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ABSTRACT

Time series analysis has important applications in many fields. Representing
temporal-structured samples is crucial for time series analysis tasks. Recently,
several advanced deep learning models, i.e., recurrent neural networks, convo-
lutional neural networks, and transformer-style models, have been successively
applied in temporal data representation, yielding notable results. However, most
existing methods model and represent the variation patterns within time series
solely in time domain. As a highly abstracted information entity, 1D time series
data couples various patterns such as trends, seasonality, and dramatic changes (in-
stantaneous high dynamic), it is difficult to exploit these highly coupled properties
merely by analysis tools on purely time domain. To this end, we present Spectrum
Analysis and Representation Network (SpecAR-Net). SpecAR-Net aims at learn-
ing more comprehensive representations by modeling raw time series in both time
and frequency domain, where an efficient joint extraction of time-frequency fea-
tures is achieved through a group of learnable 2D multi-scale parallel complex
convolution blocks. Experimental results show that the SpecAR-Net achieves ex-
cellent performance on 5 major downstream tasks i.e., classification, anomaly de-
tection, imputation, long- and short-term series forecasting.

1 INTRODUCTION

With the advent of the era of “Internet of Things” and “Comprehensive Perception”, various sen-
sors have been extensively deployed and utilized, leading to an explosive growth in the scale of
time series (Cook et al., 2020). Extracting valuable information from massive time series has be-
come increasingly crucial. As a result, the time series analysis has attracted a growing number of
researchers. Currently, time series data analysis has been widely applied in numerous fields, e.g.,
finance (Livieris et al., 2020), electricity (Cai et al., 2020), transportation (Gasparin et al., 2021),
and the healthcare sector (Stoean et al., 2020), etc.

Recently, deep learning is playing a crucial role in time series analysis. With the powerful fea-
ture representation capability, many deep time series learning methods have been proposed, and has
achieved great success in classification, anomaly detection, short/long-term forecasting, imputation
and other related tasks. One typical category of these methods is based on recurrent neural net-
works (RNNs) (Wang et al., 2022; Yu et al., 2021), where the sequence modeling is completed by
recursively encoding the first-order dependency between the preceding and subsequent elements.
However, when modeling long-term sequences, it is easy to encounter gradient vanishing and ex-
plosion problems, and it is also difficult to enjoy the advantages of parallel processing (Hochreiter,
1998). Another typical category is the convolution-based methods (Aksan & Hilliges, 2019; Thill
et al., 2021), which can easily process sequential data in parallel. However, limited by the compu-
tation mechanism of shared convolutions in the local receptive fields, convolution models are often
insufficient to characterize the long-term relationships. To overcome those shortcomings of recur-
rent and convolutional networks, the Self-Attention (SA) based Transformer (Liu et al., 2022a;b)
has been proposed. Transformer balances the long-term dependency encoding capability and the
benefits of parallel computing, resulting in widely used in various sequence modeling tasks. How-
ever, time series data is coupled with multiple patterns, and the temporal dependencies captured by
point-by-point representation and aggregation are often submerged (Wu et al., 2021).
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Form our opinion, the most significant limitation of the above methods is that they still rely on pure-
time-domain modeling mechanism. As a highly abstract information body, time series data is formed
by the coupling of multiple components such as trend (overall envelope), periodicity (multiple fre-
quency components), mutagenicity (high frequency components), etc. Considering such highly-
coupled property, it is almost impossible for pure-time-domain learning models to achieve complete
semantic representation from time series data. To overcome such limitation, FEDFormer (Zhou
et al., 2022) introduces frequency-domain analysis, and carries out SA in the frequency-domain to
enhance the representation of time series data, resulting excellent results in long-term forecasting.
In addition, TimesNet (Wu et al., 2023) builds a general time series representation module in a
frequency-guided manner. It constructs a 2D period-time space by folding the time series data ac-
cording to the dominant periods and using multi-scale 2D convolution to capture the intra-period-
and inter-period-dependency, which achieves wonderful results in mainstream tasks.

These works show that frequency information is effective for time series representation. While these
methods are eventually based on the single analysis domain, i.e., lacking a more comprehensive uti-
lization of time-frequency information. In particular, TimesNet solely relies on the frequency infor-
mation obtained through Fourier transform to select dominant periodic components from time series.
The subsequent modeling process is still carried out in the time domain, utilizing the data repeatedly
guided by significant periods. There is no explicit analysis or thorough utilization of the frequency
information. In this paper, to further explore the potential value of frequency information in time
series modeling while preserving the temporal variation characteristics, a unified time-frequency
spectrogram analysis and representation network (SpecAR-Net) is constructed. SpecAR-Net aims
at achieving joint analysis of time and frequency for time series. In order to overcome the limi-
tations of semantic entanglement caused by the coupling of trend, periodicity and mutagenicity in
time series data, several special treatments are incorporated in the model design:

i. For decoupling the periodicity characteristics from time series data, the time-frequency
transform is used for better extraction of time-frequency variation patterns in a higher-
dimensional feature space.

ii. The mutagenicity disrupt the stability of the semantic representation space for time series.
To address such issue, a group of parallel multi-scale convolution blocks is designed to
deeply explore the transient patterns.

iii. To capture the trend patterns, the order-preserving is added to the loss function. This learn-
ing strategy, guided by the “order” prior information, aims to capture the global trend pat-
terns of the time series.

Overall, this approach has the following benefits: firstly, it overcomes the bottleneck of one-
dimensional data representation by decoupling the multiple components of time series in a higher-
dimensional data space. Secondly, a concise unified framework for learning cross-domain represen-
tation is constructed, which enables the joint analysis of time and frequency domain features in time
series. Technically, to facilitate the universality of the proposed method, a plug-and-play SpecAR-
Block is designed, which is compatible for most deep sequential models. The experimental results
demonstrate that SpecAR-Net achieves good performance in five mainstream tasks, including clas-
sification, anomaly detection, long-term forecasting, short-term forecasting, and imputation. Our
contributions are summarized in three folds:

i. A unified time-frequency joint representation framework is proposed. This framework de-
couples the features into three levels: global variation features (trend), local variation fea-
tures (periodicity), and transient change features (mutagenicity), enabling more efficient
deep semantic feature extraction for time series data.

ii. A plug-and-play time-series representation module, SpecAR-Block is proposed, which is
compatible with various deep sequence modeling frameworks, e.g., RNNs, CNNs and Tran-
formers. By utilizing time frequency transformation and 2D multi-scale parallel complex
convolutions, it can generate comprehensive semantic representation for input sequence.

iii. A powerful deep sequential model called SpecAR-Net with strong generalization ability
is designed. SpecAR-Net has exhibited strong performance across a range of widely-used
time series analysis tasks, such as anomaly detection, classification, long/short-term pre-
diction and missing value imputation.
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2 RELATED WORK

In essence, SpecAR-Net is a deep sequence modeling or encoding method. Initially, most of these
methods were based on multi-layer perceptrons (MLP). For example, an extended MLP for pre-
dicting exchange rate trends using interval time series is presented in (Maté & Jimeńez, 2021).
LightTS (Zhang et al., 2022) introduced a fine-grained down-sampling strategy into an MLP and
achieved excellent performance in long-term forecasting tasks. DLinear (Zeng, 2023) decomposed
time series into trend and residual sequences and utilized two MLPs to model these sequences for
forecasting tasks.

Then, as a method specifically used for time series data modeling, RNN was widely investigated. It
utilizes a chain-like structure to simulate the dynamic behavior of time series, which helps extract
temporal characteristics. Such as the long short-term memory (LSTM) model used in (Hochreiter
& Schmidhuber, 1997). And LSTNet proposed in (Lai et al., 2018a), which utilizes both CNNs and
RNNs to extract short-term local dependencies between variables and explore long-term patterns in
time series trends, respectively. More recently, LSSL (Albert Gu & Re., 2022) achieved effective
modeling of long time series by parameterizing the continuous-time, recurrent, and convolutional
views of the state space model.

Admittedly, RNNs are a naturally suitable model for dealing with time series. However the risk of
gradient vanishing/explosion and limitation of serial computing have the obstacles for RNNs. In
this context, CNNs are also favored. For example, dilated convolutions were utilized as an encoder
to accept variable-length inputs for time series data modeling (Bai et al., 2018). TCN (Franceschi
et al., 2019) employs multiple 1D convolutions to extract temporal information across different
scales of feature maps, demonstrating certain advantages in extracting deep semantic features from
time series. There’s also research that indicates that CNNs exhibit superior performance to RNNs in
time series modeling (Chen & Shi, 2021).

In recent years, Transformers have shown remarkable performance in the field of time series model-
ing (Nikita Kitaev & Levskaya, 2020). By utilizing SA mechanisms, these methods possess inherent
network architecture advantages in capturing temporal dependencies in time series. As a result, they
have become popular approaches in the field of time series analysis. For instance, informer (Zhou
et al., 2021a) design ProbSparse SA mechanism and distillation operations to reduce the compuation
complexity and memory consumption of the vanilla version. Inspired by the principle of exponential
smoothing, ETSFormer (Woo et al., 2022) has been devised to improve the accuracy of time series
data prediction by using novel Exponential Smoothing Attention (ESA) and Frequency Attention
(FA) mechanisms.

These above methods provide many valuable ideas and practical tools for time series analysis. How-
ever, the modeling mechanisms are purely time-domain, which are difficult to describe and encode
the highly coupled contents of the sequences, comprehensively. Considering such limitation, fre-
quency information were incorporated into the deep models, which have achieved promising results,
e.g., FEDformer (Zhou et al., 2022) and TimesNet (Wu et al., 2023).

Although both of FEDformer and TimesNet emphasize the use of frequency information, they are
essentially single-dimensional modeling mechanisms in terms of processing process, i.e., while Fed-
former relies exclusively on attention mechanisms in the frequency domain, TimesNet primarily uti-
lizes time-domain modeling guided by significant frequency information. Hence, there still lacks of
an effective time-frequency joint deep modeling method for time series analysis. Motivated by this,
this paper specifically emphasizes modeling and analyzing time series data in the time-frequency
domain, and attempts to provide a unified framework for a variety of mainstream tasks.

3 METHODOLOGY

In order to establish a comprehensive unified representation for time series, this paper proposes
SpecAR-Net from the perspective of joint time-frequency analysis. Firstly, Short Time Fourier
Transform(STFT) is used to map the time series data from the time domain into the time-frequency
domain, resulting in a transform of data structure from 1D to 2D data space. Then, a group of
multi-scale parallel complex convolution blocks, which efficiently extracts and fuses time-frequency
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characteristics of the time series data. Through this process, we achieve a unified representation of
the time series data in both time and frequency domains.

3.1 SPECAR-BLOCK

As shown in 1, the backbone of SpecAR-Net is composed of several stacking SpecAR-Blocks.
Concretely, given one time series sample, X ∈ RT×N , where T and N denotes time length and data
dimension, respectively. A high-dimensional mapping of X is performed at the very beginning as:

X0 = Embed(X) (1)
Where X0 ∈ RT×M is the encoded features generated by the embedding layer Embed(·) : RN →
RM , which consists of three components: position embedding, global time stamp embedding, and
scalar projection.

Then for the SpecAR-Net with L blocks, the l-th (l = 1, . . . , L) layer can be formalized as:

Xl = SpecAR(Xl−1) +Xl−1 (2)
Where SpecAR(·) : RT×M → RT×M denotes the SpecAR time-frequency encoding process, the
output Xl is calculated by the SpecAR encoding along with a short-cut connection of l− 1-th layer.

As can be seen from the detailed part of SpecAR-Block on the right of figure 1, each block con-
sists of three core modules: time-frequency transformation, multi-scale complex convolutions, and
feature aggregation. In specific, the time-frequency transformation (TFT) is performed to convert
the temporal input features Xl−1 into time-frequency structured (i.e., spectrogram) complex ten-
sor, Sl−1 ∈ CM×T×F , where F denotes the number of frequency bins. Then a group of parallel
multi-scale 2D complex convolutions is used to encode the complex tensor. This process can be
formalized as follows:

Sl−1 = TFT(Xl−1)

S(l−1)† = MS-Conv†(Sl−1)
(3)

Where TFT(·) : RT → RT×F denotes a dimension/channel-parallel time-frequency opera-
tor, which can be fulfilled by STFT (by default in this paper) or Wavelet Transform (WT). And
MS-Conv†(·) denotes the parallel-computed complex convolutions with different dilation rates
(sampling rates) in time-frequency receptive field of Sl−1. Assume we have K different convo-
lution blocks, then the output tensor will be in the form of S(l−1)† ∈ CM×T×F×K . More details of
TFT and paralleled multi-scale complex convolutions are in Sec. 3.2 and 3.3.

Finally, for the feature aggregation stage, a block-wise average pooling is first conducted to compress
the stacked feature tensor, S(l−1)† obtained from MS-Conv†(·). Then a linear projection is used to
transform the complex compressed features as real ones. This stage can be formalized as:

Xl† = Linear
{
Re

[
AvgBlk

(
S(l−1)†

)]
,Im

[
AvgBlk

(
S(l−1)†

)]}
(4)

Where, AvgBlk(·) : CK → C denotes the block-wise average pooling, Re/Im[·] is the element-wise
real/complex part extractor, and Linear(·) denotes the complex-to-real linear projection. To fur-
ther utilize the advantage of the skip connection, the fused time-frequency features, Xl† ∈ RM×T×F

will be average-pooled along the frequency domain and transposed to get the shape-compatible out-
put tensor in RT×M .

3.2 TIME-FREQUENCY TRANSFORMATION

In order to decouple and analyze the periodic characteristics of time series data while maintaining
its temporal structure, we incorporate TFT in our SpecAR-Block. TFT can be fulfilled by the classic
STFT or WT, which facilitates more efficient joint extraction of time-frequency features using 2D
convolutions in subsequent learning stages. Following simplicity design principle, we use STFT by
default. Fig. 2 illustrates the process of TFT for a given time series sample in an intuitive way.

Following the symbol definition above, for each channel of the given input sequence Xl ∈ RT×M

for l + 1-th SpecAR-Block, the TFT calculation is formalized as:

Sl
m[t, f ] =

t+n∑
τ=t−n

Xl
m[τ ]h(τ − t)e−j2πfτ (5)
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Figure 1: The overall framework of our approach.

Figure 2: Time-frequency transform.

Where Sl
m ∈ CT×F is the discrete STFT results, i.e., spectrogram of m-th channel input sequence

Xl
m ∈ RT×1. Both window size and number of sample points for FFT are 2n + 1, the hop length

is set as 1 so that the input and output can have the same time length. And the commonly used
Hamming window function h(t) = 0.54−0.46 cos

(
πt
n

)
is employed to modulate the input sequence.

After applying the TFT to the time series data, the highly coupled pure time domain data is ex-
panded into a time-frequency representation. This transformation will enable the subsequent feature
learning part to more intuitively analyze the periodic components of the input sequence and their
respective evolution trends on the time-frequency distribution. However, it should be noted that the
spectrogram actually carries not only the amplitude but also the phase information in each time-
frequency unit, these are retained in the complex numbers. Hence, to fully utilize those contents,
special treatment should be taken into consideration in the subsequent learning stage, which is dis-
cussed in the following section. Beyond that, as a crucial role in accurately representing frequency-
domain features, window length determines the frequency resolution of the resulting spectrogram.
Therefore, the effect of window length is also investigated in the experiments.

3.3 MULTI-SCALE COMPLEX CONVOLUTIONS

To make full use of the information in the spectrogram representation, i.e., the phase and the am-
plitude, the complex convolutions are utilized in SpecAR-Net. In addition, multi-scale convolution
kernels for parallel computation is introduced to alleviate the contradiction of time-frequency reso-
lution in TFT stage.

In order to avoid introducing more learning parameters, we use different dilation rates to achieve
multi-scale feature extraction. Then the small network is designed to be constructed with K complex
convolution blocks with different dilation rates but the same kernel size, 3×3. Given the input time-
frequency tensor of l-th SpecAR-Block, Sl ∈ CM×T×F , The forward computation process can be
roughly expressed as:

Sl† = Stack
(
{Conv†

k

(
Sl; d[k]

)
}Kk=1

)
(6)
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Where Conv†
k (·; d[k]) : CM → CM denotes the k-th convolution block with dilation rate of

d[k] = 2k + 1. The specific calculation process for each Conv†
k is as follows: assuming a complex

convolution kernel w = (a + j ⊙ b) , and a complex input tensor h = (c + j ⊙ d), the complex
convolution process, denoted as:

w ∗ h = (a+ j ⊙ b) ∗ (c+ j ⊙ d) = (a ∗ c− b ∗ d) + j ⊙ (a ∗ d+ b ∗ c) (7)

Finally, the ouput tensors of all the complex convolution blocks will be stacked together in block-
wise to form the multi-scale feature tensor Sl† ∈ CM×T×F×K .

3.4 TEMPORAL ORDER PRESERVING

To capture the global trend patterns of the input time series, the temporal order preserving (TOP)
constraint is incorporated into our SpecAR-Net. This constraint is achieved by adding an order
regression loss term on the basis of the original prediction loss. In practice, we use a temporal-
shared learning function to construct such TOP loss term.

Given the final embeddings of SpecAR-Net, X∗ ∈ RT×M for an input sequence. The learning
function Φ(·; u) : RM → R will encode each X∗[t] as:

Φ (X∗[t]; u) 7→ t (8)

Where u is the temporal-shared learning parameters and t = 1, . . . , T is the time index of X∗[t].
Based on this order regression mechanism, the TOP loss term for the current input sequence can be
formalized as follows:

LTOP =
λ

2

T∑
t=1

∥Φ (X∗[t]; u) − t∥22 +R(u) (9)

Where LTOP denotes the TOP loss term, λ is the order regression penalty factor and R(u) is the
regularization term for u. Then the final loss can be expressed as the weighted summation of LTOP
and the original loss for the current learning task, e.g., mean square error for forecasting or cross-
entropy for classification.

4 EXPERIMENTS

To verify the effectiveness and superiority of SpecAR-Net, a comprehensive set of experiments is
conducted over 5 mainstream tasks, i.e., classification, anomaly detection, long/short-term forecast-
ing and imputation. The benchmark datasets and corresponding experimental configurations are
shown in Tab. 1:

Table 1: The experiments configurations.
No Tasks Datasets Metrics Series Length

1 Forecasting
Long-term:ETT(4subsets),Electricity,
Weather,Exchange,ILI MSE,MAE

6∼720
(ILI:24∼60)

Short-term:M4(6 subsets) SMAPE,MASE,OWA 6∼48
2 Imputation ETT(4 subsets),Electricity,Weather MSE,MAE 96
3 Classification UEA(10 subsets) Accuracy 29∼1751
4 Anomaly Detection SMD,MSL,SMAP,SWaT,PSM Precision,Recall,F1-Socre 100

The backbones of the compared state-of-the-art (SoTA) models including RNNs, CNNs, MLPs and
Transformers. The details are as follows Tab. 2:

Table 2: The contrast models
No. Models Details
1 MLP-based LightTS,DLinear
2 RNN-based LSTM,LSTNet,LSSL
3 CNN-based TCN, TimesNet

4 Transformer-based
Autoformer(Wu et al. (2021)),FEDformer,Reformer(Nikita Kitaev & Levskaya (2020)),
Pyraformer(Liu et al. (2022a)),Non-stationary Transformer(Liu et al. (2022b)),
Informer,ETSformer

Furthermore, for specific tasks, cutting-edge models are also mentioned in the SoTA comparison
this experiment. Specifically, N-HiTS (Challu et al., 2023) and N-BEATS (Oreshkin et al., 2019)
are compared in short-term forecasting. Transformer (Xu et al., 2022) is selected for comparison in
anomaly detection. For classification, Rocket (Dempster et al., 2020) and Flowformer (Wu et al.,
2022) are compared.
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4.1 MAIN RESULT

Compared to other baseline methods, SpecAR-Net has achieved the best performance across all 5
tasks, as shown in Tab. 3 (where red and blue font denote the best and second-best results, respec-
tively). Additionally, the results further validate the exceptional generalization ability of SpecAR-
Net, which can be regarded as a unified framework in time series analysis.

Table 3: the comparison of model performance
Models SpecAR-Net

(Ours)
TimesNet

(2023)
Dlinear
(2023)

ETSformer
(2022)

LightTS
(2022)

Stationary
(2022)

FEDformer
(2022)

Informer
(2021)

Autoforer
(2021)

Reformer
(2020)

Classification(Accuracy) 74.7 73.6 67.5 71.0 70.4 72.7 70.7 72.1 71.1 71.5
Anomaly Detection(F1-Scores) 86.45 86.34 82.46 82.87 84.23 82.08 84.97 78.83 84.26 77.31
Short-term Forecasting(OWA) 0.850 0.851 1.051 1.172 1.051 0.930 0.918 1.230 0.939 1.775

Long-term Forecasting(MSE)(ILL) 2..051 2.139 2.616 2.497 7.382 2.077 2.847 5.137 3.006 4.724
Imputation(MSE)(ETTh1) 0.071 0.078 0.201 0.202 0.284 0.094 0.117 0.161 0.103 0.122

4.2 CLASSIFICATION

Figure 3: The Result of classification.

Time series classification task can intuitively
show the performance of our method in terms
of high-level semantic representation of time se-
ries. The data used in this experiment is sourced
from the UAE dataset (Bagnall et al., 2018), com-
prising ten sub-datasets that encompass practical
tasks such as gesture recognition, action recogni-
tion, audio recognition, and medical diagnosis.

As shown in Fig. 3, SpecAR-Net has achieved
remarkable results in classification task, with an
average classification accuracy of 74.7%, sur-
passing other SoTA methods such as TimesNet
(73.6%) and Flowformer (73%). It is worth not-
ing that, compared to SpecAR-Net, TimesNet ex-
hibits lower classification accuracy on most datasets, with an average accuracy reduction of 1.1%.
Efficient feature extraction can be carried out simultaneously in both time-domain and frequency-
domain by SpecAR-Net, facilitating the capture of higher-level semantic representations.

4.3 ANOMALY DETECTION

Anomaly detection plays a vital role in ensuring the orderly and secure operation of industrial pro-
duction. However, anomaly detection often requires capturing exceptional signal within big data,
which can easily get overwhelmed, making the detection task highly challenging. To fully validate
the performance is such task, 5 widely-used datasets are employed, i.e., SMD (Su et al., 2019),
MSL and SMAP (Hundman et al., 2018), SWaT (Mathur & Tippenhauer, 2016), and PSM (Abdu-
laal et al., 2021). These datasets cover various real-world industrial applications, including service
monitoring, spatial and earth sensing, and water treatment.

The results are presented in Tab. 4. It is evident that our method achieved the optimal performance in
the anomaly detection task, outperforming other comparative methods. The advanced Transformer-
based approaches, FEDformer and Autoformer, have also both achieved good performance(84.97%
and 84.26%). Frequency-domain information is introduced into the attention mechanism of both
models, further highlighting the effectiveness of frequency-domain information in time series rep-
resentation. In comparison, our method enables the joint extraction of deep-level time-frequency
features from both the time- and frequency-domains, thereby facilitating the capture of abnormal
patterns existing in time series.

Table 4: The Result of Anomaly Detection
Model SpecAR-Net

(ours)
TimesNet
(ResNeXt)

TimesNet
(Inception)

ETSformer
(2022)

LightTS
(2022)

Stationary
(2022a)

FEDformer
(2022)

Dlinear
(2023)

LSSL
(2022)

Informer
(2021)

Anomaly
(2021)

Pyraformer
(2021a)Datasets

SMD 86.55 85.81 85.12 83.13 82.53 84.62 85.08 77.1 71.31 81.65 85.49 83.04
MSL 81.72 85.15 84.18 85.03 78.95 77.5 78.57 84.88 82.53 84.06 83.31 84.86

SMAP 73.28 71.52 70.85 69.5 69.21 71.09 70.76 69.26 66.90 69.92 71.18 71.09
SWaT 93.42 91.74 92.10 84.91 93.33 79.88 93.19 87.52 85.76 81.43 83.10 91.78
PSM 97.28 97.47 95.21 91.76 97.15 97.29 97.23 93.55 77.20 77.10 79.40 82.08

Avg F1 86.45 86.34 85.49 82.87 84.23 82.08 84.97 82.46 76.74 78.83 80.50 82.57
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4.4 LONG- AND SHORT-TERM FORECASTING

In the long-term forecasting task, a set of benchmark datasets were utilized, including ETT (Zhou
et al., 2021b), Electricity (UCI), Traffic (PeMS), Weather (Wetterstation), Exchange (Lai et al.,
2018b), and ILI (CDC), which cover the application demands of five major real-world scenarios.
Each dataset contains a segment of continuous time series data, and sample data are obtained from
these datasets using a sliding window approach. In the experiments, the input past length was set
to 96, with ILL for 36. The prediction lengths is [96, 192, 336, 720], with ILI for [24, 36, 48, 60].
In the short-term forecasting task, we utilized the M4 dataset (Makridakis et al., 2018), which
comprises 100,000 time series . These data were collected at different sampling rates, including
yearly, quarterly, monthly, weekly, daily, and hourly intervals, covering a wide range of domains
such as finance, industry, and demographics. For our experiments,the prediction sequence lengths is
[6, 8, 13, 16, 24, 48].

Especially, all the results are averaged from four different prediction lengths for long-term forecast-
ing, the results of short-term forecasting tasks are calculated as weighted averages from multiple
datasets with varying sample intervals. The experiments are conducted in two rounds in total. In the
first round, MSE is used as loss function, and it achieved good results in both short-term and long-
term forecasting tasks, although it did not reach the optimal level. See Tab.7 and 8 in Appendix for
more details. In the second round, SpecAR-Net was conducted by introducing a order-preserving
into the loss function. As shown in Tab. 5 and 6, Our method achieves the best performance in both
long- and short-term forecasting, indicating a positive role of the “order” information in time series
forecasting. The order-preserving is equivalent to using the “order” information as prior knowledge
to constrain the learning process of the model and compensate for the lost “order” information dur-
ing feature extraction, ensuring that the model output possess a certain degree of sequentiality. At
the same time, it also shows that our method is highly scalable.
Table 5: Short-term forecasting task (order-preserving). See Table 9 in Appendix for the full results.

Models SpecAR-Net
(ours)

TimesNet
(2023)

N-HiTS
(2022)

N-BEATS
(2019)

ETSformer
(2022)

LightTS
(2022)

Dlinear
(2023)

FEDformer
(2022)

Stationary
(2022a)

Autoformer
(2021)

Pyraformer
(2021a)

SMAPE 11.844 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987
MASE 1.582 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265
OWA 0.850 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480

Table 6: Long-term forecasting task (order-preserving). See Table 10 in Appendix for the full results.
Models SpecAR-Net

(ours)
TimesNet

(2023)
ETSformer

(2022)
LightTS
(2022)

Dlinear
(2023)

FEDformer
(2022)

Stationary
(2022a)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTm1 0.398 0.407 0.400 0.406 0.429 0.425 0.435 0.437 0.403 0.407 0.448 0.452 0.481 0.456
ETTm2 0.291 0.332 0.291 0.333 0.293 0.342 0.409 0.436 0.35 0.401 0.305 0.349 0.306 0.347
ETTh1 0.458 0.455 0.458 0.450 0.542 0.510 0.491 0.479 0.456 0.452 0.440 0.460 0.570 0.537
ETTh2 0.416 0.427 0.414 0.427 0.439 0.452 0.602 0.543 0.559 0.515 0.437 0.449 0.526 0.516
Eelctricity 0.192 0.294 0.192 0.295 0.208 0.323 0.229 0.329 0.212 0.300 0.214 0.327 0.193 0.296
Traffic 0.625 0.335 0.620 0.336 0.621 0.396 0.622 0.392 0.625 0.383 0.610 0.376 0.624 0.340
Weather 0.257 0.284 0.259 0.287 0.271 0.334 0.261 0.312 0.265 0.317 0.309 0.360 0.288 0.314
ExchangeRate 0.384 0.425 0.416 0.443 0.410 0.427 0.385 0.447 0.354 0.414 0.519 0.500 0.461 0.454
ILL 2.051 0.903 2.139 0.931 2.497 1.004 7.382 2.003 2.616 1.090 2.847 1.144 2.077 0.914

4.5 IMPUTATION

The imputation task primarily relies on historical data to recover the missing data. This technique
serves as the foundation of big data analytics, ensuring the temporal and spatial integrity of time
series, thus supporting various subsequent tasks such as forecasting, classification, and anomaly
detection. This experiment was conducted on 6 benchmark datasets, including ETT (w/ 4 subsets),
Electricity and Weather. Random masking with masking rates of [12.5%, 25%, 37.5%, 50%] was
employed to simulate missing values.

The experiment was conducted in two rounds. The first round of the experiment was conducted
without order-preserving. And SpecAR-Net exhibits consistent performance with TimesNet, which
is the best-performing method among the comparison methods. See Tab.11 in Appendix for more
details. Tab. 7, which presents the experimental results after incorporating order-preserving, shows
that SpecAR-Net achieves the best performance. So, This indicates that the monotonicity constraint
is beneficial for capturing the global trend patterns in time series. Furthermore, it also suggests that
SpecAR-Net possesses strong capabilities in extracting time- and frequency-varying patterns.

4.6 DETAILED ANALYSIS
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Table 7: Imputation tasks(order-preserving). See Table 12 in Appendix for the full results.
Models SpecAR-Net

(ours)
TimesNet

(2023)
ETS.

(2022)
LightTS
(2022)

DLinear
(2023)

FED.
(2022)

Stationary
(2022a)

Auto.
(2021)

Pyra.
(2021a)

In.
(2021)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTm1 0.026 0.105 0.027 0.107 0.12 0.253 0.104 0.218 0.093 0.206 0.062 0.177 0.036 0.126 0.051 0.15 0.717 0.57 0.071 0.188
ETTm2 0.21 0.087 0.022 0.089 0.208 0.327 0.046 0.151 0.096 0.208 0.101 0.215 0.026 0.099 0.029 0.105 0.465 0.508 0.156 0.292
ETTh1 0.071 0.178 0.078 0.187 0.202 0.329 0.284 0.373 0.201 0.306 0.117 0.246 0.094 0.201 0.103 0.214 0.842 0.682 0.161 0.279
ETTh2 0.046 0.141 0.049 0.146 0.367 0.436 0.119 0.25 0.142 0.259 0.163 0.279 0.053 0.152 0.055 0.156 1.079 0.792 0.337 0.452
Electricity 0.092 0.210 0.092 0.210 0.214 0.339 0.131 0.262 0.132 0.26 0.13 0.259 0.100 0.218 0.101 0.225 0.297 0.382 0.222 0.328
Weather 0.031 0.057 0.03 0.054 0.076 0.171 0.055 0.117 0.052 0.11 0.099 0.203 0.032 0.059 0.031 0.057 0.152 0.235 0.045 0.104

Figure 4: Model parameter scale.

Model Complexity &
Performance. To further
analyze the performance
of our method in the
representation of time
series data, we selected
comparable models with
better performance in
classification and pre-
diction tasks for model
complexity analysis. Re-
sults in Fig. 4 show that
better performance can be
obtained by our method in
the condition of less learnable parameters. This further illustrates the superiority of the proposed
time-frequency joint learning model in this paper.

Figure 5: Effect of window length.

Effects of TF Resolution. The length win-
dow directly affects the time- and frequency-
resolution of the time-frequency informa-
tion obtained from STFT. The time- and
frequency-resolution reflect the richness of
information in the time and frequency do-
mains, which has a significant impact on
extracting time-frequency variation. There-
fore, for this experiment, different window
lengths [4, 8, 16, 24, 48, 96, 192, 336] were se-
lected to investigate their effects on the
model performance. Figure 5 demon-
strate that SpecAR-Net achieves optimal per-
formance when the prediction lengths are
[96, 192, 336, 720], corresponding to window
lengths with [4, 24, 192, 192]. This find-
ing indicates that the requirements for time-
frequency resolution vary across different
temporal analysis tasks, suggesting a varying dependency on both time- and frequency-features.
According to the Heisenberg uncertainty principle (Mallet et al., 1999), it is impossible for the time-
and frequency-resolution to simultaneously reach their optimal values. In order to ensure that our
model has good time series representation capability while maintaining a suitable computational
complexity, window lengths is [8, 16, 24] in this paper.

5 CONCLUSIONS

SpecAR-Net can be used as a universal foundational model for time-frequency representation and
analysis of time series. Through the time-frequency transformation, SpecAR-Net overcomes the
limitations of semantic representation in 1D time series caused by the coupling of multiple compo-
nents such as trending, periodicity, and abruptness. This facilitates the simultaneous extraction and
fusion of time-frequency variation patterns from a 2D space. Experimental results demonstrate that
SpecAR-Net achieves optimal performance in 5 tasks, including classification, anomaly detection,
long-term forecasting, short-term forecasting, and imputation.
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