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ABSTRACT

The effectiveness of modern machine learning models for various tasks is funda-
mentally dependent on the presumption that training and test data are independent
and identically distributed (i.i.d.). However, in some real-world scenarios, i.i.d.
is a luxury, i.e., distribution shifts often exist between training and test data. Fac-
torizable joint shift is a new type of distribution shift, and unlike marginal shift
(e.g., label shift or covariate shift) with strong assumptions, it imposes fewer con-
straints and provides broader applicability. However, unsupervised domain adap-
tation under factorizable joint shift is an unresolved and understudied problem.
Previous methods easily collapse to trivial solutions, require the subjective selec-
tion of fixed constants, and fail to ensure the solution’s existence and uniqueness
when the number of categories exceeds two. To address this problem, we propose
a principled method to find a non-trivial solution in a tractable manner. We first
re-represent factorizable joint shift as a Label-Covariate Shift Chain, where label
shift occurs first and then covariate shift occurs, which makes factorizable joint
shift more tractable. Then, Covariate Shift Minimization Principle is introduced
on the Label-Covariate Shift Chain to obtain a non-trivial solution. Furthermore,
we propose a method to generate real-world factorizable joint shift datasets using
Label-Covariate Shift Chain, and these datasets can serve as benchmarks to eval-
uate the effectiveness of generalization methods. Finally, the effectiveness of the
proposed method is verified using real-world data for both accuracy improvement
and confidence calibration tasks. We believe our exploration of factorizable joint
shift will help modern machine learning models handle a wider variety of complex
data scenarios, advancing the broader application of AI.

1 INTRODUCTION

Modern machine learning models, especially deep learning, have achieved tremendous success on
various tasks (LeCun et al., 2015; Jiang et al., 2023). However, this success depends heavily on
the fact that training data (or source domain) and test data (or target domain) are independent and
identically distributed (i.i.d.) (Shao et al., 2024). In some real-world scenarios—such as medical
diagnosis across different populations, image recognition under varying lighting conditions, or dis-
ease prediction during an epidemic—the i.i.d. assumption does not hold, i.e., there is a distribution
shift between the target domain and the source domain. This distribution shift will cause the trained
model to experience catastrophic performance degradation on the target domain (Liang et al., 2025).
Therefore, it is necessary to specialize methods to improve the model’s generalization under distri-
bution shift.

Without any assumption on the distribution shift, it’s impossible to estimate how well the model
would perform on the unlabeled new data (Chen et al., 2022; Tasche, 2022). Therefore, previ-
ous work mainly makes assumptions from two directions: 1) Label shift, where label distribution
changes but the feature distribution under the label does not change (Lipton et al., 2018; Azizzade-
nesheli et al., 2019; Zhang et al., 2013; Guo et al., 2020; Tian et al., 2023; Wen et al., 2024); 2)
Covariate shift, where the feature distribution changes but the label distribution under the feature
condition does not change (Kimura & Hino, 2024; Sugiyama et al., 2007; Segovia-Martı́n et al.,
2023; Cortes et al., 2010; Yamada et al., 2013; Rhodes et al., 2020; Fang et al., 2023; 2020). Al-
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though label shift and covariate shift usefully characterize specific data distribution shifts, their
underlying assumptions are overly restrictive. For example, they are inadequate in real-world sce-
narios where both label and covariate distributions change. He et al. (2022) propose a distribution
shift assumption closer to the naive joint shift (i.e., no any assumption on joint distribution), named
Factorizable Joint Shift, in which both the label distribution and the covariate distribution change
mutually independently. Compared to label shift or covariate shift, factorizable joint shift imposes
fewer constraints, covers more shift scenarios (including label and covariate shift), and has wider
applicability. It offers a more flexible framework that better reflects some real-world data shift
scenarios, e.g., medical diagnoses across diverse populations (covariate shift) amid incidence rate
changes (label shift) during an epidemic.

However, how to generalize the model’s performance under factorizable joint shift is an open prob-
lem, especially in the unsupervised domain adaptation scenario where the target domain’s labels are
not available. He et al. (2022) propose Joint Importance Aligning to address this problem, which
determines the joint distribution’s density ratio by solving a optimization with two additional deep
learning models. However, He et al. (2022); Tasche (2023; 2022) indicated that the proposed method
easily collapses to a trivial solution in the unsupervised domain adaptation if no additional assump-
tions are made, which limits its practicality. Tasche (2022) proposed an alternative method to Joint
Importance Alignment from the perspective of measure theory. However, this method requires users
to subjectively select fixed constants to solve the equation, and when the number of categories is
greater than two, the existence and uniqueness of the solution become very complicated.

Therefore, a natural and necessary question is studied: How to find a non-trivial solution in a
tractable manner for unsupervised domain adaptation under factorizable joint shift? To address
this, we first re-represent factorizable joint shift as a Label-Covariate Shift Chain, where label shift
occurs first and then covariate shift occurs. This representation’s benefit is that it makes factoriz-
able joint shift tractable and has the potential to leverage well-studied solutions for label shift and
covariate shift to address factorizable joint shift. Then, an additional prior is introduced on the
Label-Covariate Shift Chain: Covariate Shift Minimization Principle, which is used to determine
non-trivial solutions. In addition, a real-world factorizable joint shift datasets generation method
is proposed by using the Label-Covariate Shift Chain, and the generated datasets can be used to
evaluate the effectiveness of generalization methods.

Our contributions can be summarized as follows:

• We prove that factorizable joint shift can be represented as a Label-Covariate Shift Chain,
where label shift occurs first and then covariate shift occurs. This representation’s benefit is
that it makes factorizable joint shift tractable and has the potential to leverage well-studied
solutions for label shift and covariate shift to address factorizable joint shift.

• Covariate Shift Minimization Principle is proposed in combination with Label-Covariate
Shift Chain to determine non-trivial solutions for unsupervised domain adaptation under
factorizable joint shifts.

• A real-world factorizable joint shift datasets generation method is proposed by using the
Label-Covariate Shift Chain. The generated datasets can be used as benchmarks to evaluate
the effectiveness of generalization methods.

2 BACKGROUND AND RELATED WORK

Consider a K-class classification problem where X ∈ X denotes the covariate variable and Y ∈ Y
denotes the label variable, with X ⊂ Rd and Y = {1, 2, . . . ,K}. Let ps(·) and pt(·) denote
the probability density (for continuous variables, e.g., X and X|Y ) or probability measure (for
discrete variables, e.g., Y and Y |X) on the source domain and target domain, respectively. Let
Ds = {xi, yi}1≤i≤Ns

and Dt = {xj}1≤j≤Nt
represent the source domain data and the target

domain data, respectively, where xi (or xj) represents the observed value of X , yi represents the
observed value of Y , Ns represents the sample size of the source domain, and Nt represents the
sample size of the target domain. Note that the target domain data has no labels, so the method
studied in this paper is an unsupervised domain adaptation method.
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2.1 DISTRIBUTION SHIFT

Distribution shift refers to the situation where the joint distribution pt(X,Y ) on the target do-
main differs from the joint distribution ps(X,Y ) on the source domain. Since ps(X,Y ) =
ps(X) · ps(Y |X) = ps(Y ) · ps(X|Y ), the joint distribution ps(X,Y ) will change if any of the
components—ps(X), ps(Y |X), ps(Y ), or ps(X|Y )—undergo a change. Generally, when the un-
derlying relationships between covariates and labels change (i.e., ps(Y |X) or ps(X|Y ) changes),
generalizing the trained model becomes more complex or even impossible (Chen et al., 2022;
Tasche, 2022). Therefore, more attention is paid to marginal distribution shifts, i.e., label shift
and covariate shift, as shown in Definition 1 and Definition 2 below.
Definition 1. (Label Shift) Label shift occurs if the following two conditions are satisfied:
ps(Y ) ̸= pt(Y ) and ps(X|Y ) = pt(X|Y ).
Definition 2. (Covariate Shift) Covariate shift occurs if the following two conditions are satisfied:
ps(X) ̸= pt(X) and ps(Y |X) = pt(Y |X).
Definition 3. (Factorizable Joint Shift) Factorizable joint shift occurs if the following condition
are satisfied: pt(X,Y )

ps(X,Y ) = u(X) · v(Y ), where u(·) and v(·) are functions on X and Y .

Although label shift and covariate shift effectively describe specific types of data distribution shifts,
they fall short in scenarios where both the label and covariate distributions change. Therefore,
He et al. (2022) propose Factorizable Joint Shift, a more relaxed joint shift assumption, as shown in
Definition 3. It assumes that the joint density ratio can factorize the covariates and labels. Obviously,
label shift and covariate shift are special factorizable joint shifts, corresponding to u(X) ≡ 1 and
v(Y ) ≡ 1 respectively. Therefore, factorizable joint shift covers more shift scenarios than label shift
and covariate shift, and it has wider applicability.

2.2 UNSUPERVISED DOMAIN ADAPTATION

In the real world, the target domain’s labels are usually unavailable. Therefore, how to generalize
the model’s performance without utilizing the target domain label information is crucial. This tech-
nique is called unsupervised domain adaptation. Specifically, we need design methods to estimate
pt(Y |X) using Ds = {xi, yi}1≤i≤Ns

and Dt = {xj}1≤j≤Nt
, where Dt does not include labels.

For factorizable joint shift, He et al. (2022) propose an unsupervised domain adaptation method
named Joint Importance Aligning, which uses two deep learning models to learn u(X) and v(Y ).
Specifically, it estimates u(X) and v(Y ) by minimizing the following formula:

min
θu,θv

E
ps(X)

log
(
1 + U(X; θu)Ṽ (X; θv)

)
+ E

pt(X)
log
(
1 + 1/

(
U(X; θu)Ṽ (X; θv)

))
, (1)

where Ṽ (X; θv) = EY∼ps(Y |X)V (Y ; θv), U(X; θu) and V (Y ; θv) represent two deep learning
models, and θu and θv are the parameters of the deep learning models. Eq. 1 hopes that U(X; θu) →
u(X) and V (Y ; θv) → v(Y ), and then generalize the model using importance weighting (Kimura
& Hino, 2024). Optimizating Eq. 1 is equivalent to pt(X) =

∑
Y ps(X,Y )u(X)v(Y ) (He et al.,

2022). However, the solution of v(Y ) in this equation is not unique and easily collapses to the trivial
solution v(Y ) ≡ 1 (i.e., u(X) = pt(X)/ps(X)). Therefore, Tasche (2022) proposed an alternative
method to Joint Importance Alignment based on measure theory. However, this method requires the
subjective selection of fixed constants, and ensuring the solution’s existence and uniqueness becomes
substantially more complex when the number of categories exceeds two. Therefore, it is necessary
to study a tractable method to find a non-trivial solution for unsupervised domain adaptation under
factorizable joint shifts.

3 METHOD

This section presents a tractable method to obtain a non-trivial solution in unsupervised domain
adaptation under factorizable joint shift. Section 3.1 first proves that factorizable joint shift can be
represented as a Label-Covariate Shift Chain, where label shift occurs first and then covariate shift
occurs, which makes factorizable joint shift more tractable. Then, section 3.2 introduces Covariate
Shift Minimization Principle on the Label-Covariate Shift Chain to obtain a non-trivial solution.
Section 3.3 describes the empirical computation method for obtaining a non-trivial solution.
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3.1 LABEL-COVARIATE SHIFT CHAIN

Theorem 1. (Label-Covariate Shift Chain Theorem) If Factorizable Joint Shift occurs, then there
exists a distribution pm(X,Y ) such that:

pt(X,Y )

ps(X,Y )
= u(X) · v(Y ) =

pt(X)

pm(X)
· pm(Y )

ps(Y )
, (2)

and pm(X|Y ) = ps(X|Y ) and pm(Y |X) = pt(Y |X).

Proof. First of all, construct a joint probability density pm(X,Y ) such that: pm(X|Y ) = ps(X|Y ),
and pm(Y ) = ps(Y ) · v(Y )/C, where C is any constant greater than 0. Then, perform a covariate
shift on pm(X,Y ) to obtain a new distribution pn(X,Y ), such that: pn(Y |X) = pm(Y |X) and
pn(X) = pm(X) · u(X) · C. Therefore:

pn(X,Y )

ps(X,Y )
=

pn(X,Y )

pm(X,Y )
· pm(X,Y )

ps(X,Y )
=

pn(X)

pm(X)
· pm(Y )

ps(Y )
= u(X) · C · v(Y )

C
=

pt(X,Y )

ps(X,Y )
.

(3)
Therefore pt(X,Y ) = pn(X,Y ), i.e., Eq. 2 holds.

Remark of Theorem 1: Theorem 1 tells us that Factorizable Joint Shift can be expressed as a Label-
Covariate Shift Chain, i.e., label shift and covariate shift occur sequentially. Note that pm(X) and
pm(Y ) are unknown because u(X) and v(Y ) are unknown. Even, pm(X) and pm(Y ) are not unique
because C is uncertain. However, u(X) · v(Y ) is unique, i.e., pt(X)

pm(X) ·
pm(Y )
ps(Y ) is unique. Therefore,

we can use Theorem 1 to construct a suitable pm(X,Y ) to solve u(X) · v(Y ) or pt(Y |X).
Corollary 1. In supervised domain adaptation, from Theorem 1, it holds:

pt(X) = u(X)
∑
Y

ps(Y,X)v(Y ), (4a)

pt(Y ) = v(Y )

∫
X

ps(X,Y )u(X)dX. (4b)

In addition, solving Eq. 4 (including Eq. 4a and Eq. 4b) can obtain the unique value of u(X) ·v(Y ).
The proof is given in Appendix A.

Remark of Corollary 1: Corollary 1 states that solving Eq. 4 yields the joint density ratio
u(X)v(Y ). Careful observation reveals that: Eq. 4a corresponds to the unsupervised objective of
Joint Importance Alignment (He et al., 2022) (see Section 2.2). In practice, Eq. 4b can not be used
in unsupervised domain adaptation since pt(Y ) is unavailable. Therefore, the value of u(X)v(Y )
cannot be determined using only Eq. 4a. This is exactly the reason why the unsupervised objec-
tive of Joint Importance Alignment collapses to a trivial solution (He et al., 2022). Therefore, the
next question is how to add appropriate additional constraints based on Eq. 4a to find a non-trivial
solution.

3.2 COVARIATE SHIFT MINIMIZATION PRINCIPLE

To obtain pt(Y |X) in an unsupervised situation, additional computable constraints must be added to
Eq. 4a. If a model is trained with a distribution close to the target domain distribution, the model’s
generalization performance in the target domain will naturally be good. Based on this idea, we
propose to construct a pm(X) that is closest to pt(X), and then use pm(X,Y ) to train the model.
Since there is a covariate shift between pm(X,Y ) and pt(X,Y ), pm(Y |X) = pt(Y |X). Therefore,
the trained model approaches pt(Y |X) when it approaches pm(Y |X). Moreover, when the supports
of pm(X) and pt(X) differ substantially, methods that can learn new supports in an unsupervised
manner can be leveraged to further fine-tune the trained classifier, e.g., pseudo-label training (Hu
et al., 2021), and consistency regularization (Fan et al., 2023).

Formally, pm(X) can be constructed to close to pt(X) by optimizing the following formula:

min
θv

EX

[
L

(
pt(X),

∑
Y

ps(Y |X)ps(X)V (Y ; θv)

)]
+ λ

(
1−

∑
Y

ps(Y )V (Y ; θv)

)2

, (5)
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where L(·) is a loss function, λ is the Lagrange multiplier. The first term of Eq. 5 holds because:

pm(X) =
∑
Y

pm(X|Y )pm(Y ) =
∑
Y

ps(X|Y )ps(Y )v(Y ) =
∑
Y

ps(Y |X)ps(X)v(Y ). (6)

Eq. 6 includes the information of Eq. 4a. The second term of Eq. 5 is to ensure
∑K

y=1 pm(y) =∑K
y=1 ps(y)V (y; θ) = 1. To make the output of pm(y) between 0 and 1, it is recommended to

let V (y; θ) = sigmoid(logit)/ps(y), where sigmoid(·) represents sigmoid activation function and
logit represents the output of the nueral network. After determining v(Y ) by optimizing Eq. 5,
we then use the resampling technique to perform label shift on the source domain dataset Ds to
obtain new dataset Dm (its distribution follows pm(X,Y )). Then, using Dm trains a model to
obtain the potentially most generalizable model. Finally, if the supports of pm(X) and pt(X) differ
substantially, or to avoid wasting the unlabeled target domain data Dt, methods that can learn new
supports in an unsupervised manner can be leveraged to further fine-tune the trained model.

3.3 EMPIRICAL COMPUTATION

To optimize Eq. 5, pt(X), ps(X), ps(Y |X), and ps(Y ) need to be properly estimated. An empirical
estimation scheme is given below.

Thanks to the development of normalizing flow models, probability density calculation of high-
dimensional random variables becomes efficient and exact (Kobyzev et al., 2021; Papamakarios
et al., 2021). Therefore, we can use normalizing flow models (Zhai et al., 2025) to calculate ps(X)
and pt(X) in Eq. 5. Specifically, let F (X) be the output of the normalizing flow model, F (X) ∼
N (0, I) be the latent variable output by the normalizing flow model, where I is the identity matrix
and N (0, I) is a multivariate normal distribution. Therefore:

ps(X) =

∣∣det(JFs(X))
∣∣√

(2π)
d

e−
1
2∥Fs(X)∥2

,

pt(X) =

∣∣det(JFt(X))
∣∣√

(2π)
d

e−
1
2∥Ft(X)∥2

,

(7)

where Fs(X) represents the output of the normalizing flow model on source domain, Ft(X) rep-
resents the output of the normalizing flow model on target domain, d represents the dimension
of X , and det(JFs(X)) and det(JFt(X)) represent determinants of Jacobian matrix. In practice,
if the value of d is too large, the values of ps(X) and pt(X) will be too small to be calcu-
lated. Fortunately, this situation can be avoided by setting a specific loss function. Specifically,
let L(a, b) = (log(a)− log(b))2, then Eq. 5 gets rid of the dependence on d and becomes:

min
θv

EX

[(
log g(X)− log

∑
Y

ps(Y |X)V (Y ; θv)
)2]

+ λ

(
1−

∑
Y

ps(Y )V (Y ; θv)

)2

, (8)

where the expression of g(X) is as follows:

g(X) =

∣∣det(JFt(X))
∣∣∣∣det(JFs(X))
∣∣ · e ∥Fs(X)∥2−∥Ft(X)∥2

2 . (9)

ps(Y |X) can be naturally obtained from the classifier on the source domain. ps(Y ) can be estimated
unbiasedly through frequency estimating probability, i.e., ps(y) ≈ N

(y)
s /Ns, where N (y)

s represents
the sample size of the y-th class in the source domain. Let θ∗v be the optimal solution of Eq. 8, and
pm(Y ) = ps(Y )V (Y ; θ∗v). Then, the samples of each class in Ds are resampled with probability
pm(Y ) to obtain Dm. The generalization process using Covariate Shift Minimization Principle is
shown in Algorithm 1 of Appendix B. Specifically, after determining pm(Y ) by Eq. 8, the source
domain data is resampled to simulate label shift, and a classifier is trained on the resampled data.
Then, to further improve generalization, unsupervised fine-tuning is performed on the target domain
to learn new supports in an unsupervised manner.
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Figure 1: Visualization of generated factorizable joint shift dataset. UMAP Projection (Healy &
McInnes, 2024) shows the covariate shift, and changes in P (Y ) shows the label shift. ImageNet-
1K just shows 20 classes. The online implementation code is at: https://github.com/
Anonymous-user-code/LCSC/blob/main/GenerateFJSdata.ipynb. Dirichlet dis-
tribution’s concentration parameter is 2.

4 GENERATE FACTORIZABLE JOINT SHIFT DATASET

A key challenge in studying factorizable joint shifts is the lack of corresponding real-world datasets
to validate existing methods. Therefore, it is necessary to propose a factorizable joint shift dataset
generation method to advance the development of this field.

Another benefit of representing the factorizable joint shift as a Label-Covariate Shift Chain is
that this representation can be used to generate benchmark datasets. These datasets, simulating
real-world factorizable joint shift, allow for evaluating the effectiveness of generalization methods.
Specifically, from Theorem 1, a factorizable joint shift dataset can be obtained by performing label
shift and covariate shift on the real-world dataset in sequence. Algorithm 2 of Appendix B shows
the process of generating a factorizable joint shift dataset. Specifically, the generation process in-
volves two sequential steps: label shift followed by covariate shift. First, label shift is performed by
resampling the source domain data according to a target label distribution pm(Y ), which is typically
initialized using a Dirichlet distribution to control the degree of imbalance. Then, covariate shift is
introduced by resampling and followed by transforming the resampled data using predefined data
augmentation techniques (e.g., rotation, cropping, brightness adjustment). Resampling is to change
the sampling frequency of samples independently of the labels, and data transformation is to change
the position of the support points.

5 RESULTS

5.1 GENERATE DATASETS

Experimental Setup: To demonstrate the universality of Algorithm 2, we generate Factoriz-
able Joint Shift Dataset on three datasets with different sizes: 1) A grayscale digit recognition
dataset MNIST (Lecun et al., 1998); 2) A colorful real-world image recognition dataset CIFAR-
10 (Krizhevsky, 2009); 3) A large-scale color real-world image recognition dataset ImageNet-1K
(Deng et al., 2009). pm(Y ) and pt(X) in Algorithm 2 are initialized by Dirichlet distribution sam-

6
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Figure 2: Visualization of the
training process on MNIST. The
curve with LCSC is significantly
higher than the curve without
LCSC on the target domain,
indicating that LCSC improves
the accuracy on the target do-
main. The results provide strong
empirical evidence that LCSC
performs domain adaptation on
joint shift data. The online im-
plementation code is available
at: https://github.com/
Anonymous-user-code/
LCSC/blob/main/
GeneralizationTrain.
ipynb

Table 1: Classification accuracy on the generated factorizable
joint shift dataset. Results (mean ± std) over 10 runs. No-FT
represents no fine-tuning.

Methods MNIST CIFAR-10 ImageNet-1K
UnAdapt 84.90±0.86 64.32±1.05 58.17±0.92

BBSE 88.13±0.65 66.55±0.93 62.31±1.01

RLLS 88.15±0.67 66.56±0.91 62.26±0.97

EM 88.16±0.70 66.62±0.82 62.83±1.10

CPMCN 88.37±0.77 66.91±0.81 63.24±0.95

LSC 88.26±0.69 66.43±0.85 62.79±0.88

DANN 89.85±0.60 67.92±0.77 64.12±0.88

TENT 90.12±0.58 68.21±0.74 64.65±0.86

DIW 90.54±0.55 68.43±0.73 64.97±0.89

DUA 90.25±0.49 68.75±0.78 65.23±0.95

IndUDA 91.37±0.58 68.91±0.74 64.99±0.99

GIW 89.12±0.61 67.05±0.80 63.58±0.93

DW-GCS 89.64±0.50 67.38±0.81 64.91±0.92

RSW 90.85±0.51 68.82±0.75 65.10±0.90

JIA 88.97±0.51 68.35±0.69 65.02±0.80

AJIA 90.02±0.57 68.22±0.66 64.87±0.92

LCSC (No-FT) 92.06±0.47 68.79±0.71 65.13±0.84

LCSC (Ours) 94.66±0.44 71.86±0.76 68.53±0.80

pling. The degree of label shift can be controlled by adjusting the concentration parameter of the
Dirichlet distribution, as detailed in Appendix C.2. Nt is set to be as large as the test set’s sample
size. Algorithm 2’s data transformation methods are presented in Appendix C.1.

Experimental Results: Fig. 1 shows three generated Factorizable Joint Shift Datasets. MNIST
at the top, followed by CIFAR-10, with ImageNet-1K appearing at the bottom. On the far left, five
source domain samples and five target domain samples are given, respectively. The Umap Projection
(Healy & McInnes, 2024) of the source domain dataset and the target domain dataset are given in
the middle of each row of Fig. 1. The target domain projection points diverge significantly from the
source domain points, demonstrating a substantial covariate shift. The right side of Fig. 1 shows the
label distribution of the source domain dataset and the target domain dataset. By comparison, signif-
icant label shifts exist. Since label shift and covariate shift are performed sequentially, factorizable
joint shifts exist between the target domain and the source domain. To the best of our knowledge,
this is the first factorizable joint shift dataset from the real world.

5.2 ACCURACY IMPROVEMENT

5.2.1 EXPERIMENTAL SETUP

To more comprehensively assess the effectiveness of the proposed method, the following methods
are compared: 1) UnAdapt: models trained on source data without domain adaptation processing;
2) Five baseline label shift solutions: BBSE (Lipton et al., 2018), RLLS (Azizzadenesheli et al.,
2019), EM (Alexandari et al., 2020), CPMCN (Wen et al., 2024), and LSC (Wei et al., 2024); 3)
Eight baseline covariate shift solutions: DANN (Ganin et al., 2016), TENT (Wang et al., 2021),
DIW (Fang et al., 2020), DUA (Mirza et al., 2022), IndUDA (He et al., 2023a), GIW (Fang et al.,
2023), DW-GCS (Segovia-Martı́n et al., 2023), and RSW (He et al., 2023b); 4) Two baseline fac-
torizable joint shift solutions: Joint Importance Aligning (JIA) (He et al., 2022) and an Alternative
of Joint Importance Aligning (AJIA) (Tasche, 2022); 5) LCSC: the proposed Algorithm 1. Due to
limited space, other settings are shown in Appendix C.1.2.
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Figure 3: LCSC calibrates confidence on MNIST. Figure 4: Selection experiments of α.

5.2.2 EXPERIMENTAL RESULTS

Fig. 2 shows the accuracy of the training process on the generated factorizable joint shift MNIST
data, and see Appendix C.3 for other data. As training progresses, the classifier’s accuracy on both
the source domain test set and the target domain gradually increases. However, the accuracy on the
target domain is significantly lower than that on the source domain test set, demonstrating that the
factorizable joint shift leads to a decrease in the model’s generalization performance. The accuracy
curve of our generalization method LCSC in the target domain has been higher than that of the naive
classifier after 20 epochs, indicating that LCSC can indeed generalize the model under factorizable
joint shift. In addition, from the comparison of the accuracy curves before and after 100 epochs, our
method can achieve a certain generalization effect regardless of whether unsupervised fine-tuning
(i.e., line 23 in Algorithm 1) is used or not.

Table 1 compares classification accuracies of baseline methods in generated factorizable joint shift
data. Furthermore, to observe the effect of LCSC under more realistic covariate shifts, we compare
the accuracy improvement effect on the public domain shift datasets, see Appendix C.3. All methods
all improve the classification accuracy on the target domain to a certain extent. Generally, methods
that address covariate shift tend to have higher classification accuracy than those that address label
shift. The accuracy improvement of JIA and AJIA (specialized in factorizable joint shift) is also
limited because they are essentially importance weighting methods that cannot overcome the infor-
mation bias caused by changes in support points. Similarly, without fine-tuning, LCSC yields only
modest accuracy gains, since resampling alone cannot correct the inherent information bias intro-
duced by shifts in the covariate support. As expected, LCSC with fine-tuning achieves the highest
classification accuracy on the target domain because it simultaneously addresses both covariate shift
and label shift, and can overcome the information bias caused by the change of support points.

5.3 CONFIDENCE CALIBRATION

Due to space limitations, the experimental setup for confidence calibration is presented in Appendix
C.4. Fig. 3 illustrates the effectiveness of confidence calibration on the MNIST dataset, and results
for other datasets are provided in Appendix C.4. Compared with the reliability diagram obtained by
the classifier without LCSC, the reliability diagram obtained by the classifier with LCSC is closer to
the diagonal line, indicating the predicted confidence is more accurate. The classifier using LCSC
achieves a much lower expected calibration error (ECE), showing its effectiveness in confidence
calibration. To more comprehensively assess the calibration effectiveness of our method, some
confidence calibration baseline methods are compared in Appendix C.4.

5.4 ABLATION EXPERIMENT

Impact of Lagrange Multiplier λ: From Eq. 8, the value of λ determines the importance of the
second term (used to ensure

∑K
y=1 pm(y) = 1). If λ is too large, the model pays more attention

to the constraint term and ignores the density ratio matching of the first term. If λ is too small, the
constraints may not be adequately satisfied. To select a suitable λ, we employed the gradual increase
strategy. Specifically, let λ = α · loss1, where loss1 is the first loss in Eq. 8, and the value of α
increases from 0.1 to 1. The selection experiment of α is shown in Fig. 4. When α is less than 0.3,
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as α increases, the accuracy of the proposed method in the target domain is improved. However,
when α is greater than 0.3, the accuracy of the proposed method in the target domain does not show
an obvious increase or decrease. Therefore, we set α to 0.3 for all experiments in this paper.

Due to space limitations, we report other ablation experiments in the Appendix: Selection of Unsu-
pervised Fine-Tuning Methods (Appendix C.5.1), Impact of Density Estimation Effectiveness
(Appendix C.5.2), and Practical Comparison of pm(Y ) and pt(Y ) (Appendix C.5.3).

6 DISCUSSION

Reasonableness of Factorizable Joint Shift Assumption: Real-world joint shifts often exhibit a
factorizable structure: label distribution and covariate distribution change simultaneously but inde-
pendently of each other. For example, the proportion of positive cases can surge during an epidemic
(label shift) while CT images differ across hospitals due to variations in scanners and imaging pro-
tocols (covariate shift); urban scenes contain more cars and buses than rural areas (label shift), while
lighting and background styles vary with region and time of day (covariate shift). In addition, since
the study of joint shift is too difficult, most of the current work focuses on marginal assumptions
(label shift or covariate shift). Thus, compared to the assumption limitations of these works, we
have relaxed the assumptions and taken an important step forward.

Differences from Conventional Unsupervised Domain Adaptation: Conventional unsupervised
domain adaptation (or out-of-distribution adaptation) primarily addresses covariate shift (Liu et al.,
2022), typically through techniques such as feature alignment (Chen et al., 2019; Shi et al., 2024),
ensemble learning (Zhou et al., 2021; Yang et al., 2024), or normalization statistics adjustment (Li
et al., 2018; Zhang et al., 2024). In contrast, our method is designed to handle the more complex
scenario involving both covariate shift and label shift, thereby offering broader applicability across
diverse domain adaptation settings.

Computational Overhead: The computational overhead of LCSC is reported in Appendix D. Al-
though LCSC introduces additional computation during training—primarily due to the two normal-
izing flow models—inference remains unaffected since only a classifier is used at test time. Typi-
cally, computing resources are less constrained during training. In our MNIST and CIFAR-10 exper-
iments, a single NVIDIA GeForce RTX 3090 GPU (24 GB VRAM) was sufficient. For ImageNet-
1K, using a single NVIDIA A100 GPU (80 GB VRAM) also yielded competitive results. Therefore,
the computational overhead of density estimation in LCSC does not pose a significant barrier to its
widespread adoption.

Potential Impact, Limitations and Future Work: We go beyond covariate shift or label shift to
consider the more challenging factorizable joint shift and its generalization methods. We also gener-
ate factorizable joint shift datasets that can help subsequent studies evaluate the effectiveness of gen-
eralization methods. We believe this work has the potential to inspire a wealth of follow-up research,
ultimately enhancing decision-making in real-world applications, particularly for cross-populations
and safety-critical scenarios. However, our study also has several limitations: 1) Algorithm 1 needs
to use the normalizing flow models to estimate the probability density of high-dimensional random
variables, which is a computationally expensive operation in the training phase. In the future, Algo-
rithm 1 will benefit from more efficient probability density estimation methods of high-dimensional
random variables; 2) We did not consider the more naive joint shift. Although highly challenging or
even intractable, further exploration of this concept remains intriguing.

7 CONCLUSION

This paper proposes a tractable generalization method for factorizable joint shift. Firstly, we re-
represent factorizable joint shift as a Label-Covariate Shift Chain, where label shift occurs first and
then covariate shift occurs. This representation makes factorizable joint shift more tractable. Then,
an additional prior is introduced on the Label-Covariate Shift Chain: Covariate Shift Minimization
Principle, which is used to determine non-trivial solutions. In addition, a real-world factorizable
joint shift datasets generation method is proposed by using the Label-Covariate Shift Chain, and
the generated datasets can be used to evaluate the effectiveness of generalization methods. Finally,
experimental results verify the proposed method’s generalization effectiveness.
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APPENDIX

A PROOF OF COROLLARY 1

Proof. From Theorem 1, the following holds:

pt(X) =
∑
Y

pt(X,Y ) =
∑
Y

pt(Y |X)pt(X)

Covariate shift
∑
Y

pm(Y |X)pm(X)u(X) · C = C · u(X)
∑
Y

pm(X|Y )pm(Y )

Label shift C · u(X)
∑
Y

ps(X|Y )ps(Y )
v(Y )

C
= u(X)

∑
Y

ps(Y,X)v(Y ).

(10)
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Similarly, the following holds:

pt(Y ) =

∫
X

pt(X,Y )dX =

∫
X

pt(Y |X)Pt(X)dX

Covariate shift

∫
X

pm(Y |X)pm(X)C · u(X)dX =

∫
X

pm(X|Y )pm(Y )C · u(X)dX

Label shift

∫
X

ps(X|Y )ps(Y )
v(Y )

C
C · u(X)dX = v(Y )

∫
X

ps(X,Y )u(X)dX.

(11)

Therefore, Eq. 4 is proved.

Below, prove the uniqueness of u(X) · v(Y ). Proof by contradiction is used. Assume there are two
solutions: (u(X), v(Y )) and (u′(X), v′(Y )). By Eq. 4, it holds:

pt(X) = u(X)
∑
Y

ps(Y,X)v(Y ) = u′(X)
∑
Y

ps(Y,X)v′(Y ),

pt(Y ) = v(Y )

∫
X

ps(X,Y )u(X)dX = v′(Y )

∫
X

ps(X,Y )u′(X)dX.
(12)

Let r(X) = u′(X)/u(X), s(Y ) = v′(Y )/v(Y ), aX(Y ) = ps(Y,X)v(Y )∑
Y ′

ps(Y ′,X)v(Y ′) , and bY (X) =

ps(X,Y )u(X)∫
X

ps(X,Y )u(X)dX
. Therefore:

1 = r(X)

∑
Y

ps(Y,X)s(Y )v(Y )∑
Y

ps(Y,X)v(Y )
= r(X)EY∼aX

[s(Y )],

1 = s(Y )

∫
X

ps(X,Y )r(X)u(X)dX∫
X

ps(X,Y )u(X)dX
= s(Y )EX∼bY [r(X)].

(13)

Therefore, get a fixed point:

r(X) =
1

EY∼aX
[ 1
EX′∼bY

[r(X′)] ]
. (14)

Let r(X) reach its minimum value m = infXr(X) at X∗. Due to Eq. 14:

m =
1

EY∼aX∗ [
1
m ]

= r(X∗) =
1

EY∼aX∗ [
1

EX′∼bY
[r(X′)] ]

. (15)

Therefore:

EY∼aX∗

[
1

m

]
= EY∼aX∗

[
1

EX′∼bY [r(X
′)]

]
. (16)

Therefore:

EY∼aX∗

[
1

m
− 1

EX′∼bY [r(X
′)]

]
= 0. (17)

Due to m ≤ r(X ′) for all X ′, and then 1
m − 1

EX′∼bY
[r(X′)] ≥ 0. Therefore m = EX′∼bY [r(X

′)].

Similarly, due to m ≤ r(X ′) for all X ′, r(X ′) = m for all bY (X ′) ̸= 0. Therefore, r(X) is a
constant function in ps(X,Y ) ̸= 0. Let r(X) = C, then:

s(Y ) =
1

EX∼bY [r(X)]
=

1

C
. (18)

Therefore:

u′(X)v′(Y ) = (u(X)r(X)) (v(Y )s(Y )) = C · u(X)
1

C
v(Y ) = u(X)v(Y ). (19)

Therefore, the uniqueness of u(X) · v(Y ) is proved.
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Algorithm 1 Generalization by Covariate Shift Minimization Principle.

1: Initialize:
2: Ds = {xi, yi}1≤i≤Ns ; Dt = {xj}1≤j≤Nt ; Nm;
3: D

(k)
s = {x|(x, y) ∈ Ds and y = k}; Dm = {};

4: A normalizing flow model Fs(X);
5: A normalizing flow model Ft(X);
6: A classifier f1(X); A classifier f2(X);
7: A parametric model V (Y ; θv).
8: Training:
9: Using Dx

s = {x|(x, y) ∈ Ds} to train Fs(X).
10: Using Dt to train Ft(X).
11: Using Ds to train f1(X).
12: Get θ∗v by optimizing Eq. 8.
13: Resampling:
14: Let hk =

∑k
y=1 ps(y)V (y; θ∗v), where 1 ≤ k ≤ K.

15: i = 0.
16: While i ≤ Nm:
17: Uniformly sample a number h in [0, 1].
18: If hk−1 < h ≤ hk:
19: Uniformly select a sample from D

(k)
s to Dm.

20: i = i+ 1.
21: Generalization Training:
22: Using Dm to train f2(X).
23: Unsupervised fine-tuning f2(X) on Dt.
24: Return f2(X).

B PSEUDO-CODE

Generalization by Covariate Shift Minimization Principle: Algorithm 1 implements the Covari-
ate Shift Minimization Principle on the proposed Label–Covariate Shift Chain to obtain a non-trivial
estimate of pt(Y |X) using only labeled source data Ds and unlabeled target data Dt. Its main
steps are as follows: (i) estimate source and target covariate densities using normalizing flows and
train a source classifier; (ii) optimize Eq. 8 to learn V (Y ; θv) and derive the adjusted label prior
pm(Y ) = ps(Y )V (Y ; θ∗v); (iii) resample the source dataset according to pm(Y ) to simulate label
shift, train a new classifier on the resampled data, and optionally fine-tune it on the unlabeled target
domain. Unsupervised fine-tuning in line 23 of Algorithm 1 performs further generalization to learn
new supports in an unsupervised manner.

Generate Factorizable Joint Shift Dataset: Algorithm 2 constructs a target domain exhibiting fac-
torizable joint shift by sequentially applying label shift and covariate shift to a source dataset. First,
a target label distribution pm(Y ) is sampled (e.g., from a Dirichlet prior) to control the degree of
imbalance, and source samples are resampled according to pm(Y ) to form an intermediate dataset.
Next, covariate shift is introduced by resampling and applying predefined transformations (e.g.,
rotation, cropping, brightness, or contrast adjustment) to alter the support of X while preserving
semantics. The resulting dataset Dt thus differs from the source in both label and covariate distri-
butions, providing a realistic benchmark for evaluating domain adaptation under factorizable joint
shift. Note that to ensure the shift simulation rationality,

∑K
y=1 pm(y) = 1 and

∑Nt

j=1 pt(xj) ≤ 1

must be satisfied when initializing pm(Y ) and pt(X). In addition, both resampling and data trans-
formation are used in covariate shifts. Resampling is to change the sampling frequency of samples
independently of the labels, and data transformation is to change the position of the support points.
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Algorithm 2 Generate Factorizable Joint Shift Dataset.

1: Initialize:
2: Ds = {xi, yi}1≤i≤Ns

; Dt = {};
3: D

(k)
s = {(x, y)|(x, y) ∈ Ds and y = k};

4: Nt; Dm = {}; pt(X); pm(Y );
5: Label Shift:
6: Let hk =

∑k
y=1 pm(y), where 1 ≤ k ≤ K.

7: i = 0.
8: While i ≤ Nt:
9: Generate a uniform random number h in [0, 1].

10: If hk−1 < h ≤ hk:
11: Uniformly sample (x, y) from D

(k)
s to Dm.

12: i = i+ 1.
13: Covariate Shift:
14: Let hJ =

∑J
j=1 pt(xj), where 1 ≤ J ≤ Nt.

15: i = 0.
16: While i ≤ Nt:
17: Uniformly sample a number h in [0, hNt

].
18: If hJ−1 < h ≤ hJ :
19: Transform xJ to obtain x′

J .
20: Add (x′

J , yJ) to Dt.
21: i = i+ 1.
22: Return Dt.

C RESULTS

C.1 EXPERIMENTAL SETTINGS

All experiment was conducted on Intel® CoreTM I7-10700 CPU with 3.70GHz and 125.5GB mem-
ory, 10 NVIDIA GeForce RTX 3090 graphics cards (each with 24GB of video memory), Ubuntu
20.04.3 LTS, Python 3.11.11, and Torch 2.3.0+cu121.

C.1.1 EXPERIMENTAL SETUP OF GENERATING DATASETS

Algorithm 2’s data transformation methods applied to three datasets are presented in Table 2, which
controls the degree of shift in the covariate support points. To ensure the semantics of the data
remain unchanged, the rotation angles for MNIST and CIFAR-10 are (-10◦, +10◦), and the rotation
angles for ImageNet-1K are (-15◦, +15◦). Regarding random shifting, all three datasets are shifted
horizontally or vertically no more than 10% of the image size. Regarding random cropping, the
image cropping sizes in the three datasets are all 87.5% of the source image size, and will be resized
to the original size after cropping. Regarding brightness adjustment, the brightness adjustment range
does not exceed 10% of the image pixel range. Specifically, Iout = Iin + ∆b for ∆b ∈ (−0.1 ∗
r,+0.1∗r), where Iin represents the input image, Iout represents the output image, and r represents
the pixel range. Similarly, the contrast adjustment degree does not exceed 10%, i.e., Iout = c ·(Iin−
rmid) + rmid for c ∈ [0.9, 1.1], where rmid represents the mid value of the pixel range. Regarding
random scaling, the scaling range is set to (0.85, 1.15). Regarding random erasing, the probability
of erasing is set to 0.5. To ensure the semantics of the data remain unchanged, range of proportion of
erased area against input image is (0.01, 0.05). Note that the data transformation parameters above
are user-specific settings that can be made based on the desired covariate shift requirements.

C.1.2 EXPERIMENTAL SETUP OF ACCURACY IMPROVEMENT

Nm of Algorithm 1 is set to be as large as the train set’s sample size. Depending on the size
of the dataset, appropriate and popular classifiers are used for the corresponding dataset: LeNet-
5 for MNIST, ResNet-56 for CIFAR-10, and ResNet-152 for ImageNet-1K. f1(X) and f2(X) in
Algorithm 1 use classifiers with the same structure. The learning rate of LeNet-5 is 0.01. The
learning rate of ResNet-56 and ResNet-152 are 0.1 for the first 50 epochs, 0.01 for 50 to 100 epochs,
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Table 2: Data transformation methods on Algorithm 2. Note that data transformation is only used
to change the position of covariate support, and only combined with resampling can a complete
covariate shift be achieved (see line 17 of Algorithm 2).

Datasets Transformation Methods

MNIST
Random rotation (≤ 10◦); Random shifting;
Random cropping; Brightness adjustment;
Contrast adjustment.

CIFAR-10
Random cropping; Random rotation (≤ 10◦);
Random shifting; Random scaling;
Random Erasing

ImageNet-1K
Random cropping; Random rotation (≤ 15◦);
Random shifting; Random scaling;
Random Erasing

and 0.001 after 100 epochs. The normalizing flow models’ hyperparameter settings are shown in
Table 3. V (Y ; θv) is a simple three-layer feedforward neural network with the number of neurons
in the hidden layer being twice the number of categories, trained with the Adam optimizer with a
learning rate of 0.001. All classifiers are trained for 150 epochs, all normalizing flow models are
trained for 100 epochs, and V (Y ; θv) is trained for 100 epochs. In Algorithm 1’s generalization train,
unsupervised fine-tuning is performed using naive pseudo-label training. Specifically, the predicted
confidences are sorted from largest to smallest, and then the top 75% of samples are used for pseudo-
label training (see section C.5). In Algorithm 1’s generalization train, the first 100 epochs are using
Dm to train f2(X), and the next 50 epochs are unsupervised fine-tuning f2(X) with pseudo labels.

Table 3: Hyperparameter settings for TarFlow (Zhai et al., 2025). P represents the patch size, Ch
represents the model channel size, T represents the number of autoregressive flow blocks, K repre-
sents the number of attention layers in each flow, and pϵ represents the noise distribution.

Datasets P-Ch-T-K-pϵ Optimizer Learning rate
MNIST 2-128-4-4-N (0, 0.1) Adam 0.002

CIFAR-10 2-256-4-4-N (0, 0.05) Adam 0.0002
ImageNet-1K 4-768-8-8-N (0, 0.15) Adam 0.0001

C.2 GENERATE DATASETS

pm(Y ) in Algorithm 2 are initialized by Dirichlet distribution sampling. The degree of label shift
can be controlled by adjusting the concentration parameter of the Dirichlet distribution, as shown in
Fig. 5. The smaller the concentration parameter, the greater the imbalance of the sampled data; the
larger the concentration parameter, the smaller the imbalance of the sampled data. This is because
a smaller concentration parameter increases the probability that the Dirichlet distribution places
samples near the edge of the simplex, while a larger concentration parameter causes the distribution
to concentrate samples nearer the center of the simplex. Therefore, when the sample sizes of classes
in the source domain are almost balanced, the degree of label shift can be controlled by adjusting
the concentration parameter of the Dirichlet distribution.

C.3 ACCURACY IMPROVEMENT

Fig. 6 shows the accuracy of the training process on CIFAR-10 and ImageNet-1K. As training pro-
gresses, the classifier’s accuracy on both the source domain test set and the target domain gradually
increases. However, the accuracy on the target domain is significantly lower than that on the source
domain test set, demonstrating that the factorizable joint shift leads to a decrease in the model’s
generalization performance. Whether on CIFAR-10 or ImageNet-1K, the accuracy curve of our
generalization method LCSC in the target domain has been higher than that of the naive classifier,
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Figure 5: The degree of label shift can be controlled by adjusting Dirichlet distribution’s concentra-
tion parameter in MNIST.

Figure 6: Visualization of the training processes. Results for CIFAR-10 (left) and ImageNet-1K
(right).

indicating that LCSC can indeed generalize the model under factorizable joint shift. In addition,
from the comparison of the accuracy curves before and after 100 epochs, our method can achieve
a certain generalization effect regardless of whether unsupervised fine-tuning (i.e., line 23 in Algo-
rithm 1) is used or not.

Results on the Public Domain Shift Datasets: To observe the effect of LCSC under more realistic
covariate shifts, we compare the accuracy improvement effect on the public domain shift dataset. We
considered the following three public domain shift datasets: 1) NICO (He et al., 2021); 2) Office-
Home (Venkateswara et al., 2017); 3) iWildCam (Beery et al., 2021). In these three datasets, the
first half of the domain index is used as the source domain, and the second half of the domain
index is used as the target domain. To simulate the joint shift, the source domain is sampled rela-
tively balanced, and the target domain is sampled into a simplex (the concentration parameter of the
Dirichlet distribution is 2). Table 4 shows the results comparison on these three datasets. Methods
designed for label shift correction (BBSE, RLLS, EM, CPMCN, LSC) provide moderate improve-
ments over UnAdapt, while covariate shift adaptation methods (e.g., DANN, TENT, DIW, DUA,
IndUDA) achieve higher gains, reflecting their ability to handle feature distribution changes. Spe-
cialized approaches for factorizable joint shift (JIA, AJIA) offer limited additional benefit compared
to covariate shift methods. Finally, the proposed LCSC method shows the best performance: without
fine-tuning (No-FT), it already matches or surpasses the strongest baselines, and with unsupervised
fine-tuning (Ours), it achieves the highest accuracy on all datasets, demonstrating its effectiveness
in addressing both label and covariate shifts simultaneously.
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(a) CIFAR-10 (b) ImageNet-1K

Figure 7: LCSC helps calibrate confidence.

Table 4: Classification accuracy on the generated factorizable joint shift dataset. Results (mean ±
std) over 10 runs. No-FT represents no fine-tuning.

Methods NICO Office-Home iWildCam
UnAdapt 54.60±0.82 50.30±0.93 60.30±0.88

BBSE 58.90±0.79 55.70±0.90 63.70±0.86

RLLS 59.00±0.78 55.90±0.89 63.60±0.85

EM 59.20±0.77 56.10±0.88 63.90±0.84

CPMCN 59.60±0.75 56.50±0.87 64.30±0.84

LSC 59.10±0.76 55.80±0.88 63.80±0.85

DANN 60.80±0.74 57.80±0.85 65.10±0.82

TENT 61.30±0.72 58.40±0.84 65.60±0.81

DIW 61.70±0.71 58.80±0.83 65.90±0.81

DUA 62.10±0.72 59.20±0.83 66.20±0.80

IndUDA 62.50±0.70 59.60±0.82 66.40±0.80

GIW 61.00±0.73 58.10±0.84 65.30±0.82

DW-GCS 61.40±0.72 58.60±0.83 65.70±0.81

RSW 62.80±0.71 59.80±0.82 66.60±0.80

JIA 61.50±0.70 58.70±0.82 65.80±0.79

AJIA 61.20±0.70 58.50±0.82 65.70±0.79

LCSC (No-FT) 62.90±0.69 60.00±0.80 66.70±0.79

LCSC (Ours) 64.80±0.66 61.70±0.79 67.90±0.78

C.4 CONFIDENCE CALIBRATION

Experimental Setup: Algorithm 1’s generalization on the confidence calibration task is also veri-
fied. To measure the accurateness of predicted confidence score, two of the most popular calibration
metrics are adopted: reliability diagram (Dimitriadis et al., 2021), expected calibration error (ECE)
(Guo et al., 2017), debiased calibration error (ECEdebiased) (Kumar et al., 2019), and calibration
error using Kolmogorov-Smirnov test (KS-error) (Gupta et al., 2021). The bin number of confi-
dence binning is set to the popular 15 (Dong et al., 2025b;a) when calculating reliability plots and
ECE. Since the training process is shared with Section 5.2, its hyperparameters are identical to
those in Section 5.2.

Reliability Diagram: Fig. 7 shows the effect of confidence calibration on the CIFAR-10 and
ImageNet-1K. From the reliability diagram, the confidence scores on CIFAR-10 show overconfi-
dence (the average accuracy is below the diagonal line), and the confidence scores on ImageNet-1K
show underconfidence (the average accuracy is above the diagonal line). Whether on CIFAR-10 or
ImageNet-1K, compared with the reliability diagram obtained by the classifier without LCSC, the
reliability diagram obtained by the classifier with LCSC is closer to the diagonal line, indicating the
predicted confidence is more accurate. In addition, the ECE obtained by the classifier using LCSC
is also significantly smaller, indicating that LCSC can indeed help calibrate confidence.
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Baseline Methods: To more comprehensively assess the calibration effectiveness of the proposed
method, the following calibration methods are compared: 1) Uncal: uncalibrated model trained on
source data; 2) TempScal: calibration on source data using Temperature scaling (Guo et al., 2017);
3) Two confidence calibration methods under label shift: LADE (Hong et al., 2021) and LaSCal
(Popordanoska et al., 2024); 4) Two confidence calibration methods under covariate shift: TransCal
(Wang et al., 2020) and PseudoCal (Hu et al., 2024); 5) LCSC: the proposed Algorithm 1.

Calibration metrics Comparison: Across all three datasets (MNIST, CIFAR-10, ImageNet-1K)
and all three calibration metrics(ECE, ECEdebiased, and KS-error), LCSC consistently achieves
the lowest error, indicating that its probability estimates align most closely with empirical accuracy
and with the target confidence distribution, as shown in Table 5, Table 6 and Table 7. Notably, meth-
ods tailored to a single type of shift—LADE/LaSCal (label shift), and TransCal/PseudoCal (covari-
ate shift)—provide meaningful but limited gains relative to the uncalibrated baseline, whereas LCSC
yields uniformly larger reductions, especially on the more challenging CIFAR-10 and ImageNet-1K
settings, where distribution shifts are stronger. The agreement of improvements across ECE and
ECEdebiased suggests the effect is not an artifact of binning bias, and the concurrent decrease in
KS-error further confirms that LCSC improves the full calibration curve rather than only average
bin deviations. We attribute these gains to LCSC’s joint treatment of label and covariate shift on the
Label–Covariate Shift Chain: aligning pm(X) toward pt(X) mitigates covariate mismatch while
the learned prior pm(Y ) prevents collapse to trivial importance weights, leading to better-calibrated
posteriors under target distributional changes.

Table 5: ECE (%) Comparison in Confidence Calibration Baseline Methods. Results (mean ± std)
over 10 runs.

Dataset Uncal TempScal LADE LaSCal TransCal PseudoCal LCSC
MNIST 12.47±0.61 7.923±0.44 5.368±0.38 4.885±0.35 4.116±0.29 5.927±0.41 2.354±0.21

CIFAR-10 23.58±0.73 15.84±0.65 12.43±0.57 11.38±0.54 10.72±0.49 12.91±0.60 7.457±0.36

ImageNet-1K 31.92±0.88 22.67±0.79 18.34±0.71 17.12±0.69 16.48±0.66 18.95±0.75 12.03±0.52

Table 6: ECEdebiased (%) Comparison in Confidence Calibration Baseline Methods. Results (mean
± std) over 10 runs.

Dataset Uncal TempScal LADE LaSCal TransCal PseudoCal LCSC
MNIST 11.09±0.54 6.87±0.38 4.45±0.32 3.97±0.28 3.26±0.23 5.00±0.35 1.84±0.16

CIFAR-10 21.49±0.67 14.18±0.58 10.64±0.49 9.53±0.45 8.83±0.40 11.21±0.52 5.98±0.29

ImageNet-1K 29.18±0.80 20.47±0.71 16.02±0.62 14.67±0.59 13.90±0.56 16.91±0.67 10.00±0.43

Table 7: KS-error (%) Comparison in Confidence Calibration Baseline Methods. Results (mean
± std) over 10 runs.

Dataset Uncal TempScal LADE LaSCal TransCal PseudoCal LCSC
MNIST 9.63±0.47 5.85±0.32 3.67±0.26 3.19±0.23 2.60±0.18 4.20±0.29 1.41±0.13

CIFAR-10 18.91±0.59 12.24±0.50 8.94±0.41 7.85±0.37 7.08±0.32 9.55±0.44 4.65±0.22

ImageNet-1K 26.19±0.72 17.89±0.62 13.62±0.53 12.18±0.49 11.32±0.45 14.56±0.58 7.99±0.35

C.5 ABLATION EXPERIMENTS

C.5.1 SELECTION OF UNSUPERVISED FINE-TUNING METHODS

Algorithm 1‘s unsupervised fine-tuning is to use the available unlabeled target source data to learn
new covariate supports in an unsupervised manner. We try two popular and simple methods: consis-
tency regularization (Koh & Fernando, 2023) and pseudo-label training (Li et al., 2023). Addition-
ally, we examined the impact of different pseudo-label sample ratios on generalization performance
for pseudo-label training.
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Table 8: Ablation experiments on unsupervised fine-tuning methods. CR represents consistency
regularization.

Methods MNIST CIFAR-10 ImageNet-1K
UnAdapt 84.90±0.86 64.32±1.05 58.17±0.92

CR 83.25±0.91 60.61±0.99 57.88±1.02

Pseudo-label (25%) 93.58±0.79 70.53±0.90 65.91±0.91

Pseudo-label (50%) 93.21±0.70 71.72±0.80 67.66±0.86

Pseudo-label (75%) 94.66±0.44 71.86±0.76 68.53±0.80

Pseudo-label (100%) 93.22±0.73 70.29±0.72 64.32±0.83

Table 9: Impact of density estimation’s effectiveness. The numbers in brackets are the classification
accuracy on the source domain’s test set for ps(Y |X) or bits per dimension (BPD) (Zhai et al., 2025)
for ps(X) and pt(X).

Method or Object MNIST CIFAR-10 ImageNet-1K
UnAdapt 84.90 64.32 58.17

ps(Y |X) (75 epochs) 93.51 (97.5) 68.77 (84.3) 64.41 (66.4)
ps(Y |X) (100 epochs) 93.96 (98.0) 70.29 (86.0) 66.27 (69.0)
ps(Y |X) (125 epochs) 94.14 (98.3) 71.03 (88.7) 67.92 (75.4)
ps(Y |X) (150 epochs) 94.66 (98.5) 71.86 (89.1) 68.53 (76.3)

ps(X) (50 epochs) 93.29 (4.90) 70.35 (6.02) 66.83 (6.19)
ps(X) (75 epochs) 93.57 (4.03) 70.84 (4.92) 67.49 (5.07)
ps(X) (100 epochs) 94.66 (3.51) 71.86 (3.06) 68.53 (3.95)

pt(X) (50 epochs) 93.18 (3.75) 70.30 (6.51) 66.75 (6.10)
pt(X) (75 epochs) 93.50 (2.98) 70.89 (4.90) 67.61 (5.20)
pt(X) (100 epochs) 94.66 (2.04) 71.86 (3.02) 68.53 (3.83)

Table 8 shows the ablation experiments on unsupervised fine-tuning methods. The main idea of
consistency regularization is to perform weak augmentation and strong augmentation on the target
domain image, respectively, and then make the prediction results of the two augmented images
tend to be consistent. To our surprise, even when the strong augmentation is set to the same data
transformation as in Table 2, the consistency regularization method does not generalize well to the
target domain. This may be because when there is a distribution shift between the target domain
and the source domain, even if the weakly augmented samples and the strongly augmented samples
are consistent, it does not tell the model the class to which the target domain samples belong, so it
cannot help improve the classification accuracy. This problem does not exist in pseudo-label training
because it directly tells the model which class the samples in the target domain belong to. Therefore,
pseudo-label training can improve the model’s classification accuracy in the target domain.

In pseudo-label training, it is crucial to select which samples’ prediction results to use as pseudo-
labels. Therefore, in Table 8, experiments with different proportions of samples as pseudo labels
were conducted (sorted by predicted confidence scores from largest to smallest), and it was ulti-
mately found that selecting the top 75% of samples as pseudo labels yielded the best results.

C.5.2 IMPACT OF DENSITY ESTIMATION EFFECTIVENESS

In Algorithm 1, ps(Y |X), ps(X), and pt(X) need to be estimated using network models. Therefore,
their estimated effects may affect the performance of Algorithm 1. Here, we control their estimation
effectiveness by early stopping the training, and then observe their impact on the performance of
Algorithm 1. Table 9 shows their impact, where BPD is a popular evaluation metric for density
estimation effect. It can be known that no matter for ps(Y |X), ps(X), or pt(X), the better the
density estimation, the more the accuracy of Algorithm 1 in the target domain is improved. More-
over, even when the density estimator is not fully trained, Algorithm 1 shows significant accuracy
improvements compared to other methods (see Table 1).
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Figure 8: Practical Comparison of pm(Y ) and pt(Y ). Note that it is not necessary for pm(Y ) to
approximate pt(Y ) in Algorithm 1.

C.5.3 PRACTICAL COMPARISON OF pm(Y ) AND pt(Y )

Fig. 8 illustrates that the learned label distribution pm(Y ) of the intermediate dataset, obtained via
Eq. 8, often differs subtly from the label distribution pt(Y ). This discrepancy is expected and does
not undermine the effectiveness of LCSC, because the optimization objective focuses on aligning the
marginal distribution pm(X) with pt(X) rather than matching label priors. In other words, pm(Y )
serves as an instrumental prior to minimize covariate shift while preserving pm(X|Y ) = ps(X|Y ),
ensuring that the resulting model approximates pt(Y |X). Generally, the larger the covariate shift
between the source and target domains, the less likely pm(Y ) is to be close to pt(Y ). If there is no
covariate shift, and the joint shift degenerates into a label shift, then pm(Y ) will approach pt(Y ).

D COMPUTATIONAL OVERHEAD

Our method introduces extra training-time cost mainly from two normalizing flow models for esti-
mating ps(X) and pt(X). As quantified in Table 6, the flows dominate parameters and FLOPs across
datasets (e.g., on ImageNet-1K, TarFlow has 460.8M params/931.45 GFLOPs versus the classifier’s
2.98M/7.09 GFLOPs), whereas inference remains unaffected since only the classifier is used at test
time. In practice, one NVIDIA RTX 3090 GPU (24GB VRAM) suffices for MNIST/CIFAR-10
and one NVIDIA A100 GPU (80GB VRAM) for ImageNet-1K, suggesting the training overhead is
manageable; future work will explore more efficient high-dimensional density estimators to further
reduce the cost.

Table 10: Computational Overhead Report. Param(M) represents the number of model parameters
and the unit is mega. GFlops represent calculation amount.

Datasets Model Param (M) GFlops

MNIST LeNet-5 0.0444 0.0006
TarFlow (2-128-4-4-N (0, 0.1)) 3.2794 0.6255

CIFAR-10 ResNet-56 0.8557 0.2547
TarFlow (2-256-4-4-N (0, 0.05)) 12.936 6.5017

ImageNet-1K ResNet-152 2.9797 7.0913
TarFlow (4-768-8-8-N (0, 0.15)) 460.80 931.45

E DESCRIPTION OF LARGE LANGUAGE MODEL USAGE

We only used the large language model to polish the writing.
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