determined
using the given verbal and nonverbal expressions.

Object Attribute Compare (OAC): The OAC task entails comparing two objects’ attributes, in-
volving pointing to an object and querying their similarity in attributes.

Perspective Grounding (PG): Understanding human verbal perspective is crucial for effective
human-AI communication, as humans describe objects from varying perspectives. We simulate this
by employing three perspectives - neutral, speaker, and observer, tasking the model with identifying
the perspective of a given question.

Relation Grounding (RG): The RG task involves determining whether a verbal utterance and
nonverbal gestures refer to the same object. As a referring expression can be interpreted differently
from different visual and verbal perspectives, understanding the RG task requires complex reasoning
of perspective and spatial relations.
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4 DATASET GENERATION WITH EQA SIMULATOR

In this work, we have extended the CAESAR simulator (Islam et al., 2022b) to generate data for
different EQA tasks. CAESAR is used to randomly generate environments where an actor simulates
nonverbal expressions through a pointing gesture and gaze in a scene (Fig. 3). Verbal expressions are
created based on the visual scene. To increase the dataset’s generalizability, we have used multiple
environments. These environments differ in terms of camera views, object locations, and nonver-
bal/verbal expressions. In each visual scene, we generated four different situations, 1) a situation
with no human and therefore no nonverbal expressions, 2) a situation with a human head gaze, 3) a
situation with a human pointing gesture, and 4) a situation involving a human using a head gaze and
a pointing gesture.

Generated nonverbal expressions consist of a pointing gesture and gaze. Pointing gestures are pro-
cedurally generated using inverse kinematics through the Unity engine. We create these pointing
gestures based on random noise added onto real-world data of human pointing gestures captured us-
ing an Optitrack motion capture system (opt). Similarly, we have simulated human head gazes using
inverse kinematics and an object location within the scene as a target. Verbal questions are generated
based on different templates for each EQA task. The nonverbal and verbal expressions may describe
the same object, or be contrastive, meaning the nonverbal and verbal expressions describe different
objects. We use these contrastive instructions for the Relation Grounding task. Additionally, the ab-
sence of nonverbal gestures in situations with no humans generates ambiguous data samples. Please
check the supplementary document for additional details on the data generation process.

5 DATASET ANALYSIS Table 2: EQA-MX dataset splits for 8 EQA tasks.

Splits EP OG POG OC OAQ OAC PG RG
Train 1060k 1060k 1060k 1060k 1060k 218k 785k 349k
Valid 126k 126k 126k 126k 126k 27k 93k 41k
Test 126k 126k 126k 126k 126k 28k 93k 42k

We have generated a novel large-
scale dataset, EQA-MX, containing
8, 243, 893 samples across the 8 tasks
described in Sect. 3. The training,
validation, and test set splits for each of these tasks is shown in Table 2. We removed some data
samples to generate balanced dataset splits for the OAC, PG, and RG tasks.

Our designed EQA tasks vary in terms of the goals (Fig. 2) and visual-verbal contextual information
in the questions. This is made apparent by the variance in question lengths in words (Fig. 3(a)).
Questions are as short as 6 words for the EP task and as long as 34 words for the OG task. Addition-
ally, one of the main focuses of the EQA-MX dataset is to introduce data that varies in verbal and
visual perspectives. Fig. 3(b) demonstrates the PG task’s outcome of different verbal perspectives.

Similarly, Fig. 3(c) shows the location of objects based on spatial relations in questions from verbal
perspectives. Fig. 3(c) also demonstrates how objects being referred to as on the left (blue) and right
(red) are not linearly separable through the use of spatial relations, as different verbal perspectives
use different relations to describe an object. For example, consider a speaker describing the red table
lamp in Fig. 2. The speaker could state “the red lamp on the left”. However, from the observer’s
perspective (exo view) the table lamp is on the right. Thus, given the verbal perspectives, spatial
relations are non-separable in EQA-MX (Fig. 3(b)). This reduced verbal and visual perspective
biases in EQA-MX dataset can help train robust models for comprehensively comprehending EQA
tasks. Please check the supplementary materials for a more detailed data analysis.

6 VQ-FUSION: VQ-BASED MULTIMODAL FUSION

We develop a vector quantization-based multimodal fusion approach, VQ-Fusion, to learn visual-
language representations. As EQA tasks in EQA-MX involve multiple visual views, VQ-Fusion
extracts visual representations from multiple visual views (Xego, Xexo, and Xtop) and verbal ques-
tions (Xq) for different EQA tasks (Fig. 4 and Sect. 3). Following the existing adapter-based learning
models (Beck et al., 2022; Ansell et al., 2021; Rücklé et al., 2021; Pfeiffer et al., 2020a;b; 2021),
we design VQ-Fusion as an adapter model that can be used in existing models without significantly
changing the existing model architecture.

Visual and Language Representation Learning: At first, VQ-Fusion extracts visual and lan-
guage representations using a state-of-the-art visual encoder (e.g., ResNet (He et al., 2016) and
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ViT (Dosovitskiy et al., 2020)) and language model (e.g., BERT (Devlin et al., 2018)). VQ-
Fusion uses shared models to extract the visual representations from multiple views indepen-
dently: Em = Fm(Xm),m ∈ (ego, exo, top, verbal). Here, Fm is the visual or verbal encoders,
Em ∈ RDm , and Dm is the representation dimension of modality m.

Figure 4: VQ-Fusion: Vector Quantization (VQ) based
multimodal learning model architecture. VQ-Fusion
extracts multiview visual representations using visual
encoders, which are then discretized using shared
codebooks. The shared codebooks’ bottleneck allows
the model to learn unified concepts across multiple
views. Finally, discretized visual representations are
fused with discrete verbal representations to produce
multimodal representation.

Discretization and Multimodal Fusion:
Language models create discretized repre-
sentations, whereas visual encoders pro-
duce continuous representations of visual
scenes. Fusing these representations with
different embedding structures can lead
to sub-optimal multimodal representations
(Liang et al., 2022). For this reason, we
discretize the visual representations before
fusion.

In VQ-Fusion, we adopted the vec-
tor quantization (VQ) method from VQ-
VAE (Van Den Oord et al., 2017)
and Discrete-Value Neural Communica-
tion (Liu et al., 2021) works to dis-
cretize multiview visual representations,
Em ∈ (Eego, Eexo, Etop). Previ-
ous works use VQ to discretize a rep-
resentation using codebooks, whereas
we use shared codebooks to discretize
and align multiview representations to
learn unified concepts across visual views
for extracting salient multimodal repre-
sentations. First, VQ-Fusion divides
each Em into G continuous segments
(s(m,1), s(m,2), . . . , s(m,G)), where Em =
CONCAT(s(m,1), s(m,2), . . . , s(m,G)) and
s(m,i) ∈ RDm/G. Second, VQ-Fusion independently maps continuous segment s(m,i) to dis-
crete latent code cj ∈ RL×(Dm/G) using shared codebooks C, where L is codebooks size (i.e.,
number of categorical codes in each codebook). We can find the optimal code for each contin-
uous segment s(m,i) from the codebooks in the following way: e(m,oi) = FD(s(m,i)), oi =

argmax
j∈1...L

||s(m,i) − cj || . Here, FD is the discretization (D) method. Finally, we concate-

nate the discretized codes to produce discretized visual representation ED
m in the following way:

ED
m = CONCAT(FD(s(m,1)), . . . , F

D(s(m,G))) .

Following the training procedure in (Liu et al., 2021) and (Van Den Oord et al., 2017), we calculate
VQ loss for learning the codebooks: LV Q align = β

G

∑G
i ||si − sg(coi)||22. Here, sg is the stop-

gradient operator blocking gradients to coi , and β is a hyperparameter controlling reluctance to
change the code. We train the discretization module to learn codebooks using gradient descent
with the other parts of VQ-Fusion. As VQ-Fusion employs shared codebooks to discretize visual
representation for multiple views, LV Q align loss aids in aligning multiview representations and
learning unified concepts across views. This shared codebooks approach allows aligning multiview
representation to answer the question with multimodal expressions effectively.

Finally, VQ-Fusion fuses these discretized visual and verbal representations using a self-attention
approach to produce task representation: Efused =

∑
m∈M

αmEm . Here, αm = exp(γm)∑
m∈M

exp(γm) and

γm = (W )TEm,m ∈ M . Here, M is the modality list (ego, exo, top, verbal), W is a learnable
parameter, and αm is the attention score which is calculated using a 1D-CNN with a filter size of 1.

Task Learning: We use the fused representation, Efused, to learn different EQA tasks Tk: yTk
=

FTk
(Efused). Here, FTk

is the task learning module, which can be designed based on the EQA task
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Table 3: Comparisons of VL models performance for EQA tasks. The results suggest that incorpo-
rating VQ-Fusion in VL models can improve the performance of EQA tasks. ✓: VL models with
VQ-Fusion, and ✗: VL models without VQ-Fusion.

Models EP OG POG OC
✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Dual Encoder 53.46 55.78 48.31 49.96 83.91 84.28 12.28 12.38
CLIP 53.17 54.72 54.06 65.49 70.92 82.70 09.65 13.14
VisualBERT 50.00 54.51 53.39 54.50 86.09 87.09 14.09 14.35
ViLT 90.24 91.50 59.74 61.04 86.10 87.42 11.14 12.54

Models OAQ OAC PG RG
✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Dual Encoder 63.71 66.90 57.92 61.45 66.72 66.77 75.78 89.36
CLIP 70.85 74.32 58.59 70.59 66.64 66.99 85.84 89.93
VisualBERT 51.43 54.45 58.56 59.98 66.37 79.11 89.13 89.26
ViLT 55.96 59.47 58.93 60.16 80.36 81.23 87.36 88.68

properties. For example, we use a multi-layer perceptron for the object existence task (Sect. 3 and
please check the supplementary for further details). Moreover, Ltask,Tk

is used to train the model
for task Tk: Ltask,Tk

(yTk
, ŷTk

) = 1
B

∑B
i=1 y(Tk,i) log ŷ(Tk,i). Finally, we combine the task learning

loss (Ltask,Tk
) with the VQ loss (LV Q align) using task learning weights (WV Q and Wtask) to train

the VQ-Fusion model: L = WV QLV Q align +WtaskLtask,Tk
.

Variations of VQ-Fusion: VQ-Fusion allows to use existing VL models (e.g., VisualBERT (Li
et al., 2019) & ViLT (Kim et al., 2021)) to extract these representations. As the architecture of these
VL transformer models is limited to processing a single visual and verbal input, we need to pair the
verbal question to each visual view and pass through these models to extract multiview visual and
verbal representations. We use these representations in VQ-Fusion to discretize and fuse to produce
multimodal representations. Please check the supplementary materials for further details.

7 EXPERIMENTAL ANALYSIS

In this section, we have presented experimental analyses on our EQA-MX dataset to evaluate the
impact of VQ-Fusion in VL models for EQA tasks. We have included additional ablation studies
and experimental analyses for another task in the supplementary to evaluate the significance of VQ-
Fusion for multimodal representation learning.

Baseline Models: Existing visual-language (VL) models for QA tasks are designed to answer a
question using a single visual context. Since our proposed EQA tasks involve three visual views, we
extend four VL models to learn multiview representations: Dual-Encoder (ViT+BERT) (Dosovitskiy
et al., 2020; Devlin et al., 2018), CLIP (Radford et al., 2021), VisualBERT (Li et al., 2019), and ViLT
(Kim et al., 2021). For the Dual-Encoder (ViT+BERT) model, we independently extract visual
representations for each view using a shared ViT model and verbal representations using a BERT
model. We fuse these visual and verbal representations to produce task representations. For the
CLIP models, we pair each visual view to a verbal question and pass this through the model to
extract multiple visual and verbal representations and fuse them to produce task representations. For
VisualBERT and ViLT, we use ResNet-101 (He et al., 2016) to extract visual representations that are
passed through the model with verbal embeddings to produce task representations. Please check the
supplementary materials for further details.

7.1 COMPARISON OF MULTIMODAL LEARNING MODELS

We evaluated state-of-the-art visual-language (VL) models with and without our VQ-Fusion to learn
VL representations for 8 EQA tasks. We varied the number of codebooks to {2, 4, 8, 16} in VQ for
each task and reported the best performance. We trained and evaluated these models independently
for each task as a single-task model on our EQA-MX dataset. We used data samples with varying
nonverbal gestures: gaze and pointing gestures, only gaze, and only pointing gestures. All the
visual views (ego, exo, and top) and verbal perspectives (speaker, observer, and neutral) are used
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to train models and evaluate whether the models can learn generalized representation from diverse
data. We report macro-accuracy across all tasks to accurately gauge whether models can effectively
understand EQA tasks and are not biased toward a particular class (Table 3).

Results: The results in Table 3 suggest that incorporating VQ-Fusion in VL models helps to success-
fully fuse extracted salient multiview representations with verbal representations, and thus improves
model performance on EQA tasks. For example, the CLIP model without VQ-Fusion achieves
54.06% accuracy in the object grounding task (OG), whereas incorporating VQ-Fusion in the CLIP
model increases the OG task’s performance to 65.49%. Similarly, VQ-Fusion improved the CLIP
model’s performance on the object attribute query task (OAQ) by 12%, the VisualBERT model’s
performance on the perspective grounding task by 12.74%, the ViLT model’s performance on the
object attribute comparison (OAC) task by 3.5%, and the DualEncoder model’s performance on
the relation grounding task (RG) by 13.58%. These performance improvements validate the sig-
nificance of VQ-Fusion in extracting salient multimodal representations from multiple visual and
verbal perspectives for effectively learning EQA tasks.

Discussion: The primary reasoning behind the performance improvement by incorporating VQ-
Fusion in VL models lies in its discretization of multiview representations before fusion with discrete
verbal representations. VQ-Fusion uses codebooks to discretize and align the visual representations
with the discrete structure of verbal representations. Conversely, existing VL models extract con-
tinuous monolithic visual representations and fuse them with discrete verbal representations. This
structural mismatch leads to sub-optimal multimodal fusion, adversely affecting the extraction of
salient task representations and subsequently degrading task performance.

Moreover, as VQ-Fusion uses shared codebooks in the VQ information bottleneck to learn multi-
modal representations, this codebook sharing enables models to align the multiview representations
and learn unified concepts. Learning unified concepts from multiple views is crucial, as multiple
views capture the same interaction. Existing models are designed to learn visual and language rep-
resentations from a single visual perspective. Thus, these models do not have any mechanisms to
extract unified concepts from multiple visual views. VQ-Fusion enables these models to learn this
unified concept using shared codebooks-based VQ.

Our experimental results also indicate that incorporating additional perspective-related information
can help models to successfully ground objects. This is made apparent by the model performance on
the perspective-aware object grounding (POG) task being consistently higher then the model perfor-
mance on the object grounding (OG) task. This is particularly notable as the only difference between
these tasks is the presence of the question’s verbal perspective (Fig. 2). Thus, these results suggest
models need to understand verbal perspective for successfully grounding objects in situations with
multiple verbal perspectives.

Although the VL models presented can achieve considerable performance for most of the EQA
tasks, these models perform slightly better than random-guessing for the object counting (OC) task.
As these models do not use object location-specific information, the models suffer at locating and
counting objects given a spatial relation. One possible extension of these models to improve perfor-
mance for the OC task is learning mechanisms to push VL models to learn object locations. The
EQA-MX dataset contains rich annotations of object locations, which can easily be incorporated in
developing models more capable of understanding spatial locations.

7.2 IMPACT OF NONVERBAL GESTURES (ABLATION STUDY)

We evaluated the impact of nonverbal gestures on learning EQA tasks. We evaluated VQ-Fusion
with CLIP models and 8 codebooks on the different splits of EQA-MX dataset: data samples with
gaze and gestures, only gaze, only gestures, and without gaze and gestures (this data split contains
visual scenes without human).

Results and Discussion: The results in Table 4 suggest that the model performs is worse for EQA
tasks if we train the model using data without nonverbal gestures. For example, the model trained
using data without nonverbal gestures achieved only 26.65% accuracy for the object grounding
(OG) task, whereas the model trained using data with gaze and pointing gestures achieved 68.61%
accuracy for the OG task. This is a trend for all other tasks where the performance improved when
gaze and/or pointing gestures were incorporated compared to when it only relied on the verbal
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message. The performance degradation indicates that the models must learn nonverbal gestures to
answer questions with multimodal expressions for EQA tasks.

7.3 IMPACT OF VQ CODEBOOKS (ABLATION STUDY)

We evaluated VQ-Fusion with the CLIP model for 8 EQA tasks by varying the number of codebooks
in VQ: {2, 4, 8, 16}. We evaluated these models on our EQA-MX with varied nonverbal gestures
(gaze and pointing gestures, only gaze, and only pointing gestures). We trained these models with
multiple visual and verbal perspectives.

Table 4: Impact of gaze (G) and pointing gestures (PG) in
learning EQA tasks. The results suggest that incorporating
gestures improves EQA task performance. G (✗) and PG (✗)
indicate visual scenes that do not include humans.

G PG EQA Tasks
EP OG POG OC OAQ OAC PG RG

✗ ✗ 51.03 26.65 52.79 09.94 24.01 51.22 48.95 56.75
✗ ✓ 53.87 60.66 71.08 11.51 64.69 60.63 66.31 90.01
✓ ✗ 53.51 63.49 70.90 12.29 69.43 61.25 66.67 87.23
✓ ✓ 54.38 68.61 79.68 11.86 72.62 60.74 66.68 89.59

Results and Discussion: The re-
sults in Table 5 suggest that different
codebooks help the model achieve
the highest performance for differ-
ent tasks. For example, VQ-Fusion
with 8 codebooks can achieve the
highest performance in existence pre-
diction (EP), object grounding (OG),
and object attribute compare (OAC)
tasks, whereas VQ-Fusion with 2
codebooks can achieve the highest
performance for perspective-aware object grounding (POG) and object counting (OC) tasks. The
number of codebooks depends on the task complexity of how many concepts need to be learned.
As the OG task requires learning verbal perspective, the model requires more codebooks to learn
perspective-related concepts. On the other hand, as perspective is already given in the POG task,
VQ-Fusion requires fewer codebooks. Our results also show similar phenomena, where VQ-Fusion
achieves 82.70% accuracy for the POG task with only 2 codebooks, whereas it achieves 65.49%
accuracy for the OG task with 8 codebooks.

Table 5: Impact of the number of VQ codebooks (VQ CBs)
in VQ-Fusion with the CLIP model in learning EQA tasks.

VQ
CBs

EQA Tasks
EP OG POG OC OAQ OAC PG RG

2 53.46 64.86 82.70 13.14 61.39 57.43 61.39 88.24
4 52.15 61.12 73.94 11.35 69.42 70.59 60.30 89.93
8 54.72 65.49 73.97 11.92 70.85 60.68 66.82 88.23

16 53.19 55.12 71.32 11.43 69.35 60.37 66.99 84.36

However, increasing codebooks more
than optimal leads to decreasing task
performance. For example, the object
attributes compare (OAC) task accu-
racy degrades if we increase the num-
ber of codebooks to more than 4. As
the OAC task involves whether two
objects have the same attribute, the
model can learn these simple con-
cepts using fewer codebooks. In-
creasing the number may lead to sparsity in codebooks, i.e., many codes are left unutilized, hin-
dering models from extracting salient representations. On the other hand, using a few codebooks for
complex tasks, such as OG and OAQ, leads to tight bottlenecks, which deters models from learning
salient concepts. This results in lower task performance. These results indicate that each task has a
different optimal number of codebooks.

8 CONCLUSION

To develop models for comprehending embodied interactions, we designed 8 novel EQA tasks re-
quiring comprehension of questions with multimodal expressions (verbal and nonverbal gestures).
To train and diagnose models for these EQA tasks, we developed a novel large-scale dataset, EQA-
MX, which contains questions with multimodal expressions from multiple verbal and visual per-
spectives. Moreover, we developed a vector quantization-based multimodal representation learning
model, VQ-Fusion, to learn salient multimodal representation from multiple visual and verbal per-
spectives. Our extensive experimental analyses suggest that VQ-Fusion can effectively fuse continu-
ous multiview visual and discrete verbal representation, which helps to improve the visual-language
model’s performance for all EQA tasks up to 13%.
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TECHNICAL APPENDIX

A RESOURCES

The EQA-MX dataset, source code for the CAESAR simulator with our modifications, benchmark
learning models, trained model checkpoints, and docker for computing environment can be accessed
through the following links. We will publicly release these resources with the camera-ready version
of our paper. For double-blind reviewing purposes, we are sharing these resources anonymously
with the reviewers:

• EQA-MX dataset (162 GB): https://bit.ly/eqa-mx-dataset
• Source code of VQ-Fusion, benchmark models, dataset processing, and dataset anal-

yses:
https://bit.ly/eqa-repo

• Source code of the EQA simulator with new extensions (3.1 GB): https://bit.
ly/eqa-simulator

• Trained model checkpoints of ViLT with VQ-Fusion for existence prediction task (1.3
GB):
https://bit.ly/model-checkpoint

• Docker for training models (8.59 GB): We built a docker to facilitate easy reproducing of
our experimental settings and training environment. We cannot currently share the docker
hub link to maintain anonymity. We plan to share that docker link upon publication of the
paper. For this reason, we are sharing the singularity container built from the same docker
we used for our experimentation: https://bit.ly/multimodal-docker

B BROADER IMPACT

Our dataset contains rich annotations of visual scenes, such as object locations, spatial relations,
and multiple visual and verbal perspectives. These can be used to design new tasks to robustly
comprehend embodied interactions. Moreover, our EQA-MX dataset can be used for diverse tasks
in embodied settings, such as scene segmentation and conversational human-AI interactions with
multimodal expressions. Additionally, our dataset can be used to develop and evaluate models
that can be transferred to robots for comprehending embodied human instructions in real-world
settings. Lastly, our experimental analysis provides valuable insights that can be used in designing
robust VL models, such as using similar embedding structures for fusing continuous and discrete
representations leading to performance improvements.

C ADDITIONAL EXPERIMENTAL ANALYSES

C.1 IMPACT OF MULTIPLE VISUAL PERSPECTIVES AND MODALITIES

In real-world settings, robots are typically equipped with multiple camera views. Several studies
have emphasized the significance of multiview data in accurately comprehending human actions
and instructions(Kong et al., 2019; Islam & Iqbal, 2022). To further validate the importance of
multimodal data (nonverbal gestures captured through visual views and verbal utterances) in under-
standing embodied question answering (EQA) tasks, we conducted extensive ablation studies with
varying visual views (ego, exo and top) and verbal utterances (verbal utterance templates described
in Table 11).

In the first setting, we used only verbal utterances for all eight EQA tasks (Table,6: Top). We
used BERT (Devlin et al., 2018) for learning the EQA tasks. The results suggest models using
only a verbal modality can not effectively learn these EQA tasks. Conversely, if we utilized both
verbal and nonverbal data, then the performance of these EQA tasks improved (Table,6). This
degraded performance using only verbal data emphasizes the importance of utilizing both verbal
and nonverbal data modalities for appropriately learning EQA tasks. Additionally, it also indicates
that our proposed EQA-MX dataset is less biased towards verbal data for comprehending EQA tasks.
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Table 6: We trained CLIP models with VQ-Fusion using different combinations of modalities on the
8 tasks described in Figure 2 in the paper. Top Table: only verbal questions. Bottom Table: different
visual modalities and verbal questions. The results suggest that multimodal models outperform those
using only verbal data (Top Table). Additionally, training models with multiview data leads to robust
performance, while using a subset of views results in performance degradation if the views change
during testing (Bottom Table). Existence Prediction (EP), Object Grounding (OG), Perspective-
Aware Object Grounding (POG), Object Counting (OC), Object Attribute Query (OAQ), Object
Attribute Compare (OAC), Perspective Grounding (PG), Relation Grounding (RG).

O
nl

y
V

er
ba

l EP OG POG OC OAQ OAC PG RG
40.64 8.90 45.46 7.45 7.69 29.49 45.23 44.82

Train Test EP OG POG OC OAQ OAC PG RG
Ego Ego 53.86 59.92 70.98 10.60 68.56 61.86 64.41 87.54
Ego Exo 52.61 17.28 62.45 8.96 15.06 56.62 63.39 82.33
Exo Exo 53.67 39.46 69.96 11.24 56.76 60.20 66.39 88.58
Exo Ego 52.84 21.39 69.70 10.78 25.03 58.68 64.49 88.20
ALL ALL 54.72 65.49 82.70 13.14 74.32 70.59 66.99 89.93
ALL Ego 54.32 60.63 82.31 12.22 69.84 60.89 66.71 89.03
ALL Exo 54.17 59.14 78.02 12.55 61.71 62.25 66.53 89.26

In the second setting, we used verbal utterances and nonverbal gestures to learn EQA tasks. We
varied the visual perspectives during training and testing through the use of different camera views
(ego, exo, and top) to capture the nonverbal interactions. We used CLIP model to learn EQA tasks
involving verbal utterances and visual views. The results suggest that models trained using multiple
visual perspectives perform better than models trained using a single visual perspective (Table,6:
Bottom). The reasoning behind this performance improvement is that models using multiple vi-
sual views can learn generalized multiview representations, which can improve the performance at
inference time when visual views are varied.

C.2 COMPARISON OF SINGLE AND MULTITASK MODELS

We evaluated the impact of learning multiple tasks in a visual-language model. We conducted this
experimental analysis in two settings. In both settings, we used verbal utterances and multiple
visual modalities to learn EQA tasks. In the first setting, we trained CLIP models for each EQA task
separately. In the second setting, we trained CLIP models for a subset of EQA tasks. Finally, we
used the extracted representation in each EQA task head, where these task heads are designed using
an MLP.

The results in Table 7 suggest that the performance of models learning multiple tasks degrades com-
pared to the models learning these tasks separately. As these tasks have different characteristics,
learning these tasks together can compete in the representation learning space and degrades these
tasks’ performance. For example, training the CLIP model for the Existence Prediction (EP) and
Object Grounding (OG) tasks together degrades the Object Grounding task performance to 40.76%
compared to an accuracy of 65.49% for a separately trained CLIP model for OG task. Previous
studies have observed similar performance degradation when learning multiple competing tasks.
The primary reason behind the performance degradation is that the competing tasks have conflicting
gradients among different tasks that introduce negative knowledge transfer and thus degrade these
tasks’ performance. Thus, an exciting future research direction would be to design novel multi-
task model architectures and training approaches where training on multiple tasks using multiple
modalities improves the performance of every task in a shared model.

C.3 GENERALIZABILITY OF VQ-FUSION

To evaluate the generalizability of VQ-Fusion for another task involving multimodal representation
learning, we incorporate VQ-Fusion in an existing multimodal learning model (HAMLET (Islam &
Iqbal, 2020)) for human activity recognition tasks with multimodal sensor data (RGB videos, accel-
eration, gyroscope, and orientation). We have evaluated this modal on the MMAct dataset (Kong
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Table 7: We train CLIP models with VQ-Fusion in single task (ST) and multitask (MT) settings. We
reported accuracy of these tasks. Tasks trained in an MT setting are grouped together. The results
suggest that the performance of these models with multiple tasks degrades compared to models
learning these tasks separately. Existence Prediction (EP), Object Grounding (OG), Perspective-
Aware Object Grounding (POG), Object Counting (OC), Object Attribute Query (OAQ), Object
Attribute Compare (OAC), Perspective Grounding (PG), Relation Grounding (RG).

ST EP OG POG OC OAQ OAC PG RG
54.72 65.49 82.70 13.14 74.32 70.59 66.99 89.93

MT EP OG EP POG EP PG
53.25 40.76 52.68 73.90 52.62 49.86

MT EP OAQ OG EP PG OAQ PG EQ OAQ
54.24 68.70 55.56 53.17 66.92 66.61 66.80 53.26 69.01

et al., 2019). The MMAct dataset comprises 37 common daily life activities, each performed by 20
individuals and repeated five times. The dataset includes seven modalities, ranging from RGB data
to acceleration and gyroscope measurements. Our experiments focused on utilizing two available
viewpoints of RGB videos, as well as acceleration, gyroscope, and orientation data. Notably, the
MMAct dataset also includes visually occluded data samples, providing an opportunity to evalu-
ate the effectiveness of multimodal learning approaches in extracting complementary features for
activity recognition.

In our experimental analyses, we adhered to the original session-based evaluation settings and re-
ported the F1-score. We have used eight codebooks to discretize the multimodal representations.
The results indicated that the HAMLET model, which utilizes our proposed VQ-Fusion approach,
outperformed all existing state-of-the-art multimodal human activity recognition (HAR) approaches
in session-based evaluation settings on the MMAct dataset (Table 8). Specifically, the inclusion of
VQ-Fusion enabled HAMLET to improve its F1-score by 4.2%, resulting in the highest reported
F1-score of 87.69% (Table 8). These findings suggest that VQ-Fusion can effectively aid exist-
ing models in extracting salient multimodal representations, thereby enhancing the performance of
downstream tasks in the field of HAR.

D TRAINING ENVIRONMENT

We developed all the models using the Pytorch (version: 1.12.1+cu113) (Paszke et al., 2019) and
Pytorch-Lightning (version: 1.7.1) (Falcon, 2019) deep learning frameworks. We also used Hug-

Table 8: Cross-session performance comparison (F1-Score) of multimodal learning methods on
MMAct dataset

Method F1-Score (%)
SVM+HOG (Ofli et al., 2013) 46.52
TSN (RGB) (Wang et al., 2016) 69.20
TSN (Optical-Flow) (Wang et al., 2016) 72.57
MMAD (Kong et al., 2019) 74.58
TSN (Fusion) (Wang et al., 2016) 77.09
MMAD (Fusion) (Kong et al., 2019) 78.82
Keyless (Long et al., 2018) 81.11
HAMLET (Islam & Iqbal, 2020) 83.89
MuMu (Islam & Iqbal, 2022) 87.50
VQ-Fusion(HAMLET) 87.69
VQ-Fusion(MuMu) 87.83
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Table 9: Comparison of the QA datasets. Existing VQA and EQA datasets do not contain nonverbal
human gestures (NV), multiple verbal perspectives (MV), contrastive (C) and ambiguous (A) data
samples. ‡ Embodied (E) interactions refer to humans interacting with multimodal expressions. †

Embodied interactions refer to an agent navigating in an environment. V: Verbal and MT: Multitasks.

Datasets V NV E EQA MT MV Views C AExo Ego Top
PointAt (Schauerte et al., 2010) ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
ReferAt (Schauerte & Fink, 2010) ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
IPO (Shukla et al., 2015) ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
IMHF (Shukla et al., 2016) ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
RefIt (Kazemzadeh et al., 2014) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
RefCOCO (Yu et al., 2016) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
RefCOCO+ (Yu et al., 2016) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
RefCOCOg (Mao et al., 2016) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
Flickr30k (Plummer et al., 2015) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
GuessWhat? (De Vries et al., 2017) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
Cops-Ref (Chen et al., 2020b) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
CLEVR-Ref+ (Liu et al., 2019) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
DAQUAR (Malinowski et al., 2017) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
FM-IQA (Gao et al., 2015) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
Visual Madlibs (Yu et al., 2015) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
Visual Genome (Krishna et al., 2017) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
DVQA (Kafle et al., 2018) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
VQA (COCO) (Antol et al., 2015) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
VQA (Abs.) (Antol et al., 2015) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
Visual 7W (Zhu et al., 2016) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
KB-VQA (Wang et al., 2015) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
FBQA (Wang et al., 2017) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
VQA-MED (Hasan et al., 2018) ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
DocVQA (Mathew et al., 2021) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
YouRefIt (Chen et al., 2021) ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
GRiD-3D (Lee et al., 2022) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
EQA † (Das et al., 2018a) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
MT-EQA † (Das et al., 2018a) ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
CAESAR-L (Islam et al., 2022b) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓
CAESAR-XL (Islam et al., 2022b) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

EQA-MX ‡ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

gingFace library (version: 4.21.1) for pre-trained models (BERT 1 (Devlin et al., 2018), ViT 2 (Doso-
vitskiy et al., 2020), VisualBERT 3 (Li et al., 2019), Dual Encoder 4, ViLT 5(Kim et al., 2021), and
CLIP 6 (Radford et al., 2021)). For the Dual-Encoder and CLIP models, we used an embedding size
of 512, and for VisualBERT and ViLT, we used an embedding size of 768. We train models using the
Adam optimizer with a weight decay regularization (Loshchilov & Hutter, 2017) and cosine anneal-
ing warm restarts at an initial learning rate: 3e−4, cycle length (T0): 4, and cycle multiplier (Tmult):
2. We used batch size 128 and trained models for 8 epochs. We used the same fixed random seed
(33) for all the experiments to ensure reproducibility. Lastly, all models are trained in distributed
GPU clusters, where each node contains 8 A100 GPUs.

1https://huggingface.co/docs/transformers/model_doc/bert
2https://huggingface.co/docs/transformers/model_doc/vit
3https://huggingface.co/docs/transformers/model_doc/visual_bert
4https://huggingface.co/docs/transformers/model_doc/

vision-text-dual-encoder
5https://huggingface.co/docs/transformers/model_doc/vilt
6https://huggingface.co/docs/transformers/model_doc/clip
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Datasets No. of
Images

No. of
Samples

Object
Categories

Avg.
Words∗

PointAt (Schauerte et al., 2010) 220 220 28 -
ReferAt (Schauerte & Fink, 2010) 242 242 28 -
IPO (Shukla et al., 2015) 278 278 10 -
IMHF (Shukla et al., 2016) 1716 1716 28 -
RefIt (Kazemzadeh et al., 2014) 19,894 130,525 238 3.61
RefCOCO (Yu et al., 2016) 19,994 142,209 80 3.61
RefCOCO+ (Yu et al., 2016) 19,992 141,564 80 3.53
RefCOCOg (Mao et al., 2016) 26,711 104,560 80 8.43
Flickr30k (Plummer et al., 2015) 31,783 158,280 44,518 -
GuessWhat? (De Vries et al., 2017) 66,537 155,280 - -
Cops-Ref (Chen et al., 2020b) 75,299 148,712 508 14.40
CLEVR-Ref+ (Liu et al., 2019) 99,992 998,743 3 22.40
DAQUAR (Malinowski et al., 2017) 1449 124,68 37 11.5
FM-IQA (Gao et al., 2015) 157,392 316,193 - 7.38
Visual Madlibs (Yu et al., 2015) 107,38 360,001 - 6.9
Visual Genome (Krishna et al., 2017) 108,000 1,445,332 37 5.7
DVQA (Kafle et al., 2018) 300,000 3,487,194 - -
VQA (COCO) (Antol et al., 2015) 204,721 614,163 80 6.2
VQA (Abs.) (Antol et al., 2015) 50,000 150,000 100 6.2
Visual 7W (Zhu et al., 2016) 47,300 327,939 36,579 6.9
KB-VQA (Wang et al., 2015) 700 5826 23 6.8
FBQA (Wang et al., 2017) 2190 5826 32 9.5
VQA-MED (Hasan et al., 2018) 2866 6413 - -
DocVQA (Mathew et al., 2021) 12,767 50,000 - -
YouRefIt (Chen et al., 2021) 497,348 4,195 395 3.73
GRiD-3D (Lee et al., 2022) 8,000 445,000 28 -
EQA † (Das et al., 2018a) 5,000 5,000 50 -
MT-EQA † (Das et al., 2018a) 19,287 19,287 61 -
CAESAR-L (Islam et al., 2022b) 11,617,626 124,412 61 5.56
CAESAR-XL (Islam et al., 2022b) 841,620 1,367,305 80 5.32
EQA-MX ‡ 750,849 8,243,893 52 11.45

Table 10: Comparison of the QA datasets. EQA-MX has more samples than all other previous QA
datasets. ∗Average number of words in questions.

Figure 5: Sample data demonstrating the shelf environment vs. the table environment
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Table 11: Templates for all 8 tasks in the EQA-MX dataset. The answers for these templates are
based on the environment in the first row of 5.

Existence Prediction
Template Task Example
Is there any/a/an <object name> in the scene? Is there a cucumber in the scene?
Is there any/a/an <object color> <object name> in the scene? Is there a green cucumber in the scene?

Object Grounding
Template Task Example
What is the name of that object/thing? What is the name of that object?
What is the name of the <object color> object/thing? What is the name of that yellow thing?
What is the name of that <object absolute location>
<object color> object/thing? What is the name of that right yellow object?

What is the name of that <selected object absolute location>
<selected object color> object/thing to the <spatial relation>
of the <relational object absolute location>
<relational object color> <relational object name>?

What is the name of that right yellow object
to the right of the yellow cheese?

Perspective-Aware Object Grounding
Template Task Example
Considering the <observer’s/speaker’s> perspective, what
is the name of that object/thing?

Considering the observer’s perspective, what
is the name of that object?

Considering the <observer’s/speaker’s> perspective, what
is the name of the <object color> object/thing?

Considering the observer’s perspective, what
is the name of that yellow thing?

Considering the <observer’s/speaker’s> perspective, what is
the name of that <object absolute location> <object color>
object/thing?

Considering the speaker’s perspective, what is
the name of that right yellow object?

Object Counting
Template Task Example
How many objects are <spatial relation> of the object/thing? How many objects are above the object?
How many objects are <spatial relation> of the <object color>
object/thing? How many objects are left of the yellow thing?

Object Attribute Query
Template Task Example
What it the color of that object/thing? What it the color of that object/thing?
What is the color of the <object name>? What is the color of the hand soap dispenser?

Object Attribute Compare
Template Task Example
Is the color of that object/thing
the same color as the <relational object name>?

Is the color of that thing
the same color as the cheese?

Is the color of that <selected object name>
the same color as the <relational object name>?

Is the color of that hand soap dispenser
the same color as the soda bottle?

Perspective Grounding
Template Task Example
<Referring expressions using the templates from CAESAR>.
From which perspective is the object described?

The hand soap dispenser above the soda bottle.
From which perspective is the object described?

Relation Grounding
Template Task Example
<Referring expressions using the templates from CAESAR>,
is the object referred to appropriately?

The hand soap dispenser above the cucumber,
is the object referred to appropriately?

Considering the observer’s perspective, <Referring
expressions using the templates from CAESAR>,
is the object referred to appropriately?

Considering the observer’s perspective,
the hand soap dispenser below the cucumber,
is the object referred to appropriately?

Considering the speaker’s perspective, <Referring
expressions using the templates from CAESAR>,
is the object referred to appropriately?

Considering the observer’s perspective,
the hand soap next to the coffee maker,
is the object referred to appropriately?

E EMBODIED QUESTION ANSWERING TASK AND DATASET ADDITIONAL
INFORMATION

We include additional information on the EQA-MX dataset compared to previous EQA datasets in
Tables 9 and 10. 21
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All 8 EQA tasks we created described in the paper are catered towards specific scenarios that would
benefit models in real-world human interaction scenarios.

Existence Prediction (EP): Naturally, humans are able to determine what objects are present in a
given scene. In scenarios where humans are interacting and an actor mistakenly references an object
not in the scene, this allows observers to request more information. Created to mimic this situation,
the existence prediction task involves determining whether the scene contains a particular object
with some specific attributes, such as color.

Object Grounding (OG): Understanding which objects a human refers to using verbal and non-
verbal cues is key in successful human-AI interaction. A model successfully able to ground objects
has use-cases such as assisting surgeons during a procedure by handing surgeons the correct tools.
Thus, we design the object grounding task around this scenario, where models must identify the
name of the object being referred to by verbal and nonverbal expressions.

Perspective-Aware Object Grounding (POG): Similar to the object grounding task, the
Perspective-Aware Object Grounding involves determining which object is being referred to, but
this task includes the verbal perspective (either ego, exo, or neutral). Although real-world human-
AI interactions will not always contain the perspective of a given relation, including the perspective
allows for us to determine whether or not understanding perspective can help in grounding objects.

(a) Existence Prediction Task (b) Object Attribute Compare Task (b) Relation Grounding Task

Figure 6: Distributions of task outputs in the existence prediction (EP), object attribute compare
(OAC), and relation grounding (RG) tasks. All these tasks have balanced binary outputs

(a) Wordcloud on all verbal expr. (b) Dist. of outputs for OG task (c) Dist. of outputs for POG task

Figure 7: A verbal expression Wordcloud for the EQA-MX dataset, as well as the output distribution
for the object grounding (OG) and perspective-aware object grounding (POG) tasks. In the Word-
cloud the size of words represents the frequencies that they occur in the verbal utterances. Therefore,
the most frequent words describe general properties of objects or are general words inside questions
- such as color, perspective, and spatial relations/locations. In the diagrams for object frequencies
for the object grounding and perspective-aware object grounding tasks, the most referred objects all
have the same frequencies (these tasks have the same object distributions). Expr. : expression, Dist.
: distribution.

Object Counting (OC): As understanding what object a human is referring to in a scene involves
interpretation of the different number of objects inside that scene, understanding the number of
objects in a scene can serve as an auxiliary task for the object grounding task. If models are able
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to create salient multimodal representations to attend to all the objects in a given scene, is is likely
they will be able to ground particular objects better. Thus, in the object counting task the number of
objects in a scene is asked based on different spatial relations.

Object Attribute Query (OAQ): It is often important in human-human interactions to identify
particular attributes of objects. Additionally, this information can be used as auxiliary information
for tasks such as the Object Grounding task, where the goal is to identify objects. We design the
Object Attribute Query task around this particular situation, where the color of a given object is
queried for.

Object Attribute Compare (OAC): Humans often exchange information throughout conversations
through the use of comparison of different object attributes. This exchange of information can assist
in understanding the different objects an actor is referring to. Thus, we design the object attribute
compare task, where the attributes of two different objects in the scene are compared.

Perspective Grounding (PG): Understanding human verbal perspective is integral to successful
human-AI communication, as humans interchangeably describe objects from their perspective as
well as the perspective of others. We simulate this in the perspective grounding task using three
different perspectives - neutral, egocentric (speaker), and exocentric (observer).

Relation Grounding (RG): As described in Islam et al. (2022b), the relation grounding task in-
volves determining whether the supplied verbal and nonverbal signals align with respect to describ-
ing the same object. Understanding whether or not a human is accurately verbally and nonverbally
referring to an object can enable the identification of human mistakes. We add complexity to this
task through the variation of verbal perspective in the question.

(a) OC task spatial relations (b) Dist. of OC task output (c) Dist. of OAC task output

Figure 8: Distribution of task outputs in the object counting and object attribute compare tasks.
Both distributions are not completely even due to different observed scene probabilities. For the
object counting (OC) task, lower numbers have higher probabilities of occurring due to the number
of objects in the scene ranging from 4 − 10, hence the imbalance in distributions. Similarly, in the
object attribute compare task different object colors are queried for, and since the colors of objects
is not completely balanced, the task distribution is imbalanced. Dist. = Distribution.

E.1 EQA TASK TEMPLATES

In this work we presented 8 EQA tasks. Each of these tasks has multiple sub-templates, which we
present in more detail in Table 11. Each sub-template has multiple degrees of freedom from which
to vary, ensuring generated embodied questions are diverse. For example, since most sub-templates
use the absolute location of an object, this absolute location can often times be described from either
the observer or speaker perspective.

E.2 NEW ENVIRONMENTS IN EQA-MX

To increase dataset generalizability, we have added a shelf environment into the CAESAR simulator,
and thus into the EQA-MX dataset. We visualize the three views (ego, exo, and top) for this and the
table environment in Fig. 5. Because the exo and ego views in the table environment are on different
sides of the table, the verbal perspectives differ. However, in the shelf environment, the exo and ego
views are aligned meaning the verbal perspective is aligned. We created this environment in this
way to ensure models have differing situations with regards to views and perspective. Additionally,
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Figure 9: Object locations visualized for different spatial relations/locations across the EQA-MX
dataset. The object locations are not easily separable based on spatial relations/locations that vary
based on perspectives. (a & b) demonstrates how the shelf environment has more non-separable
locations/relations due to the fact that verbal perspective in the shelf environment does not vary
based on visual perspective. c is generally linearly separable, as expected, as the center of a given
scene is objective. d demonstrates how opposing corners (i.e. front left and back right) are non-
separable due to varying based on verbal perspectives).

since the shelf has objects below/on top of one another, it adds diversity with respect to spatial
relations/locations, ensuring models understanding these relations/locations in all 3 dimensions.

F ADDITIONAL DATASET ANALYSES

We have thoroughly analyzed the different aspects of data samples in our dataset, EQA-MX. We
visualize the output distribution for all EQA tasks, as well as the object locations with respect to
different spatial relations/locations, and the most frequent words found in our dataset.

F.1 TASK OUTPUT DISTRIBUTIONS

As shown in Figs. 6,7 we balance outputs of our task distributions where possible in order to ensure
the EQA-MX dataset is not biased. For the OG and POG tasks, the output distribution of all 52
categories is balanced to ensure models do not bias a particular object. Additionally, in Fig. 6, all
binary tasks (EP, OAC, and PG) contain a 50/50 split between yes and no answers. Because the
CAESAR simulator randomly generates scenes populated with objects, the OC and OAC tasks do
not have even task distributions. This can be explained by these tasks involving observed character-
istics in scenes where some characteristics are more common than others. For example, since the
max number of objects that can be generated in a scene is 10, the probability of an object have 9
objects to the left of it is much lower than the probability of an object having 2 objects to the left
of it. Similarly, certain colors are more common in objects inside of the CAESAR simulator. These
distributions are made more apparent in Fig. 8 (we report macro accuracy for models trained on
these tasks).

F.2 OBJECT LOCATIONS ANALYSES

We visualize object locations inside the EQA-MX dataset to show how different spatial relations
have/don’t have bias (Fig. 9). Particularly, since one of our contributions is the creation of the shelf
environment, we show how since its visual views are aligned certain visual cues have bias.

24


	Introduction
	Related Work
	Embodied Question Answering Tasks
	Dataset Generation with EQA Simulator
	Dataset Analysis
	VQ-Fusion: VQ-based Multimodal Fusion
	Experimental Analysis
	Comparison of Multimodal Learning Models
	Impact of Nonverbal Gestures (Ablation Study)
	Impact of VQ Codebooks (Ablation Study)

	Conclusion
	Resources
	Broader Impact
	Additional Experimental Analyses
	Impact of Multiple Visual Perspectives and Modalities
	Comparison of Single and Multitask Models
	Generalizability of VQ-Fusion

	Training Environment
	Embodied Question Answering Task and Dataset Additional Information
	EQA Task Templates
	New Environments in EQA-MX

	Additional Dataset Analyses
	Task Output Distributions
	Object Locations Analyses


