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Abstract001

Instruction-tuning plays a vital role in en-002
hancing the task-solving abilities of large lan-003
guage models (LLMs), improving their usabil-004
ity in generating helpful responses on various005
tasks. However, previous work has demon-006
strated that they are sensitive to minor vari-007
ations in instruction phrasing. In this paper,008
we explore whether introducing perturbations009
in instruction-tuning data can enhance LLMs’010
resistance against noisy instructions. We fo-011
cus on how instruction-tuning with perturba-012
tions, such as removing stop words or shuf-013
fling words, affects LLMs’ performance on014
the original and perturbed versions of widely-015
used benchmarks (MMLU, BBH, GSM8K).016
We further assess learning dynamics and po-017
tential shifts in model behavior. Surprisingly,018
our results suggest that instruction-tuning on019
perturbed instructions can, in some cases, im-020
prove downstream performance. These find-021
ings highlight the importance of including per-022
turbed instructions in instruction-tuning, which023
can make LLMs more resilient to noisy user024
inputs.1025

1 Introduction026

Instruction-tuning is widely adopted to enable027

LLMs to follow complex instructions and respond028

properly (Sanh et al., 2022; Zhao et al., 2023;029

Chang et al., 2023; Minaee et al., 2024; Zhang030

et al., 2024). During instruction-tuning, LLMs are031

fine-tuned on datasets comprising various task in-032

structions and their corresponding responses.033

LLMs have been shown to be sensitive to prompt034

variability, producing inconsistent responses when035

given semantically equivalent prompts (Sun et al.,036

2024; Zhao et al., 2024; Yan et al., 2024). To rem-037

edy this, recent instruction datasets are often gen-038

erated with extensive paraphrasing using LLMs to039

1Code and data for replicating our experiments will be
made publicly available.

Figure 1: Instruction-tuning on perturbed instructions
can enhance LLM’s resilience to noisy inputs.

increase data diversity (Peng et al., 2023). How- 040

ever, this paraphrased data is of high quality with 041

minimal noise in the instructions. A different line 042

of work has explored the robustness of instruction- 043

tuned models to instruction variations during infer- 044

ence by introducing different types of noise, such 045

as deleting words (Gu et al., 2023). However, how 046

noisy data may affect LLMs during training has 047

yet to be explored. 048

In this paper, we focus on answering the fol- 049

lowing research question: Can fine-tuning of base 050

models on perturbed instructions improve their 051

resilience to noisy user inputs? Our question is 052

theoretically motivated by previous work that has 053

shown that introducing noise during training acts as 054

a form of regularization (Bishop, 1995), which can 055

prevent overfitting and improve generalization.2 056

To evaluate the impact of instruction perturba- 057

tion and simulate noisy user inputs, we employ 058

five strategies inspired by Gu et al. (2023): (1) 059

delete stop words, (2) shuffle words, (3) delete 060

words, (4) replace words, and (5) insert words. We 061

further introduce a sixth perturbation strategy by 062

adding misspellings. These strategies allow us to 063

2We may interchangeably use terms such as ‘resilience’
or ‘robustness’ to refer to the model’s capacity to withstand
and adapt to noisy user inputs without a substantial drop in
performance. The term ‘generalization’ refers to the model’s
capacity to perform a given task when presented with novel,
previously unseen phrasings or formats.
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simulate and analyze various forms of perturbed064

instructions, including both structural and semantic065

changes. We construct four perturbed instruction-066

tuning datasets where GPT4-Alpaca (Peng et al.,067

2023), Super-Natural (Wang et al., 2022), and068

Dolly (Conover et al., 2023) are combined and then069

perturbed. We include versions of the data where070

25%, 50%, 75%, and 100% of the instructions are071

perturbed respectively, which allows us to compare072

how LLMs are affected by different proportions of073

noisy instructions presented in instruction-tuning.074

We evaluate performance across three widely-used075

language understanding benchmarks: Massive Mul-076

titask Language Understanding (Hendrycks et al.,077

2021), Big-Bench Hard (Suzgun et al., 2022), and078

Grade School Math (Cobbe et al., 2021). Figure 1079

shows the process of generating noisy instruction-080

tuning data and LLM fine-tuning.081

Contributions. We make two key contributions.082

First, we conduct a systematic study of how noisy083

instructions, by fundamentally altering their syntac-084

tic and semantic structure during training, impact085

LLM performance on downstream tasks. Second,086

our empirical analysis suggests that fine-tuning on087

noisy instructions may offer a simple approach088

to enhance robustness. The results of our study089

appear to offer insights into the nature of LLM090

learning during instruction-tuning. They prompt091

a re-examination of the widely held assumption092

that complete instruction comprehension is always093

necessary for effective task learning. Specifically,094

our findings suggest that LLMs can derive benefit095

from instruction modifications that do not strictly096

preserve meaning, indicating a more nuanced rela-097

tionship between instruction and task performance098

than previously assumed.099

2 Related Work100

2.1 Analyzing Instruction-tuning101

Instruction fine-tuning enables LLMs to follow user102

instructions and reduces the need for few-shot in-103

context examples (Ouyang et al., 2022; Wei et al.,104

2022a; Touvron et al., 2023a; Chung et al., 2024).105

The instruction-tuning datasets contain instructions106

of various tasks and their corresponding responses107

which can be human-annotated (Mishra et al., 2022)108

or synthetically generated (Taori et al., 2023; Peng109

et al., 2023).110

AutoPrompt (Shin et al., 2020), which applied111

a gradient-based search to optimize the prompt112

for various tasks, usually finds prompts that are113

hardly comprehensible by humans, indicating that 114

language models have a vastly different way to 115

understand instructions. Recent studies have in- 116

vestigated the internal mechanisms of instruction 117

fine-tuning and their influence on LLMs. By ob- 118

serving the output token distribution shift of models 119

before and after instruction-tuning, Lin et al. (2024) 120

found that most shifts occur with stylistic tokens 121

(e.g. discourse markers and transitional words), and 122

knowledge content originates from untuned LLMs. 123

By introducing knowledge interventions, Ren et al. 124

(2024) also showed that instruction-tuning is a pro- 125

cess of self-aligning the instructions with existing 126

parametric knowledge rather than introducing new 127

knowledge into the model. 128

2.2 Robustness of Instruction-tuned Models 129

Gu et al. (2023) investigated how instruction-tuned 130

models handle instruction perturbations and para- 131

phrasing. After fine-tuning a model on the original 132

instructions training set and evaluating it on the per- 133

turbed instructions test set, they found the model 134

was relatively robust in few-shot settings but no- 135

tably sensitive in zero-shot scenarios. Similarly, 136

Sun et al. (2024) showed that paraphrased instruc- 137

tions can disrupt model consistency and proposed a 138

mitigation strategy using soft prompt embeddings 139

to align semantically similar instructions. Wang 140

et al. (2024) examined errors from speech recog- 141

nition and OCR, finding such noise significantly 142

degrades LLMs performance. They also explored 143

using LLMs for zero-shot correction of noisy in- 144

structions. Yan et al. (2024) proposed contrastive 145

instruction-tuning which align the hidden repre- 146

sentations of instruction-instance pairs that are se- 147

mantically equivalent but textually different and 148

to differentiate those that are semantically distinct. 149

Zhao et al. (2024) proposed a consistency align- 150

ment framework including instruction augmenta- 151

tion by paraphrasing and automatic self reward. 152

Lou et al. (2024) introduced a dataset curation 153

scheme by diversifying the task inputs with var- 154

ious facets. Kim et al. (2024) proposed instructive 155

decoding, which improves instruction-following in 156

instruction-tuned LLMs by contrasting the decod- 157

ing process without additional tuning. 158

Unlike previous studies, we investigate how 159

training on noisy instructions affects their ability 160

to adapt to instruction perturbations. 161
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Perturbation User’s Content

No (Original) <instruction> Rewrite the given paragraph in a shorter, easier to understand form. <\instruction>
Input: Although it is generally accepted that the internet has allowed us to connect with people all . . .

Delete Stop Words <instruction> Rewrite the given paragraph in a shorter, easier to understand form. <\instruction>
Input: Although it is generally accepted that the internet has allowed us to connect with people all . . .

Shuffle Words <instruction> Rewrite shorter given paragraph in a easier , the to understand form.<\instruction>
Input: Although it is generally accepted that the internet has allowed us to connect with people all . . .

Delete Words <instruction> Rewrite the given paragraph in a shorter, easier to understand form. <\instruction>
Input: Although it is generally accepted that the internet has allowed us to connect with people all . . .

Replace Words <instruction> Rewrite the previous paragraph in a new , easier to understand it . <\instruction>
Input: Although it is generally accepted that the internet has allowed us to connect with people all . . .

Insert Words
<instruction> Rewrite the given paragraph in a shorter form , easier than to understand form better .
<\instruction>
Input: Although it is generally accepted that the internet has allowed us to connect with people all ...

Add Misspelling <instruction> Rewrite the givdn paragraphu in a shorter, easier to understand frm . <\instruction>
Input: Although it is generally accepted that the internet has allowed us to connect with people all . . .

Table 1: Example of a task instruction from the GPT4-Alpaca dataset and the corresponding perturbed instruction
generated by each perturbation strategy.

3 Instruction Perturbation Strategies162

We investigate the impact of instruction fine-tuning163

on the performance of LLMs when subjected to164

noisy input conditions. Following Gu et al. (2023),165

we employ five instruction perturbation strategies:166

delete stop words, shuffle words, delete words, re-167

place words, and insert words. Furthermore, we in-168

troduce misspelling as an additional noise injection169

approach. Table 1 shows an example instruction170

from the GPT4-Alpaca dataset (Peng et al., 2023).171

The model input consists of an instruction and as-172

sociated context. The perturbation strategies are173

applied exclusively to the instruction component.174

Delete Stop Words. Stop words, such as “the”,175

“is”, and “of” are functional words that mainly con-176

tribute to grammatical structure but have limited177

effects on semantic content. Removing stop words178

leads to syntactically incomplete instructions, al-179

lowing us to evaluate the model’s reliance on syn-180

tactic cues and its ability to infer meaning from181

partial input. For instance, the instruction Trans-182

late the sentence into French becomes Translate183

sentence French.184

Shuffle Words. The second perturbation strategy185

is to randomly shuffle the words. By changing186

the original word order, we aim to introduce both187

syntactic and semantic alterations. We employ a188

25% word shuffling of words within the instruction,189

while the other words maintain their relative order.190

We cap shuffling at 25%, enough to mimic the par-191

tial mix-up would be seen from hurried typing, and192

realistic enough to test robustness without turning193

the prompt into total gibberish. For instance, given194

the instruction Summarize the following paragraph,195

this might result in following the Summarize para- 196

graph. This perturbation provides an assessment 197

of how sensitive models are to changes in word 198

order and to what extent they rely on the original 199

structure to comprehend the instruction. 200

Delete Words. In this perturbation strategy, 25% 201

of the words within each instruction are randomly 202

deleted. In contrast to the targeted removal of stop 203

words, this approach introduces more significant 204

distortions by potentially eliminating both func- 205

tional and semantic words, thereby disrupting the 206

semantic coherence of the instructions to a greater 207

extent. This strategy assesses the model’s capacity 208

to infer task intent when presented with incomplete 209

syntactic and semantic structures. 210

Replace Words. We randomly select 25% of the 211

words from an instruction and replace them using 212

predictions from a pretrained BERT model (De- 213

vlin et al., 2019). Following Gu et al. (2023), we 214

use BERT’s masked language modeling head to 215

generate a contextually plausible substitute for all 216

selected words. The selected words are replaced by 217

[MASK] tokens, then BERT predicts replacement 218

words in a forward pass. This strategy introduces 219

minimal semantic shifts to the instructions with- 220

out relying on a lexicon, which typically requires 221

manual effort. This perturbation may or may not 222

alter the core meaning of the instruction, depend- 223

ing on the replaced words and their context. The 224

strategy allows us to investigate the model’s sensi- 225

tivity to nuanced lexical variations and its ability to 226

generalize under slightly altered task phrasing. 227

Insert Words. We introduce additional words 228

into the instruction by leveraging a pretrained 229

BERT model (Devlin et al., 2019). Specifically, we 230
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Instruction Dataset # Samples

GPT4-Alpaca 52,002
Super-Natural Instruction 55,793
Dolly 15,011

Total 122,806

Table 2: Number of samples in each dataset.

randomly select positions between existing words,231

covering approximately 25% of the total word232

count, and insert a [MASK] token at each selected233

position. We then replace each [MASK] with words234

predicted by BERT, resulting in an augmented in-235

struction containing additional, contextually plausi-236

ble tokens. This perturbation may introduce noise,237

redundancy, or shifts in meaning, challenging the238

model’s ability to extract the core task intention239

from a more verbose or distorted input.240

Add Misspelling. Finally, to simulate noisy in-241

put that may more closely resemble user-generated242

errors, we introduce typographical errors. We ran-243

domly select 25% of the words within each in-244

struction and introduce a typo into each of these245

words. We apply simple character-level edits, such246

as deleting a random letter, transposing adjacent247

letters, inserting a random vowel, or substituting a248

character with a randomly selected one. This strat-249

egy enables us to evaluate the model’s sensitivity250

to spelling errors in the instructions and its ability251

to discern the intended meaning from noisy input.252

4 Experimental Setup253

4.1 Models254

We experiment with two open-weight base LLMs255

in two sizes: Qwen-2.5 (7B and 72B) (Yang et al.,256

2024); and Llama-3.1 (8B and 70B) (Dubey et al.,257

2024).258

4.2 Instruction Datasets259

We fine-tune all the base models using a combi-260

nation of three standard instruction datasets with261

distinct characteristics.262

GPT4-Alpaca (Peng et al., 2023) is derived263

from Alpaca (Taori et al., 2023), where the orig-264

inal examples are replaced with responses gener-265

ated by GPT-4. Super-Natural Instruction (Wang266

et al., 2022) contains diverse tasks, including text267

classification and translation, with corresponding268

instructions. It is designed to evaluate the LLM269

abilities across a wide range of linguistic and func-270

tional contexts. Dolly (Conover et al., 2023) con-271

sists of instruction-following examples that reflect 272

practical, real-world tasks like brainstorming and 273

creative writing. The prompt-response pairs are 274

high-quality and human-generated. Table 2 sum- 275

marizes the number of samples in these datasets. 276

Perturbation Settings. To simulate real-world 277

settings where the perturbations could appear alto- 278

gether, we construct five different dataset mixtures, 279

each containing a different proportion of perturbed 280

instructions: (1) the original, unmodified instruc- 281

tion samples from all three datasets considered as 282

a baseline (0% Perturbation), (2) 25% of the in- 283

struction samples are perturbed, while the remain- 284

ing 75% are left unaltered (25% Perturbation), 285

(3) half of the instruction samples are perturbed 286

(50% Perturbation), (4) 75% of the samples are 287

perturbed (75% Perturbation), and (5) all instruc- 288

tion samples across the three datasets are perturbed 289

(100% Perturbation). 290

In all mixtures involving perturbations, the al- 291

tered samples are evenly distributed across the six 292

different perturbation strategies (Section 3). 293

4.3 Implementation Details 294

We apply parameter-efficient fine-tuning methods 295

for all experiments. Specifically, we use LoRA (Hu 296

et al., 2022) to fine-tune the 7B and 8B models, 297

and QLoRA (Dettmers et al., 2023) for the larger 298

70B and 72B models. Each model is fine-tuned for 299

one epoch on each dataset mixture to ensure con- 300

sistency across experiments. All fine-tuning runs 301

were performed on a single NVIDIA H100 GPU. 302

Full details on the fine-tuning hyperparameters are 303

provided in Appendix A. 304

4.4 Evaluation 305

General Benchmarks. We assess downstream 306

performance using: 307

Massive Multitask Language Understanding 308

(MMLU; Hendrycks et al. 2021): MMLU eval- 309

uates a model’s factual knowledge and reasoning 310

across 57 subjects, ranging from elementary to 311

professional-level difficulty, using multiple-choice 312

questions. We follow the original MMLU setup, 313

evaluating in 0-shot and 5-shot settings, and report 314

average test accuracy. 315

Big-Bench Hard (BBH; Suzgun et al. 2022): A 316

challenging subset of 23 tasks from the original 317

BIG-Bench (Srivastava et al., 2023), aimed at eval- 318

uating advanced reasoning in language models. We 319
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MMLU (5-shot) BBH (CoT) GSM8K (CoT)
IT 0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Q
w

en
7B

VAN 74.3 0.0 73.0 0.1 71.5 0.1 70.0 0.4 68.6 0.6 66.7 0.1 63.9 0.4 60.8 0.4 57.7 0.5 54.9 0.5 79.9 0.2 12.5 0.3 22.9 0.6 33.0 1.4 42.7 1.2

0% 74.3 0.0 73.0 0.1 71.7 0.1 70.2 0.4 68.9 0.7 66.8 0.0 62.7 0.2 58.7 0.2 54.3 0.5 50.6 0.6 80.6 0.0 12.6 0.5 24.5 0.5 34.6 1.0 44.6 1.2

25% 74.4 0.0 73.0 0.1 71.8 0.1 70.3 0.5 69.1 0.6 66.7 0.0 63.3 0.3 59.7 0.2 55.9 0.5 52.4 0.6 81.1 0.0 12.6 0.4 24.7 0.5 34.5 1.2 44.2 1.4

50% 74.4 0.0 73.1 0.1 71.9 0.1 70.5 0.5 69.1 0.7 67.0 0.0 64.0 0.2 61.1 0.3 57.7 0.6 54.8 0.6 80.6 0.0 12.6 0.5 24.6 0.5 34.3 0.7 44.5 1.1

75% 74.3 0.0 73.0 0.1 71.8 0.2 70.4 0.5 69.1 0.7 67.4 0.0 63.9 0.3 60.7 0.2 57.6 0.4 54.7 0.6 80.5 0.0 12.8 0.5 24.4 0.6 34.0 0.9 44.4 0.9

100% 74.3 0.0 73.1 0.0 71.9 0.1 70.5 0.5 69.2 0.6 66.6 0.0 63.4 0.2 60.3 0.3 56.8 0.4 53.8 0.7 80.0 0.0 12.6 0.2 24.8 0.6 34.3 1.1 45.1 0.8

L
la

m
a

8B

VAN 65.8 0.0 64.5 0.1 63.1 0.1 62.1 0.3 60.8 0.5 64.5 0.1 62.5 0.3 60.2 0.4 57.5 1.0 55.0 0.9 56.3 0.3 9.0 0.7 16.3 0.6 23.5 0.6 30.5 1.2

0% 65.8 0.0 64.6 0.2 63.3 0.1 62.2 0.2 60.7 0.5 63.0 0.4 63.4 0.1 61.1 0.3 58.7 0.7 56.5 0.6 58.4 0.0 9.2 0.1 16.6 0.7 23.8 1.0 28.1 1.0

25% 65.9 0.0 64.8 0.3 63.4 0.2 62.3 0.2 60.9 0.7 66.0 0.1 60.5 0.4 60.0 1.9 59.1 0.4 56.5 0.6 58.5 0.0 9.4 0.2 16.8 0.8 23.9 0.7 27.7 0.9

50% 65.9 0.0 64.8 0.2 63.6 0.1 62.5 0.2 61.0 0.6 62.7 0.0 64.4 0.3 62.0 0.5 59.3 0.5 56.7 0.5 58.2 0.0 9.2 0.2 16.9 0.6 24.0 0.9 27.8 1.0

75% 65.7 0.0 64.7 0.2 63.6 0.1 62.5 0.2 61.2 0.5 62.9 0.4 64.1 0.3 61.8 0.3 59.1 0.5 56.3 0.5 57.4 0.0 9.1 0.2 16.9 0.7 23.8 0.8 27.6 1.2

100% 66.0 0.0 64.8 0.3 63.7 0.1 62.5 0.3 61.2 0.5 66.2 0.1 64.2 0.5 62.0 0.5 59.2 0.8 56.8 0.4 58.4 0.0 9.2 0.2 17.1 0.6 23.7 1.2 27.8 1.5

Q
w

en
72

B

VAN 85.7 0.0 84.5 0.2 83.0 0.3 81.8 0.3 80.3 0.4 82.7 0.1 79.2 0.2 75.4 0.2 71.7 0.4 68.1 0.8 88.8 0.2 14.9 0.5 28.1 0.7 40.8 1.0 53.0 1.5

0% 85.8 0.0 84.6 0.2 83.1 0.3 82.0 0.2 80.5 0.5 83.8 0.1 80.5 0.2 77.3 0.3 73.8 0.5 70.8 1.1 90.0 0.2 15.3 0.4 29.0 0.4 42.7 1.1 55.0 1.7

25% 85.7 0.0 84.6 0.3 83.1 0.3 82.0 0.3 80.5 0.6 83.8 0.1 80.4 0.2 77.4 0.4 74.0 0.8 70.8 1.0 89.9 0.2 15.3 0.5 29.6 0.4 43.0 1.1 55.5 1.6

50% 85.7 0.0 84.7 0.3 83.1 0.3 82.0 0.3 80.7 0.6 83.3 0.1 80.2 0.2 77.2 0.2 73.7 0.6 70.6 0.8 89.9 0.2 15.4 0.4 29.3 0.5 42.8 1.4 55.5 1.9

75% 85.8 0.0 84.7 0.3 83.2 0.3 82.1 0.3 80.7 0.5 83.6 0.0 80.3 0.2 77.2 0.3 73.9 0.6 70.4 0.8 90.3 0.3 15.6 0.3 29.6 0.7 42.9 1.7 55.5 2.3

100% 85.8 0.0 84.8 0.2 83.2 0.3 82.1 0.4 80.6 0.6 83.6 0.0 80.4 0.2 77.3 0.2 73.8 0.4 70.8 0.8 90.2 0.1 15.6 0.5 29.7 0.7 43.4 1.8 55.9 2.0

L
la

m
a

70
B

VAN 75.8 0.0 74.1 0.1 72.2 0.2 70.2 0.4 68.5 0.4 78.3 0.1 75.7 0.2 73.3 0.2 70.3 0.4 68.1 0.4 80.2 0.1 13.0 0.3 24.1 0.5 34.7 1.5 43.9 0.9

0% 78.1 0.0 76.7 0.3 74.9 0.3 73.0 0.4 71.4 0.5 81.8 0.1 78.9 0.1 75.9 0.2 72.7 0.4 70.1 0.4 82.3 0.2 13.7 0.7 25.4 0.4 37.0 1.0 47.5 1.0

25% 77.9 0.0 76.5 0.2 74.8 0.4 72.8 0.3 71.2 0.4 81.4 0.1 78.7 0.1 76.0 0.3 72.8 0.3 70.2 0.5 82.1 0.2 14.0 0.6 25.5 0.8 37.0 1.3 47.7 0.5

50% 78.0 0.0 76.6 0.3 74.8 0.4 73.0 0.4 71.6 0.4 81.2 0.1 78.5 0.2 75.9 0.3 73.1 0.4 70.6 0.5 80.2 0.3 13.5 0.6 25.6 0.7 37.0 1.4 47.6 1.0

75% 78.0 0.0 76.8 0.3 75.1 0.3 73.4 0.4 71.8 0.4 81.5 0.1 78.9 0.3 76.3 0.2 73.3 0.4 70.6 0.7 81.6 0.2 13.8 0.4 25.6 0.7 37.3 1.1 48.2 0.7

100% 78.6 0.0 77.3 0.2 75.6 0.3 74.1 0.4 72.8 0.3 81.7 0.1 79.0 0.2 76.4 0.4 73.3 0.5 70.8 0.6 82.0 0.2 13.7 0.4 26.1 0.6 38.1 1.8 48.8 1.2

Table 3: Results of evaluating the vanilla non-instruction-tuned baselines (VAN) and the fine-tuned models under
various instruction perturbations using the MMLU, BBH and GSM8K evaluation benchmarks. Results are reported
on both the original evaluation instructions (0%) and the various perturbed evaluation instructions with standard
deviations over three runs. Bold values denote the best performance across each model.

assess both direct prompting and chain-of-thought320

(CoT) (Wei et al., 2022b), using official prompts321

with three in-context examples, and report average322

exact match across sub-tasks.323

Grade School Math (GSM8K; Cobbe et al.324

2021): A benchmark of 8.5K grade school-level325

word problems for testing multi-step mathematical326

reasoning in language models. We evaluate with327

direct prompting and CoT using eight in-context328

few-shot examples, and we report the exact match.329

We follow the same approach as in fine-tuning330

and create five evaluation instruction sets with dif-331

ferent perturbation settings: original instructions332

(0%), 25% of the instructions are perturbed, 50%333

are perturbed, 75% are perturbed, and all instruc-334

tions are perturbed (100%). The perturbed instruc-335

tions are evenly distributed across the six different336

approaches (see Section 3).337

Safety and Bias. Additionally, to analyze poten-338

tial side effects of instruction-tuning on noisy in-339

structions, such as changes in toxicity or misinfor-340

mation generation, we evaluate the models on: (1)341

ToxiGen (Hartvigsen et al., 2022) which measures342

the extent to which models generate toxic language343

and hate speech when explicitly prompted to do344

so across various demographic groups. We report345

the percentage of toxic outputs identified using a 346

RoBERTa model (Liu et al., 2020) fine-tuned for 347

toxicity detection, as described by Hartvigsen et al. 348

(2022); and (2) TruthfulQA proposed by Lin et al. 349

(2022) which assesses how effectively models can 350

refrain from generating known falsehoods caused 351

by misconceptions or false beliefs, while still gen- 352

erating informative and useful content. We use two 353

off-the-shelf task-specific judge models developed 354

by AllenAI based on Llama-2 (7B) (Touvron et al., 355

2023b) for measuring truthfulness3 and informa- 356

tiveness, following the setup of Groeneveld et al. 357

(2024). In both datasets, we evaluate using only 358

the original, unaltered prompts to measure model 359

toxicity and truthfulness. 360

5 Results 361

Table 3 presents the performance across three 362

benchmarks: MMLU (5-shot), BBH (CoT) and 363

GSM8K (CoT) for each of our models. Full suite 364

of results including 0-shot and direct prompting are 365

presented in Appendix B. 366

Fine-tuning on perturbed instructions may en- 367

hance robustness under noisy prompts. We 368

3https://huggingface.co/allenai/
truthfulqa-truth-judge-llama2-7B
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first observe that incorporating instruction pertur-369

bation during fine-tuning often appears to enhance370

model robustness across the three evaluation bench-371

marks and the various evaluation settings. For in-372

stance, the Qwen-7B model fine-tuned with 50%373

perturbed instructions achieves 0.5% higher accu-374

racy on MMLU compared to its vanilla (VAN)375

counterpart when evaluated using 75% perturbed376

instructions. In the BBH (CoT) benchmark, it is377

notable that the Llama-70B model fine-tuned with378

100% perturbed instructions achieves the highest379

scores when evaluated using 25%, 50%, 75% and380

100% perturbed instructions. However, there are ex-381

ceptions where the model fine-tuned with the origi-382

nal unaltered instructions still achieves slightly bet-383

ter performance. For example, in the BBH (CoT),384

the Qwen-72B model fine-tuned on the original385

unaltered instructions achieves the best overall per-386

formance when evaluated using 25% perturbed in-387

structions.388

Higher proportions of perturbed instructions389

appear to be beneficial in some contexts. The390

results also surprisingly suggest that using a larger391

number of perturbed instructions in the training mix392

can lead to improved performance. For example, in393

both MMLU (5-shot) and BBH (CoT), Qwen-7B,394

Llama-8B and Llama-70B models achieve their395

peak performance when fine-tuned with 50% or396

more noisy instructions. However, for GSM8K397

(CoT), smaller models such as Qwen-7B and398

Llama-8B appear to respond more favorably to less399

perturbed instructions. One possible explanation400

for this is that the GSM8K benchmark evaluates401

multi-step mathematical reasoning, where incom-402

plete or ambiguous instructions can be particularly403

challenging and harmful for smaller models.404

Observed gains on standard unperturbed bench-405

marks from noisy fine-tuning. Moreover, the406

results across all the three benchmarks suggest that407

fine-tuning on perturbed instructions not only can408

improve a model’s performance under perturbed409

test conditions but also sometimes yields gains410

when evaluated on the original, unaltered instruc-411

tions. For example, in the MMLU (5-shot), when412

evaluating using the original unaltered instructions,413

both Llama-8B and Llama-70B models fine-tuned414

with 100% perturbed instructions achieve their415

best performance of 66.0% and 78.6% respectively.416

Similarly, the Qwen-7B model fine-tuned with 75%417

perturbed instructions achieves a 0.6% higher per-418

formance than the model variant fine-tuned on the419

original unaltered instructions when evaluated on 420

the BBH (CoT) benchmark. 421

CoT remains more effective than direct prompt- 422

ing. Prior work has shown that CoT prompting 423

outperforms direct prompting on benchmarks like 424

BBH and GSM8K (Kojima et al., 2022; Wei et al., 425

2022b), and our results confirm this, especially 426

under instruction perturbation. On BBH (CoT), 427

models like Llama-70B fine-tuned with fully per- 428

turbed instructions achieve the highest scores of 429

79.0% and 76.4% when evaluated with 25% and 430

50% perturbed instructions, respectively, indicating 431

that CoT prompting benefits from increased robust- 432

ness introduced during training. While Qwen-72B 433

performs best when fine-tuned with less perturbed 434

instructions, its relatively weaker performance un- 435

der direct prompting suggests that incorporating 436

perturbation during fine-tuning still contributes to 437

improved generalization and reasoning robustness. 438

Instruction-tuning yields uneven gains across 439

tasks. We observe that the impact of instruction- 440

tuning seems to vary by task. For example, 441

MMLU shows relatively modest improvement 442

from instruction-tuning, regardless of whether or 443

not perturbations are applied. In contrast, BBH 444

appears to consistently benefit from instruction- 445

tuning, especially for Llama models. This obser- 446

vation aligns with findings from Sun and Dredze 447

(2025), who suggest that certain tasks are already 448

well-represented in a model’s pre-training data, 449

leaving limited room for further gains through 450

instruction-tuning. On the other hand, tasks that 451

are underrepresented or poorly learned during pre- 452

training can potentially see more substantial im- 453

provements as the model acquires new task-specific 454

capabilities during instruction-tuning. 455

6 Analysis 456

6.1 Safety and Bias 457

Figures 2a and 2b show model toxicity and truthful- 458

ness on the ToxiGen and TruthfulQA benchmarks 459

respectively, under various instruction perturba- 460

tions. Fine-tuning with perturbed instructions ap- 461

pears to be associated with enhanced safety and 462

truthfulness across most models. On ToxiGen, mod- 463

els like Qwen-7B and Llama-8B exhibit lower aver- 464

age toxicity when fine-tuned with 100% perturbed 465

instructions, while Llama-70B sees improved re- 466

sults with 75% perturbation. However, Qwen-72B 467

performs better with original instructions, which 468
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Figure 2: Vanilla non-instruction-tuned baselines (VAN)
and the fine-tuned models under various instruction per-
turbations on ToxiGen benchmark (a) and TruthfulQA
(b). Lower is better for toxicity, while higher is better
for informative and truthful.

may indicate higher sensitivity to perturbations.469

Similarly, on TruthfulQA, three out of four mod-470

els, including Llama-70B, achieve higher truthful-471

ness and informativeness when fine-tuned on fully472

perturbed data. A possible interpretation is that473

noisy instructions encourage LLMs to rely less on474

surface-level patterns and more on robust reason-475

ing. An exception is Qwen-7B, where the vanilla476

model outperforms all fine-tuned variants, suggest-477

ing model-specific sensitivity to instruction noise.478

6.2 Individual Perturbation Strategies479

To better understand the impact of specific perturba-480

tion strategies on model performance, we conduct481

an ablation study using two methods: removing482

stop words (STOP) and shuffling 25% of the words483

in each instruction (SHFL). We fine-tune Llama-484

8B on Dolly, applying each perturbation strategy485

to all instructions in the dataset. As a baseline, we486

also fine-tune the model on the original, unmodified487

instructions. We evaluate the fine-tuned models on488

the original, unaltered evaluation benchmarks.489

The results in Table 4 are broadly consistent490

with the patterns observed in our main findings491

(Section 5). Notably, the model trained on STOP-492

perturbed instructions showed improved perfor-493

mance over the one trained on the original dataset494

across several benchmarks, including MMLU (5-495

shot), BBH (CoT), and GSM8K (CoT). Interest-496

ingly, the SHFL strategy also yields encouraging497

MMLU BBH GSM8K TruthfulQA ToxiGen
IT 5-shot CoT CoT % Info+True (↑) % Toxic (↓)

VAN 65.8 0.0 65.8 1.5 55.8 2.3 33.5 0.0 85.4 0.1

D
ol

ly ORIG 64.2 0.0 62.5 0.8 50.0 1.6 32.8 0.0 87.4 0.1

STOP 64.6 0.0 63.1 1.1 50.5 2.1 35.0 0.0 85.2 0.3

SHFL 64.3 0.0 60.6 0.9 50.5 1.8 36.2 0.0 84.0 0.1

G
PT

4-
A

lp
ac

a ORIG 64.4 0.0 60.9 1.3 56.0 2.0 60.2 0.0 91.1 0.1

SHFL 25% 64.5 0.0 61.0 0.9 59.5 2.3 59.5 0.0 90.6 0.3

SHFL 50% 64.8 0.0 60.5 1.3 60.5 1.9 58.5 0.0 90.1 0.1

SHFL 75% 64.8 0.0 62.4 1.5 56.5 2.1 58.9 0.0 90.0 0.1

SHFL 100% 64.8 0.0 62.3 1.1 58.0 2.0 61.3 0.0 90.2 0.2

Table 4: Llama-8B trained on Dolly using a single per-
turbation strategy, removing stop words (STOP) or shuf-
fling 25% of the words (SHFL) (top). The same model
trained on GPT4-Alpaca under varying levels of word
shuffling in the instructions (bottom). All instructions
were perturbed in each case.

results. Despite the disruption introduced by shuf- 498

fling 25% of the words, the model achieves the 499

highest scores on both the TruthfulQA and ToxiGen 500

benchmarks. These findings suggest that the model 501

may be able to infer the intended task largely from 502

the input data itself, even when the instructions are 503

perturbed. While we initially hypothesized that 504

introducing noise, through stop-word removal or 505

partial word shuffling, would hinder performance, 506

the results indicate a surprising degree of robust- 507

ness. In some cases, performance even appears 508

to improve under perturbation, suggesting that the 509

model may not rely as heavily on surface-level in- 510

struction cues. 511

6.3 Perturbation Intensity Ablation 512

To investigate how the degree of instruction degra- 513

dation affects model performance, we perform an 514

ablation study that systematically varies the inten- 515

sity of a word-shuffling perturbation. Specifically, 516

we fine-tune Llama-8B on GPT4-Alpaca with in- 517

structions in which 25%, 50%, 75%, and 100% of 518

the words are randomly shuffled. As a control, we 519

also fine-tune the model on the original, unmodi- 520

fied instructions. All models are then evaluated on 521

the same set of original, unperturbed benchmarks. 522

The results in Table 4 suggest a counterintuitive 523

yet noteworthy trend: as the intensity of perturba- 524

tion increases, we sometimes observe an improve- 525

ment in the model’s performance. Fine-tuning on 526

instructions with 50% or more of the words shuf- 527

fled often yields strong results across all bench- 528

marks. In some cases, the model trained on fully 529

shuffled instructions, where no coherent phrasing 530

remains, performs better than the model trained on 531

the original unperturbed instructions. These results 532

are broadly consistent with the broader pattern we 533
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Perturbation Input True Pred

(1) Del. Stop.
<instruction> sentence correct adjective order: <\instruction>
Options: (A) fiberglass old surfboard (B) old fiberglass surfboard (B) (B) ✓

(2) Repl. Wor.
<instruction> Which sentence has the following adjective order:
<\instruction>
Options: (A) driving blue car (B) blue driving car

(B) (A) ✗

(3) Add Missp.
<instruction> Which sntnc has the correct adjectivee order:
<\instruction>
Options: (A) lovely midsize green Filipino sock (B) Filipino midsize
lovely green sock

(A) (A) ✓

(4) Del. Wor.
<instruction> Which has the correct adjective: <\instruction>
Options: (A) plastic grey old-fashioned small sock (B) small old-
fashioned grey plastic sock

(B) (A) ✗

Table 5: Generated answers by Llama-70B fine-tuned
with 100% perturbed instructions for the "Which sen-
tence has the correct adjective order" perturbed ques-
tion from the BBH benchmark.

observed in our main experiments and in the ear-534

lier ablation of individual perturbation strategies:535

performance can improve as superficial instruction536

cues are degraded. It is possible that heavy in-537

struction noise nudges the model toward the core538

semantics of the task, which may reduce its depen-539

dence on any particular wording and discourage540

overfitting to fixed prompt templates.541

6.4 Qualitative Analysis542

Table 5 presents example responses from the543

Llama-70B model, fine-tuned with fully perturbed544

instructions, for a sample question from the BBH545

benchmark. We observe that the model can often546

produce correct answers even when instructions547

are altered by removing stop words or introducing548

misspellings as in examples (1) and (3). However,549

its performance appears to deteriorate when key550

words in the instruction are replaced or deleted.551

For instance, substituting the word “correct” with552

“following” as in example (2), or deleting the words553

“sentence” and “order” as in example (4), seems to554

hinder the model’s ability to respond correctly.555

7 Theoretical Grounding of Fine-Tuning556

on Noisy Instructions557

Our findings suggest that incorporating perturba-558

tions during instruction-tuning may not only en-559

hance model robustness to noisy or perturbed in-560

puts but may also yield improvements on stan-561

dard, unperturbed instructions. A plausible expla-562

nation for this effect is that noisy instruction-tuning563

serves as an implicit form of regularization (Bishop,564

1995), potentially encouraging models to move be-565

yond reliance on superficial linguistic patterns. Ex-566

posure to a wide spectrum of instruction formula-567

tions, including those containing syntactic or se-568

mantic anomalies, may discourage overfitting to569

narrow or canonical phrasing. These perturbations570

effectively broaden the training distribution, func- 571

tioning as a form of data augmentation (Dao et al., 572

2019; Hernández-García and König, 2018; Vaibhav 573

et al., 2019), and may thereby help LLMs to learn 574

more robust and generalizable task representations. 575

A particularly noteworthy observation is that mod- 576

els fine-tuned with 100% perturbed instructions 577

often achieve high accuracy, even when evaluated 578

on standard instructions. This may suggest that 579

the perturbations could act not merely as noise, but 580

as a potential source of useful inductive bias that 581

enhances generalization across prompt formats. 582

However, the effectiveness of instruction pertur- 583

bation appears not to be uniform across all models. 584

While larger models like Llama (70B) and Qwen 585

(72B) exhibit substantial benefits, smaller models, 586

such as Llama (8B) and Qwen (7B), show inconsis- 587

tent gains. These variations underscore the impor- 588

tance of model-specific calibration of perturbation 589

levels. There may be an upper limit beyond which 590

perturbations become detrimental, particularly for 591

models with limited capacity or for tasks requiring 592

precise instruction-following behavior. 593

8 Conclusion 594

We explored the impact of instruction perturba- 595

tion on the robustness and generalization capabili- 596

ties of instruction-tuned LLMs. By systematically 597

evaluating models of varying sizes across diverse 598

benchmarks, our findings suggest that fine-tuning 599

on structurally perturbed instructions can enhance 600

model performance, particularly under noisy evalu- 601

ation conditions. Our results indicate that models 602

trained on highly perturbed instructions tend to per- 603

form better not only under noisy test conditions 604

but also with standard prompts, suggesting that 605

instruction perturbation encourages more flexible 606

task representations. 607

These findings point to instruction perturbation 608

as a simple yet potentially effective strategy for 609

enhancing model resilience, particularly in real- 610

world scenarios where user instructions may be 611

inconsistent or ambiguous. By questioning the 612

assumption that clean instructions are always op- 613

timal for tuning, this work offers a practical step 614

toward improving instruction-following reliability 615

in large language models. Future research could 616

explore adaptive or semantically-aware perturba- 617

tion techniques. Such direction may help refine 618

instruction-tuning practices. 619
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Limitations620

Our experiments were conducted solely with En-621

glish instructions and downstream tasks due to622

wide availability of diverse and publicly available623

instruction-tuning data. We acknowledge that lan-624

guages differ in their sensitivity to word order and625

stop words, a factor not explored in the current626

work. Chinese, for example, has fewer stop words627

and a less rigid syntactic structure than English, al-628

lowing for greater flexibility in word order. There-629

fore, the effects of perturbation should be investi-630

gated with respect to the specific linguistic charac-631

teristics of each language under consideration in632

future work.633

References634

Chris M Bishop. 1995. Training with noise is equiva-635
lent to Tikhonov regularization. Neural computation,636
7(1):108–116.637

Yu-Chu Chang, Xu Wang, Jindong Wang, Yuanyi Wu,638
Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi,639
Cunxiang Wang, Yidong Wang, Weirong Ye, Yue640
Zhang, Yi Chang, Philip S. Yu, Qian Yang, and641
Xingxu Xie. 2023. A survey on evaluation of large642
language models. ACM Transactions on Intelligent643
Systems and Technology, 15:1 – 45.644

Hyung Won Chung, Le Hou, Shayne Longpre, Barret645
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi646
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.647
2024. Scaling instruction-finetuned language models.648
Journal of Machine Learning Research, 25(70):1–53.649

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,650
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias651
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro652
Nakano, Christopher Hesse, and John Schulman.653
2021. Training verifiers to solve math word prob-654
lems. ArXiv, abs/2110.14168.655

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,656
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,657
Matei Zaharia, and Reynold Xin. 2023. Free dolly:658
Introducing the world’s first truly open instruction-659
tuned llm. Company Blog of Databricks.660

Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith,661
Chris De Sa, and Christopher Re. 2019. A kernel the-662
ory of modern data augmentation. In Proceedings of663
the 36th International Conference on Machine Learn-664
ing, volume 97 of Proceedings of Machine Learning665
Research, pages 1528–1537. PMLR.666

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and667
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-668
ing of quantized LLMs. In Thirty-seventh Confer-669
ence on Neural Information Processing Systems.670

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 671
Kristina Toutanova. 2019. BERT: Pre-training of 672
deep bidirectional transformers for language under- 673
standing. In Proceedings of the 2019 Conference of 674
the North American Chapter of the Association for 675
Computational Linguistics: Human Language Tech- 676
nologies, Volume 1 (Long and Short Papers), pages 677
4171–4186, Minneapolis, Minnesota. Association for 678
Computational Linguistics. 679

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 680
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 681
Akhil Mathur, Alan Schelten, Amy Yang, Angela 682
Fan, et al. 2024. The llama 3 herd of models. arXiv 683
preprint arXiv:2407.21783. 684

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha- 685
gia, Rodney Kinney, Oyvind Tafjord, A. Jha, Hamish 686
Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, 687
David Atkinson, Russell Authur, Khyathi Raghavi 688
Chandu, Arman Cohan, Jennifer Dumas, Yanai 689
Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William 690
Merrill, Jacob Daniel Morrison, Niklas Muennighoff, 691
Aakanksha Naik, Crystal Nam, Matthew E. Peters, 692
Valentina Pyatkin, Abhilasha Ravichander, Dustin 693
Schwenk, Saurabh Shah, Will Smith, Emma Strubell, 694
Nishant Subramani, Mitchell Wortsman, Pradeep 695
Dasigi, Nathan Lambert, Kyle Richardson, Luke S. 696
Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini, 697
Noah A. Smith, and Hanna Hajishirzi. 2024. Olmo: 698
Accelerating the science of language models. In An- 699
nual Meeting of the Association for Computational 700
Linguistics. 701

Jiasheng Gu, Hongyu Zhao, Hanzi Xu, Liangyu Nie, 702
Hongyuan Mei, and Wenpeng Yin. 2023. Robustness 703
of learning from task instructions. In Findings of 704
the Association for Computational Linguistics: ACL 705
2023, pages 13935–13948. 706

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, 707
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022. 708
Toxigen: A large-scale machine-generated dataset 709
for adversarial and implicit hate speech detection. 710
In Proceedings of the 60th Annual Meeting of the 711
Association for Computational Linguistics (Volume 712
1: Long Papers), pages 3309–3326. 713

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 714
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 715
2021. Measuring massive multitask language under- 716
standing. In International Conference on Learning 717
Representations. 718

Alex Hernández-García and Peter König. 2018. Data 719
augmentation instead of explicit regularization. 720
arXiv preprint arXiv:1806.03852. 721

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 722
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 723
Chen. 2022. LoRA: Low-rank adaptation of large 724
language models. In International Conference on 725
Learning Representations. 726

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, 727
Valentina Pyatkin, Nathan Lambert, Noah A. Smith, 728

9

https://api.semanticscholar.org/CorpusID:259360395
https://api.semanticscholar.org/CorpusID:259360395
https://api.semanticscholar.org/CorpusID:259360395
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://proceedings.mlr.press/v97/dao19b.html
https://proceedings.mlr.press/v97/dao19b.html
https://proceedings.mlr.press/v97/dao19b.html
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://openreview.net/forum?id=OUIFPHEgJU
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://api.semanticscholar.org/CorpusID:267365485
https://api.semanticscholar.org/CorpusID:267365485
https://api.semanticscholar.org/CorpusID:267365485
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


Yejin Choi, and Hannaneh Hajishirzi. 2024. Unpack-729
ing DPO and PPO: Disentangling best practices for730
learning from preference feedback. In The Thirty-731
eighth Annual Conference on Neural Information732
Processing Systems.733

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,734
Nathan Lambert, Matthew Peters, Pradeep Dasigi,735
Joel Jang, David Wadden, Noah A. Smith, Iz Belt-736
agy, and Hannaneh Hajishirzi. 2023. Camels in a737
changing climate: Enhancing lm adaptation with tulu738
2. Preprint, arXiv:2311.10702.739

Taehyeon Kim, Joonkee Kim, Gihun Lee, and Se-Young740
Yun. 2024. Instructive decoding: Instruction-tuned741
large language models are self-refiner from noisy742
instructions. In The Twelfth International Conference743
on Learning Representations.744

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-745
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-746
guage models are zero-shot reasoners. In Advances in747
Neural Information Processing Systems, volume 35,748
pages 22199–22213.749

Nathan Lambert, Jacob Daniel Morrison, Valentina Py-750
atkin, Shengyi Huang, Hamish Ivison, Faeze Brah-751
man, Lester James Validad Miranda, Alisa Liu,752
Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya Ma-753
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang,754
Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca755
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep756
Dasigi, and Hanna Hajishirzi. 2024. Tülu 3: Push-757
ing frontiers in open language model post-training.758
ArXiv, abs/2411.15124.759

Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu,760
Nouha Dziri, Melanie Sclar, Khyathi Chandu, Chan-761
dra Bhagavatula, and Yejin Choi. 2024. The unlock-762
ing spell on base LLMs: Rethinking alignment via763
in-context learning. In The Twelfth International764
Conference on Learning Representations.765

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.766
Truthfulqa: Measuring how models mimic human767
falsehoods. In Proceedings of the 60th Annual Meet-768
ing of the Association for Computational Linguistics769
(Volume 1: Long Papers), pages 3214–3252.770

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-771
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,772
Luke Zettlemoyer, and Veselin Stoyanov. 2020.773
RoBERTa: A robustly optimized BERT pretraining774
approach.775

Renze Lou, Kai Zhang, Jian Xie, Yuxuan Sun, Janice776
Ahn, Hanzi Xu, Yu Su, and Wenpeng Yin. 2024.777
MUFFIN: Curating multi-faceted instructions for im-778
proving instruction following. In The Twelfth Inter-779
national Conference on Learning Representations.780

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,781
Meysam Chenaghlu, Richard Socher, Xavier Am-782
atriain, and Jianfeng Gao. 2024. Large language783
models: A survey. arXiv preprint arXiv:2402.06196.784

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and 785
Hannaneh Hajishirzi. 2022. Cross-task generaliza- 786
tion via natural language crowdsourcing instructions. 787
In Proceedings of the 60th Annual Meeting of the 788
Association for Computational Linguistics (Volume 789
1: Long Papers), pages 3470–3487, Dublin, Ireland. 790
Association for Computational Linguistics. 791

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 792
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 793
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 794
2022. Training language models to follow instruc- 795
tions with human feedback. Advances in neural in- 796
formation processing systems, 35:27730–27744. 797

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal- 798
ley, and Jianfeng Gao. 2023. Instruction tuning with 799
gpt-4. arXiv preprint arXiv:2304.03277. 800

Mengjie Ren, Boxi Cao, Hongyu Lin, Cao Liu, Xian- 801
pei Han, Ke Zeng, Wan Guanglu, Xunliang Cai, and 802
Le Sun. 2024. Learning or self-aligning? rethinking 803
instruction fine-tuning. In Proceedings of the 62nd 804
Annual Meeting of the Association for Computational 805
Linguistics (Volume 1: Long Papers), pages 6090– 806
6105, Bangkok, Thailand. Association for Computa- 807
tional Linguistics. 808

Victor Sanh, Albert Webson, Colin Raffel, Stephen 809
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine 810
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, 811
M Saiful Bari, Canwen Xu, Urmish Thakker, 812
Shanya Sharma Sharma, Eliza Szczechla, Taewoon 813
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti 814
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han 815
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, 816
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr- 817
ishala Neeraj, Jos Rozen, Abheesht Sharma, An- 818
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan 819
Teehan, Teven Le Scao, Stella Biderman, Leo Gao, 820
Thomas Wolf, and Alexander M Rush. 2022. Multi- 821
task prompted training enables zero-shot task gener- 822
alization. In International Conference on Learning 823
Representations. 824

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric 825
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic- 826
iting Knowledge from Language Models with Auto- 827
matically Generated Prompts. In Proceedings of the 828
2020 Conference on Empirical Methods in Natural 829
Language Processing (EMNLP), pages 4222–4235, 830
Online. Association for Computational Linguistics. 831

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 832
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, 833
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià 834
Garriga-Alonso, et al. 2023. Beyond the imitation 835
game: Quantifying and extrapolating the capabili- 836
ties of language models. Transactions on Machine 837
Learning Research. Featured Certification. 838

Jiuding Sun, Chantal Shaib, and Byron C Wallace. 2024. 839
Evaluating the zero-shot robustness of instruction- 840
tuned language models. In The Twelfth International 841
Conference on Learning Representations. 842

10

https://openreview.net/forum?id=JMBWTlazjW
https://openreview.net/forum?id=JMBWTlazjW
https://openreview.net/forum?id=JMBWTlazjW
https://openreview.net/forum?id=JMBWTlazjW
https://openreview.net/forum?id=JMBWTlazjW
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://api.semanticscholar.org/CorpusID:274192505
https://api.semanticscholar.org/CorpusID:274192505
https://api.semanticscholar.org/CorpusID:274192505
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=wxJ0eXwwda
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=1vrS1zwekw
https://openreview.net/forum?id=1vrS1zwekw
https://openreview.net/forum?id=1vrS1zwekw
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2024.acl-long.330
https://doi.org/10.18653/v1/2024.acl-long.330
https://doi.org/10.18653/v1/2024.acl-long.330
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=g9diuvxN6D
https://openreview.net/forum?id=g9diuvxN6D
https://openreview.net/forum?id=g9diuvxN6D


Kaiser Sun and Mark Dredze. 2025. Amuro & char:843
Analyzing the relationship between pre-training and844
fine-tuning of large language models. In Proceedings845
of the 10th Workshop on Representation Learning846
for NLP (RepL4NLP-2025), pages 131–151, Albu-847
querque, NM. Association for Computational Lin-848
guistics.849

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Se-850
bastian Gehrmann, Yi Tay, Hyung Won Chung,851
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,852
Denny Zhou, and Jason Wei. 2022. Challenging853
big-bench tasks and whether chain-of-thought can854
solve them. In Annual Meeting of the Association for855
Computational Linguistics.856

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann857
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,858
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:859
An instruction-following llama model. https://860
github.com/tatsu-lab/stanford_alpaca.861

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier862
Martinet, Marie-Anne Lachaux, Timothée Lacroix,863
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal864
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard865
Grave, and Guillaume Lample. 2023a. Llama: Open866
and efficient foundation language models. Preprint,867
arXiv:2302.13971.868

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-869
bert, Amjad Almahairi, Yasmine Babaei, Nikolay870
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti871
Bhosale, et al. 2023b. Llama 2: Open founda-872
tion and fine-tuned chat models. arXiv preprint873
arXiv:2307.09288.874

Vaibhav Vaibhav, Sumeet Singh, Craig Stewart, and Gra-875
ham Neubig. 2019. Improving robustness of machine876
translation with synthetic noise. In Proceedings of877
the 2019 Conference of the North American Chap-878
ter of the Association for Computational Linguistics:879
Human Language Technologies, Volume 1 (Long and880
Short Papers), pages 1916–1920, Minneapolis, Min-881
nesota. Association for Computational Linguistics.882

Bin Wang, Chengwei Wei, Zhengyuan Liu, Geyu Lin,883
and Nancy F. Chen. 2024. Resilience of large lan-884
guage models for noisy instructions. In Findings885
of the Association for Computational Linguistics:886
EMNLP 2024, pages 11939–11950, Miami, Florida,887
USA. Association for Computational Linguistics.888

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack889
Hessel, Tushar Khot, Khyathi Chandu, David Wad-890
den, Kelsey MacMillan, Noah A Smith, Iz Beltagy,891
et al. 2023. How far can camels go? exploring the892
state of instruction tuning on open resources. Ad-893
vances in Neural Information Processing Systems,894
36:74764–74786.895

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-896
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva897
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-898
jana Arunkumar, David Stap, et al. 2022. Super-899
naturalinstructions: Generalization via declarative900

instructions on 1600+ nlp tasks. In Proceedings of 901
the 2022 Conference on Empirical Methods in Natu- 902
ral Language Processing, pages 5085–5109. 903

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 904
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. 905
Dai, and Quoc V Le. 2022a. Finetuned language 906
models are zero-shot learners. In International Con- 907
ference on Learning Representations. 908

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 909
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 910
and Denny Zhou. 2022b. Chain-of-thought prompt- 911
ing elicits reasoning in large language models. In 912
Proceedings of the 36th International Conference on 913
Neural Information Processing Systems, NIPS ’22, 914
Red Hook, NY, USA. Curran Associates Inc. 915

Tianyi Yan, Fei Wang, James Y. Huang, Wenxuan Zhou, 916
Fan Yin, Aram Galstyan, Wenpeng Yin, and Muhao 917
Chen. 2024. Contrastive instruction tuning. In Find- 918
ings of the Association for Computational Linguistics: 919
ACL 2024, pages 10288–10302, Bangkok, Thailand. 920
Association for Computational Linguistics. 921

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 922
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 923
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 924
nical report. arXiv preprint arXiv:2412.15115. 925

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, 926
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian- 927
wei Zhang, Fei Wu, and Guoyin Wang. 2024. In- 928
struction tuning for large language models: A survey. 929
Preprint, arXiv:2308.10792. 930

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 931
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 932
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A 933
survey of large language models. arXiv preprint 934
arXiv:2303.18223. 935

Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang 936
Xing, Shuaiqiang Wang, Chong Meng, Zhicong 937
Cheng, Zhaochun Ren, and Dawei Yin. 2024. Im- 938
proving the robustness of large language models 939
via consistency alignment. In Proceedings of the 940
2024 Joint International Conference on Computa- 941
tional Linguistics, Language Resources and Eval- 942
uation (LREC-COLING 2024), pages 8931–8941, 943
Torino, Italia. ELRA and ICCL. 944

11

https://aclanthology.org/2025.repl4nlp-1.11/
https://aclanthology.org/2025.repl4nlp-1.11/
https://aclanthology.org/2025.repl4nlp-1.11/
https://aclanthology.org/2025.repl4nlp-1.11/
https://aclanthology.org/2025.repl4nlp-1.11/
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:252917648
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/N19-1190
https://doi.org/10.18653/v1/N19-1190
https://doi.org/10.18653/v1/N19-1190
https://doi.org/10.18653/v1/2024.findings-emnlp.697
https://doi.org/10.18653/v1/2024.findings-emnlp.697
https://doi.org/10.18653/v1/2024.findings-emnlp.697
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/2024.findings-acl.613
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://aclanthology.org/2024.lrec-main.782/
https://aclanthology.org/2024.lrec-main.782/
https://aclanthology.org/2024.lrec-main.782/
https://aclanthology.org/2024.lrec-main.782/
https://aclanthology.org/2024.lrec-main.782/


Appendix945

A Instruction-tuning Hyperparameters946

For instruction-tuning and evaluation, we adopt the947

implementation from Open Instruct (Wang et al.,948

2023; Ivison et al., 2023, 2024; Lambert et al.,949

2024). Table 6 shows the hyperparameters used950

in our instruction fine-tuning experiments.951

Hyperparameter Value

learning rate 1e-5
lr scheduler type linear
warmup ratio 0.03
weight decay 0
# train epochs 1
gradient acc. steps 128
max. seq. length 4,096
LoRA rank 64
LoRA alpha 16
LoRA dropout 0.1

Table 6: The instruction fine-tuning hyperparameters.

B Full Results952

In addition to the results on MMLU (5-shot), BBH953

(CoT) and GSM8K (CoT) presented in Table 3, we954

present the full results on MMLU (Table 7), BBH955

(Table 8) and GSM8K (Table 9).956
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MMLU (0-shot) MMLU (5-shot)
IT 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Q
w

en
7B

VAN. 72.0 0.0 70.6 0.0 69.2 0.3 67.8 0.6 66.3 0.4 74.3 0.0 73.0 0.1 71.5 0.1 70.0 0.4 68.6 0.6

0% 72.3 0.0 71.0 0.0 69.8 0.1 68.4 0.6 66.9 0.4 74.3 0.0 73.0 0.1 71.7 0.1 70.2 0.4 68.9 0.7

25% 72.3 0.0 71.1 0.1 69.9 0.2 68.3 0.5 67.1 0.4 74.4 0.0 73.0 0.1 71.8 0.1 70.3 0.5 69.1 0.6

50% 72.2 0.0 71.0 0.1 69.8 0.2 68.4 0.6 67.1 0.5 74.4 0.0 73.1 0.1 71.9 0.1 70.5 0.5 69.1 0.7

75% 72.4 0.0 71.1 0.2 70.0 0.2 68.5 0.6 67.3 0.3 74.3 0.0 73.0 0.1 71.8 0.2 70.4 0.5 69.1 0.7

100% 72.4 0.0 71.1 0.1 70.0 0.2 68.6 0.5 67.4 0.3 74.3 0.0 73.1 0.0 71.9 0.1 70.5 0.5 69.2 0.6

L
la

m
a

8B

VAN. 64.2 0.0 62.6 0.1 60.9 0.2 59.4 0.0 57.5 0.2 65.8 0.0 64.5 0.1 63.1 0.1 62.1 0.3 60.8 0.5

0% 65.1 0.0 63.6 0.2 61.9 0.4 60.3 0.1 58.5 0.3 65.8 0.0 64.6 0.2 63.3 0.1 62.2 0.2 60.7 0.5

25% 64.4 0.0 63.0 0.2 61.5 0.4 60.0 0.3 58.4 0.4 65.9 0.0 64.8 0.3 63.4 0.2 62.3 0.2 60.9 0.7

50% 64.3 0.0 62.9 0.2 61.6 0.4 60.2 0.2 58.6 0.3 65.9 0.0 64.8 0.2 63.6 0.1 62.5 0.2 61.0 0.6

75% 64.9 0.0 63.5 0.2 62.0 0.5 60.5 0.1 58.8 0.4 65.7 0.0 64.7 0.2 63.6 0.1 62.5 0.2 61.2 0.5

100% 64.7 0.0 63.4 0.2 61.9 0.5 60.6 0.1 58.7 0.3 66.0 0.0 64.8 0.3 63.7 0.1 62.5 0.3 61.2 0.5

Q
w

en
72

B

VAN. 83.1 0.0 81.7 0.2 80.5 0.2 78.9 0.3 77.3 0.3 85.7 0.0 84.5 0.2 83.0 0.3 81.8 0.3 80.3 0.4

0% 83.8 0.0 82.4 0.1 81.1 0.2 79.5 0.3 77.9 0.3 85.8 0.0 84.6 0.2 83.1 0.3 82.0 0.2 80.5 0.5

25% 83.7 0.0 82.3 0.1 81.1 0.3 79.6 0.4 78.0 0.2 85.7 0.0 84.6 0.3 83.1 0.3 82.0 0.3 80.5 0.6

50% 83.6 0.0 82.3 0.1 81.1 0.3 79.7 0.3 78.2 0.2 85.7 0.0 84.7 0.3 83.1 0.3 82.0 0.3 80.7 0.6

75% 83.7 0.0 82.4 0.2 81.2 0.2 79.9 0.3 78.3 0.2 85.8 0.0 84.7 0.3 83.2 0.3 82.1 0.3 80.7 0.5

100% 83.8 0.0 82.4 0.1 81.2 0.2 80.0 0.3 78.3 0.2 85.8 0.0 84.8 0.2 83.2 0.3 82.1 0.4 80.6 0.6

L
la

m
a

70
B

VAN. 74.4 0.0 72.8 0.2 71.1 0.1 69.0 0.2 67.3 0.3 75.8 0.0 74.1 0.1 72.2 0.2 70.2 0.4 68.5 0.4

0% 75.7 0.0 74.0 0.3 72.6 0.2 70.8 0.1 69.5 0.3 78.1 0.0 76.7 0.3 74.9 0.3 73.0 0.4 71.4 0.5

25% 75.5 0.0 73.8 0.3 72.4 0.3 70.7 0.1 69.2 0.3 77.9 0.0 76.5 0.2 74.8 0.4 72.8 0.3 71.2 0.4

50% 75.4 0.0 73.9 0.3 72.7 0.1 70.9 0.1 69.6 0.3 78.0 0.0 76.6 0.3 74.8 0.4 73.0 0.4 71.6 0.4

75% 75.6 0.0 74.1 0.2 72.8 0.2 71.0 0.1 69.7 0.3 78.0 0.0 76.8 0.3 75.1 0.3 73.4 0.4 71.8 0.4

100% 76.6 0.0 75.1 0.2 73.7 0.1 72.0 0.0 70.7 0.3 78.6 0.0 77.3 0.2 75.6 0.3 74.1 0.4 72.8 0.3

Table 7: Results of evaluating the fine-tuned models under various instruction perturbations using the MMLU
evaluation benchmark. Accuracy is reported on both the original evaluation instructions (0%) and the various
perturbed evaluation instructions. Bold values denote the best performance across each model.

BBH (CoT) BBH (direct)
IT 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Q
w

en
7B

VAN. 66.7 0.1 63.9 0.4 60.8 0.4 57.7 0.5 54.9 0.5 31.0 0.1 27.0 0.1 22.9 0.4 18.6 0.2 14.5 0.4

0% 66.8 0.0 62.7 0.2 58.7 0.2 54.3 0.5 50.6 0.6 50.5 0.0 48.9 0.2 47.0 0.3 45.1 0.6 43.2 0.7

25% 66.7 0.0 63.3 0.3 59.7 0.2 55.9 0.5 52.4 0.6 50.2 0.0 48.4 0.1 46.5 0.2 44.4 0.7 42.3 0.7

50% 67.0 0.0 64.0 0.2 61.1 0.3 57.7 0.6 54.8 0.6 50.2 0.0 48.3 0.2 46.3 0.2 43.9 0.5 41.9 0.7

75% 67.4 0.0 63.9 0.3 60.7 0.2 57.6 0.4 54.7 0.6 50.4 0.0 48.7 0.2 46.9 0.3 44.9 0.7 43.2 0.7

100% 66.6 0.0 63.4 0.2 60.3 0.3 56.8 0.4 53.8 0.7 50.0 0.0 48.2 0.2 46.4 0.2 44.1 0.3 42.1 0.5

L
la

m
a

8B

VAN. 64.5 0.1 62.5 0.3 60.2 0.4 57.5 1.0 55.0 0.9 45.7 0.1 44.4 0.3 43.0 0.2 41.4 0.3 40.1 0.7

0% 63.0 0.4 63.4 0.1 61.1 0.3 58.7 0.7 56.5 0.6 45.1 0.4 46.0 0.3 44.2 0.3 42.3 0.1 40.7 0.5

25% 66.0 0.1 60.5 0.4 60.0 1.9 59.1 0.4 56.5 0.6 47.4 0.1 44.3 0.3 43.6 0.8 42.6 0.3 41.3 0.4

50% 62.7 0.0 64.4 0.3 62.0 0.5 59.3 0.5 56.7 0.5 46.1 0.1 46.3 0.2 44.6 0.2 42.8 0.3 41.5 0.3

75% 62.9 0.4 64.1 0.3 61.8 0.3 59.1 0.5 56.3 0.5 45.3 0.5 45.8 0.1 44.3 0.4 42.4 0.1 40.9 0.3

100% 66.2 0.1 64.2 0.5 62.0 0.5 59.2 0.8 56.8 0.4 47.3 0.1 45.8 0.3 44.5 0.2 42.6 0.1 41.2 0.5

Q
w

en
72

B

VAN. 82.7 0.1 79.2 0.2 75.4 0.2 71.7 0.4 68.1 0.8 26.4 0.1 23.8 0.4 21.2 0.4 18.4 0.4 15.8 0.2

0% 83.8 0.1 80.5 0.2 77.3 0.3 73.8 0.5 70.8 1.1 66.6 0.1 64.5 0.2 62.2 0.2 59.7 0.4 57.6 0.8

25% 83.8 0.1 80.4 0.2 77.4 0.4 74.0 0.8 70.8 1.0 66.5 0.0 64.5 0.2 62.2 0.2 59.7 0.6 57.5 0.8

50% 83.3 0.1 80.2 0.2 77.2 0.2 73.7 0.6 70.6 0.8 66.5 0.1 64.4 0.3 62.2 0.5 59.9 0.6 57.6 0.7

75% 83.6 0.0 80.3 0.2 77.2 0.3 73.9 0.6 70.4 0.8 66.5 0.0 64.5 0.2 62.2 0.5 60.0 0.6 57.6 0.8

100% 83.6 0.0 80.4 0.2 77.3 0.2 73.8 0.4 70.8 0.8 67.1 0.0 65.0 0.3 62.7 0.5 60.3 0.4 58.0 0.6

L
la

m
a

70
B

VAN. 78.3 0.1 75.7 0.2 73.3 0.2 70.3 0.4 68.1 0.4 58.1 0.1 56.5 0.3 54.9 0.5 53.0 0.8 51.3 0.8

0% 81.8 0.1 78.9 0.1 75.9 0.2 72.7 0.4 70.1 0.4 63.9 0.1 61.7 0.2 59.2 0.5 56.3 0.7 53.7 0.4

25% 81.4 0.1 78.7 0.1 76.0 0.3 72.8 0.3 70.2 0.5 63.2 0.1 61.1 0.2 58.9 0.6 56.5 0.4 54.2 0.5

50% 81.2 0.1 78.5 0.2 75.9 0.3 73.1 0.4 70.6 0.5 63.1 0.1 61.2 0.3 58.9 0.6 56.2 0.5 54.0 0.7

75% 81.5 0.1 78.9 0.3 76.3 0.2 73.3 0.4 70.6 0.7 63.4 0.1 61.4 0.3 59.1 0.7 56.6 0.5 54.4 0.7

100% 81.7 0.1 79.0 0.2 76.4 0.4 73.3 0.5 70.8 0.6 64.7 0.0 62.7 0.3 60.3 0.8 57.9 0.3 55.4 0.7

Table 8: Results of evaluating the fine-tuned models under various instruction perturbations using the BBH evaluation
benchmark. The average exact match (EM) is reported on both the original evaluation instructions (0%) and the
various perturbed evaluation instructions. Bold values denote the best performance across each model.
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GSM8K (CoT) GSM8K (direct)
IT 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Q
w

en
7B

VAN. 79.9 0.2 12.5 0.3 22.9 0.6 33.0 1.4 42.7 1.2 22.6 0.0 5.2 0.3 8.1 0.6 10.6 1.0 13.9 0.6

0% 80.6 0.0 12.6 0.5 24.5 0.5 34.6 1.0 44.6 1.2 25.0 0.0 4.9 0.3 8.3 0.6 11.8 0.5 16.2 0.9

25% 81.1 0.0 12.6 0.4 24.7 0.5 34.5 1.2 44.2 1.4 24.9 0.0 4.9 0.3 8.4 0.6 11.8 0.4 16.1 1.1

50% 80.6 0.0 12.6 0.5 24.6 0.5 34.3 0.7 44.5 1.1 25.3 0.0 4.9 0.2 8.4 0.7 11.7 0.4 16.1 0.9

75% 80.5 0.0 12.8 0.5 24.4 0.6 34.0 0.9 44.4 0.9 24.9 0.0 4.8 0.3 8.6 0.6 12.1 0.3 16.2 1.1

100% 80.0 0.0 12.6 0.2 24.8 0.6 34.3 1.1 45.1 0.8 25.7 0.0 5.0 0.3 8.7 0.5 12.1 0.3 16.3 0.9

L
la

m
a

8B

VAN. 56.3 0.3 9.0 0.7 16.3 0.6 23.5 0.6 30.5 1.2 14.3 0.1 3.9 0.3 5.6 0.7 7.3 0.6 8.1 0.5

0% 58.4 0.0 9.2 0.1 16.6 0.7 23.8 1.0 28.1 1.0 14.3 0.0 3.6 0.2 5.0 0.3 6.7 0.5 7.4 1.0

25% 58.5 0.0 9.4 0.2 16.8 0.8 23.9 0.7 27.7 0.9 14.6 0.0 3.9 0.1 5.0 0.4 6.6 0.4 7.3 1.0

50% 58.2 0.0 9.2 0.2 16.9 0.6 24.0 0.9 27.8 1.0 14.1 0.0 3.5 0.1 5.0 0.4 6.6 0.4 7.5 1.1

75% 57.4 0.0 9.1 0.2 16.9 0.7 23.8 0.8 27.6 1.2 14.1 0.0 3.7 0.1 5.2 0.4 6.6 0.4 7.5 1.1

100% 58.4 0.0 9.2 0.2 17.1 0.6 23.7 1.2 27.8 1.5 14.2 0.0 3.6 0.0 5.3 0.3 6.9 0.3 7.8 1.0

Q
w

en
72

B

VAN. 88.8 0.2 14.9 0.5 28.1 0.7 40.8 1.0 53.0 1.5 43.2 0.0 7.9 0.3 14.0 0.7 19.7 1.0 25.5 1.0

0% 90.0 0.2 15.3 0.4 29.0 0.4 42.7 1.1 55.0 1.7 44.8 0.2 8.3 0.7 15.3 0.8 21.3 0.9 27.6 1.0

25% 89.9 0.2 15.3 0.5 29.6 0.4 43.0 1.1 55.5 1.6 44.7 0.1 8.4 0.6 15.1 0.5 21.1 0.7 27.5 1.0

50% 89.9 0.2 15.4 0.4 29.3 0.5 42.8 1.4 55.5 1.9 44.2 0.1 8.3 0.5 15.1 0.4 21.4 0.6 27.5 0.9

75% 90.3 0.3 15.6 0.3 29.6 0.7 42.9 1.7 55.5 2.3 43.7 0.1 8.5 0.6 15.4 0.5 21.4 0.6 27.6 0.8

100% 90.2 0.1 15.6 0.5 29.7 0.7 43.4 1.8 55.9 2.0 44.0 0.2 8.4 0.5 15.3 0.5 21.4 0.7 27.5 1.0

L
la

m
a

70
B

VAN. 80.2 0.1 13.0 0.3 24.1 0.5 34.7 1.5 43.9 0.9 34.4 0.2 6.6 0.6 10.9 0.6 14.7 1.0 19.1 1.2

0% 82.3 0.2 13.7 0.7 25.4 0.4 37.0 1.0 47.5 1.0 35.3 0.1 6.8 0.5 11.8 0.4 16.2 0.6 20.7 0.8

25% 82.1 0.2 14.0 0.6 25.5 0.8 37.0 1.3 47.7 0.5 35.0 0.1 7.0 0.5 11.7 0.7 16.3 0.7 20.8 0.8

50% 80.2 0.3 13.5 0.6 25.6 0.7 37.0 1.4 47.6 1.0 34.3 0.2 7.0 0.5 11.8 0.8 16.4 0.5 20.8 0.8

75% 81.6 0.2 13.8 0.4 25.6 0.7 37.3 1.1 48.2 0.7 34.4 0.1 7.1 0.6 11.9 0.5 16.6 0.9 20.8 0.8

100% 82.0 0.2 13.7 0.4 26.1 0.6 38.1 1.8 48.8 1.2 34.5 0.2 7.0 0.5 12.1 0.9 16.4 0.6 21.4 0.7

Table 9: Results of evaluating the fine-tuned models under various instruction perturbations using the GSM8K
evaluation benchmark. The exact match (EM) is reported on both the original evaluation instructions (0%) and the
various perturbed evaluation instructions. Bold values denote the best performance across each model.
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