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Abstract

Parameter-Efficient Fine-tuning (PEFT) offers a scalable and resource-efficient
solution for adaptating large models. Despite its popularity, the mechanisms
underlying the performance of PEFT in terms of empirical risk and generalization
remain underexplored. In this paper, we provide new insights into fine-tuning by
analyzing PEFT through the lens of kernel methods, specifically by examining
the relationship between the Neural Tangent Kernel (NTK) spectrum and the
effectiveness of fine-tuning. Our findings reveal a strong correlation between the
NTK spectrum and the model’s adaptation performance, shedding light on both
empirical risk and generalization properties. We evaluate our theory with Low Rank
Adaptation (LoRA) on large language models. These insights not only deepen
our understanding of LoRA but also offer a novel perspective for enhancing other
PEFT techniques, paving the way for more robust and efficient adaptation in large
language models.

1 Introduction

With the emergence of large language models (LLMs) [1, 2], their application to various NLP tasks
has been on the rise. However, due to the enormous number of trainable parameters in these models,
full fine-tuning can be expensive in terms of time and other computational costs. To address this issue,
several fine-tuning approaches have been proposed [3]. To further reduce the computational burden
and improve efficiency, Parameter-Efficient Fine-tuning (PEFT) methods have gained popularity
[4–10]. These methods aim to reduce the number of trainable parameters while maintaining the
model’s performance.

In this paper, we look at adaptation in large models through the lens of Neural Tangent Kernel
(NTK) approximations and show that the spectral behaviour of the NTK is crucial in determining the
performance of fine-tuning. We used the promising PEFT, Low Rank Adaptation (LoRA), to validate
our results [11]. Our contributions are:

• We formulate the fine-tuning problem as a neural tangent kernel regression and use the
spectrum of the neural tangent kernel of the pretrained model to derive bounds on the
empirical risk of the end result of fine-tuning.

• Through extensive experiments, we validate our theoretical results. We evaluate the condition
number of NTK as an at-initialization metric, to anticipate the performance of LoRA before
training. Even though our experiments focus on LoRA, the technical tools we introduce
could be equally used in the context of other PEFT methods.
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2 Benefit of fine-tuning in the linearized regime

Let the pre-trained model be fθ . We call the model linearized or in the lazy regime, if during training,
the change of the network can be approximated by its first-order Taylor expansion [12, 13] as in

fθt
(x) ≈ fθt−1

(x) +
〈
∇θfθt−1

(x),θt − θt−1

〉
, (1)

where θt is the collection of all trainable parameters at step t of optimization. For instance, in SGD,
the update to parameters at step t is given by

θt+1 − θt = ηEx∼D
T
[∇θL(fθt

(x),y)]

= ηEx∼D
T
[∇θfθt

(x)∇fL (fθt
(x),y)] . (2)

Therefore, we have

fθt+1 (x
′)− fθt (x

′) ≈ ⟨∇θfθt(x
′),θt+1 − θt⟩

= η∇θfθt
(x′)

⊤ · Ex∼D
T
[∇θfθt

(x)∇fL (fθt
(x),y)]

= ηEx∼D
T

[
∇θfθt

(x′)
⊤ · ∇θfθt

(x)∇fL (fθt
(x),y)

]
= ηEx∼D

T
[kt (x,x

′)∇fL (fθt
(x),y)] . (3)

This indicates that the learning dynamics of SGD is equivalent to NTK regression when the kernel
is chosen to be the NTK, i.e., kt (x,x

′) = ∇θfθt (x
′)
⊤ ∇θfθt(x) [12]. The NTK at t = 0 defines

a neural tangent space to the pre-trained model fθ0
. Often, during fine-tuning, the evolution of

parameters is minimal and therefore the fine-tuned model closely follows regression on the tangent
space. In this regime, training follows the linear dynamic in (3). The benefit of linearized models for
fine-tuning is twofold. First, due to the laziness of the model we have kt (x,x

′) ≈ k
0
(x,x′) [13]. In

other words, k
0
(x,x′) can act as an at-initialization metric to predict the performance of fine-tuning.

Second, the kernel that appears in the gradient descent steps in (3) generalizes to values of x′ outside
the dataset DT . This could allow investigating the generalization properties of fine-tuning by looking
at the properties of the NTK [14–18].

3 Fine-tuning meets neural tangent kernel regression

We formally define the fine-tuning problem as a regularized function estimation in the reproducing
kernel Hilbert space (RKHS), H, generated by the NTK, k(x,x′) = ∇fθ0(x)

⊤∇fθ0(x
′). In fine-

tuning, we are given the pre-trained model fθ0(·) : Rd → Rc, the target dateset DT = (xi,yi)
n
i=1

for the downstream task, with L(·, ·) : Rc × Rc → R denoting a loss function. The fine-tuned
model is denoted by fθ∗(·) : Rd → Rc which is obtained by minimizing the typical empirical risk
minimization problem

θ∗ = minimize
θ

R(θ), (4)

where

R(θ) =
1

n

n∑
i=1

L(fθ(xi),yi). (5)

Assuming that the fine-tuning is in the linearized regime, fθ∗(·) can be approximated by its dual
in the tangent space. In particular, the empirical risk minimization (4) is approximated by kernel
regression when the kernel is NTK. Moreover, fine-tuning the model using mean square error (MSE)
is also equivalent and can be achieved by solving the optimization problem presented in (6). Let H
be the reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel function
k(·, ·), i.e.,

H =

{
f(·) =

n∑
i=1

αik(·,xi)

}
.

Assuming the solution lies in or close to this Hilbert space, then as an alternative to (4), we solve

minimize
f∈H

1

n

∑
(x,y)∈DT

∥f (x)− y∥22 + σ∥f∥2H, (6)
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where σ > 0 is a regularization parameter and ∥ · ∥H is the norm corresponding to the inner product
⟨·, ·⟩H defined on the RKHS H. We thus effectively formulate the fine-tuning problem as a regularized
function estimation in the RKHS, H, generated by the NTK, k(x,x′) = ∇fθ0

(x)⊤∇fθ0
(x′).

According to the representer’s theorem [19], the problem (6) on training dataset DT = {xi,yi}ni=1
possesses the closed-form solution

f∗(·) =
n∑

i=1

αik (·,xi) = α⊤K(·,X), (7)

where K(·,X) = [k(·,x1), . . . ,k(·,xn)] ∈ R1×n . Substituting (7) in (6), we have

minimize
α

E(x,y)∼DT

∥∥α⊤K(·,X)− y
∥∥2 + σ∥f∥2H, (8)

which is a convex problem with α∗ = [K (X,X) + σI]
−1

y as the solution. Equivalently,

f∗(·) = K (·,X) [K (X,X) + σI]
−1

y, (9)

where X = [x1,x2, . . . ,xn]
⊤ is a n× d matrix, y = [y1,y2, . . . ,yn]

⊤ is a n× 1 matrix for binary
classification, n is the sample size of the training dataset and [K(X,X)]i,j = k(xi,xj). For the sake
of brevity, hereafter, we use K(X,X) and K interchangeably.
Theorem 1. The empirical risk is bounded as

σ ∥y∥22
σ + λmax(K)

≤ R(θ) ≤
σ ∥y∥22

σ + λmin(K)
(10)

where λmin(K) and λmax(K) are the minimum and maximum eigenvalues of K(X,X), respectively.

Proof. Let UΣU⊤ denote the eigenvalue decomposition of K (X,X), where Σ =
Diag (λmin(K), . . . , λmax(K)) and U⊤U = I. Then

R(θ) =
1

n

n∑
i=1

L(fθ(xi),xi)

=
1

n

n∑
i=1

∥∥∥yi −K (xi,X) [K (X,X) + σI]
−1

y
∥∥∥2
2

=
1

n

∥∥∥y −K (X,X) (K (X,X) + σI)
−1

y
∥∥∥2
2

=
1

n

∥∥∥(I−K (X,X) (K (X,X) + σI)
−1

)
y
∥∥∥2
2

=
1

n

∥∥(I−UΣU⊤(UΣU⊤ + σI)−1
)
y
∥∥2
2

=
1

n

∥∥(I−UΣ(Σ+ σI)−1U⊤)y∥∥2
2

=
1

n

∥∥U (
I−Σ(Σ+ σI)−1

)
U⊤y

∥∥2
2

=
1

n

∥∥(I−Σ(Σ+ σI)−1
)
U⊤y

∥∥2
2
. (11)

Since I−Σ(Σ+ σI)−1 is a diagonal matrix, we have

σ ∥y∥22
σ + λmax(K)

≤ R(θ) ≤
σ ∥y∥22

σ + λmin(K)
. (12)

Theorem 1 conveys that the spectrum of the NTK directly affects the empirical risk. We study
the regularized condition number κ(K + σI) = λmax(K)+σ

λmin(K)+σ as an at-initialization metric for the
performance of fine-tuning.
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Dataset Selected Layers Selected Parameters Condition Number Train Loss Evaluation Loss Evaluation Accuracy

CoLA

{0} {Wq,Wv} 11,618 0.5271 0.5265 73.15
{0,11} {Wq,Wv} 9,490 0.5174 0.5293 73.15

{0,5,11} {Wq,Wv} 7,503 0.5093 0.5272 73.44
{0,5,11} {Wk} 2,320 0.5128 0.5357 73.25

SST-2

{0} {Wq,Wv} 5,195 0.4794 0.3871 83.48
{0,11} {Wq,Wv} 6,413 0.4677 0.3916 82.79

{0,5,11} {Wq,Wv} 6,792 0.5078 0.3913 82.68
{0,5,11} {Wk} 450.64 0.4717 0.3893 83.60

Yelp

{0} {Wq,Wv} 274 0.29 0.2597 88.20
{0,11} {Wq,Wv} 4,167 0.2882 0.2596 88.24

{0, 5, 11} {Wq,Wv} 1,336 0.2885 0.2596 88.21
{0,5,11} {Wk} 39.33 0.2865 0.2596 88.23

IMDb

{0} {Wq,Wv} 179 0.3512 0.2702 89.56
{0,11} {Wq,Wv} 5,899 0.3597 0.2717 89.50

{0, 5, 11} {Wq,Wv} 1,277 0.3709 0.2727 89.49
{0,5,11} {Wk} 9.605 0.3642 0.2719 89.49

Table 1: RoBERTa-base models performance on GLUE tasks, condition number of the NTK, train
loss, and evaluation loss at one snapshot of the training at 10-th epoch. LoRA with r = 8 is used
for fine-tuning. Condition number is calculated as κ(K+ σI) = λmax(K)+σ

λmin(K)+σ , and σ = 1e−4 is fixed
among all tasks.

4 Experiments

In our experiments, we implement LoRA on RoBERTa base and evaluate its performance on the
GLUE benchmark [20] (including CoLA [21] and SST-2 [22] tasks), IMDb [23], and Yelp [24]
datasets. The Yelp dataset originally contains reviews with ratings from 1 to 5. To convert it into a
binary classification task, we consider reviews with ratings less than 3 as label 0 (negative sentiment)
and those with ratings greater than or equal to 3 as label 1 (positive sentiment). For all experiments,
we use LoRA on RoBERTa base from the HuggingFace Transformers library [25], and report its
performance on different tasks using NVIDIA Tesla V100 GPUs.

In the LoRA framework, for a pre-trained weight matrix W0 ∈ Rm×p, the update is

W = W0 +BA, (13)

where B ∈ Rm×r and A ∈ Rr×p are the learnable low-rank matrices with r representing the rank of
the adaptation and is much smaller than both m and p. During the fine-tuning process, the pre-trained
weight matrix W0 is kept fixed, while the optimization focuses solely on updating the low-rank
matrices B and A. The total number of trainable parameters for each of the query (Wq), key (Wk),
and value (Wv) matrices per selected layer is (m+ p)× r. In our experiments, we apply LoRA with
r = 8 which has (m + p) × r = 2 × 768 × 8 trainable parameters per selected layer for each of
the query, key, and value projection matrices in the self-attention mechanism in the RoBERTa base
model.

4.1 NTK evaluation

The hypothesis of this paper is that in the linearized lazy regime of large models, the NTK is assumed
constant during training and fine-tuning searches the tangent space during SGD. We verify our
proposition that by calculating the condition number of the NTK matrix for the LoRA model at
initialization, we can predict the generalization error, including evaluation loss and accuracy.

Table 1 presents train loss, evaluation loss, accuracy, condition number of the NTK before fine-tuning,
based on the snapshot at epoch 10. We vary LoRA parameters across different layers ({0}, {11},
{0,11}, {0,5,11}) for query and value parameters, and layers {0,5,11} for key parameters, across
various tasks and datasets. We collected X = [x1,x2, . . . ,xn]

⊤ using n = 32 samples, randomly
selected from the training datasets and computed k(xi,xj) with respect to trainable parameters, A
and B of LoRA. The final empirical NTK matrix is K(X,X) ∈ R32×32. Note that the number of
samples used for calculation of the empirical NTK is orders of magnitude smaller than the training
dataset for sampling. This shows that the results remain valid even with a sketch of the full kernel.
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Figure 1: (a)-(b) Illustrate the positive correlation between the convergence rate of optimization steps
of LoRA over 10 epochs and κ(K+ σI) of NTK at initialization. {Wq,Wv} of layers {0, 5, 11}
are fine-tuned. (c) Illustrates the negative correlation between evaluation accuracy after 10 epochs of
training and condition number of NTK. LoRA with r = 8 is used to fine-tune {Wk} of the layers
{0, 5, 11}.

This finding highlights the great potential of kernel methods for large language models (LLMs),
particularly in terms of efficiency.

Training time and NTK calculation time are reported in Table 2 for fine-tuning {Wk} in layers
{0, 5, 11}. In this scenario, the total number of trainable parameters (TTPs) is 0.628M. It is worth men-
tioning that the classifier layer contains the majority of these parameters. From TTPs, we selected only
the LoRA parameters for the NTK calculation, resulting in 36.8K parameters. As shown in the table,
fine-tuning, even with just 10 epochs, has significantly higher computational overhead than computing
the NTK. This finding supports the advantage of the present approach in terms of time complexity
when comparing the risks of different datasets without training. Additionally, since Yelp and IMDb
are larger datasets, it is evident that fine-tuning on them requires more time compared to the others.

Dataset Fine-tuning Time NTK Calculation Time
CoLA 187 33
SST-2 794 63
Yelp 46,096 245

IMDb 1,541 55

Table 2: Fine-tuning time(s), NTK calculation
time(s), {Wk} of layers {0, 5, 11} are fine-tuned.
In all datasets, only 32 random samples from the
training set are used calculating the NTK.

Figure 1(a)-(b), illustrates the positive correla-
tion between condition number of the NTK ma-
trix at initialization and training loss for different
tasks. In all datasets, the attention parameters
of layers {0, 5, 11} are fine-tuned and evalua-
tion accuracy was reported. Although for CoLA,
it is customary to report Matthew’s correlation
coefficients [26], we adhere to reporting the eval-
uation accuracy for all tasks in Figure 1(c), to
maintain consistency in the evaluation metric
across different datasets. Figure 1(c) starkly il-
lustrates an inverse relationship between the condition number of the NTK and the model’s evaluation
accuracy. In our experiments we observed that λmin(K) is almost always close to zero and the regular-
ized condition number, κ(K+ σI), is tracing the spectral norm or λmax(K). For instance, the CoLA
task, which exhibits highest training loss, also shows the largest condition number. This suggests that
by computing the NTK matrix before training, we can identify which tasks are well-conditioned, i.e.,
lower conditional number indicates lower training and evaluation loss.

5 Conclusion

Our theoretical analysis demonstrates that the empirical risk is bounded by the condition number
of NTK. This gives an at-initialization anticipation of fine-tuning performance, at a fraction of the
computational cost. More precisely, to achieve this, we propose to calculate the condition number of
the NTK using only the LoRA parameters, which can be done significantly quicker than fine-tuning.
By comparing these condition numbers, we can predict which tasks will have smaller empirical loss
without actually performing the fine-tuning process. This approach provides a quick and efficient
way to assess the potential performance of the model on different tasks, saving valuable time and
computational resources.
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A Model and Dataset

RoBERTa base incorporates several key modifications to the pre-training process, such as using larger
batch sizes, longer sequences, and more diverse data than its antecedents like BERT [27]. Despite its
relatively compact size of 125 million parameters, RoBERTa base has proven to be one of the most
powerful models for various NLP tasks, including text classification, question answering, and named
entity recognition, especially on the GLUE benchmark.

The GLUE benchmark provides a comprehensive evaluation of a model’s performance across various
NLP challenges, assessing its ability to understand and reason about language in different contexts.
The IMDb dataset is a large dataset for binary sentiment classification, containing 50,000 highly polar
movie reviews from the Internet Movie Database (IMDb). The Yelp dataset contains customer reviews
from Yelp, a popular platform for crowd-sourced reviews about businesses, primarily restaurants.
Table 3 shows specific hyperparameters for RoBERTa base across various benchmarks, including
GLUE tasks (CoLA, SST-2), Yelp, and IMDb.

Dataset CoLA SST-2 Yelp IMDb
Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Max Sequence Length 512
LoRA Rank r 8
LoRA α 8
Number of Epochs 10
Batch Size 32 16 32 16
Learning Rate 4e-4 5e-4 4e-4 4e-4

Table 3: Hyperparameters used for RoBERTa base on various benchmarks, including GLUE (CoLA,
SST-2), Yelp, and IMDb
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