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Abstract

Efficiently selecting an appropriate spike stream data length to extract precise
information is the key to the spike vision tasks. To address this issue, we propose
a dynamic timing representation for spike streams. Based on multi-layers archi-
tecture, it applies dilated convolutions on temporal dimension to extract features
on multi-temporal scales with few parameters. And we design layer attention to
dynamically fuse these features. Moreover, we propose an unsupervised learning
method for optical flow estimation in a spike-based manner to break the dependence
on labeled data. In addition, to verify the robustness, we also build a spike-based
synthetic validation dataset for extreme scenarios in autonomous driving, denoted
as SSES dataset. It consists of various corner cases. Experiments show that our
method can predict optical flow from spike streams in different high-speed scenes,
including real scenes. For instance, our method achieves 15% and 19% error reduc-
tion on PHM dataset compared to the best spike-based work, SCFlow, in ∆t = 10
and ∆t = 20 respectively, using the same settings as in previous works. The source
code and dataset are available at https://github.com/Bosserhead/USFlow.

1 Introduction

Optical flow is defined as the apparent motion of individual pixels on the image plane and is prevalent
for being an auxiliary tool for various vision tasks, e.g. frame rate conversion [15], scene segmentation
[43, 38], and object detection [49]. In high-speed scenes, the optical flow estimation may suffer
from blurry images from low frame-rate traditional cameras. Obtaining the data with a device that
can precisely record the continuous light intensity changes of the scene is the key to addressing this
issue. Recently, neuromorphic cameras have been developed greatly, such as event camera and spike
camera. They can record light intensity changes in high-speed scenes. Especially, for spike camera,
each pixel of it responds independently to the accumulation of photons by generating asynchronous
spikes. It records full visual details with an ultra-high temporal resolution (up to 40kHZ). With these
features, spike camera has demonstrated superiority in handling some high-speed scenarios, such as
video frame interpolation [35] and dynamic scene reconstruction [40, 42, 7, 8, 48].

Since spike camera can record details of high-speed moving objects, it has enormous potential for
estimating more accurate optical flow in high-speed scenes. Considering that deep learning has

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/Bosserhead/USFlow


achieved remarkable success in frame-based optical flow estimation [31, 32], it seems reasonable to
directly apply frame-based architecture in spike data. However, the data modality of spike stream
output by spike camera is quite different from frame images. For each pixel in spike camera, a spike
is fired and the accumulation is reset when photons accumulation at a pixel exceeds a set threshold.
At each timestamp, the spike camera outputs a binary matrix, denoted as spike frame, representing the
presence of spikes at all pixels. Previous work [12] utilizes spike stream as naïve input representation
for one timestamp, which consists of a series of spike frames within a predefined time window.
However, a too-long window can incur lots of misleading frames, while a short window is sensitive
to noise and cannot provide enough information. Therefore, deliberate modifications are needed for
input representation to extract salient information more flexibly and efficiently from spike streams
before optical flow estimation architecture takes over.

In addition, the ground truth of optical flow is scarce in the real world, especially for high-speed
scenes. To cope with the lack of labeled real-world data, it is necessary to study spike-based optical
flow estimation in an unsupervised manner. As described above, the light intensity information is
contained within the spike intervals. This difference in data characteristics makes it unreasonable
to directly apply the frame-based unsupervised loss to spike streams. Therefore, the light intensity
should first be extracted from spike streams in the spike-based unsupervised loss. This is also the
core of constructing the illuminance consistency on spike streams. Moreover, we argue the field
of autonomous driving is a good place to validate spike camera since it is suitable for high-speed
scenes. In autonomous driving, it is nearly impossible to collect real data for complex, diverse,
high-speed extreme scenarios, e.g. vehicle collisions and pedestrian-vehicle accidents. However,
these scenarios are of great significance to improve the safety of this field and should be highlighted.
Therefore, in order to verify that the spike-based algorithm can handle extreme scenarios, we propose
a spike-based synthetic validation dataset for extreme scenarios in autonomous driving, denoted as
the SSES dataset.

In this paper, we propose an unsupervised method for spike-based optical flow estimation with
dynamic timing representation, named USFlow. In our unsupervised loss, we propose two strategies,
multi-interval-based and multi-time-window-based, to estimate light intensity in regions with different
motion speeds. The estimated optical flow is utilized to distinguish regions with different motion
speeds and generates corresponding weights for light intensity fusion. Then the final approximate
light intensity participates in loss calculation. As for addressing the fixed time window issue, there
is a way that apply a dynamic time window to the different spike streams. To this end, we propose
Temporal Multi-dilated Representation(TMR) for spike streams. In more detail, we apply multi-layer
dilated convolutions to operate on the temporal dimension of spike streams. Multi-layer dilated
convolutions enable the network to have different receptive fields and each layer can be regarded as
summarizing spike stream with one different time window. We also design a Layer Attention(LA)
module to extract salient features and filter the redundant ones.

Following the settings in previous works [12], we train our method on SPIFT [12] dataset and evaluate
it on PHM [12] and our proposed SSES datasets. We demonstrate its superior generalization ability
in different scenarios. Results show that USFlow outperforms all the existing state-of-the-art methods
qualitatively and quantitatively. USFlow shows visually impressive performance on real-world data.

2 Related Works

Deep Learning in Optical Flow Estimation. Frame-based optical flow estimation is a classical
task in the computer vision area through the years and has been solved well. PWC-Net[31] and
Liteflownet[13] introduce the pyramid and cost volume to neural networks for optical flow, warping
the features in different levels of the pyramid and learning the flow fields in a coarse-to-fine manner.
RAFT[32] utilizes ConvGRU to construct decoders in the network and iteratively decodes the
correlation and context information in a fixed resolution. Due to their excellent performance, PWC-
Net and RAFT are the backbones of most algorithms[37, 34, 41, 21, 20, 18, 17, 36, 16, 39, 30] in
frame-based optical flow estimation. TransFlow [22] utilizing the long-range temporal association to
recover more information by introducing transformer architecture. In addition, many frame-based
unsupervised optical flow networks[25, 21, 20, 18, 23, 30] were proposed to discard the need for
labeled data. Similar to the traditional optimization-based methods, Yu et al.[14] employ photometric
loss and smoothness loss to train a flow estimation network. Unflow[25] applies a forward-backward
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check on bidirectional optical flow to estimate the occlusion area, where the backpropagation of
photometric loss is stopped.

Deep learning has also been applied to event-based optical flow[45, 46, 19, 6, 11, 26, 5]. EV-
FlowNet[45] can be regarded as the first deep learning work training on large datasets with a
U-Net architecture[28]. As an updated version of EV-FlowNet, an unsupervised framework has
been proposed by Zhu et al.[46] based on contrast maximization. Spike-FlowNet[19] and STE-
FlowNet[6] use spiking neural networks and ConvGRU to extract the spatial-temporal features of
events, respectively.

The research on spike-based optical flow estimation is just getting started. SCFlow[12], is the first
deep-learning method. It proposes a large dataset, the SPIFT dataset, to train an end-to-end neural
network via supervised learning. However, our work aims to fill in the blanks of unsupervised
learning.

Event-based and Spike-based Input Representation. Normally, asynchronous event streams
are not compatible well with the frame-based deep learning architecture. Therefore, frame-like
input representation is needed and is expected to capture rich salient information about the input
streams. Apart from many handcrafted representations[46, 27, 24, 29, 6], some end-to-end learned
representations have been proposed, making it possible to generalize to different vision tasks better.
Gehring et al.[10] simply uses multi-layer perceptrons as a trilinear filter to produce a voxel grid
of temporal features. Cannici et al.[4] propose Matrix-LSTM, a grid of Long Short-Term Memory
(LSTM) cells that efficiently process events and learn end-to-end task-dependent event surfaces.
Similarly, Event-LSTM [1] utilizes LSTM cells to process the sequence of events at each pixel
considering it into a single output vector that populates that 2D grid. Moreover, Vemprala et al.[33]
presents an event variational autoencoder and shows that it is feasible to learn compact representations
directly from asynchronous spatio-temporal event data.

Directly using spike stream as input might incur lots of misleading information or miss something
necessary if the time window is not chosen appropriately. Therefore, frame-like input representation
should also be carefully designed to extract sufficient information from spike stream. SCFlow [12]
uses estimated optical flow to align spike frames to eliminate motion blur.

Different from all previous works, we aim to train an end-to-end input representation with the function
of a dynamic time window by multi-layer dilated convolutions.

3 Preliminaries

3.1 Spike Camera

Spike camera works by an "integrate-and-fire" mechanism, which asynchronously accumulates the
light on each pixel. The integrator of spike cameras accumulates the electrons transferred from
incoming photons. Once the cumulative electrons exceed a set threshold, the camera fires a spike and
resets the accumulation. The process of accumulation can be formulated as,

A(x, t) =

∫ t

0

αI(x, τ)dτ mod θ, (1)

where A(x, t) is the cumulative electrons at pixel x = (x, y). I(x, τ) is the light intensity at pixel x
at time τ . α is the photoelectric conversion rate. θ is the threshold. The reading time of spikes is
quantified with a period δ of microseconds. The spike camera fires spikes at time T , T = nδ, n ∈ Z,
and generate an H ×W spike frame s. As time goes on, the camera produces a spatial-temporal
binary stream SN

t in H ×W ×N size, as shown in Figure 2. The N is the temporal length of the
spike stream. H and W are the height and width of the sensor, respectively.

3.2 Problem Statement

Given two timestamps t0 and t1, we have two spike streams centered on t0 and t1, noted as SL
t0 and

SL
t1 , respectively. Then we estimate a dense displacement field f = (fu, fv) from t0 to t1 using
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Figure 1: The overall architecture of the USFlow. First, The input spike stream is through the
temporal multi-dilated representation, and the layer attention fuses the multi-layer outputs. Second,
the fused output is fed to the optical flow estimation backbone. Finally, it uses estimated optical flow
to learn weights for light intensity estimation.

these two sub-spike streams, mapping each pixel x = (x, y) at t0 to its corresponding coordinates
x′ = (x′, y′) = (x+ fu(x), y + fv(x)) at t1.

4 Method

4.1 Overview

To verify the effectiveness of the proposed dynamic timing representation, we present two versions of
USFlow. One is the PWC-like version. It adopts a variant of PWC-Net [31] which is also the backbone
of SCFlow [12]. The other is the RAFT version which adopts an official small version of RAFT
[32] as the backbone. More about these two backbones is included in the appendix. Considering
one advantage of neuromorphic vision is low latency, our representation part should be lightweight
and efficient. The two spike streams first pass into the shared dynamic timing representation module
separately, whose outputs are sent into existing backbones. In addition, we design an unsupervised
loss to break the dependency on labeled data. Note that all the components are trained end-to-end.

4.2 Dynamic Timing Representation

As stated in 3.1, one binary spike frame itself is sensitive to noise and meaningless without contextual
connection. Given a bunch of spike data, selecting an appropriate data length is pivotal for subse-
quent processing. A too-long spike stream is not suitable for high-speed regions since time offset
accumulation introduces more redundant information. A too-short spike stream won’t work either, as
it can not exhibit light intensity precisely with few binary data. To address this issue, we propose a
dynamic timing representation for input spike streams.

The Dynamic Timing Representation consists of Temporal Multi-dilated Representation (TMR)
module and a Layer Attention module (LA). The main ingredient of TMR is dilated convolution.
By using dilated convolution, we can extend receptive fields to a larger range with just a few
stacked layers, while preserving the input resolution throughout the network as well as computational
efficiency. In more detail, we apply 1D dilated convolutions to the spike stream for each pixel and the
parameters are shared across all the pixels. The TMR can be formulated as follow,

{F (i)(x)} = D1C(i)(F (i−1)(x)) i = 1, . . . , n, (2)

where D1C(·) represents the 1D dilated convolution operation, i and x are layer index and spatial
coordinate respectively. Note that F (0)(x) is the input spike stream on position x. Figure 2 depicts
dilated convolutions for dilations 1, 2, 4, and 8. The higher level of the layer, the larger the receptive
field is. The intuition behind this configuration is two-fold. First, a different layer can be regarded
as summarizing spikes or extracting temporal correlation among spike frames with a different time
window. Second, dilated convolution allows the network to operate on a coarser scale more effectively
than with a normal convolution, which guarantees the model is lightweight. In Table 1, we show the
parameter size of our USFlow and other methods.
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Figure 2: The Temporal Multi-dilated Representation. 1D dilated convolutions are applied to all
pixels with shared weights. The dilated convolutions are stacked for larger receptive fields. The
higher level the layer is, the larger the receptive field is. Note that the illustration of the spike stream
is shown in the top-left corner.

Multi-dilated architecture has already greatly expanded the input dimensions but not all layers provide
equally useful information. Blindly fusing the output of all layers may impair the learning process. To
address this issue, we propose the Layer Attention module to further flexibly emphasize which layer
is meaningful or which time window is optimal. As illustrated in Figure 1, we average the output
of n layers, {F (i)(x)}ni=1, noted as F ′(x) to generate one n-dimension layer context descriptor.
The descriptor is then forwarded to a multi-layer perceptron(MLP) to produce our layer attention
map. The layer attention values are broadcast along the layer dimension and the final concatenation,
RF (x), is computed as follows:

RF (x) = σ(MLP(AvgPool(F′(x))))⊗ F′(x), (3)

here ⊗ denotes element-wise multiplication. We do this operation on all pixels by sharing weights.

4.3 Unsupervised Loss

Unsupervised learning is necessary for spike-based optical flow estimation due to the lack of labeled
training data in high-speed real-world scenes. To this end, we sidestep the need for ground truth of
optical flow as only spike data are required for training. More specifically, at training time, two spike
streams centered on t0 and t1, SL

t0 and SL
t1 , are utilized to predict optical flow, f = (fu, fv), from t0

to t1.

Different from traditional RGB frames, a binary spike frame can not accurately represent the light
intensity at the current timestamp. Therefore, estimating precise current light intensity from binary
spike streams is the key to constructing an unsupervised loss function.

For low-speed regions. Since the light intensity accumulation in low-speed regions is an approxi-
mately linear process, we count spikes to utilize longer-duration information to estimate the light
intensity. In this way, we can improve the robustness of light intensity estimation. However, the data
length of the spike stream used to estimate light intensity varies with different low-speed motions.
For reducing computational complexity, we only set two different time windows. The light intensity
estimation can be formulated as follow:

ĨT (x, τ) =
ωs · θ

2Ds + 1
·

τ+Ds∑
t=τ−Ds

s(x, t) +
ωl · θ

2Dl + 1
·

τ+Dl∑
t=τ−Dl

s(x, t), (4)

here Ds and Dl are the half length of time windows. They are set to 40 and 100 respectively. ωs and
ωl are the weight factors. The subscripts s and l refer to short and long time windows, respectively.

For high-speed regions. Selecting a large time span of spike streams to extract information would
incur motion blur due to time offset accumulation. Hence, we estimate light intensity during a single
spike interval which is typically on the order of microseconds. Since the spike streams have extremely
high temporal resolution and the interval between adjacent spikes is ultra-short, we can safely assume
that the light intensity remains constant during the interval [47]. Let us denote s(x,m) and s(x, n)
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as two adjacent spikes at position x. m and n are the timestamps corresponding to these two spikes.
According to the spike camera working mechanism in Equation 1, the constant light intensity can be
approximated by:

Î(x) ≈ θ

α · (n−m)
,m < n (5)

In reality, however, the number of incoming photons in an ultra-short interval is a random variable
subject to the Poisson distribution even under constant illumination conditions. Therefore, the light
intensity calculated by Equation 5 includes errors due to random fluctuations. To address this issue,
we extend it by multi-intervals and fuse light intensity information with different numbers of intervals,

ĨI(x, τ) =

K∑
k=1

(ωk · (2k − 1) · θ
α · [T (x, Nτ (x) + k − 1)− T (x,Mτ (x)− k + 1)]

), (6)

where Mτ (x) = argmax
z

(T (x, z) < τ), Nτ (x) = argmin
z

(T (x, z) ≥ τ). (7)

In Equation 6 and 7, T (x, z) refers to the timestamp corresponding to the zth spike at position x.
[T (x, Nτ (x) + k − 1)− T (x,Mτ (x)− k + 1)] is the total time length of these (2k − 1) intervals.
ωk is the weight factor of the light intensity calculated by using (2k − 1) intervals. Note that k is set
to 1 and 2 in our experiments. This setting ensures that the data length of spike stream used for light
intensity estimation in high-speed motion regions is much shorter than that used in low-speed regions.
Further detailed discussion is presented in the appendix.

Learnable weights of estimated light intensity. Considering a scene may contain both high-speed
regions and low-speed regions, it is necessary for our unsupervised loss to fuse light intensity
estimation methods based on multiple intervals and multiple time windows. We use the estimated
optical flow to reflect the motion speed, and choose the most appropriate light intensity estimation
strategy for different regions. As shown in Figure 1, we learn the weights ωs, ωl, ωk from the
estimated optical flow. Thence, we can fuse all the terms in Equation 4 and Equation 6 to achieve the
final approximated light intensity Ĩ .

After achieving the Ĩ , we then derive the bidirectional photometric loss in a spike-based manner:

Lphoto(f , f
′) =

∑
x

(ρ(Ĩ(x, t0)− Ĩ(x+ f , t1)) + ρ(Ĩ(x+ f ′, t0)− Ĩ(x, t1))), (8)

where ρ is the Charbonnier loss [3], f is the flow from t0 to t1, f ′ is the flow from t1 to t0.

Furthermore, we use smoothness loss to regularize the predicted flow. It minimizes the flow difference
between neighboring pixels, thus it can enhance the spatial consistency of neighboring flows and
mitigate some other issues, e.g. the aperture problem. It can be written as:

Lsmooth (f, f
′) =

1

HW

∑
x

|∇f(x)|+ |∇f ′(x)|, (9)

where ∇ is the difference operator, H is the height and W is the width of the predicted flow. The
total loss function consists of two loss terms above-mentioned, which can be written as Ltotal =
Lphoto + λLsmooth, where λ is the weight factor.

5 Experiments

5.1 Implementation Details

In this work, we choose the SPIFT dataset [12] as the training dataset. The PHM dataset [12] and
our proposed SSES dataset is used for evaluation. The SPIFT and PHM datasets provide two data
settings, generating optical flow every 10 spike frames (∆t = 10) and 20 spike frames (∆t = 20)
separately from the start to end of sampling. Therefore, we train models for the (∆t = 10) and
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Table 1: Average end point error (AEE) comparison with other methods for estimating optical flow
on PHM datasets under ∆t = 10 and ∆t = 20 settings. All methods use spike stream as input and
are trained on SPIFT dataset in a supervised manner. The best results are marked in bold.

Method Param. Ball Cook Dice Doll Fan Hand Jump Poker Top Mean
∆
t
=

1
0

EV-FlowNet 53.43M 0.567 3.030 1.066 1.026 0.939 4.558 0.824 1.306 2.625 1.771
Spike-FlowNet 13.04M 0.500 3.541 0.666 0.860 0.932 4.886 0.878 0.967 2.624 1.762
SCFlow 0.80M 0.671 1.651 1.190 0.266 0.298 1.692 0.120 1.030 2.166 1.009
RAFT 0.99M 0.577 1.557 1.135 0.296 0.327 1.769 0.141 0.681 2.198 0.965
PWC-Net(variant) 0.57M 0.597 2.185 1.288 0.606 0.464 2.551 0.370 1.269 2.602 1.326
RAFT+conv 1.04M 0.535 1.874 1.225 0.737 0.447 2.482 0.299 0.957 2.424 1.220
PWC-Net(variant)+conv 0.62M 0.511 1.585 0.959 0.187 0.245 1.874 0.077 0.833 2.114 0.932
USFlow(raft) 1.04M 0.483 1.228 1.294 0.283 0.345 1.634 0.154 0.764 2.192 0.931
USFlow(pwc) 0.62M 0.430 1.556 0.787 0.210 0.226 1.615 0.105 0.646 2.111 0.854

∆
t
=

2
0

EV-FlowNet 53.43M 1.051 5.536 1.721 2.057 1.867 8.820 1.803 2.193 5.061 3.345
Spike-FlowNet 13.04M 0.923 7.069 1.131 1.675 1.838 9.829 1.701 1.373 5.257 3.422
SCFlow 0.80M 1.157 3.430 2.205 0.507 0.578 4.018 0.267 1.922 4.327 2.046
RAFT 0.99M 1.004 3.378 2.059 0.460 0.561 3.707 0.257 1.416 4.250 1.904
PWC-Net(variant) 0.57M 1.321 4.493 2.601 2.206 1.083 5.654 1.159 2.320 5.143 2.887
RAFT+conv 1.04M 0.983 2.977 1.864 0.533 0.622 3.421 0.287 1.361 4.313 1.818
PWC-Net(variant)+conv 0.62M 0.881 3.198 1.624 0.799 0.476 4.030 0.273 1.424 4.324 1.892
USFlow(raft) 1.04M 0.792 2.734 1.918 0.448 0.569 2.601 0.256 1.231 4.293 1.649
USFlow(pwc) 0.62M 0.807 3.075 1.613 0.370 0.377 3.663 0.168 1.216 4.216 1.723

Table 2: Average end point error (AEE) comparison with other methods for estimating optical flow
on PHM datasets under ∆t = 10 and ∆t = 20 settings. All methods use spike stream as input and
are trained on SPIFT dataset in an unsupervised manner. The best results are marked in bold.

Method Ball Cook Dice Doll Fan Hand Jump Poker Top Mean

∆
t
=

1
0 PWC-Net(variant) 0.642 3.239 1.258 0.579 0.844 4.799 0.587 1.468 2.632 1.783

USFlow(pwc, Census) 0.640 3.549 0.675 0.815 1.018 4.942 0.782 0.756 2.655 1.759
USFlow(pwc, SSIM) 0.703 3.546 0.705 0.838 0.980 5.000 0.762 0.819 2.644 1.777
USFlow(pwc) 0.705 2.170 1.416 0.555 0.610 2.219 0.438 1.159 2.488 1.307

∆
t
=

2
0 PWC-Net(variant) 1.480 6.682 1.419 1.407 1.452 9.307 0.905 1.790 5.580 3.336

USFlow(pwc, Census) 1.117 7.049 1.199 1.513 1.858 9.854 1.441 1.393 5.284 3.412
USFlow(pwc, SSIM) 1.152 6.882 1.273 1.071 1.260 9.778 3.185 1.554 4.855 3.446
USFlow(pwc) 1.259 3.978 2.782 0.784 0.873 4.748 0.524 2.180 4.589 2.413

(∆t = 20) settings separately as SCFlow [12]. All training details are included in the appendix. More
details on the SSES dataset will be elaborated in Section 5.4. The color map used in visualization
refers to Middlebury [2].

5.2 Comparison Results

Evaluation of Input Representation. To fully validate the effectiveness of the proposed input
representation, we first train the model in a supervised manner and compare it with other supervised
baselines listed in the prior spike-based work, SCFlow [12]. In more detail, apart from SCFlow,
we compare our network with baselines in event-based optical flow, i.e. EV-FlowNet [44] and
Spike-FlowNet [19]. We also compare our network with frame-based optical flow network, i.e. RAFT
[32] and PWC-Net(variant) [31]. Note that these two frame-based networks are lightweight versions
as illustrated in Section 4.1 and we implement our method on both networks, denoted as USFlow(raft)
and USFlow(pwc). All the methods in Table 1 are only fed spike streams as inputs.

As illustrated in Table 1, our input representation indeed can improve the performance on top of
frame-based backbones. It demonstrates the necessity of directly pre-processing operations on spike
stream information. In addition, USFlow(pwc) achieves the best mean AEE of 0.854 in ∆t = 10
setting and USFlow(raft) gets the best mean AEE of 1.649 in ∆t = 20 setting, which gets 15% and
19% error reduction from the best prior deep network, SCFlow, respectively. Note that the mean AEE
value is averaged over nine scenes. Meanwhile, our input representation has the least parameters
compared to other methods. The parameter size of input representation in SCFlow is 0.23M and it in
our USFlow is only 0.05M. With the lightweight representation module, the computational time of
USFlow for inferring optical flow between two timestamps on a 3090 GPU is 90.6ms. It gets 61.8%
computational time reduction from SCFlow.
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Figure 3: Qualitative results of the evaluation of the PHM dataset.

USFlow(pwc)SCFlow USFlow(pwc)-supervisedSpike frameScene

Figure 4: Qualitative results on real scenes. USFlow(pwc) is fine-tuned in the training set of street
scenes.

In order to verify that the performance boost is not brought by the number of parameters increas-
ing, we change the dilated convolution to normal convolution with the same input size and feature
channel, denoted as RAFT+conv or PWC-Net(variant)+conv. We found that blindly increasing the
number of parameters does not make any sense. Normal convolution only provides a limited perfor-
mance improvement. Therefore, we claim that dilated convolutions can extract salient information
more effectively from spike streams. Table 2 shows a comparison between PWC-Net(variant) and
USFlow(pwc), indicating that our representation also shows superiority with our unsupervised loss.

Evaluation of Unsupervised Loss. Note that we only build USFlow on PWC-Net(variant) for
unsupervised evaluation due to the similar performance of two backbones in Table 1. Since the metric
for measuring appearance similarity is critical for any unsupervised optical flow technique [18] in the
frame-based domain, we compare with some metrics, i.e. the structural similarity index (SSIM) and
the Census loss. As illustrated in Table 2, our proposed unsupervised loss can help the model achieve
significant performance improvements. Components of our loss are analyzed in Section 5.3.

Qualitative Results. Parts of RGB images, ground truth flow, and the corresponding predicted flow
images of the PHM dataset are visualized in Figure 3. Note that PWC(variant) and USFlow(pwc) are
trained unsupervised. USFlow(pwc) can predict more detailed flow than PWC-Net(variant) in many
regions. However, there still exists a performance gap between the unsupervised method and the
supervised method. Moreover, as for supervised methods, the directions of predicted flows (viewed
in color) of USFlow(pwc) are closer to the ground truth than SCFlow, especially in object edges.

Fine-tuned Results. We collect some real data in street scenes and split them into training and
evaluation set. Due to the advantage of unsupervised learning over supervised learning, we can
fine-tune the unsupervised model on the real data, which has no ground truth, to bridge the domain
gap. The fine-tuned model has achieved better qualitative results than the supervised model trained
on SPIFT in the evaluation set of street scenes. Parts of qualitative results can be found in Figure 4.
More clarifications are placed in the appendix.
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5.3 Ablation Study

RGB Image Ground Truth USFlow(pwc)-supervised PWC(variant) USFlow(pwc)

Figure 5: Qualitative results on the SSES dataset. The
positions of vehicles and pedestrians are highlighted by
black boxes.

Dynamic Timing Representation.
We do ablation studies on dynamic
timing representation in both supervised
and unsupervised manners. Table 3
again verifies that dilated convolu-
tions can effectively extract salient
information to build promising input
representation. More analysis regarding
dilated convolutions are in the appendix.
Though it seems that layer attention
can only improve the performance
marginally, we can find out this part
makes the training process more stable
and faster as illustrated in Figure 6.

Unsupervised Loss. Since estimating
the light intensity from spike streams is
the core of our unsupervised loss, we do ablation studies on it. As shown in Table 4, the mean AEE
of the experiment (A) is higher than that of (B). The reason is there are fewer high-speed motion
regions than low-speed motion regions in the PHM dataset. Compared with experiments (A) and (B),
our unsupervised loss can handle regions with different motion speeds and get the best performance.

5.4 SSES Dataset

Based on the CARLA [9], we build a synthetic dataset for extreme scenarios of autonomous driving.
CARLA is an open-source simulator for autonomous driving research, which provides open digital
assets (urban layouts, buildings, vehicles) to build specific scenarios. Moreover, the simulation
platform supports flexible specifications of sensor suites, environmental conditions, and much more.
In addition, CARLA can provide the ground truth of optical flow, instance segmentation, and depth.

In the proposed dataset SSES, we design ten extreme scenarios, mainly focusing on traffic accidents
caused by violating traffic rules or vision-blind areas. We also include various street scenes, back-
ground vehicles, and weather conditions to make scenes more diverse. The demonstration of sample
cases and more descriptions of the extreme scenarios are in the appendix.

In all scenarios, the speed setting range is 10 ∼ 16 m/s for cars, 5 ∼ 8 m/s for pedestrians and
bicycles, and the frame rates for rendered RGB frames and spike frames are 500 fps and 40K fps
respectively. Regarding the generation of spike frames, we first increase the frame rate of RGB
frames to 40K fps through a flow-based interpolation method and then generate spikes by treating
pixel value as light intensity and simulating the integrate-and-fire mechanism [40]. Note that the
ground truth of optical flow is obtained from time aligned with RGB frames. The sequence duration
is about 0.5 ∼ 1.5s.

Parts of RGB images, ground truth flow, and the corresponding predicted flow images of the SSES
dataset are visualized in Figure 5. USFlow(pwc) can successfully predict the optical flow in regions
where vehicles and pedestrians exist (highlighted by black boxes), which can help decision-making
in autonomous driving. Table 5 shows the quantitative evaluation of the SSES dataset.

6 Conclusions

We propose an unsupervised method for learning optical flow from continuous spike streams. Specifi-
cally, we design a dynamic timing representation for spike streams. We also propose an unsupervised
loss function in a spike-based manner. Moreover, we simulate extreme scenarios in autonomous
driving and propose a validation dataset SSES for testing the robustness of optical flow estima-
tion in high-speed scenes. Experiment results show that our USFlow achieves the state-of-the-art
performance on PHM, SSES, and real data.
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Table 3: Ablation studies of our design
choices for input representation. The present
value is the mean AEE, averaged over nine
scenes, on PHM. The best results are marked
in bold.

TMR LA Supervised Unsupervised

∆t = 10 ∆t = 20 ∆t = 10 ∆t = 20

USFlow
(pwc)

✗ ✗ 0.943 1.797 1.783 3.336
✓ ✗ 0.888 1.699 1.355 2.461
✓ ✓ 0.854 1.723 1.307 2.413

USFlow
(raft)

✗ ✗ 0.965 1.902 – –
✓ ✗ 0.952 1.659 – –
✓ ✓ 0.931 1.649 – –

0 5 10 15 20 25 30 35 40
epoch
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3.0

3.5

4.0

m
ea

n 
AE
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USFlow(pwc)
USFlow(pwc) without layer attention

Figure 6: The mean AEE on PHM dataset during
supervised training. The shadowed area is enclosed
by the min and max values of three training runs,
and the solid line in the middle is the mean value.

Table 4: Ablation studies of unsupervised loss.
The present value is the mean AEE over the PHM
dataset. Best in bold.

Setting of Experiment ∆t = 10 ∆t = 20

USFlow
(pwc)

(A) Remove ĨT from our loss 2.071 3.260

(B) Remove ĨI from our loss 1.484 2.563

(C) our unsupervised loss 1.307 2.413

Table 5: Mean AEE averaged over ten scenes
on SSES dataset. All models are trained on the
SPIFT dataset.

USFlow(pwc)
supervised

USFlow(pwc)
unsupervised

mean AEE ∆t = 10 2.967 3.122

∆t = 20 2.234 3.130

Limitations. The characteristics of spike streams generated in extremely dark scenes are quite
different from those in bright scenes, so the length of the time window in the unsupervised loss may
need to be reset during fine-tuning. We plan to extend our method to address this issue in future work.
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