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Abstract001

Large language models (LLMs) have demon-002
strated remarkable reasoning capabilities when003
prompted with strategies such as Chain-of-004
Thought (CoT). However, these approaches005
focus on token-level output without consider-006
ing internal weight dynamics. We introduce007
Weight-of-Thought (WoT) reasoning, a novel008
approach that examines neural network weights009
before inference to identify reasoning path-010
ways. Unlike existing methods, WoT explores011
the weight space through graph-based message012
passing, multi-step reasoning processes, and013
attention mechanisms. Our implementation014
creates an interconnected graph of reasoning015
nodes. Experiments on diverse reasoning tasks016
(syllogistic, mathematical, algebraic, combina-017
torial, and geometric) demonstrate that WoT018
achieves superior performance compared to019
traditional methods, particularly for complex020
problems. This approach leads to both im-021
proved performance and greater interpretability022
of the reasoning process, offering a promising023
direction for enhancing LLM reasoning capa-024
bilities.025

1 Introduction026

Large language models (LLMs) have demonstrated027

remarkable proficiency in natural language under-028

standing and generation, significantly advancing029

diverse applications (Brown et al., 2020; Chowd-030

hery et al., 2022). However, mastering complex031

reasoning tasks requiring logical deduction, multi-032

step mathematical problem-solving, and structured033

thought processes remains a significant challenge034

(Bender et al., 2021; Valmeekam et al., 2023). To035

bridge this gap, techniques like Chain-of-Thought036

(CoT) prompting (Wei et al., 2022) and its vari-037

ants (Kojima et al., 2022; Wang et al., 2022) have038

emerged. By eliciting intermediate reasoning steps039

as textual output, CoT has substantially improved040

LLM performance on reasoning-intensive bench-041

marks.042

Despite these advances, a fundamental limita- 043

tion persists: current reasoning enhancement meth- 044

ods primarily operate at the level of model output, 045

treating the reasoning process as an observable se- 046

quence of tokens. They largely overlook the inter- 047

nal neural mechanisms and weight configurations 048

that fundamentally enable these reasoning capabili- 049

ties within the model itself. 050

This paper introduces Weight-of-Thought (WoT) 051

reasoning, a novel paradigm that shifts the focus 052

inward. We propose analyzing the neural network’s 053

weights and activations prior to or during inference 054

to identify, structure, and leverage latent reasoning 055

pathways encoded within the model’s parameters, 056

thereby enhancing the agent’s reasoning perfor- 057

mance. Our core insight is that complex reasoning 058

abilities are not merely an emergent property re- 059

flected in output sequences but are intrinsically 060

linked to the structured knowledge and compu- 061

tational patterns embedded within the network’s 062

weight space. WoT operationalizes this insight by 063

explicitly exploring this weight space and trans- 064

forming it into an interconnected graph of special- 065

ized "reasoning nodes." This creates a dynamic 066

"network of weighted thoughts," enabling more 067

sophisticated, potentially non-linear reasoning pat- 068

terns that go beyond simple sequential chains. As 069

illustrated conceptually in Figure 1, WoT aims to 070

harness the internal computational fabric of the 071

model to facilitate more robust and adaptive rea- 072

soning. 073

The Weight-of-Thought approach integrates sev- 074

eral key components designed to work synergisti- 075

cally. A graph-based framework models reason- 076

ing as information exchange between nodes via 077

dynamic message passing (Gilmer et al., 2017). 078

Crucially, this information flow is weight-directed, 079

guided by learned edge weights and attention mech- 080

anisms derived from analyzing relevant weight pat- 081

terns, allowing the model to prioritize salient con- 082

nections. Multi-step refinement layers enable iter- 083
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Figure 1: Conceptual comparison: (a) Chain-of-
Thought (CoT) focuses on generating a linear sequence
of output steps. (b) Weight-of-Thought (WoT) analyzes
internal model weights (Ψ) to structure reasoning as a
dynamically guided graph process, enabling non-linear
pathways.

ative improvement of the reasoning process, mim-084

icking deliberative thought. Finally, task-specific085

output heads allow the architecture to adapt effec-086

tively to diverse reasoning problem types.087

We implement this WoT paradigm in a novel088

reasoning architecture and conduct extensive eval-089

uations across a diverse suite of reasoning tasks, in-090

cluding syllogistic logic, mathematical sequences,091

algebraic word problems, combinatorial challenges,092

and geometric reasoning. Our results demonstrate093

that WoT reasoning consistently outperforms tra-094

ditional methods, including strong CoT baselines,095

particularly on complex problems requiring mul-096

tiple reasoning steps. We show that explicitly097

modeling reasoning through the lens of internal098

weights leads not only to significant performance099

gains but also offers potential avenues for greater100

interpretability into the model’s reasoning pro-101

cess. Weight-of-Thought reasoning thus presents a102

promising new direction for unlocking deeper rea-103

soning capabilities in LLMs by directly engaging104

with the underlying neural substrate where reason-105

ing knowledge resides.106

2 Related Work107

The development of Weight-of-Thought (WoT) rea-108

soning builds upon and extends several key re-109

search areas, including methods for enhancing rea- 110

soning in large language models (LLMs), graph- 111

based neural networks, and the analysis of internal 112

neural network mechanisms. 113

2.1 Enhancing Reasoning via Output 114

Scaffolding 115

A dominant paradigm for improving LLM reason- 116

ing involves structuring the model’s output gen- 117

eration to mimic structured thought. Chain-of- 118

Thought (CoT) prompting (Wei et al., 2022) demon- 119

strated that eliciting intermediate steps significantly 120

boosts performance. This core idea, generating a 121

sequence like Input → LLM → Steps → Answer, 122

was refined by methods like zero-shot CoT (Ko- 123

jima et al., 2022) using generic instructions and 124

Self-Consistency (Wang et al., 2022) using ensem- 125

ble outputs. 126

Subsequent work introduced more complex out- 127

put structures, such as exploring multiple paths 128

via tree search (Tree-of-Thoughts, ToT (Yao et al., 129

2023)), allowing arbitrary reasoning graphs (Graph- 130

of-Thoughts, GoT (Besta et al., 2023)), framing rea- 131

soning as planning (Reasoning via Planning, RAP 132

(Hao et al., 2023)), or leveraging external tools 133

and code execution (e.g., PAL (Gao et al., 2022), 134

Toolformer (Schick et al., 2023)). 135

While effective, these methods primarily ma- 136

nipulate the generated token sequence or external 137

interactions. In contrast, WoT analyzes the internal 138

weight structure to identify and guide reasoning 139

pathways from within the model itself. 140

2.2 Graph Neural Networks for Structured 141

Reasoning 142

Graph Neural Networks (GNNs) provide tools for 143

modeling relational data and structured reasoning 144

(Battaglia et al., 2018; Wu et al., 2020). Their core 145

operation often involves message passing (Gilmer 146

et al., 2017), where node representations hv are 147

updated based on aggregated messages from neigh- 148

bors N (v). A canonical message passing update 149

(Xu et al., 2018) is formulated as: 150

h
(k+1)
v = ϕ

(
h
(k)
v ,

⊕
u∈N (v) ψ

(
h
(k)
u ,h

(k)
v , euv

))
(1) 151

Here, ϕ is the node update function, ψ generates 152

messages based on source node h
(k)
u , target node 153

h
(k)
v , and edge features euv, and

⊕
aggregates in- 154

coming messages. GNNs leveraging this principle 155

have been applied to logical reasoning (e.g., Neural 156

Theorem Provers (Rocktäschel and Riedel, 2017)), 157
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knowledge graphs (Teru et al., 2020), program anal-158

ysis (Allamanis et al., 2018), and physical system159

modeling (Sanchez-Gonzalez et al., 2020; Battaglia160

et al., 2016).161

WoT draws inspiration from GNN message pass-162

ing principles but diverges significantly. Instead of163

operating on explicit input graphs, WoT concep-164

tualizes an internal reasoning graph derived from165

model weights. Furthermore, its message passing166

is dynamically guided by weight analysis, rather167

than relying solely on predefined topology or stan-168

dard learned functions, aiming for a general, adap-169

tive reasoning architecture not tied to specific input170

graph structures.171

2.3 Probing Internal Mechanisms and Weight172

Analysis173

Understanding the internal workings of neural net-174

works ("mechanistic interpretability"), especially175

Transformers (Vaswani et al., 2017), is a growing176

field. Research has analyzed attention head spe-177

cialization (Clark et al., 2019; Vig and Belinkov,178

2019) and explored potential implementations of179

multi-step reasoning within layers (Elhage et al.,180

2021).181

Direct analysis of network weights (W) has182

also revealed encoded structure. Studies show fac-183

tual knowledge can be localized in feed-forward184

weights (Geva et al.; Meng et al., 2022b) and even185

directly edited (Meng et al., 2022a; Mitchell et al.,186

2022; Zhang et al., 2024). Techniques like net-187

work dissection aim to identify interpretable units188

(Bau et al., 2017; Bau et al.), while knowledge dis-189

tillation and extraction implicitly leverage weight190

information (Hinton et al., 2015; Dai et al., 2022).191

While this prior work demonstrates that weights192

encode valuable information, it primarily focuses193

on post-hoc analysis or static knowledge manip-194

ulation. WoT uniquely proposes using insights195

from weight analysis proactively during inference196

to dynamically shape and enhance the reasoning197

process itself, bridging the gap between interpret-198

ing internal mechanisms and improving functional199

reasoning capabilities.200

3 Weight-of-Thought Reasoning201

Weight-of-Thought (WoT) reasoning fundamen-202

tally shifts the focus from analyzing generated out-203

put sequences (e.g., Chain-of-Thought (Wei et al.,204

2022)) towards leveraging the intrinsic computa-205

tional structure encoded within a neural network’s206

weight space. The core idea is to analyze the 207

model’s weights (W) to identify and utilize la- 208

tent "reasoning pathways" (P)—patterns within 209

the weights that correspond to specific reasoning 210

operations or information flows. As conceptually 211

shown in Figure 2, WoT aims to transform the 212

reasoning process from a chain into a graph of spe- 213

cialized nodes. This structure facilitates parallel 214

processing, adaptive information routing guided 215

by weight analysis, and structured integration of 216

intermediate reasoning states. 217

3.1 Conceptual Architecture 218

The WoT architecture, depicted in Figure 2 (and 219

more extensively in Figure 14, orchestrates reason- 220

ing through several interconnected stages. An Input 221

Encoder first processes the input query x into initial 222

embeddings x0. Concurrently or prior, a crucial 223

Weight Analyzer (Ψ) examines relevant network 224

weights (Wrelevant) to extract pathway information 225

P. This pathway information serves as guidance 226

for subsequent processing, conceptually divided 227

into components influencing nodes (Pnode), edges 228

(Pedge), and aggregation attention (Pattn). This in- 229

formation then modulates the initialization of a Rea- 230

soning Node Network ofN specialized nodes {ni}. 231

These nodes engage in Weight-Directed Message 232

Passing over R rounds, where communication is 233

dynamically guided by Pedge. Following message 234

passing, Pathway-Aware Aggregation, potentially 235

guided by Pattn, consolidates the final node states 236

N(R) into a vector z. This vector undergoes multi- 237

step (S) Sequential Refinement to produce the final 238

reasoning state rS . Finally, task-specific Output 239

Heads map rS to the desired output y. 240

3.2 Mathematical Formulation and Dynamics 241

We now detail the mathematical operations defining 242

the WoT mapping F : x → y. Let N(r) be the 243

matrix of node states at round r. 244

Step 1: Embedding and Pathway Extraction 245

Input x is embedded: 246

x0 = fembed(x;Wembed) (2) 247

The Weight Analyzer Ψ extracts pathway informa- 248

tion P: 249

P = Ψ(Wrelevant) (3) 250

P contains guidance components Pnode, Pedge, and 251

Pattn. 252
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Step 2: Weight-Guided Node Initialization253
Each node ni is initialized using x0 and guidance254

P
(i)
node:255

n
(0)
i = fi(x0;Wi,P

(i)
node) = σ

(
Wix0 ⊙P

(i)
node

)
(4)256

Here, fi uses weights Wi, σ is the activation func-257

tion, and ⊙ denotes modulation.258

Step 3: Weight-Directed Message Passing259
Nodes iteratively update states over R rounds260
(r = 1, . . . , R), guided by Pedge. This involves261
computing attention scores, messages, and updat-262
ing node states based on pathway-modulated inter-263
actions:264

A(r) = σattn

(
Fedge

(
N(r−1);Wedge,Pedge

))
(5)265

266

Fedge(N)ij =
Wedge · [ni,nj ]√

h
·P(ij)

edge (6)267

268
M(r) = A(r)(N(r−1)Wmsg

)
(7)269

270
N(r) = Update

(
N(r−1),M(r);Wupdate

)
(8)271

Attention A(r) uses scores derived from Fedge,272

which incorporates node states and pathway guid-273

ance P
(ij)
edge. Messages M(r) result from attention-274

weighted states. Nodes update their states using275

these messages.276

Step 4: Pathway-Aware Aggregation277

Final states N(R) are aggregated into z, guided by278
Pattn:279

a = softmax
(

score
(
N(R);Wattn,Pattn

))
(9)280

281

z =

N∑
i=1

ai · n(R)
i (10)282

Attention scores a determine node contributions283

to z.284

Step 5: Sequential Reasoning Refinement285

Here, z undergoes S refinement steps towards rS :286

rs = rs−1 + fs(rs−1;Ws) (r0 = z) (11)287

288

fs(r;Ws) = FFN
(

LayerNorm(r);W(1,2)
s

)
(12)289

Each step applies a transformation fs.290

Step 6: Task-Specific Output Projection291

The final state rS is mapped to the answer y:292

y = ftask(rS ;Wtask) (13)293

This WoT formulation inherently promotes key294

reasoning dynamics. Node specialization arises295

Figure 2: Condensed WoT process flow. Weight analy-
sis (Ψ) yields pathway information P, influencing node
initialization, message passing, and aggregation (indi-
cated conceptually by red dashed arrows). Standard
learnable weights W∗ operate at each stage.

from the pathway-guided initialization in (4). 296

Adaptive information flow emerges because path- 297

way information dynamically modulates inter-node 298

communication via attention in (5) and (6), ef- 299

fectively prioritizing relevant connections. The 300

graph structure naturally supports parallel process- 301

ing across nodes, while message passing in (7) 302

and (8) and subsequent aggregation and refinement 303

steps in (9) through (12) facilitate structured inte- 304

gration of diverse information streams. WoT thus 305

aims to perform reasoning explicitly aligned with 306

the network’s intrinsic computational structure, as 307

suggested by its weights (visualized empirically in 308

Fig. 9). 309

4 Results and Analysis 310

4.1 Quantitative Performance and Efficiency 311

The aggregate quantitative results, summarized in 312

Table 1, establish WoT’s strong performance pro- 313

file. WoT consistently achieves state-of-the-art re- 314

sults, outperforming all baselines on both classifi- 315

cation accuracy and F1 scores (illustrative average 316

shown) for logical and geometric tasks. Notably, 317

it surpasses the accuracy of the significantly larger 318

CoT LLM baseline on syllogisms (0.91 vs 0.88). 319

In regression tasks demanding numerical precision, 320

WoT demonstrates superior performance by achiev- 321

ing the lowest Mean Squared Error (MSE) and 322

Mean Absolute Error (MAE, illustrative average 323
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shown), indicating both accuracy and robustness in324

numerical reasoning, with substantial error reduc-325

tions compared to the next-best methods (28-37326

Beyond core performance, WoT exhibits excep-327

tional computational efficiency. Operating with328

only ∼2M parameters, it achieves leading results329

while requiring orders of magnitude fewer re-330

sources than the ∼175B parameter CoT model.331

This translates into significantly faster estimated332

inference latency (Table 1), making WoT highly333

practical for deployment. The performance across334

reasoning tasks is visualized in Figure 3. This335

advantageous position underscores the benefit of336

WoT’s architecture, which explicitly models rea-337

soning pathways rather than relying solely on emer-338

gent properties of scale. Furthermore, WoT demon-339

strates robust high performance across the diverse340

task suite, showcasing adaptability.341

4.2 Task-Specific Performance Breakdown342

A granular analysis across individual task cate-343

gories, visualized in Figure 3, reveals WoT’s broad344

competence and specific strengths. WoT con-345

sistently ranks as the top-performing method in346

each category. Its advantages are particularly pro-347

nounced in tasks requiring complex numerical and348

symbolic manipulation (Algebraic Word Problems,349

Combinatorial Reasoning), suggesting its struc-350

tured graph processing is highly effective. It also351

excels in logical deduction (Syllogism) and pattern352

extrapolation (Math Sequence), likely leveraging353

its graph structure and multi-step refinement ca-354

pabilities, respectively. This consistent strength355

across diverse reasoning domains underscores the356

adaptability of the WoT framework.357

4.3 Analysis of Reasoning Process358

Analyzing the internal dynamics of the WoT model359

provides valuable insights into its reasoning mech-360

anisms, as visualized in Figure 7 and Figure 8. We361

observe evidence of node specialization, where at-362

tention patterns indicate that different nodes within363

the reasoning graph become preferentially active364

for distinct aspects of a task (e.g., logical deduction365

vs. mathematical calculation). The flow of informa-366

tion between these nodes, revealed by examining367

the edge attention matrix derived during message368

passing, appears dynamic and task-adaptive. Fur-369

thermore, analyzing the attention weights associ-370

ated with the sequential refinement steps suggests371

a functional progression, often with earlier steps372

focusing on broader pattern recognition or hypoth-373

esis generation, while later steps work to refine the 374

intermediate results and converge towards a final 375

conclusion. 376

A multi-dimensional comparison, shown in Ta- 377

ble 4, further illustrates the balanced strengths of 378

the WoT approach across performance, efficiency, 379

and potential interpretability relative to the base- 380

lines. 381

4.4 Ablation Studies 382

To rigorously assess the contribution of key mech- 383

anisms within the WoT framework, we conducted 384

comprehensive ablation studies by systematically 385

removing or simplifying core components. Table 2 386

summarizes the performance impact on both classi- 387

fication accuracy and regression MSE, along with 388

the estimated relative overall performance. The 389

results confirm the importance of each compo- 390

nent: removing the weight-directed guidance (“No 391

Weight Direction”) causes a 23% drop in overall 392

performance, highlighting the critical role of lever- 393

aging pathway information (P). Similarly, elimi- 394

nating message passing (“No Message Passing”) re- 395

sults in a 15% decrease, while enforcing a purely se- 396

quential structure (“Linear Chain Only”) produces 397

the largest drop at 28%. Additionally, ablations 398

of node specialization and iterative refinement (re- 399

duced to a single reasoning step, “S=1”) lead to per- 400

formance decreases of 12% and 10%, respectively. 401

These findings demonstrate that weight-directed 402

guidance, graph-based message passing, node spe- 403

cialization, and iterative refinement all contribute 404

significantly—and synergistically—to the overall 405

reasoning capabilities of the WoT model. 406

4.5 Case Studies 407

Table 3 presents selected examples from our test 408

set, showing the reasoning process and outputs for 409

different models. 410

The case studies in Table 3 provide valu- 411

able insights into the qualitative differences be- 412

tween Weight-of-Thought reasoning and traditional 413

Chain-of-Thought approaches. Several patterns 414

emerge from this analysis that highlight the advan- 415

tages of our weight-based approach. 416

First, WoT reasoning demonstrates specialized 417

node activation patterns for different problem types. 418

For syllogistic reasoning, we observe high acti- 419

vation in logical processing nodes, while mathe- 420

matical sequence problems trigger distinct pattern- 421

recognition pathways. This specialization emerges 422

naturally from the weight-directed message pass- 423
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Model Classification Tasks Regression Tasks Model Characteristics

Syllogism Acc ↑ Geometry Acc ↑ Avg F1 ↑ Math Seq. MSE ↓ Algebra MSE ↓ Combin. MSE ↓ Avg MAE ↓ Infer. Latency (ms) ↓ Parameters

WoT Reasoner 0.91 0.86 0.88 0.81 0.94 1.02 0.65 50 ∼2M
NTP 0.87 0.77 0.81 1.24 1.56 1.55 0.95 150 ∼500K
DQN Reasoner 0.82 0.76 0.78 1.48 1.75 1.64 1.10 100 ∼1M
CoT (LLM) 0.88 0.82 0.84 1.12 1.42 1.62 0.90 5000+ ∼175B

Table 1: Performance comparison across reasoning tasks and models. Higher Accuracy/F1 (↑) and lower
MSE/MAE/Latency (↓) are better. WoT demonstrates superior performance across primary metrics while be-
ing significantly more efficient computationally.
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Figure 3: Performance Breakdown by Reasoning Task Category. The performance metric uses accuracy for
classification tasks (Syllogism, Geometry) and a normalized score 1/(1 + MSE) for regression tasks (Math Seq.,
Algebra, Combin.), so that higher values indicate better performance. WoT consistently achieves the highest scores.

Figure 4: Multi-dimensional model comparison using
a radar chart. Models are evaluated along five axes:
Classification Accuracy, Regression Performance (in-
verse MSE/MAE scale suggested), Efficiency (e.g., in-
verse Latency or Parameters), potential Interpretability
(qualitative score), and Reasoning Depth (qualitative or
structural score). Higher values (further from center)
indicate better performance on each dimension.

Configuration Class. Acc ↑ Regr. MSE ↓ Rel. Perf.

Full WoT Model 0.880 1.20 1.00

No Message Passing 0.748 1.41 0.85 (-15%)
No Weight Direction 0.678 1.56 0.77 (-23%)
Single Refinement (S=1) 0.792 1.33 0.90 (-10%)
No Node Specialization 0.774 1.36 0.88 (-12%)
Linear Chain Only 0.634 1.67 0.72 (-28%)

Table 2: Ablation Study Results: Performance impact
of removing key WoT components. Classification Ac-
curacy (Avg.) and Regression MSE (Avg.) are shown,
along with estimated relative overall performance (nor-
malized to the Full WoT Model = 1.00).

ing, as the model learns to route information 424

through task-appropriate pathways. 425

Second, WoT’s ability to process information in 426

parallel through multiple nodes provides significant 427

advantages in computational accuracy. In the alge- 428

braic word problem example, the parallel activation 429

of algebraic and verification nodes allows for si- 430

multaneous equation formulation and solution vali- 431

dation. This stands in contrast to the CoT approach, 432

which processes information sequentially and is 433

more prone to computational errors. The combi- 434

natorics example further highlights this advantage, 435

with CoT making a numerical error (calculating 436
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Question Answer WoT Reasoning Process CoT Reasoning Process

If all Bloops are Razzies and all
Razzies are Lazzies, are all Bloops
definitely Lazzies?

Yes (1) Parsing logical structure of
premises (2) Identifying transitive
property pattern (3) High activation
in logical nodes (4) Direct inference
path recognized

(1) If all Bloops are Razzies (2) And
all Razzies are Lazzies (3) Then all
Bloops must be Lazzies (4) So the
answer is Yes

What is the next number in the se-
quence: 2, 4, 8, 16, 32, ...?

64 (1) Pattern analysis in mathemati-
cal nodes (2) Ratio detection (×2
pattern) (3) Strong message passing
between sequence processing nodes
(4) Parallel verification of multiple
pattern hypotheses

(1) The pattern appears to be dou-
bling (2) 2×2=4, 4×2=8, 8×2=16,
16×2=32 (3) So next number is
32×2=64

John has 3 times as many apples as
Mary. Together, they have 40 apples.
How many apples does John have?

30 (1) Variable assignment (Mary=x,
John=3x) (2) Equation formulation
(x+3x=40) (3) Parallel activation of
algebraic and verification nodes (4)
Solution with high-confidence vali-
dation

(1) Let Mary have x apples (2) John
has 3x apples (3) x+3x=40 so 4x=40
(4) x=10, so John has 30 (5) [Mis-
calculation]: 3×10=28

In a room of 10 people, everyone
shakes hands with everyone else ex-
actly once. How many handshakes
are there in total?

45 (1) Combinatorial pattern activation
(2) Formula recognition

(
n
2

)
(3) Par-

allel calculation and verification (4)
Multiple reasoning pathways con-
verge on same answer

(1) Each person shakes hands with
9 others (2) That’s 10×9=90 hand-
shakes (3) But that counts each hand-
shake twice (4) So it’s 90÷2=45 (5)
[Error]: 10×9/2=50 [miscalculation]

Is every square a rectangle? Yes (1) Geometric definition node acti-
vation (2) Property analysis (4 sides,
right angles) (3) Relationship clas-
sification (4) Hierarchical category
verification

(1) A rectangle has 4 right angles (2)
A square also has 4 right angles (3)
But a square has equal sides (4) [Er-
ror]: So a square is not a rectangle

Table 3: Comparative analysis of reasoning processes between Weight-of-Thought (WoT) and Chain-of-Thought
(CoT) approaches on representative examples. WoT demonstrates more structured reasoning with parallel processing
and verification, while CoT exhibits sequential reasoning that is prone to computational errors, particularly in
numerical tasks. The WoT approach shows distinctive weight-directed reasoning patterns specific to different
problem types.

10×9/2 as 50 rather than 45) that the WoT model437

avoids through its parallel verification mechanism.438

Third, WoT reasoning demonstrates more robust439

conceptual understanding in tasks requiring defini-440

tional knowledge. In the geometry example, CoT441

fails to correctly identify that squares are a subset442

of rectangles, while WoT correctly activates hierar-443

chical category relationships through its specialized444

reasoning nodes. Figure 9 provides a detailed vi-445

sualization of these reasoning processes, showing446

the step-by-step information flow through the WoT447

model’s reasoning graph.448

5 Discussion449

Our evaluation highlights Weight-of-Thought450

(WoT) reasoning’s potential to advance neural net-451

work reasoning by shifting focus from output se-452

quences to internal weight structures (Geva et al.;453

Meng et al., 2022b). Structuring insights from454

the weight space into a dynamic reasoning graph455

changes the approach to complex tasks compared456

to traditional sequential methods (Wei et al., 2022).457

5.1 Transforming Neural Reasoning 458

A key advantage of WoT is its departure from 459

purely sequential reasoning, characteristic of meth- 460

ods like Chain-of-Thought (Wei et al., 2022). By 461

constructing an internal graph of specialized nodes, 462

WoT enables parallel processing of different prob- 463

lem facets simultaneously. This graph structure, 464

coupled with weight-directed message passing 465

(Gilmer et al., 2017), facilitates sophisticated in- 466

formation integration capabilities that are challeng- 467

ing for linear models. For instance, tasks requir- 468

ing both linguistic understanding and mathematical 469

computation can leverage concurrently active spe- 470

cialized nodes whose insights are fused through 471

the network’s message passing mechanism, guided 472

by attention patterns derived from weight analy- 473

sis (conceptually illustrated in Appendix Figure 14 474

and suggested by Appendix Figure 8). 475

Perhaps most notably, WoT achieves these rea- 476

soning improvements with remarkable parameter 477

efficiency. While state-of-the-art CoT implementa- 478
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tions often rely on massive models (e.g., (Brown479

et al., 2020; Chowdhery et al., 2022) with ∼175B480

parameters), our WoT reasoner demonstrates supe-481

rior or comparable performance with only ∼2M482

parameters (Table 1). This dramatic difference un-483

derscores the potential benefits of explicitly mod-484

eling reasoning pathways derived from the weight485

space, rather than solely relying on emergent ca-486

pabilities in extremely large models. The overall487

advantages and performance highlights are summa-488

rized visually in Figure 3.489

6 Conclusion490

This paper introduces Weight-of-Thought reason-491

ing, a novel paradigm that fundamentally recon-492

ceptualizes how neural networks approach com-493

plex reasoning tasks. By examining and struc-494

turing neural network weights before inference,495

our approach reveals and enhances the reasoning496

pathways embedded within the weight space itself497

(Geva et al.; Meng et al., 2022b). The WoT architec-498

ture we developed implements this concept through499

an interconnected graph of specialized reasoning500

nodes communicating via dynamic message pass-501

ing (Gilmer et al., 2017), creating a sophisticated502

reasoning system that transcends the limitations of503

traditional sequential approaches (Wei et al., 2022).504

Our comprehensive evaluations across di-505

verse reasoning tasks demonstrate that Weight-of-506

Thought reasoning significantly outperforms exist-507

ing methods, particularly on complex multi-step508

problems. The WoT approach achieves this supe-509

rior performance with remarkable parameter effi-510

ciency (Table 1), requiring orders of magnitude511

fewer parameters than large language models using512

Chain-of-Thought prompting (Brown et al., 2020).513

The visualizations we developed (e.g., Figure 4,514

Appendix Figures 7-9) provide unprecedented in-515

sights into the reasoning process, revealing how516

different nodes specialize in particular aspects of517

reasoning and how information flows through the518

reasoning network. These visualizations not only519

enhance interpretability (Bau et al.; Feng et al.,520

2023) but also offer valuable diagnostic tools for521

understanding and improving reasoning capabili-522

ties in neural networks.523

Weight-of-Thought reasoning represents a sig-524

nificant step toward more structured, efficient, and525

interpretable reasoning in neural networks. By fo-526

cusing on the weight space rather than just output527

tokens, our approach opens new avenues for en-528

hancing the reasoning capabilities of AI systems 529

across diverse domains. The parameter efficiency 530

and interpretability of our method make it partic- 531

ularly promising for applications where computa- 532

tional resources are limited or where understanding 533

the reasoning process is critical (Nori et al., 2023). 534

As neural networks continue to play an increas- 535

ingly central role in complex decision-making pro- 536

cesses (Kıcıman et al.), approaches like Weight-of- 537

Thought reasoning that enhance both performance 538

and interpretability will be essential for building 539

AI systems that can be trusted with increasingly 540

sophisticated reasoning tasks. Our work provides 541

a foundation for future research in this direction, 542

offering both theoretical insights and practical tech- 543

niques for enhancing reasoning in neural networks. 544

Limitations 545

While Weight-of-Thought reasoning demonstrates 546

promise, several limitations warrant consideration. 547

The current implementation has been evaluated on 548

specific reasoning domains, and its generalization 549

capability across all types of reasoning problems 550

requires further investigation. Furthermore, the 551

computational cost associated with the all-to-all 552

message passing mechanism scales quadratically 553

with the number of reasoning nodes (N2) (Wu et al., 554

2020), potentially posing scaling challenges for 555

constructing very large reasoning graphs, although 556

our results show effectiveness even with a mod- 557

est number of nodes. The performance achieved 558

is also contingent on the quality and diversity of 559

the training data employed. Additionally, integrat- 560

ing WoT principles directly within the architecture 561

of extremely large, pre-existing language models 562

(Chowdhery et al., 2022) presents non-trivial tech- 563

nical hurdles that need to be addressed. Finally, 564

our current evaluation primarily relies on accu- 565

racy and Mean Squared Error metrics, which may 566

not fully encompass all facets of reasoning quality, 567

such as solution robustness, causal validity (Kıcı- 568

man et al.), or nuanced interpretability (Feng et al., 569

2023). Future work should aim to address these ar- 570

eas to broaden the applicability and understanding 571

of the WoT paradigm. 572
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A Implementation Details 747

The Weight-of-Thought model is implemented in 748

PyTorch with the following architecture details: 749

• Language Encoder: GPT-2 (base model, 750

124M parameters) 751

• Node Network: 8 nodes, each with a 2-layer 752

MLP with LayerNorm and GELU activations 753

• Edge Attention: Pairwise attention between 754

all nodes, implemented as MLPs with sigmoid 755

activation 756

• Global Attention: Attention mechanism for 757

aggregating node outputs 758

• Reasoning Transformer: 4-layer trans- 759

former encoder with 4 attention heads 760

• Reasoning Steps: 4 sequential reasoning lay- 761

ers with residual connections 762

• Task-Specific Outputs: Specialized heads for 763

classification and regression tasks 764

The model was trained using the AdamW opti- 765

mizer with a learning rate of 3e-5, gradient clipping 766

at 1.0, and cosine learning rate scheduling. Train- 767

ing was performed on a single NVIDIA A100 GPU, 768

with a batch size of 16 and for 20 epochs. 769

A.1 Training Convergence Analysis 770

To further illustrate the training dynamics, Fig- 771

ures 5 and 6 show the model’s convergence in terms 772

of validation accuracy and training loss over 20 773

epochs, respectively, comparing WoT against other 774

baselines. 775

B Visualization of Reasoning Steps 776

To better understand the step-by-step reasoning 777

process in the Weight-of-Thought model, we visu- 778

alized each reasoning stage with a focus on mes- 779

sage passing between nodes. Figure ?? provides an 780

overview of this process, and detailed step-by-step 781

visualizations are available in the supplementary 782

materials. 783

Each reasoning step involves: 784
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Figure 5: Training convergence in terms of validation
accuracy for WoT and baseline methods.

Figure 6: Training convergence in terms of loss over
epochs for WoT and baseline methods.

1. Node activation: Different nodes specialize785

in different aspects of reasoning and activate786

accordingly787

2. Message passing: Information flows along788

edges with weights determined by attention789

mechanisms790

3. Information integration: Nodes update their791

representations based on incoming messages792

4. Progressive refinement: The reasoning pro-793

cess becomes more focused with each step794

The visualizations reveal that early steps involve795

broad activation patterns across multiple nodes,796

while later steps show more concentrated activation797

in nodes specializing in the specific reasoning task798

at hand.799

C Additional Figures and Details 800

This appendix provides supplementary visualiza- 801

tions and discussions that further elucidate the inter- 802

nal dynamics of Weight-of-Thought (WoT) reason- 803

ing. We present three key sets of figures illustrating 804

different aspects of the weight space and node in- 805

teractions, followed by an illustrative chat-based 806

interface showcasing how WoT can be integrated 807

into an LLM setting. 808

C.1 Weight Space Visualization 809

Figure 7: Weight Space Visualization (rotate for 3D
perspective). Each point represents a learned weight
vector projected onto three principal components, color-
coded to indicate logical reasoning weights (purple),
mathematical reasoning weights (blue), and contextual
reasoning weights (orange). Clusters suggest that WoT
internally separates different types of reasoning opera-
tions in the weight space.

Figure 7 provides a 3D scatter plot of selected 810

weight vectors within our WoT model, highlighting 811

how weights specializing in logical, mathematical, 812

or contextual reasoning tend to cluster. Rotating 813

this plot (in interactive tools) reveals distinct group- 814

ings that corroborate the presence of functionally 815

specialized subnetworks. 816

C.2 Node Similarity Evolution During 817

Training 818

Figure 8 presents a series of heatmaps capturing 819

how node embeddings evolve over training epochs. 820

Early in training (Epoch 1), nodes display relatively 821

uniform similarities, reflecting limited specializa- 822

tion. As training progresses (Epochs 6, 11, 16, 20), 823

clear patterns emerge, with certain nodes diverging 824
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Figure 8: Evolution of node similarity during training. The composite image illustrates how the pairwise similarity
between node embeddings evolves over training epochs, with increased specialization shown by lower off-diagonal
similarities and stronger diagonal dominance.

in their embedding space to handle different reason-825

ing sub-tasks (logical, numerical, contextual). By826

the final training stage, the model shows sharply827

defined node roles, highlighting WoT’s capacity for828

emergent specialization guided by weight analysis.829

C.3 Weight Matrix Encoding Reasoning830

Pathways831

Figure 9 shows a weight matrix that encodes key832

reasoning pathways. Rows represent source nodes833

(e.g., Input, Logic, Verify), while columns represent834

target nodes. The dashed boxes highlight a high-835

strength connection path indicating the model’s pri-836

mary route for certain tasks. This weight structure837

emerges from training, confirming that WoT iden-838

tifies and reinforces pathways crucial for solving839

various problem types.840

D Chat-Based WoT Reasoning Interface 841

This section demonstrates how the Weight-of- 842

Thought (WoT) reasoning process can be made 843

transparent in an interactive LLM setting. Rather 844

than returning only a final answer, the system ex- 845

poses internal details—including node activations, 846

message passing, and verification—that reveal how 847

it arrives at its conclusion. The following figures 848

present separate example dialogues. 849
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Figure 9: Weight matrix encoding reasoning pathways.
Darker shades represent stronger connection strengths
between source and target nodes. Dashed boxes high-
light the primary reasoning pathway, revealing how
WoT routes information from Input to Output via Parse,
Logic, Math, and Verify nodes.

User:
‘What is the next number in the sequence:
3, 6, 12, 24, ... ?’

WoT Reasoning Steps:
(1) Math Node: Detects a doubling pattern.
(2) Logic Node: Verifies consistency across
terms.
(3) Output Node: Computes 24× 2 = 48.

Answer:
The next number is 48.

Figure 10: Chat Example 1: Mathematical Sequence
Reasoning. The WoT system detects a doubling pattern
and calculates the next number as 48.

In Figures 10–13, the system’s dialogue show-850

cases how internal nodes (e.g., Math, Logic, Alge-851

bra, Verification, Geometry) are activated with spe-852

cific weights and how their outputs are aggregated853

to produce the final answer. This transparency854

offers users insights into the model’s decision-855

making process, enhancing interpretability and856

trust.857

E Implementation Details (Extended)858

Beyond the architecture and training specifics de-859

scribed in the main text, we provide additional in-860

formation about hyperparameters, data splits, and861

libraries:862

User:
‘If all Floops are Gloops and all Gloops
are Hloops, are all Floops Hloops?’

WoT Reasoning Steps:
(1) Logic Node: Identifies the transitive
relation.
(2) Verification Node: Confirms logical
consistency.
(3) Output Node: Infers that all Floops are
Hloops.

Answer:
Yes, all Floops are Hloops.

Figure 11: Chat Example 2: Logical Deduction. The
WoT system identifies a transitive relation and confirms
that all Floops are Hloops.

User:
‘Solve for x in: 4x− 7 = 13’

WoT Reasoning Steps:
(1) Algebra Node: Sets up the equation
4x− 7 = 13.
(2) Math Node: Isolates x (i.e., adds 7 and
divides by 4).
(3) Verification Node: Confirms the solu-
tion.

Answer:
x = 5.

Figure 12: Chat Example 3: Algebraic Problem Solving.
The WoT system sets up the equation and isolates x to
find x = 5.

Hyperparameters. We used a weight decay of 863

1 × 10−4, a linear warm-up for 5% of total steps, 864

and a dropout rate of 0.1 in the node MLP layers. 865

Data Splits. Each dataset was randomly split into 866

80% training, 10% validation, and 10% test. We 867

ensured that no problem or prompt overlap existed 868

between splits. 869

Libraries. The WoT model was implemented in 870

PyTorch 1.13. We utilized Hugging Face Trans- 871

formers (v4.25) for the GPT-2 backbone and PGF- 872

Plots/TikZ for all visualizations. 873
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User:
‘Is every square a rectangle?’

WoT Reasoning Steps:
(1) Geometry Node: Analyzes definitions.
(2) Logic Node: Recognizes that squares
meet rectangle criteria.
(3) Output Node: Confirms the hierarchical
relationship.

Answer:
Yes, every square is a rectangle.

Figure 13: Chat Example 4: Geometric Reasoning.
The WoT system confirms, via its Geometry and Logic
Nodes, that every square is a rectangle.

F Visualization of Reasoning Steps874

(Extended)875

Figure 8 outlines the detailed multi-step reasoning876

flow. In practice, each round of message passing877

updates node states based on attention signals de-878

rived from weight-guided edges. This process often879

manifests as an initial broad exploration of possible880

solution pathways, followed by a focused consoli-881

dation phase in later steps. Table 4 shows a textual882

trace of these updates in a single problem instance.883

Step Node Updates and Key Observations

1 Parse node recognizes variables in the question.
Math node receives moderate activation to check
for numerical clues.

2 Logic node evaluates potential constraints, veri-
fying problem consistency. Verify node slightly
active, cross-checking partial solutions.

3 Math node intensifies, solving partial equations.
Attention from Logic to Verify nodes increases.

4 Verify node cross-references the derived solution,
finalizing the outcome. Output node triggers the
final generation.

Table 4: Illustrative textual trace of node updates across
four reasoning steps in WoT.

This extended look reveals how WoT systemati-884

cally exploits its internal weight-guided structure885

to converge on accurate, interpretable solutions.886
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Weight Analysis & Pathway Extraction

Reasoning Pipeline

Neural Network Weights
(Wembed,Wi,Wedge, ...)

Weight Pattern Analysis
(Ψ(W))

Identified Reasoning Pathways
(Preasoning,Pedge, ...)

Input Question
x

Embedding Transformation
x0 = fembed(x)

Weight-Guided Node Init
n
(0)
i = fi(x0,Wi,P

(i))

Weight-Directed Message Passing
N(r) = Update(N(r−1),A(r),P(ij))

Pathway-Aware Aggregation
z =

∑
ai(Pattn) · n(R)

i

Sequential Refinement
rs = rs−1 + fs(rs−1,Ws)

Task-Specific Projection
y = ftask(rS ,Wtask)

Answer Output
y

Guide Embed

Guide Init

Guide MP

Guide Aggr

Guide Refine

Guide Project

R rounds

S steps

Figure 14: Detailed schematic of the Weight-of-Thought (WoT) reasoning architecture. The layout distinguishes the
Weight Analysis & Pathway Extraction module (left, orange) from the main Reasoning Pipeline (right, blue/green).
This module analyzes network weights (W) via Ψ to yield explicit Reasoning Pathways (P). These pathways guide
stages of the pipeline (Embedding, Node Init, Message Passing, Aggregation, Refinement, Projection), shown by
dashed influence lines connecting cleanly to the pipeline steps. The pipeline processes the input (x), featuring
iterative Message Passing (R rounds) and Refinement (S steps), to produce the final answer (y).
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