

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LABEL-COVARIATE SHIFT CHAIN: UNSUPERVISED DOMAIN ADAPTATION FOR FACTORIZABLE JOINT SHIFT

Anonymous authors

Paper under double-blind review

ABSTRACT

The effectiveness of modern machine learning models for various tasks is fundamentally dependent on the presumption that training and test data are independent and identically distributed (*i.i.d.*). However, in some real-world scenarios, *i.i.d.* is a luxury, i.e., distribution shifts often exist between training and test data. Factorizable joint shift is a new type of distribution shift, and unlike marginal shift (e.g., label shift or covariate shift) with strong assumptions, it imposes fewer constraints and provides broader applicability. However, unsupervised domain adaptation under factorizable joint shift is an unresolved and understudied problem. Previous methods easily collapse to trivial solutions, require the subjective selection of fixed constants, and fail to ensure the solution’s existence and uniqueness when the number of categories exceeds two. To address this problem, we propose a principled method to find a non-trivial solution in a tractable manner. We first re-represent factorizable joint shift as a *Label-Covariate Shift Chain*, where label shift occurs first and then covariate shift occurs, which makes factorizable joint shift more tractable. Then, *Covariate Shift Minimization Principle* is introduced on the *Label-Covariate Shift Chain* to obtain a non-trivial solution. Furthermore, we propose a method to generate real-world factorizable joint shift datasets using *Label-Covariate Shift Chain*, and these datasets can serve as benchmarks to evaluate the effectiveness of generalization methods. Finally, the effectiveness of the proposed method is verified using real-world data for both accuracy improvement and confidence calibration tasks. We believe our exploration of factorizable joint shift will help modern machine learning models handle a wider variety of complex data scenarios, advancing the broader application of AI.

1 INTRODUCTION

Modern machine learning models, especially deep learning, have achieved tremendous success on various tasks (LeCun et al., 2015; Jiang et al., 2023). However, this success depends heavily on the fact that training data (or source domain) and test data (or target domain) are independent and identically distributed (*i.i.d.*) (Shao et al., 2024). In some real-world scenarios—such as medical diagnosis across different populations, image recognition under varying lighting conditions, or disease prediction during an epidemic—the *i.i.d.* assumption does not hold, i.e., there is a distribution shift between the target domain and the source domain. This distribution shift will cause the trained model to experience catastrophic performance degradation on the target domain (Liang et al., 2025). Therefore, it is necessary to specialize methods to improve the model’s generalization under distribution shift.

Without any assumption on the distribution shift, it’s impossible to estimate how well the model would perform on the unlabeled new data (Chen et al., 2022; Tasche, 2022). Therefore, previous work mainly makes assumptions from two directions: 1) **Label shift**, where label distribution changes but the feature distribution under the label does not change (Lipton et al., 2018; Azizzadenesheli et al., 2019; Zhang et al., 2013; Guo et al., 2020; Tian et al., 2023; Wen et al., 2024); 2) **Covariate shift**, where the feature distribution changes but the label distribution under the feature condition does not change (Kimura & Hino, 2024; Sugiyama et al., 2007; Segovia-Martín et al., 2023; Cortes et al., 2010; Yamada et al., 2013; Rhodes et al., 2020; Fang et al., 2023; 2020). Al-

054 though label shift and covariate shift usefully characterize specific data distribution shifts, their
 055 underlying assumptions are overly restrictive. For example, they are inadequate in real-world sce-
 056 narios where both label and covariate distributions change. [He et al. \(2022\)](#) propose a distribution
 057 shift assumption closer to the naive joint shift (i.e., no any assumption on joint distribution), named
 058 **Factorizable Joint Shift**, in which both the label distribution and the covariate distribution change
 059 mutually independently. Compared to label shift or covariate shift, factorizable joint shift imposes
 060 fewer constraints, covers more shift scenarios (including label and covariate shift), and has wider
 061 applicability. It offers a more flexible framework that better reflects some real-world data shift
 062 scenarios, e.g., medical diagnoses across diverse populations (covariate shift) amid incidence rate
 063 changes (label shift) during an epidemic.

064 However, how to generalize the model’s performance under factorizable joint shift is an open prob-
 065 lem, especially in the unsupervised domain adaptation scenario where the target domain’s labels are
 066 not available. [He et al. \(2022\)](#) propose Joint Importance Aligning to address this problem, which
 067 determines the joint distribution’s density ratio by solving a optimization with two additional deep
 068 learning models. However, [He et al. \(2022\); Tasche \(2023; 2022\)](#) indicated that the proposed method
 069 easily collapses to a trivial solution in the unsupervised domain adaptation if no additional assump-
 070 tions are made, which limits its practicality. [Tasche \(2022\)](#) proposed an alternative method to Joint
 071 Importance Alignment from the perspective of measure theory. However, this method requires users
 072 to subjectively select fixed constants to solve the equation, and when the number of categories is
 073 greater than two, the existence and uniqueness of the solution become very complicated.

074 Therefore, a natural and necessary question is studied: How to find a non-trivial solution in a
 075 tractable manner for unsupervised domain adaptation under factorizable joint shift? To address
 076 this, we first re-represent factorizable joint shift as a *Label-Covariate Shift Chain*, where label shift
 077 occurs first and then covariate shift occurs. This representation’s benefit is that it makes factoriz-
 078 able joint shift tractable and has the potential to leverage well-studied solutions for label shift and
 079 covariate shift to address factorizable joint shift. Then, an additional prior is introduced on the
 080 *Label-Covariate Shift Chain: Covariate Shift Minimization Principle*, which is used to determine
 081 non-trivial solutions. In addition, a real-world factorizable joint shift datasets generation method
 082 is proposed by using the *Label-Covariate Shift Chain*, and the generated datasets can be used to
 083 evaluate the effectiveness of generalization methods.

084 Our contributions can be summarized as follows:

- 085 • We prove that factorizable joint shift can be represented as a *Label-Covariate Shift Chain*,
 086 where label shift occurs first and then covariate shift occurs. This representation’s benefit is
 087 that it makes factorizable joint shift tractable and has the potential to leverage well-studied
 088 solutions for label shift and covariate shift to address factorizable joint shift.
- 089 • *Covariate Shift Minimization Principle* is proposed in combination with *Label-Covariate*
 090 *Shift Chain* to determine non-trivial solutions for unsupervised domain adaptation under
 091 factorizable joint shifts.
- 092 • A real-world factorizable joint shift datasets generation method is proposed by using the
 093 *Label-Covariate Shift Chain*. The generated datasets can be used as benchmarks to evaluate
 094 the effectiveness of generalization methods.

098 2 BACKGROUND AND RELATED WORK

100 Consider a K -class classification problem where $X \in \mathcal{X}$ denotes the covariate variable and $Y \in \mathcal{Y}$
 101 denotes the label variable, with $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} = \{1, 2, \dots, K\}$. Let $p_s(\cdot)$ and $p_t(\cdot)$ denote
 102 the probability density (for continuous variables, e.g., X and $X|Y$) or probability measure (for
 103 discrete variables, e.g., Y and $Y|X$) on the source domain and target domain, respectively. Let
 104 $D_s = \{x_i, y_i\}_{1 \leq i \leq N_s}$ and $D_t = \{x_j\}_{1 \leq j \leq N_t}$ represent the source domain data and the target
 105 domain data, respectively, where x_i (or x_j) represents the observed value of X , y_i represents the
 106 observed value of Y , N_s represents the sample size of the source domain, and N_t represents the
 107 sample size of the target domain. Note that the target domain data has no labels, so the method
 108 studied in this paper is an unsupervised domain adaptation method.

108
109

2.1 DISTRIBUTION SHIFT

110 Distribution shift refers to the situation where the joint distribution $p_t(X, Y)$ on the target do-
 111 main differs from the joint distribution $p_s(X, Y)$ on the source domain. Since $p_s(X, Y) =$
 112 $p_s(X) \cdot p_s(Y|X) = p_s(Y) \cdot p_s(X|Y)$, the joint distribution $p_s(X, Y)$ will change if any of the
 113 components— $p_s(X)$, $p_s(Y|X)$, $p_s(Y)$, or $p_s(X|Y)$ —undergo a change. Generally, when the un-
 114 derlying relationships between covariates and labels change (i.e., $p_s(Y|X)$ or $p_s(X|Y)$ changes),
 115 generalizing the trained model becomes more complex or even impossible (Chen et al., 2022;
 116 Tasche, 2022). Therefore, more attention is paid to marginal distribution shifts, i.e., label shift
 117 and covariate shift, as shown in Definition 1 and Definition 2 below.

118 **Definition 1. (Label Shift)** *Label shift occurs if the following two conditions are satisfied:*
 119 $p_s(Y) \neq p_t(Y)$ *and* $p_s(X|Y) = p_t(X|Y)$.

120 **Definition 2. (Covariate Shift)** *Covariate shift occurs if the following two conditions are satisfied:*
 121 $p_s(X) \neq p_t(X)$ *and* $p_s(Y|X) = p_t(Y|X)$.

122 **Definition 3. (Factorizable Joint Shift)** *Factorizable joint shift occurs if the following condition*
 123 *are satisfied:* $\frac{p_t(X, Y)}{p_s(X, Y)} = u(X) \cdot v(Y)$, *where* $u(\cdot)$ *and* $v(\cdot)$ *are functions on* X *and* Y .

124 Although label shift and covariate shift effectively describe specific types of data distribution shifts,
 125 they fall short in scenarios where both the label and covariate distributions change. Therefore,
 126 He et al. (2022) propose Factorizable Joint Shift, a more relaxed joint shift assumption, as shown in
 127 Definition 3. It assumes that the joint density ratio can factorize the covariates and labels. Obviously,
 128 label shift and covariate shift are special factorizable joint shifts, corresponding to $u(X) \equiv 1$ and
 129 $v(Y) \equiv 1$ respectively. Therefore, factorizable joint shift covers more shift scenarios than label shift
 130 and covariate shift, and it has wider applicability.

131

132 2.2 UNSUPERVISED DOMAIN ADAPTATION
133

134 In the real world, the target domain’s labels are usually unavailable. Therefore, how to generalize
 135 the model’s performance without utilizing the target domain label information is crucial. This tech-
 136 nique is called unsupervised domain adaptation. Specifically, we need design methods to estimate
 137 $p_t(Y|X)$ using $D_s = \{x_i, y_i\}_{1 \leq i \leq N_s}$ and $D_t = \{x_j\}_{1 \leq j \leq N_t}$, where D_t does not include labels.

138 For factorizable joint shift, He et al. (2022) propose an unsupervised domain adaptation method
 139 named Joint Importance Aligning, which uses two deep learning models to learn $u(X)$ and $v(Y)$.
 140 Specifically, it estimates $u(X)$ and $v(Y)$ by minimizing the following formula:

$$141 \min_{\theta_u, \theta_v} \mathbb{E}_{p_s(X)} \log \left(1 + U(X; \theta_u) \tilde{V}(X; \theta_v) \right) + \mathbb{E}_{p_t(X)} \log \left(1 + 1 / \left(U(X; \theta_u) \tilde{V}(X; \theta_v) \right) \right), \quad (1)$$

142 where $\tilde{V}(X; \theta_v) = \mathbb{E}_{Y \sim p_s(Y|X)} V(Y; \theta_v)$, $U(X; \theta_u)$ and $V(Y; \theta_v)$ represent two deep learning
 143 models, and θ_u and θ_v are the parameters of the deep learning models. Eq. 1 hopes that $U(X; \theta_u) \rightarrow$
 144 $u(X)$ and $V(Y; \theta_v) \rightarrow v(Y)$, and then generalize the model using importance weighting (Kimura
 145 & Hino, 2024). Optimizing Eq. 1 is equivalent to $p_t(X) = \sum_Y p_s(X, Y) u(X) v(Y)$ (He et al.,
 146 2022). However, the solution of $v(Y)$ in this equation is not unique and easily collapses to the trivial
 147 solution $v(Y) \equiv 1$ (i.e., $u(X) = p_t(X)/p_s(X)$). Therefore, Tasche (2022) proposed an alternative
 148 method to Joint Importance Alignment based on measure theory. However, this method requires the
 149 subjective selection of fixed constants, and ensuring the solution’s existence and uniqueness becomes
 150 substantially more complex when the number of categories exceeds two. Therefore, it is necessary
 151 to study a tractable method to find a non-trivial solution for unsupervised domain adaptation under
 152 factorizable joint shifts.

153

154 3 METHOD
155

156 This section presents a tractable method to obtain a non-trivial solution in unsupervised domain
 157 adaptation under factorizable joint shift. Section 3.1 first proves that factorizable joint shift can be
 158 represented as a *Label-Covariate Shift Chain*, where label shift occurs first and then covariate shift
 159 occurs, which makes factorizable joint shift more tractable. Then, section 3.2 introduces *Covariate*
 160 *Shift Minimization Principle* on the *Label-Covariate Shift Chain* to obtain a non-trivial solution.
 161 Section 3.3 describes the empirical computation method for obtaining a non-trivial solution.

162
163

3.1 LABEL-COVARIATE SHIFT CHAIN

164 **Theorem 1. (Label-Covariate Shift Chain Theorem)** *If Factorizable Joint Shift occurs, then there
165 exists a distribution $p_m(X, Y)$ such that:*

166
$$\frac{p_t(X, Y)}{p_s(X, Y)} = u(X) \cdot v(Y) = \frac{p_t(X)}{p_m(X)} \cdot \frac{p_m(Y)}{p_s(Y)}, \quad (2)$$

167
168

169 and $p_m(X|Y) = p_s(X|Y)$ and $p_m(Y|X) = p_t(Y|X)$.170 *Proof.* First of all, construct a joint probability density $p_m(X, Y)$ such that: $p_m(X|Y) = p_s(X|Y)$,
171 and $p_m(Y) = p_s(Y) \cdot v(Y)/C$, where C is any constant greater than 0. Then, perform a covariate
172 shift on $p_m(X, Y)$ to obtain a new distribution $p_n(X, Y)$, such that: $p_n(Y|X) = p_m(Y|X)$ and
173 $p_n(X) = p_m(X) \cdot u(X) \cdot C$. Therefore:

174
$$\frac{p_n(X, Y)}{p_s(X, Y)} = \frac{p_n(X, Y)}{p_m(X, Y)} \cdot \frac{p_m(X, Y)}{p_s(X, Y)} = \frac{p_n(X)}{p_m(X)} \cdot \frac{p_m(Y)}{p_s(Y)} = u(X) \cdot C \cdot \frac{v(Y)}{C} = \frac{p_t(X, Y)}{p_s(X, Y)}. \quad (3)$$

175
176

177 Therefore $p_t(X, Y) = p_n(X, Y)$, i.e., Eq. 2 holds. \square
178179 **Remark of Theorem 1:** Theorem 1 tells us that Factorizable Joint Shift can be expressed as a *Label-
180 Covariate Shift Chain*, i.e., label shift and covariate shift occur sequentially. Note that $p_m(X)$ and
181 $p_m(Y)$ are unknown because $u(X)$ and $v(Y)$ are unknown. Even, $p_m(X)$ and $p_m(Y)$ are not unique
182 because C is uncertain. However, $u(X) \cdot v(Y)$ is unique, i.e., $\frac{p_t(X)}{p_m(X)} \cdot \frac{p_m(Y)}{p_s(Y)}$ is unique. Therefore,
183 we can use Theorem 1 to construct a suitable $p_m(X, Y)$ to solve $u(X) \cdot v(Y)$ or $p_t(Y|X)$.
184185 **Corollary 1.** *In supervised domain adaptation, from Theorem 1, it holds:*

186
$$p_t(X) = u(X) \sum_Y p_s(Y, X) v(Y), \quad (4a)$$

187
188

189
$$p_t(Y) = v(Y) \int_X p_s(X, Y) u(X) dX. \quad (4b)$$

190

191 *In addition, solving Eq. 4 (including Eq. 4a and Eq. 4b) can obtain the unique value of $u(X) \cdot v(Y)$.
192 The proof is given in Appendix A.*
193194 **Remark of Corollary 1:** Corollary 1 states that solving Eq. 4 yields the joint density ratio
195 $u(X)v(Y)$. Careful observation reveals that: Eq. 4a corresponds to the unsupervised objective of
196 Joint Importance Alignment (He et al., 2022) (see Section 2.2). In practice, Eq. 4b can not be used
197 in unsupervised domain adaptation since $p_t(Y)$ is unavailable. Therefore, the value of $u(X)v(Y)$
198 cannot be determined using only Eq. 4a. This is exactly the reason why the unsupervised objective
199 of Joint Importance Alignment collapses to a trivial solution (He et al., 2022). Therefore, the
200 next question is how to add appropriate additional constraints based on Eq. 4a to find a non-trivial
201 solution.202
203

3.2 COVARIATE SHIFT MINIMIZATION PRINCIPLE

204 To obtain $p_t(Y|X)$ in an unsupervised situation, additional computable constraints must be added to
205 Eq. 4a. If a model is trained with a distribution close to the target domain distribution, the model's
206 generalization performance in the target domain will naturally be good. Based on this idea, we
207 propose to construct a $p_m(X)$ that is closest to $p_t(X)$, and then use $p_m(X, Y)$ to train the model.
208 Since there is a covariate shift between $p_m(X, Y)$ and $p_t(X, Y)$, $p_m(Y|X) = p_t(Y|X)$. Therefore,
209 the trained model approaches $p_t(Y|X)$ when it approaches $p_m(Y|X)$. Moreover, when the supports
210 of $p_m(X)$ and $p_t(X)$ differ substantially, methods that can learn new supports in an unsupervised
211 manner can be leveraged to further fine-tune the trained classifier, e.g., pseudo-label training (Hu
212 et al., 2021), and consistency regularization (Fan et al., 2023).213
214Formally, $p_m(X)$ can be constructed to close to $p_t(X)$ by optimizing the following formula:

215
$$\min_{\theta_v} \mathbb{E}_X \left[L \left(p_t(X), \sum_Y p_s(Y|X) p_s(X) V(Y; \theta_v) \right) \right] + \lambda \left(1 - \sum_Y p_s(Y) V(Y; \theta_v) \right)^2, \quad (5)$$

216 where $L(\cdot)$ is a loss function, λ is the Lagrange multiplier. The first term of Eq. 5 holds because:
 217

$$218 \quad p_m(X) = \sum_Y p_m(X|Y)p_m(Y) = \sum_Y p_s(X|Y)p_s(Y)v(Y) = \sum_Y p_s(Y|X)p_s(X)v(Y). \quad (6)$$

220 Eq. 6 includes the information of Eq. 4a. The second term of Eq. 5 is to ensure $\sum_{y=1}^K p_m(y) =$
 221 $\sum_{y=1}^K p_s(y)V(y; \theta) = 1$. To make the output of $p_m(y)$ between 0 and 1, it is recommended to
 222 let $V(y; \theta) = \text{sigmoid}(\text{logit})/p_s(y)$, where $\text{sigmoid}(\cdot)$ represents sigmoid activation function and
 223 logit represents the output of the neural network. After determining $v(Y)$ by optimizing Eq. 5,
 224 we then use the resampling technique to perform label shift on the source domain dataset D_s to
 225 obtain new dataset D_m (its distribution follows $p_m(X, Y)$). Then, using D_m trains a model to
 226 obtain the potentially most generalizable model. Finally, if the supports of $p_m(X)$ and $p_t(X)$ differ
 227 substantially, or to avoid wasting the unlabeled target domain data D_t , methods that can learn new
 228 supports in an unsupervised manner can be leveraged to further fine-tune the trained model.
 229

230 3.3 EMPIRICAL COMPUTATION

232 To optimize Eq. 5, $p_t(X)$, $p_s(X)$, $p_s(Y|X)$, and $p_s(Y)$ need to be properly estimated. An empirical
 233 estimation scheme is given below.
 234

235 Thanks to the development of normalizing flow models, probability density calculation of high-
 236 dimensional random variables becomes efficient and exact (Kobyzev et al., 2021; Papamakarios
 237 et al., 2021). Therefore, we can use normalizing flow models (Zhai et al., 2025) to calculate $p_s(X)$
 238 and $p_t(X)$ in Eq. 5. Specifically, let $F(X)$ be the output of the normalizing flow model, $F(X) \sim$
 239 $\mathcal{N}(0, I)$ be the latent variable output by the normalizing flow model, where I is the identity matrix
 240 and $\mathcal{N}(0, I)$ is a multivariate normal distribution. Therefore:

$$241 \quad \begin{cases} p_s(X) = \frac{|\det(J_{F_s}(X))|}{\sqrt{(2\pi)^d}} e^{-\frac{1}{2}\|F_s(X)\|^2}, \\ p_t(X) = \frac{|\det(J_{F_t}(X))|}{\sqrt{(2\pi)^d}} e^{-\frac{1}{2}\|F_t(X)\|^2}, \end{cases} \quad (7)$$

247 where $F_s(X)$ represents the output of the normalizing flow model on source domain, $F_t(X)$ rep-
 248 presents the output of the normalizing flow model on target domain, d represents the dimension
 249 of X , and $\det(J_{F_s}(X))$ and $\det(J_{F_t}(X))$ represent determinants of Jacobian matrix. In practice,
 250 if the value of d is too large, the values of $p_s(X)$ and $p_t(X)$ will be too small to be calcu-
 251 lated. Fortunately, this situation can be avoided by setting a specific loss function. Specifically,
 252 let $L(a, b) = (\log(a) - \log(b))^2$, then Eq. 5 gets rid of the dependence on d and becomes:
 253

$$254 \quad \min_{\theta_v} \mathbb{E}_X \left[\left(\log g(X) - \log \sum_Y p_s(Y|X) V(Y; \theta_v) \right)^2 \right] + \lambda \left(1 - \sum_Y p_s(Y) V(Y; \theta_v) \right)^2, \quad (8)$$

255 where the expression of $g(X)$ is as follows:
 256

$$257 \quad g(X) = \frac{|\det(J_{F_t}(X))|}{|\det(J_{F_s}(X))|} \cdot e^{\frac{\|F_s(X)\|^2 - \|F_t(X)\|^2}{2}}. \quad (9)$$

262 $p_s(Y|X)$ can be naturally obtained from the classifier on the source domain. $p_s(Y)$ can be estimated
 263 unbiasedly through frequency estimating probability, i.e., $p_s(y) \approx N_s^{(y)}/N_s$, where $N_s^{(y)}$ represents
 264 the sample size of the y -th class in the source domain. Let θ_v^* be the optimal solution of Eq. 8, and
 265 $p_m(Y) = p_s(Y)V(Y; \theta_v^*)$. Then, the samples of each class in D_s are resampled with probability
 266 $p_m(Y)$ to obtain D_m . The generalization process using *Covariate Shift Minimization Principle* is
 267 shown in Algorithm 1 of Appendix B. Specifically, after determining $p_m(Y)$ by Eq. 8, the source
 268 domain data is resampled to simulate label shift, and a classifier is trained on the resampled data.
 269 Then, to further improve generalization, unsupervised fine-tuning is performed on the target domain
 to learn new supports in an unsupervised manner.

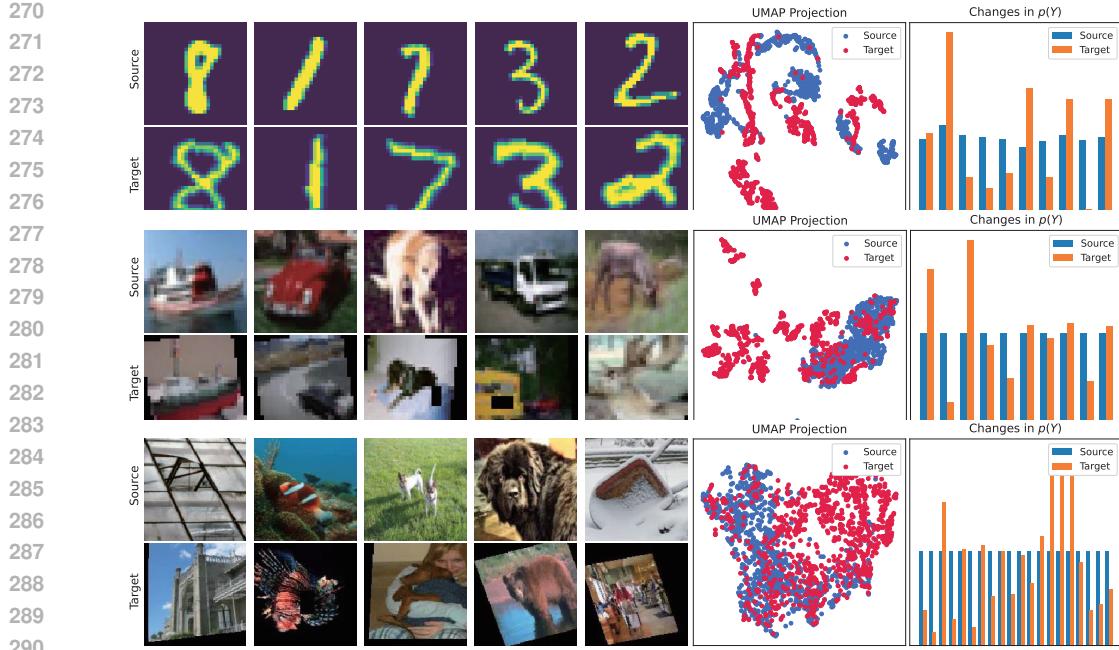


Figure 1: Visualization of generated factorizable joint shift dataset. UMAP Projection (Healy & McInnes, 2024) shows the covariate shift, and changes in $P(Y)$ shows the label shift. ImageNet-1K just shows 20 classes. The online implementation code is at: <https://github.com/Anonymous-user-code/LCSC/blob/main/GenerateFJSdata.ipynb>. Dirichlet distribution’s concentration parameter is 2.

4 GENERATE FACTORIZABLE JOINT SHIFT DATASET

A key challenge in studying factorizable joint shifts is the lack of corresponding real-world datasets to validate existing methods. Therefore, it is necessary to propose a factorizable joint shift dataset generation method to advance the development of this field.

Another benefit of representing the factorizable joint shift as a *Label-Covariate Shift Chain* is that this representation can be used to generate benchmark datasets. These datasets, simulating real-world factorizable joint shift, allow for evaluating the effectiveness of generalization methods. Specifically, from Theorem 1, a factorizable joint shift dataset can be obtained by performing label shift and covariate shift on the real-world dataset in sequence. Algorithm 2 of Appendix B shows the process of generating a factorizable joint shift dataset. Specifically, the generation process involves two sequential steps: label shift followed by covariate shift. First, label shift is performed by resampling the source domain data according to a target label distribution $p_m(Y)$, which is typically initialized using a Dirichlet distribution to control the degree of imbalance. Then, covariate shift is introduced by resampling and followed by transforming the resampled data using predefined data augmentation techniques (e.g., rotation, cropping, brightness adjustment). Resampling is to change the sampling frequency of samples independently of the labels, and data transformation is to change the position of the support points.

5 RESULTS

5.1 GENERATE DATASETS

Experimental Setup: To demonstrate the universality of Algorithm 2, we generate Factorizable Joint Shift Dataset on three datasets with different sizes: 1) A grayscale digit recognition dataset **MNIST** (Lecun et al., 1998); 2) A colorful real-world image recognition dataset **CIFAR-10** (Krizhevsky, 2009); 3) A large-scale color real-world image recognition dataset **ImageNet-1K** (Deng et al., 2009). $p_m(Y)$ and $p_t(X)$ in Algorithm 2 are initialized by Dirichlet distribution sam-

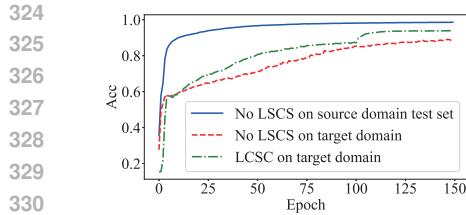


Figure 2: Visualization of the training process on MNIST. The curve with LCSC is significantly higher than the curve without LCSC on the target domain, indicating that LCSC improves the accuracy on the target domain. The results provide strong empirical evidence that LCSC performs domain adaptation on joint shift data. The online implementation code is available at: <https://github.com/Anonymous-user-code/LCSC/blob/main/GeneralizationTrain.ipynb>

Table 1: Classification accuracy on the generated factorizable joint shift dataset. Results (mean \pm std) over 10 runs. No-FT represents no fine-tuning.

Methods	MNIST	CIFAR-10	ImageNet-1K
UnAdapt	84.90 ± 0.86	64.32 ± 1.05	58.17 ± 0.92
BBSE	88.13 ± 0.65	66.55 ± 0.93	62.31 ± 1.01
RLLS	88.15 ± 0.67	66.56 ± 0.91	62.26 ± 0.97
EM	88.16 ± 0.70	66.62 ± 0.82	62.83 ± 1.10
CPMCN	88.37 ± 0.77	66.91 ± 0.81	63.24 ± 0.95
LSC	88.26 ± 0.69	66.43 ± 0.85	62.79 ± 0.88
DANN	89.85 ± 0.60	67.92 ± 0.77	64.12 ± 0.88
TENT	90.12 ± 0.58	68.21 ± 0.74	64.65 ± 0.86
DIW	90.54 ± 0.55	68.43 ± 0.73	64.97 ± 0.89
DUA	90.25 ± 0.49	68.75 ± 0.78	65.23 ± 0.95
IndUDA	91.37 ± 0.58	68.91 ± 0.74	64.99 ± 0.99
GIW	89.12 ± 0.61	67.05 ± 0.80	63.58 ± 0.93
DW-GCS	89.64 ± 0.50	67.38 ± 0.81	64.91 ± 0.92
RSW	90.85 ± 0.51	68.82 ± 0.75	65.10 ± 0.90
JIA	88.97 ± 0.51	68.35 ± 0.69	65.02 ± 0.80
AJIA	90.02 ± 0.57	68.22 ± 0.66	64.87 ± 0.92
LCSC (No-FT)	92.06 ± 0.47	68.79 ± 0.71	65.13 ± 0.84
LCSC (Ours)	94.66 ± 0.44	71.86 ± 0.76	68.53 ± 0.80

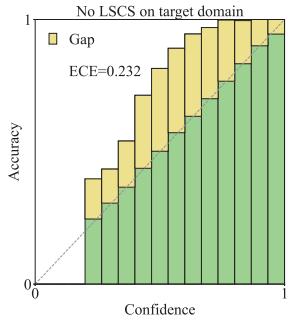
pling. The degree of label shift can be controlled by adjusting the concentration parameter of the Dirichlet distribution, as detailed in Appendix C.2. N_t is set to be as large as the test set’s sample size. Algorithm 2’s data transformation methods are presented in Appendix C.1.

Experimental Results: Fig. 1 shows three generated Factorizable Joint Shift Datasets. MNIST at the top, followed by CIFAR-10, with ImageNet-1K appearing at the bottom. On the far left, five source domain samples and five target domain samples are given, respectively. The Umap Projection (Healy & McInnes, 2024) of the source domain dataset and the target domain dataset are given in the middle of each row of Fig. 1. The target domain projection points diverge significantly from the source domain points, demonstrating a substantial covariate shift. The right side of Fig. 1 shows the label distribution of the source domain dataset and the target domain dataset. By comparison, significant label shifts exist. Since label shift and covariate shift are performed sequentially, factorizable joint shifts exist between the target domain and the source domain. To the best of our knowledge, this is the first factorizable joint shift dataset from the real world.

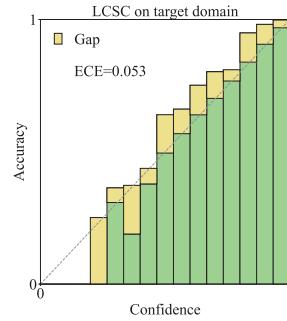
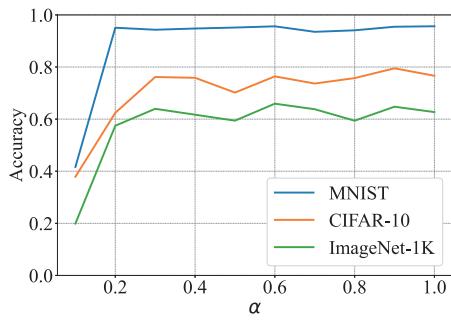
5.2 ACCURACY IMPROVEMENT

5.2.1 EXPERIMENTAL SETUP

To more comprehensively assess the effectiveness of the proposed method, the following methods are compared: 1) **UnAdapt**: models trained on source data without domain adaptation processing; 2) Five baseline label shift solutions: **BBSE** (Lipton et al., 2018), **RLLS** (Azizzadenesheli et al., 2019), **EM** (Alexandari et al., 2020), **CPMCN** (Wen et al., 2024), and **LSC** (Wei et al., 2024); 3) Eight baseline covariate shift solutions: **DANN** (Ganin et al., 2016), **TENT** (Wang et al., 2021), **DIW** (Fang et al., 2020), **DUA** (Mirza et al., 2022), **IndUDA** (He et al., 2023a), **GIW** (Fang et al., 2023), **DW-GCS** (Segovia-Martín et al., 2023), and **RSW** (He et al., 2023b); 4) Two baseline factorizable joint shift solutions: Joint Importance Aligning (JIA) (He et al., 2022) and an Alternative of Joint Importance Aligning (AJIA) (Tasche, 2022); 5) **LCSC**: the proposed Algorithm 1. Due to limited space, other settings are shown in Appendix C.1.2.



389 Figure 3: LCSC calibrates confidence on MNIST.

389 Figure 4: Selection experiments of α .

391 5.2.2 EXPERIMENTAL RESULTS

393 Fig. 2 shows the accuracy of the training process on the generated factorizable joint shift MNIST
 394 data, and see Appendix C.3 for other data. As training progresses, the classifier’s accuracy on both
 395 the source domain test set and the target domain gradually increases. However, the accuracy on the
 396 target domain is significantly lower than that on the source domain test set, demonstrating that the
 397 factorizable joint shift leads to a decrease in the model’s generalization performance. The accuracy
 398 curve of our generalization method LCSC in the target domain has been higher than that of the naive
 399 classifier after 20 epochs, indicating that LCSC can indeed generalize the model under factorizable
 400 joint shift. In addition, from the comparison of the accuracy curves before and after 100 epochs, our
 401 method can achieve a certain generalization effect regardless of whether unsupervised fine-tuning
 402 (i.e., line 23 in Algorithm 1) is used or not.

403 Table 1 compares classification accuracies of baseline methods in generated factorizable joint shift
 404 data. Furthermore, to observe the effect of LCSC under more realistic covariate shifts, we compare
 405 the accuracy improvement effect on the public domain shift datasets, see Appendix C.3. All methods
 406 all improve the classification accuracy on the target domain to a certain extent. Generally, methods
 407 that address covariate shift tend to have higher classification accuracy than those that address label
 408 shift. The accuracy improvement of JIA and AJIA (specialized in factorizable joint shift) is also
 409 limited because they are essentially importance weighting methods that cannot overcome the infor-
 410 mation bias caused by changes in support points. Similarly, without fine-tuning, LCSC yields only
 411 modest accuracy gains, since resampling alone cannot correct the inherent information bias intro-
 412 duced by shifts in the covariate support. As expected, LCSC with fine-tuning achieves the highest
 413 classification accuracy on the target domain because it simultaneously addresses both covariate shift
 414 and label shift, and can overcome the information bias caused by the change of support points.

415 5.3 CONFIDENCE CALIBRATION

416 Due to space limitations, the experimental setup for confidence calibration is presented in Appendix
 417 C.4. Fig. 3 illustrates the effectiveness of confidence calibration on the MNIST dataset, and results
 418 for other datasets are provided in Appendix C.4. Compared with the reliability diagram obtained by
 419 the classifier without LCSC, the reliability diagram obtained by the classifier with LCSC is closer to
 420 the diagonal line, indicating the predicted confidence is more accurate. The classifier using LCSC
 421 achieves a much lower expected calibration error (ECE), showing its effectiveness in confidence
 422 calibration. To more comprehensively assess the calibration effectiveness of our method, some
 423 confidence calibration baseline methods are compared in Appendix C.4.

425 5.4 ABLATION EXPERIMENT

426 **Impact of Lagrange Multiplier λ :** From Eq. 8, the value of λ determines the importance of the
 427 second term (used to ensure $\sum_{y=1}^K p_m(y) = 1$). If λ is too large, the model pays more attention
 428 to the constraint term and ignores the density ratio matching of the first term. If λ is too small, the
 429 constraints may not be adequately satisfied. To select a suitable λ , we employed the gradual increase
 430 strategy. Specifically, let $\lambda = \alpha \cdot loss_1$, where $loss_1$ is the first loss in Eq. 8, and the value of α
 431 increases from 0.1 to 1. The selection experiment of α is shown in Fig. 4. When α is less than 0.3,

432 as α increases, the accuracy of the proposed method in the target domain is improved. However,
 433 when α is greater than 0.3, the accuracy of the proposed method in the target domain does not show
 434 an obvious increase or decrease. Therefore, we set α to 0.3 for all experiments in this paper.

435 Due to space limitations, we report other ablation experiments in the Appendix: **Selection of Unsu-
 436 pervised Fine-Tuning Methods** (Appendix C.5.1), **Impact of Density Estimation Effectiveness**
 437 (Appendix C.5.2), and **Practical Comparison of $p_m(Y)$ and $p_t(Y)$** (Appendix C.5.3).

439 6 DISCUSSION

440 **Reasonableness of Factorizable Joint Shift Assumption:** Real-world joint shifts often exhibit a
 441 factorizable structure: label distribution and covariate distribution change simultaneously but inde-
 442 pendently of each other. For example, the proportion of positive cases can surge during an epidemic
 443 (label shift) while CT images differ across hospitals due to variations in scanners and imaging pro-
 444 tocols (covariate shift); urban scenes contain more cars and buses than rural areas (label shift), while
 445 lighting and background styles vary with region and time of day (covariate shift). In addition, since
 446 the study of joint shift is too difficult, most of the current work focuses on marginal assumptions
 447 (label shift or covariate shift). Thus, compared to the assumption limitations of these works, we
 448 have relaxed the assumptions and taken an important step forward.

449 **Differences from Conventional Unsupervised Domain Adaptation:** Conventional unsupervised
 450 domain adaptation (or out-of-distribution adaptation) primarily addresses covariate shift (Liu et al.,
 451 2022), typically through techniques such as feature alignment (Chen et al., 2019; Shi et al., 2024),
 452 ensemble learning (Zhou et al., 2021; Yang et al., 2024), or normalization statistics adjustment (Li
 453 et al., 2018; Zhang et al., 2024). In contrast, our method is designed to handle the more complex
 454 scenario involving both covariate shift and label shift, thereby offering broader applicability across
 455 diverse domain adaptation settings.

456 **Computational Overhead:** The computational overhead of LCSC is reported in Appendix D. Al-
 457 though LCSC introduces additional computation during training—primarily due to the two normal-
 458 izing flow models— inference remains unaffected since only a classifier is used at test time. Typi-
 459 cally, computing resources are less constrained during training. In our MNIST and CIFAR-10 exper-
 460 iments, a single NVIDIA GeForce RTX 3090 GPU (24 GB VRAM) was sufficient. For ImageNet-
 461 1K, using a single NVIDIA A100 GPU (80 GB VRAM) also yielded competitive results. Therefore,
 462 the computational overhead of density estimation in LCSC does not pose a significant barrier to its
 463 widespread adoption.

464 **Potential Impact, Limitations and Future Work:** We go beyond covariate shift or label shift to
 465 consider the more challenging factorizable joint shift and its generalization methods. We also gen-
 466 erate factorizable joint shift datasets that can help subsequent studies evaluate the effectiveness of gen-
 467 eralization methods. We believe this work has the potential to inspire a wealth of follow-up research,
 468 ultimately enhancing decision-making in real-world applications, particularly for cross-populations
 469 and safety-critical scenarios. However, our study also has several limitations: 1) Algorithm 1 needs
 470 to use the normalizing flow models to estimate the probability density of high-dimensional random
 471 variables, which is a computationally expensive operation in the training phase. In the future, Algo-
 472 rithm 1 will benefit from more efficient probability density estimation methods of high-dimensional
 473 random variables; 2) We did not consider the more naive joint shift. Although highly challenging or
 474 even intractable, further exploration of this concept remains intriguing.

475 7 CONCLUSION

476 This paper proposes a tractable generalization method for factorizable joint shift. Firstly, we re-
 477 present factorizable joint shift as a *Label-Covariate Shift Chain*, where label shift occurs first and
 478 then covariate shift occurs. This representation makes factorizable joint shift more tractable. Then,
 479 an additional prior is introduced on the *Label-Covariate Shift Chain: Covariate Shift Minimization*
 480 *Principle*, which is used to determine non-trivial solutions. In addition, a real-world factorizable
 481 joint shift datasets generation method is proposed by using the *Label-Covariate Shift Chain*, and
 482 the generated datasets can be used to evaluate the effectiveness of generalization methods. Finally,
 483 experimental results verify the proposed method’s generalization effectiveness.

486 REFERENCES
487

488 Amr Alexandari, Anshul Kundaje, and Avanti Shrikumar. Maximum likelihood with bias-corrected
489 calibration is hard-to-beat at label shift adaptation. In Hal Daumé III and Aarti Singh (eds.),
490 *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 222–232. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/alexandari20a.html>.

491

492

493 Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and Animashree Anandkumar. Regularized learn-
494 ing for domain adaptation under label shifts. In *International Conference on Learning Represen-
495 tations*, 2019. URL <https://openreview.net/forum?id=rJl0r3R9KX>.

496

497 Sara Beery, Arushi Agarwal, Elijah Cole, and Vighnesh Birodkar. The iwildcam 2021 competition
498 dataset, 2021. URL <https://arxiv.org/abs/2105.03494>.

499

500 Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong, Xinghao Ding, Yue Huang, Tingyang Xu,
501 and Junzhou Huang. Progressive feature alignment for unsupervised domain adaptation. In *Pro-
502 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June
503 2019.

504

505 Lingjiao Chen, Matei Zaharia, and James Y Zou. Estimating and explaining model
506 performance when both covariates and labels shift. In S. Koyejo, S. Mohamed,
507 A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-
508 mation Processing Systems*, volume 35, pp. 11467–11479. Curran Associates, Inc.,
509 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/4aa13186c795a52ba88f5b822f4b77eb-Paper-Conference.pdf.

510

511 Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Learning bounds for importance
512 weighting. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (eds.),
513 *Advances in Neural Information Processing Systems*, volume 23. Curran Associates, Inc.,
514 2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/file/59c33016884a62116be975a9bb8257e3-Paper.pdf.

515

516 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
517 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
518 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

519

520 Timo Dimitriadis, Tilmann Gneiting, and Alexander I. Jordan. Stable reliability diagrams for prob-
521 abilistic classifiers. *Proceedings of the National Academy of Sciences*, 118(8):e2016191118,
522 2021. doi: 10.1073/pnas.2016191118. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2016191118>.

523

524 Jinzong Dong, Zhaohui Jiang, Dong Pan, Zhiwen Chen, Qingyi Guan, Hongbin Zhang, Gui Gui,
525 and Weihua Gui. A survey on confidence calibration of deep learning-based classification models
526 under class imbalance data. *IEEE Transactions on Neural Networks and Learning Systems*, pp.
527 1–21, 2025a. doi: 10.1109/TNNLS.2025.3565159.

528

529 Jinzong Dong, Zhaohui Jiang, Dong Pan, and Haoyang Yu. Combining priors with experience:
530 Confidence calibration based on binomial process modeling. *Proceedings of the AAAI Conference
531 on Artificial Intelligence*, 39(15):16317–16326, Apr. 2025b. doi: 10.1609/aaai.v39i15.33792.
532 URL <https://ojs.aaai.org/index.php/AAAI/article/view/33792>.

533

534 Yue Fan, Anna Kukleva, Dengxin Dai, and Bernt Schiele. Revisiting consistency regularization for
535 semi-supervised learning. *International Journal of Computer Vision*, 131(3):626–643, Mar 2023.
536 ISSN 1573-1405. doi: 10.1007/s11263-022-01723-4. URL <https://doi.org/10.1007/s11263-022-01723-4>.

537

538 Tongtong Fang, Nan Lu, Gang Niu, and Masashi Sugiyama. Rethinking importance weighting for
539 deep learning under distribution shift. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
540 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 11996–12007.
541 Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/8b9e7ab295e87570551db122a04c6f7c-Paper.pdf.

540 Tongtong Fang, Nan Lu, Gang Niu, and Masashi Sugiyama. Generalizing importance
 541 weighting to a universal solver for distribution shift problems. In A. Oh, T. Nau-
 542 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural*
 543 *Information Processing Systems*, volume 36, pp. 24171–24190. Curran Associates, Inc.,
 544 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/4c2092ec0b1370cce3fb5965ab255fae-Paper-Conference.pdf.

545

546 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 547 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural net-
 548 works. *Journal of Machine Learning Research*, 17(59):1–35, 2016. URL <http://jmlr.org/papers/v17/15-239.html>.

549

550 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
 551 networks. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International*
 552 *Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp.
 553 1321–1330. PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/guo17a.html>.

554

555 Jiaxian Guo, Mingming Gong, Tongliang Liu, Kun Zhang, and Dacheng Tao. LTF: A label trans-
 556 formation framework for correcting label shift. In Hal Daumé III and Aarti Singh (eds.), *Pro-
 557 ceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceed-
 558 ings of Machine Learning Research*, pp. 3843–3853. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/guo20d.html>.

559

560 Kartik Gupta, Amir Rahimi, Thalaiyasingam Ajanthan, Thomas Mensink, Cristian Sminchisescu,
 561 and Richard Hartley. Calibration of neural networks using splines. In *International Confer-
 562 ence on Learning Representations*, 2021. URL <https://openreview.net/forum?id=eQe8DEWNN2W>.

563

564 Hao He, Yuzhe Yang, and Hao Wang. Domain adaptation with factorizable joint shift, 2022. URL
 565 <https://arxiv.org/abs/2203.02902>.

566

567 Qichen He, Siying Xiao, Mao Ye, Xiatian Zhu, Ferrante Neri, and Dongde Hou. Independent feature
 568 decomposition and instance alignment for unsupervised domain adaptation. In *Proceedings of the*
 569 *Thirty-Second International Joint Conference on Artificial Intelligence*, IJCAI ’23, 2023a. ISBN
 570 978-1-956792-03-4. doi: 10.24963/ijcai.2023/91. URL <https://doi.org/10.24963/ijcai.2023/91>.

571

572 Yue He, Zheyuan Shen, and Peng Cui. Towards non-i.i.d. image classification: A dataset and base-
 573 lines. *Pattern Recognition*, 110:107383, 2021. ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2020.107383>. URL <https://www.sciencedirect.com/science/article/pii/S0031320320301862>.

574

575 Yue He, Xinwei Shen, Renzhe Xu, Tong Zhang, Yong Jiang, Wenchao Zou, and Peng Cui.
 576 Covariate-shift generalization via random sample weighting. *Proceedings of the AAAI Conference*
 577 *on Artificial Intelligence*, 37(10):11828–11836, Jun. 2023b. doi: 10.1609/aaai.v37i10.26396.
 578 URL <https://ojs.aaai.org/index.php/AAAI/article/view/26396>.

579

580 John Healy and Leland McInnes. Uniform manifold approximation and projection. *Nature Reviews*
 581 *Methods Primers*, 4(1):82, Nov 2024. ISSN 2662-8449. doi: 10.1038/s43586-024-00363-x. URL
 582 <https://doi.org/10.1038/s43586-024-00363-x>.

583

584 Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang. Dis-
 585 entangling label distribution for long-tailed visual recognition. In *Proceedings of the IEEE/CVF*
 586 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6626–6636, June 2021.

587

588 Dapeng Hu, Jian Liang, Xinchao Wang, and Chuan-Sheng Foo. Pseudo-calibration: Improving pre-
 589 dictive uncertainty estimation in unsupervised domain adaptation. In Ruslan Salakhutdinov, Zico
 590 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 591 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 592 *Proceedings of Machine Learning Research*, pp. 19304–19326. PMLR, 21–27 Jul 2024. URL
 593 <https://proceedings.mlr.press/v235/hu24i.html>.

594 Zijian Hu, Zhengyu Yang, Xuefeng Hu, and Ram Nevatia. Simple: Similar pseudo label exploitation
 595 for semi-supervised classification. In *Proceedings of the IEEE/CVF Conference on Computer*
 596 *Vision and Pattern Recognition (CVPR)*, pp. 15099–15108, June 2021.

597

598 Zhaohui Jiang, Jinzong Dong, Dong Pan, Tianyu Wang, and Weihua Gui. A novel intelli-
 599 gent monitoring method for the closing time of the taphole of blast furnace based on two-
 600 stage classification. *Engineering Applications of Artificial Intelligence*, 120:105849, 2023.
 601 ISSN 0952-1976. doi: <https://doi.org/10.1016/j.engappai.2023.105849>. URL <https://www.sciencedirect.com/science/article/pii/S0952197623000337>.

602

603 Masanari Kimura and Hideitsu Hino. A short survey on importance weighting for machine learn-
 604 ing. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=IhXM3g2gxg>. Survey Certification.

605

606 Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An introduction
 607 and review of current methods. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 608 43(11):3964–3979, 2021. doi: 10.1109/TPAMI.2020.2992934.

609

610 Kian Boon Koh and Basura Fernando. Consistency regularization for domain adaptation. In Leonid
 611 Karlinsky, Tomer Michaeli, and Ko Nishino (eds.), *Computer Vision – ECCV 2022 Workshops*,
 612 pp. 347–359, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-25085-9.

613

614 A Krizhevsky. Learning multiple layers of features from tiny images. *Master’s thesis, University of*
 615 *Tront*, 2009.

616

617 Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration. In H. Wal-
 618 lach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (eds.), *Ad-*
 619 *vances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
 620 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/f8c0c968632845cd133308b1a494967f-Paper.pdf.

621

622 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
 623 nition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

624

625 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521(7553):436–444,
 626 May 2015. ISSN 1476-4687. doi: 10.1038/nature14539. URL <https://doi.org/10.1038/nature14539>.

627

628 Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu. Adaptive batch normalization
 629 for practical domain adaptation. *Pattern Recognition*, 80:109–117, 2018. ISSN 0031-3203. doi:
 630 <https://doi.org/10.1016/j.patcog.2018.03.005>. URL <https://www.sciencedirect.com/science/article/pii/S003132031830092X>.

631

632 Yundong Li, Longxia Guo, and Yizheng Ge. Pseudo labels for unsupervised domain adaptation: A
 633 review. *Electronics*, 12(15), 2023. ISSN 2079-9292. doi: 10.3390/electronics12153325. URL
 634 <https://www.mdpi.com/2079-9292/12/15/3325>.

635

636 Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under dis-
 637 tribution shifts. *International Journal of Computer Vision*, 133(1):31–64, Jan 2025. ISSN
 638 1573-1405. doi: 10.1007/s11263-024-02181-w. URL <https://doi.org/10.1007/s11263-024-02181-w>.

639

640 Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for label shift
 641 with black box predictors. In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th*
 642 *International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning*
 643 *Research*, pp. 3122–3130. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/lipton18a.html>.

644

645 Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, Hyejin Oh, Georges El Fakhri, Je-Won Kang, and
 646 Jonghye Woo. Deep unsupervised domain adaptation: A review of recent advances and per-
 647 spectives. *APSIPA Transactions on Signal and Information Processing*, 11(1):–, 2022. doi:
 10.1561/116.00000192. URL <http://dx.doi.org/10.1561/116.00000192>.

648 M. Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The norm must go on:
 649 Dynamic unsupervised domain adaptation by normalization. In *Proceedings of the IEEE/CVF*
 650 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14765–14775, June 2022.
 651

652 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
 653 shminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of Ma-*
 654 *chine Learning Research*, 22(57):1–64, 2021. URL <http://jmlr.org/papers/v22/19-1028.html>.
 655

656 Teodora Popordanoska, Gorjan Radovski, Tinne Tuytelaars, and Matthew B. Blaschko. Las-
 657 cal: Label-shift calibration without target labels. In A. Globerson, L. Mackey, D. Bel-
 658 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-*
 659 *formation Processing Systems*, volume 37, pp. 65386–65414. Curran Associates, Inc.,
 660 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/783c5986e1d6112cb4688d9b2105609a-Paper-Conference.pdf.
 661

662 Benjamin Rhodes, Kai Xu, and Michael U. Gutmann. Telescoping density-ratio estimation.
 663 In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in*
 664 *Neural Information Processing Systems*, volume 33, pp. 4905–4916. Curran Associates, Inc.,
 665 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/33d3b157ddc0896addfb22fa2a519097-Paper.pdf.
 666

667 José I. Segovia-Martín, Santiago Mazuelas, and Anqi Liu. Double-weighting for covariate shift
 668 adaptation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
 669 Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on*
 670 *Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 30439–
 671 30457. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/segovia-martin23a.html>.
 672

673 Minglai Shao, Dong Li, Chen Zhao, Xintao Wu, Yujie Lin, and Qin Tian. Supervised algorithmic
 674 fairness in distribution shifts: a survey. In *Proceedings of the Thirty-Third International Joint*
 675 *Conference on Artificial Intelligence*, IJCAI ’24, 2024. ISBN 978-1-956792-04-1. doi: 10.24963/
 676 ijcai.2024/909. URL <https://doi.org/10.24963/ijcai.2024/909>.
 677

678 Yu Shi, Lan Du, Yuchen Guo, Yuang Du, and Yiming Li. Unsupervised domain adaptation for ship
 679 classification via progressive feature alignment: From optical to sar images. *IEEE Transactions*
 680 *on Geoscience and Remote Sensing*, 62:1–17, 2024. doi: 10.1109/TGRS.2024.3458937.
 681

682 Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. Covariate shift adaptation by
 683 importance weighted cross validation. *J. Mach. Learn. Res.*, 8:985–1005, December 2007. ISSN
 684 1532-4435.

685 Dirk Tasche. Factorizable joint shift in multinomial classification. *Machine Learning and Knowl-*
 686 *edge Extraction*, 4(3):779–802, 2022. ISSN 2504-4990. doi: 10.3390/make4030038. URL
 687 <https://www.mdpi.com/2504-4990/4/3/38>.
 688

689 Dirk Tasche. Invariance assumptions for class distribution estimation. In *3rd International Workshop*
 690 *on Learning to Quantify (LQ 2023)*, pp. 56, 2023.

691 Qinglong Tian, Xin Zhang, and Jiwei Zhao. ELSA: Efficient label shift adaptation through the
 692 lens of semiparametric models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 693 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International*
 694 *Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*,
 695 pp. 34120–34142. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/tian23a.html>.
 696

697 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 698 hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE Conference on*
 699 *Computer Vision and Pattern Recognition (CVPR)*, July 2017.

700 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
 701 test-time adaptation by entropy minimization. In *International Conference on Learning Repre-*
 702 *sentations*, 2021. URL <https://openreview.net/forum?id=uXl3bZLkr3c>.
 703

702 Ximei Wang, Mingsheng Long, Jianmin Wang, and Michael Jordan. Transferable cal-
 703ibration with lower bias and variance in domain adaptation. In H. Larochelle,
 704 M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural In-*
 705 *formation Processing Systems*, volume 33, pp. 19212–19223. Curran Associates, Inc.,
 706 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/df12ecd077efc8c23881028604dbb8cc-Paper.pdf.

708
 709 Tong Wei, Zhen Mao, Zi-Hao Zhou, Yuanyu Wan, and Min-Ling Zhang. Learning label shift correc-
 710 tion for test-agnostic long-tailed recognition. In *Forty-first International Conference on Machine*
 711 *Learning*, 2024. URL <https://openreview.net/forum?id=J3xYTh6xtL>.

712
 713 Hongwei Wen, Annika Betken, and Hanyuan Hang. Class probability matching with calibrated
 714 networks for label shift adaption. In *The Twelfth International Conference on Learning Repre-*
 715 *sentations*, 2024. URL <https://openreview.net/forum?id=mliQ2huFrZ>.

716
 717 Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, and Masashi Sugiyama. Rel-
 718 ative density-ratio estimation for robust distribution comparison. *Neural Computation*, 25(5):
 719 1324–1370, 2013. doi: 10.1162/NECO_a_00442.

720
 721 Yuxiang Yang, Lu Wen, Pinxian Zeng, Binyu Yan, and Yan Wang. Dane: A dual-level alignment
 722 network with ensemble learning for multisource domain adaptation. *IEEE Transactions on In-*
 723 *strumentation and Measurement*, 73:1–11, 2024.

724
 725 Shuangfei Zhai, Ruixiang ZHANG, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng,
 726 Tianrong Chen, Miguel Ángel Bautista, Navdeep Jaitly, and Joshua M. Susskind. Normaliz-
 727 ing flows are capable generative models. In *Forty-second International Conference on Machine*
 728 *Learning*, 2025. URL <https://openreview.net/forum?id=2uheUFcFsM>.

729
 730 Chuyan Zhang, Yuncheng Yang, Hao Zheng, Yawen Huang, Yefeng Zheng, and Yun Gu. Affine
 731 collaborative normalization: A shortcut for adaptation in medical image analysis. *Pattern*
 732 *Recognition*, 153:110528, 2024. ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2024.110528>. URL <https://www.sciencedirect.com/science/article/pii/S0031320324002796>.

733
 734 Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation under
 735 target and conditional shift. In Sanjoy Dasgupta and David McAllester (eds.), *Proceedings of*
 736 *the 30th International Conference on Machine Learning*, volume 28 of *Proceedings of Machine*
 737 *Learning Research*, pp. 819–827, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL <https://proceedings.mlr.press/v28/zhang13d.html>.

738
 739 Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain adaptive ensemble learning. *IEEE*
 740 *Transactions on Image Processing*, 30:8008–8018, 2021.

741
 742
 743
 744 APPENDIX

745
 746 A PROOF OF COROLLARY 1

747
 748 *Proof.* From Theorem 1, the following holds:

749
 750
$$p_t(X) = \sum_Y p_t(X, Y) = \sum_Y p_t(Y|X)p_t(X)$$

 751
$$\underline{\text{Covariate shift}} \sum_Y p_m(Y|X)p_m(X)u(X) \cdot C = C \cdot u(X) \sum_Y p_m(X|Y)p_m(Y) \quad (10)$$

 752
 753
$$\underline{\text{Label shift}} C \cdot u(X) \sum_Y p_s(X|Y)p_s(Y) \frac{v(Y)}{C} = u(X) \sum_Y p_s(Y, X)v(Y).$$

 754
 755

756 Similarly, the following holds:
 757

$$\begin{aligned}
 758 \quad p_t(Y) &= \int_X p_t(X, Y) dX = \int_X p_t(Y|X) P_t(X) dX \\
 759 \\
 760 \quad \underline{\text{Covariate shift}} \int_X p_m(Y|X) p_m(X) C \cdot u(X) dX &= \int_X p_m(X|Y) p_m(Y) C \cdot u(X) dX \\
 761 \\
 762 \quad \underline{\text{Label shift}} \int_X p_s(X|Y) p_s(Y) \frac{v(Y)}{C} C \cdot u(X) dX &= v(Y) \int_X p_s(X, Y) u(X) dX.
 763 \\
 764 \\
 765
 \end{aligned} \tag{11}$$

766 Therefore, Eq. 4 is proved.

767 Below, prove the uniqueness of $u(X) \cdot v(Y)$. Proof by contradiction is used. Assume there are two
 768 solutions: $(u(X), v(Y))$ and $(u'(X), v'(Y))$. By Eq. 4, it holds:

$$\begin{aligned}
 770 \quad p_t(X) &= u(X) \sum_Y p_s(Y, X) v(Y) = u'(X) \sum_Y p_s(Y, X) v'(Y), \\
 771 \\
 772 \quad p_t(Y) &= v(Y) \int_X p_s(X, Y) u(X) dX = v'(Y) \int_X p_s(X, Y) u'(X) dX.
 773 \\
 774
 \end{aligned} \tag{12}$$

775 Let $r(X) = u'(X)/u(X)$, $s(Y) = v'(Y)/v(Y)$, $a_X(Y) = \frac{p_s(Y, X) v(Y)}{\sum_{Y'} p_s(Y', X) v(Y')}$, and $b_Y(X) =$
 776 $\frac{p_s(X, Y) u(X)}{\int_X p_s(X, Y) u(X) dX}$. Therefore:

$$\begin{aligned}
 777 \quad 1 &= r(X) \frac{\sum_Y p_s(Y, X) s(Y) v(Y)}{\sum_Y p_s(Y, X) v(Y)} = r(X) E_{Y \sim a_X}[s(Y)], \\
 778 \\
 779 \quad 1 &= s(Y) \frac{\int_X p_s(X, Y) r(X) u(X) dX}{\int_X p_s(X, Y) u(X) dX} = s(Y) E_{X \sim b_Y}[r(X)].
 780 \\
 781 \\
 782 \\
 783 \\
 784 \\
 785
 \end{aligned} \tag{13}$$

786 Therefore, get a fixed point:

$$r(X) = \frac{1}{E_{Y \sim a_X}[\frac{1}{E_{X' \sim b_Y}[r(X')]}]}. \tag{14}$$

789 Let $r(X)$ reach its minimum value $m = \inf_X r(X)$ at X^* . Due to Eq. 14:

$$m = \frac{1}{E_{Y \sim a_{X^*}}[\frac{1}{m}]} = r(X^*) = \frac{1}{E_{Y \sim a_{X^*}}[\frac{1}{E_{X' \sim b_Y}[r(X')]}]}. \tag{15}$$

794 Therefore:

$$E_{Y \sim a_{X^*}}\left[\frac{1}{m}\right] = E_{Y \sim a_{X^*}}\left[\frac{1}{E_{X' \sim b_Y}[r(X')]} \right]. \tag{16}$$

797 Therefore:

$$E_{Y \sim a_{X^*}}\left[\frac{1}{m} - \frac{1}{E_{X' \sim b_Y}[r(X')]} \right] = 0. \tag{17}$$

800 Due to $m \leq r(X')$ for all X' , and then $\frac{1}{m} - \frac{1}{E_{X' \sim b_Y}[r(X')]} \geq 0$. Therefore $m = E_{X' \sim b_Y}[r(X')]$.
 801 Similarly, due to $m \leq r(X')$ for all X' , $r(X') = m$ for all $b_Y(X') \neq 0$. Therefore, $r(X)$ is a
 802 constant function in $p_s(X, Y) \neq 0$. Let $r(X) = C$, then:

$$s(Y) = \frac{1}{E_{X \sim b_Y}[r(X)]} = \frac{1}{C}. \tag{18}$$

806 Therefore:

$$u'(X)v'(Y) = (u(X)r(X))(v(Y)s(Y)) = C \cdot u(X) \frac{1}{C} v(Y) = u(X)v(Y). \tag{19}$$

809 Therefore, the uniqueness of $u(X) \cdot v(Y)$ is proved. \square

Algorithm 1 Generalization by Covariate Shift Minimization Principle.

```

810
811 1: Initialize:
812 2:    $D_s = \{x_i, y_i\}_{1 \leq i \leq N_s}; D_t = \{x_j\}_{1 \leq j \leq N_t}; N_m;$ 
813 3:    $D_s^{(k)} = \{x | (x, y) \in D_s \text{ and } y = k\}; D_m = \{\};$ 
814 4:   A normalizing flow model  $F_s(X)$ ;
815 5:   A normalizing flow model  $F_t(X)$ ;
816 6:   A classifier  $f_1(X)$ ; A classifier  $f_2(X)$ ;
817 7:   A parametric model  $V(Y; \theta_v)$ .
818 8: Training:
819 9:   Using  $D_s^x = \{x | (x, y) \in D_s\}$  to train  $F_s(X)$ .
820 10:  Using  $D_t$  to train  $F_t(X)$ .
821 11:  Using  $D_s$  to train  $f_1(X)$ .
822 12:  Get  $\theta_v^*$  by optimizing Eq. 8.
823 13: Resampling:
824 14:  Let  $h_k = \sum_{y=1}^k p_s(y)V(y; \theta_v^*)$ , where  $1 \leq k \leq K$ .
825 15:   $i = 0$ .
826 16:  While  $i \leq N_m$ :
827 17:    Uniformly sample a number  $h$  in  $[0, 1]$ .
828 18:    If  $h_{k-1} < h \leq h_k$ :
829 19:      Uniformly select a sample from  $D_s^{(k)}$  to  $D_m$ .
830 20:     $i = i + 1$ .
831 21: Generalization Training:
832 22:  Using  $D_m$  to train  $f_2(X)$ .
833 23:  Unsupervised fine-tuning  $f_2(X)$  on  $D_t$ .
834 24: Return  $f_2(X)$ .
835
836
837
838
839
```

B PSEUDO-CODE

Generalization by Covariate Shift Minimization Principle: Algorithm 1 implements the Covariate Shift Minimization Principle on the proposed Label–Covariate Shift Chain to obtain a non-trivial estimate of $p_t(Y|X)$ using only labeled source data D_s and unlabeled target data D_t . Its main steps are as follows: (i) estimate source and target covariate densities using normalizing flows and train a source classifier; (ii) optimize Eq. 8 to learn $V(Y; \theta_v)$ and derive the adjusted label prior $p_m(Y) = p_s(Y)V(Y; \theta_v^*)$; (iii) resample the source dataset according to $p_m(Y)$ to simulate label shift, train a new classifier on the resampled data, and optionally fine-tune it on the unlabeled target domain. Unsupervised fine-tuning in line 23 of Algorithm 1 performs further generalization to learn new supports in an unsupervised manner.

Generate Factorizable Joint Shift Dataset: Algorithm 2 constructs a target domain exhibiting factorizable joint shift by sequentially applying label shift and covariate shift to a source dataset. First, a target label distribution $p_m(Y)$ is sampled (e.g., from a Dirichlet prior) to control the degree of imbalance, and source samples are resampled according to $p_m(Y)$ to form an intermediate dataset. Next, covariate shift is introduced by resampling and applying predefined transformations (e.g., rotation, cropping, brightness, or contrast adjustment) to alter the support of X while preserving semantics. The resulting dataset D_t thus differs from the source in both label and covariate distributions, providing a realistic benchmark for evaluating domain adaptation under factorizable joint shift. Note that to ensure the shift simulation rationality, $\sum_{y=1}^K p_m(y) = 1$ and $\sum_{j=1}^{N_t} p_t(x_j) \leq 1$ must be satisfied when initializing $p_m(Y)$ and $p_t(X)$. In addition, both resampling and data transformation are used in covariate shifts. Resampling is to change the sampling frequency of samples independently of the labels, and data transformation is to change the position of the support points.

864 **Algorithm 2** Generate Factorizable Joint Shift Dataset.

865 1: **Initialize:**

866 2: $D_s = \{x_i, y_i\}_{1 \leq i \leq N_s}; D_t = \{\}$;

867 3: $D_s^{(k)} = \{(x, y) | (x, y) \in D_s \text{ and } y = k\}$;

868 4: $N_t; D_m = \{\}; p_t(X); p_m(Y)$;

869 5: **Label Shift:**

870 6: Let $h_k = \sum_{y=1}^k p_m(y)$, where $1 \leq k \leq K$.

871 7: $i = 0$.

872 8: **While** $i \leq N_t$:

873 9: Generate a uniform random number h in $[0, 1]$.

874 10: If $h_{k-1} < h \leq h_k$:

875 11: Uniformly sample (x, y) from $D_s^{(k)}$ to D_m .

876 12: $i = i + 1$.

877 13: **Covariate Shift:**

878 14: Let $h_J = \sum_{j=1}^J p_t(x_j)$, where $1 \leq J \leq N_t$.

879 15: $i = 0$.

880 16: **While** $i \leq N_t$:

881 17: Uniformly sample a number h in $[0, h_{N_t}]$.

882 18: If $h_{J-1} < h \leq h_J$:

883 19: Transform x_J to obtain x'_J .

884 20: Add (x'_J, y_J) to D_t .

885 21: $i = i + 1$.

886 22: **Return** D_t .

887

C RESULTS

890 C.1 EXPERIMENTAL SETTINGS

892 All experiment was conducted on Intel® CoreTM i7-10700 CPU with 3.70GHz and 125.5GB memory, 10 NVIDIA GeForce RTX 3090 graphics cards (each with 24GB of video memory), Ubuntu 20.04.3 LTS, Python 3.11.11, and Torch 2.3.0+cu121.

895 C.1.1 EXPERIMENTAL SETUP OF GENERATING DATASETS

898 Algorithm 2’s data transformation methods applied to three datasets are presented in Table 2, which
900 controls the degree of shift in the covariate support points. To ensure the semantics of the data
901 remain unchanged, the rotation angles for MNIST and CIFAR-10 are $(-10^\circ, +10^\circ)$, and the rotation
902 angles for ImageNet-1K are $(-15^\circ, +15^\circ)$. Regarding random shifting, all three datasets are shifted
903 horizontally or vertically no more than 10% of the image size. Regarding random cropping, the
904 image cropping sizes in the three datasets are all 87.5% of the source image size, and will be resized
905 to the original size after cropping. Regarding brightness adjustment, the brightness adjustment range
906 does not exceed 10% of the image pixel range. Specifically, $I_{out} = I_{in} + \Delta b$ for $\Delta b \in (-0.1 * r, +0.1 * r)$, where I_{in} represents the input image, I_{out} represents the output image, and r represents
907 the pixel range. Similarly, the contrast adjustment degree does not exceed 10%, i.e., $I_{out} = c \cdot (I_{in} - r_{mid}) + r_{mid}$ for $c \in [0.9, 1.1]$, where r_{mid} represents the mid value of the pixel range. Regarding
908 random scaling, the scaling range is set to $(0.85, 1.15)$. Regarding random erasing, the probability
909 of erasing is set to 0.5. To ensure the semantics of the data remain unchanged, range of proportion of
910 erased area against input image is $(0.01, 0.05)$. Note that the data transformation parameters above
911 are user-specific settings that can be made based on the desired covariate shift requirements.

912 C.1.2 EXPERIMENTAL SETUP OF ACCURACY IMPROVEMENT

914 N_m of Algorithm 1 is set to be as large as the train set’s sample size. Depending on the size
915 of the dataset, appropriate and popular classifiers are used for the corresponding dataset: LeNet-
916 5 for MNIST, ResNet-56 for CIFAR-10, and ResNet-152 for ImageNet-1K. $f_1(X)$ and $f_2(X)$ in
917 Algorithm 1 use classifiers with the same structure. The learning rate of LeNet-5 is 0.01. The
918 learning rate of ResNet-56 and ResNet-152 are 0.1 for the first 50 epochs, 0.01 for 50 to 100 epochs,

918
 919 Table 2: Data transformation methods on Algorithm 2. Note that data transformation is only used
 920 to change the position of covariate support, and only combined with resampling can a complete
 921 covariate shift be achieved (see line 17 of Algorithm 2).
 922

Datasets	Transformation Methods
MNIST	Random rotation ($\leq 10^\circ$); Random shifting; Random cropping; Brightness adjustment; Contrast adjustment.
CIFAR-10	Random cropping; Random rotation ($\leq 10^\circ$); Random shifting; Random scaling; Random Erasing
ImageNet-1K	Random cropping; Random rotation ($\leq 15^\circ$); Random shifting; Random scaling; Random Erasing

934
 935 and 0.001 after 100 epochs. The normalizing flow models’ hyperparameter settings are shown in
 936 Table 3. $V(Y; \theta_v)$ is a simple three-layer feedforward neural network with the number of neurons
 937 in the hidden layer being twice the number of categories, trained with the Adam optimizer with a
 938 learning rate of 0.001. All classifiers are trained for 150 epochs, all normalizing flow models are
 939 trained for 100 epochs, and $V(Y; \theta_v)$ is trained for 100 epochs. In Algorithm 1’s generalization train,
 940 unsupervised fine-tuning is performed using naive pseudo-label training. Specifically, the predicted
 941 confidences are sorted from largest to smallest, and then the top 75% of samples are used for pseudo-
 942 label training (see section C.5). In Algorithm 1’s generalization train, the first 100 epochs are using
 943 D_m to train $f_2(X)$, and the next 50 epochs are unsupervised fine-tuning $f_2(X)$ with pseudo labels.
 944

945 Table 3: Hyperparameter settings for TarFlow (Zhai et al., 2025). P represents the patch size, Ch
 946 represents the model channel size, T represents the number of autoregressive flow blocks, K repre-
 947 sents the number of attention layers in each flow, and p_ϵ represents the noise distribution.
 948

Datasets	P-Ch-T-K- p_ϵ	Optimizer	Learning rate
MNIST	2-128-4-4- $\mathcal{N}(0, 0.1)$	Adam	0.002
CIFAR-10	2-256-4-4- $\mathcal{N}(0, 0.05)$	Adam	0.0002
ImageNet-1K	4-768-8-8- $\mathcal{N}(0, 0.15)$	Adam	0.0001

953 C.2 GENERATE DATASETS

954
 955 $p_m(Y)$ in Algorithm 2 are initialized by Dirichlet distribution sampling. The degree of label shift
 956 can be controlled by adjusting the concentration parameter of the Dirichlet distribution, as shown in
 957 Fig. 5. The smaller the concentration parameter, the greater the imbalance of the sampled data; the
 958 larger the concentration parameter, the smaller the imbalance of the sampled data. This is because
 959 a smaller concentration parameter increases the probability that the Dirichlet distribution places
 960 samples near the edge of the simplex, while a larger concentration parameter causes the distribution
 961 to concentrate samples nearer the center of the simplex. Therefore, when the sample sizes of classes
 962 in the source domain are almost balanced, the degree of label shift can be controlled by adjusting
 963 the concentration parameter of the Dirichlet distribution.
 964

965 C.3 ACCURACY IMPROVEMENT

966
 967 Fig. 6 shows the accuracy of the training process on CIFAR-10 and ImageNet-1K. As training pro-
 968 gresses, the classifier’s accuracy on both the source domain test set and the target domain gradually
 969 increases. However, the accuracy on the target domain is significantly lower than that on the source
 970 domain test set, demonstrating that the factorizable joint shift leads to a decrease in the model’s
 971 generalization performance. Whether on CIFAR-10 or ImageNet-1K, the accuracy curve of our
 972 generalization method LCSC in the target domain has been higher than that of the naive classifier,
 973

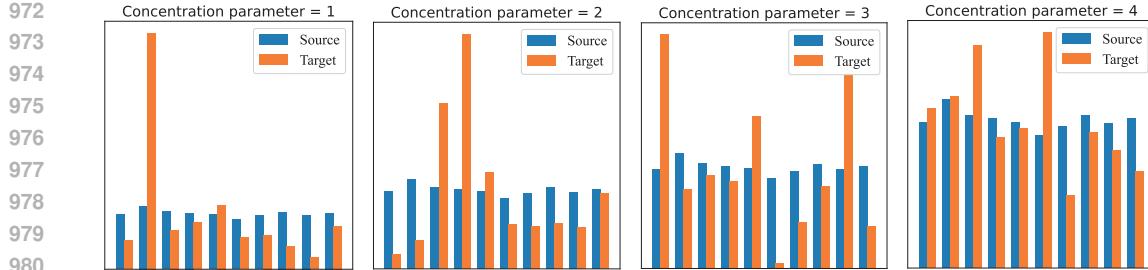


Figure 5: The degree of label shift can be controlled by adjusting Dirichlet distribution’s concentration parameter in MNIST.

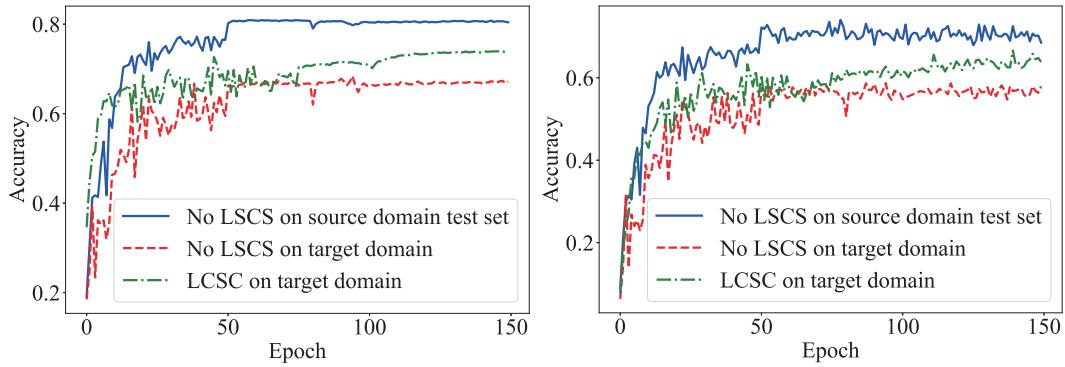


Figure 6: Visualization of the training processes. Results for CIFAR-10 (left) and ImageNet-1K (right).

indicating that LCSC can indeed generalize the model under factorizable joint shift. In addition, from the comparison of the accuracy curves before and after 100 epochs, our method can achieve a certain generalization effect regardless of whether unsupervised fine-tuning (i.e., line 23 in Algorithm 1) is used or not.

Results on the Public Domain Shift Datasets: To observe the effect of LCSC under more realistic covariate shifts, we compare the accuracy improvement effect on the public domain shift dataset. We considered the following three public domain shift datasets: 1) **NICO** (He et al., 2021); 2) **Office-Home** (Venkateswara et al., 2017); 3) **iWildCam** (Beery et al., 2021). In these three datasets, the first half of the domain index is used as the source domain, and the second half of the domain index is used as the target domain. To simulate the joint shift, the source domain is sampled relatively balanced, and the target domain is sampled into a simplex (the concentration parameter of the Dirichlet distribution is 2). Table 4 shows the results comparison on these three datasets. Methods designed for label shift correction (BBSE, RLLS, EM, CPMCN, LSC) provide moderate improvements over UnAdapt, while covariate shift adaptation methods (e.g., DANN, TENT, DIW, DUA, IndUDA) achieve higher gains, reflecting their ability to handle feature distribution changes. Specialized approaches for factorizable joint shift (JIA, AJIA) offer limited additional benefit compared to covariate shift methods. Finally, the proposed LCSC method shows the best performance: without fine-tuning (No-FT), it already matches or surpasses the strongest baselines, and with unsupervised fine-tuning (Ours), it achieves the highest accuracy on all datasets, demonstrating its effectiveness in addressing both label and covariate shifts simultaneously.

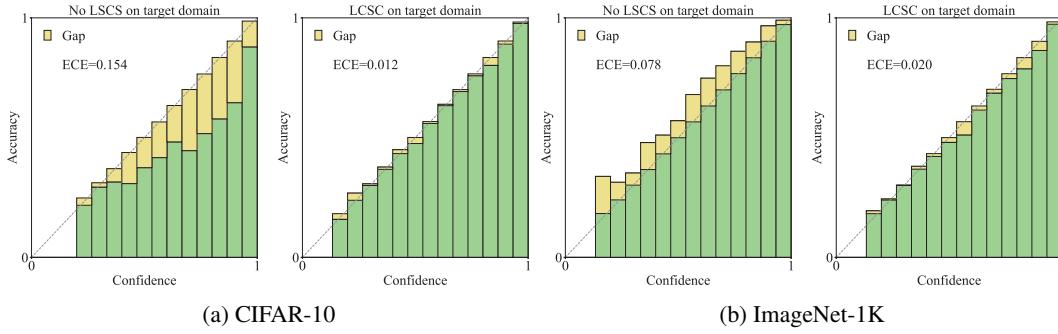


Figure 7: LCSC helps calibrate confidence.

Table 4: Classification accuracy on the generated factorizable joint shift dataset. Results (mean \pm std) over 10 runs. No-FT represents no fine-tuning.

Methods	NICO	Office-Home	iWildCam
UnAdapt	54.60 \pm 0.82	50.30 \pm 0.93	60.30 \pm 0.88
BBSE	58.90 \pm 0.79	55.70 \pm 0.90	63.70 \pm 0.86
RLLS	59.00 \pm 0.78	55.90 \pm 0.89	63.60 \pm 0.85
EM	59.20 \pm 0.77	56.10 \pm 0.88	63.90 \pm 0.84
CPMCN	59.60 \pm 0.75	56.50 \pm 0.87	64.30 \pm 0.84
LSC	59.10 \pm 0.76	55.80 \pm 0.88	63.80 \pm 0.85
DANN	60.80 \pm 0.74	57.80 \pm 0.85	65.10 \pm 0.82
TENT	61.30 \pm 0.72	58.40 \pm 0.84	65.60 \pm 0.81
DIW	61.70 \pm 0.71	58.80 \pm 0.83	65.90 \pm 0.81
DUA	62.10 \pm 0.72	59.20 \pm 0.83	66.20 \pm 0.80
IndUDA	62.50 \pm 0.70	59.60 \pm 0.82	66.40 \pm 0.80
GIW	61.00 \pm 0.73	58.10 \pm 0.84	65.30 \pm 0.82
DW-GCS	61.40 \pm 0.72	58.60 \pm 0.83	65.70 \pm 0.81
RSW	62.80 \pm 0.71	59.80 \pm 0.82	66.60 \pm 0.80
JIA	61.50 \pm 0.70	58.70 \pm 0.82	65.80 \pm 0.79
AJIA	61.20 \pm 0.70	58.50 \pm 0.82	65.70 \pm 0.79
LCSC (No-FT)	62.90 \pm 0.69	60.00 \pm 0.80	66.70 \pm 0.79
LCSC (Ours)	64.80 \pm 0.66	61.70 \pm 0.79	67.90 \pm 0.78

C.4 CONFIDENCE CALIBRATION

Experimental Setup: Algorithm 1’s generalization on the confidence calibration task is also verified. To measure the accurateness of predicted confidence score, two of the most popular calibration metrics are adopted: reliability diagram (Dimitriadis et al., 2021), expected calibration error (*ECE*) (Guo et al., 2017), debiased calibration error (*ECE_{debiased}*) (Kumar et al., 2019), and calibration error using Kolmogorov-Smirnov test (*KS-error*) (Gupta et al., 2021). The bin number of confidence binning is set to the popular 15 (Dong et al., 2025b;a) when calculating reliability plots and *ECE*. Since the training process is shared with Section 5.2, its hyperparameters are identical to those in Section 5.2.

Reliability Diagram: Fig. 7 shows the effect of confidence calibration on the CIFAR-10 and ImageNet-1K. From the reliability diagram, the confidence scores on CIFAR-10 show overconfidence (the average accuracy is below the diagonal line), and the confidence scores on ImageNet-1K show underconfidence (the average accuracy is above the diagonal line). Whether on CIFAR-10 or ImageNet-1K, compared with the reliability diagram obtained by the classifier without LCSC, the reliability diagram obtained by the classifier with LCSC is closer to the diagonal line, indicating the predicted confidence is more accurate. In addition, the *ECE* obtained by the classifier using LCSC is also significantly smaller, indicating that LCSC can indeed help calibrate confidence.

Baseline Methods: To more comprehensively assess the calibration effectiveness of the proposed method, the following calibration methods are compared: 1) **Uncal**: uncalibrated model trained on source data; 2) **TempScal**: calibration on source data using Temperature scaling (Guo et al., 2017); 3) Two confidence calibration methods under label shift: **LADE** (Hong et al., 2021) and **LaSCal** (Popordanoska et al., 2024); 4) Two confidence calibration methods under covariate shift: **TransCal** (Wang et al., 2020) and **PseudoCal** (Hu et al., 2024); 5) **LCSC**: the proposed Algorithm 1.

Calibration metrics Comparison: Across all three datasets (MNIST, CIFAR-10, ImageNet-1K) and all three calibration metrics (ECE , $ECE_{debiased}$, and KS -error), LCSC consistently achieves the lowest error, indicating that its probability estimates align most closely with empirical accuracy and with the target confidence distribution, as shown in Table 5, Table 6 and Table 7. Notably, methods tailored to a single type of shift—LADE/LaSCal (label shift), and TransCal/PseudoCal (covariate shift)—provide meaningful but limited gains relative to the uncalibrated baseline, whereas LCSC yields uniformly larger reductions, especially on the more challenging CIFAR-10 and ImageNet-1K settings, where distribution shifts are stronger. The agreement of improvements across ECE and $ECE_{debiased}$ suggests the effect is not an artifact of binning bias, and the concurrent decrease in KS -error further confirms that LCSC improves the full calibration curve rather than only average bin deviations. We attribute these gains to LCSC’s joint treatment of label and covariate shift on the Label–Covariate Shift Chain: aligning $p_m(X)$ toward $p_t(X)$ mitigates covariate mismatch while the learned prior $p_m(Y)$ prevents collapse to trivial importance weights, leading to better-calibrated posteriors under target distributional changes.

Table 5: ECE (%) Comparison in Confidence Calibration Baseline Methods. Results (mean \pm std) over 10 runs.

Dataset	Uncal	TempScal	LADE	LaSCal	TransCal	PseudoCal	LCSC
MNIST	12.47 ± 0.61	7.923 ± 0.44	5.368 ± 0.38	4.885 ± 0.35	4.116 ± 0.29	5.927 ± 0.41	2.354 ± 0.21
CIFAR-10	23.58 ± 0.73	15.84 ± 0.65	12.43 ± 0.57	11.38 ± 0.54	10.72 ± 0.49	12.91 ± 0.60	7.457 ± 0.36
ImageNet-1K	31.92 ± 0.88	22.67 ± 0.79	18.34 ± 0.71	17.12 ± 0.69	16.48 ± 0.66	18.95 ± 0.75	12.03 ± 0.52

Table 6: $ECE_{debiased}$ (%) Comparison in Confidence Calibration Baseline Methods. Results (mean \pm std) over 10 runs.

Dataset	Uncal	TempScal	LADE	LaSCal	TransCal	PseudoCal	LCSC
MNIST	11.09 ± 0.54	6.87 ± 0.38	4.45 ± 0.32	3.97 ± 0.28	3.26 ± 0.23	5.00 ± 0.35	1.84 ± 0.16
CIFAR-10	21.49 ± 0.67	14.18 ± 0.58	10.64 ± 0.49	9.53 ± 0.45	8.83 ± 0.40	11.21 ± 0.52	5.98 ± 0.29
ImageNet-1K	29.18 ± 0.80	20.47 ± 0.71	16.02 ± 0.62	14.67 ± 0.59	13.90 ± 0.56	16.91 ± 0.67	10.00 ± 0.43

Table 7: KS -error (%) Comparison in Confidence Calibration Baseline Methods. Results (mean \pm std) over 10 runs.

Dataset	Uncal	TempScal	LADE	LaSCal	TransCal	PseudoCal	LCSC
MNIST	9.63 ± 0.47	5.85 ± 0.32	3.67 ± 0.26	3.19 ± 0.23	2.60 ± 0.18	4.20 ± 0.29	1.41 ± 0.13
CIFAR-10	18.91 ± 0.59	12.24 ± 0.50	8.94 ± 0.41	7.85 ± 0.37	7.08 ± 0.32	9.55 ± 0.44	4.65 ± 0.22
ImageNet-1K	26.19 ± 0.72	17.89 ± 0.62	13.62 ± 0.53	12.18 ± 0.49	11.32 ± 0.45	14.56 ± 0.58	7.99 ± 0.35

C.5 ABLATION EXPERIMENTS

C.5.1 SELECTION OF UNSUPERVISED FINE-TUNING METHODS

Algorithm 1’s unsupervised fine-tuning is to use the available unlabeled target source data to learn new covariate supports in an unsupervised manner. We try two popular and simple methods: consistency regularization (Koh & Fernando, 2023) and pseudo-label training (Li et al., 2023). Additionally, we examined the impact of different pseudo-label sample ratios on generalization performance for pseudo-label training.

1134 Table 8: Ablation experiments on unsupervised fine-tuning methods. CR represents consistency
 1135 regularization.

Methods	MNIST	CIFAR-10	ImageNet-1K
UnAdapt	84.90 ± 0.86	64.32 ± 1.05	58.17 ± 0.92
CR	83.25 ± 0.91	60.61 ± 0.99	57.88 ± 1.02
Pseudo-label (25%)	93.58 ± 0.79	70.53 ± 0.90	65.91 ± 0.91
Pseudo-label (50%)	93.21 ± 0.70	71.72 ± 0.80	67.66 ± 0.86
Pseudo-label (75%)	94.66 ± 0.44	71.86 ± 0.76	68.53 ± 0.80
Pseudo-label (100%)	93.22 ± 0.73	70.29 ± 0.72	64.32 ± 0.83

1145 Table 9: Impact of density estimation’s effectiveness. The numbers in brackets are the classification
 1146 accuracy on the source domain’s test set for $p_s(Y|X)$ or bits per dimension (BPD) (Zhai et al., 2025)
 1147 for $p_s(X)$ and $p_t(X)$.

Method or Object	MNIST	CIFAR-10	ImageNet-1K
UnAdapt	84.90	64.32	58.17
$p_s(Y X)$ (75 epochs)	$93.51 (97.5)$	$68.77 (84.3)$	$64.41 (66.4)$
$p_s(Y X)$ (100 epochs)	$93.96 (98.0)$	$70.29 (86.0)$	$66.27 (69.0)$
$p_s(Y X)$ (125 epochs)	$94.14 (98.3)$	$71.03 (88.7)$	$67.92 (75.4)$
$p_s(Y X)$ (150 epochs)	$94.66 (98.5)$	$71.86 (89.1)$	$68.53 (76.3)$
$p_s(X)$ (50 epochs)	$93.29 (4.90)$	$70.35 (6.02)$	$66.83 (6.19)$
$p_s(X)$ (75 epochs)	$93.57 (4.03)$	$70.84 (4.92)$	$67.49 (5.07)$
$p_s(X)$ (100 epochs)	$94.66 (3.51)$	$71.86 (3.06)$	$68.53 (3.95)$
$p_t(X)$ (50 epochs)	$93.18 (3.75)$	$70.30 (6.51)$	$66.75 (6.10)$
$p_t(X)$ (75 epochs)	$93.50 (2.98)$	$70.89 (4.90)$	$67.61 (5.20)$
$p_t(X)$ (100 epochs)	$94.66 (2.04)$	$71.86 (3.02)$	$68.53 (3.83)$

1163
 1164 Table 8 shows the ablation experiments on unsupervised fine-tuning methods. The main idea of
 1165 consistency regularization is to perform weak augmentation and strong augmentation on the target
 1166 domain image, respectively, and then make the prediction results of the two augmented images
 1167 tend to be consistent. To our surprise, even when the strong augmentation is set to the same data
 1168 transformation as in Table 2, the consistency regularization method does not generalize well to the
 1169 target domain. This may be because when there is a distribution shift between the target domain
 1170 and the source domain, even if the weakly augmented samples and the strongly augmented samples
 1171 are consistent, it does not tell the model the class to which the target domain samples belong, so it
 1172 cannot help improve the classification accuracy. This problem does not exist in pseudo-label training
 1173 because it directly tells the model which class the samples in the target domain belong to. Therefore,
 1174 pseudo-label training can improve the model’s classification accuracy in the target domain.

1175 In pseudo-label training, it is crucial to select which samples’ prediction results to use as pseudo-
 1176 labels. Therefore, in Table 8, experiments with different proportions of samples as pseudo labels
 1177 were conducted (sorted by predicted confidence scores from largest to smallest), and it wasulti-
 1178 mately found that selecting the top 75% of samples as pseudo labels yielded the best results.

1179 C.5.2 IMPACT OF DENSITY ESTIMATION EFFECTIVENESS

1181 In Algorithm 1, $p_s(Y|X)$, $p_s(X)$, and $p_t(X)$ need to be estimated using network models. Therefore,
 1182 their estimated effects may affect the performance of Algorithm 1. Here, we control their estimation
 1183 effectiveness by early stopping the training, and then observe their impact on the performance of
 1184 Algorithm 1. Table 9 shows their impact, where BPD is a popular evaluation metric for density
 1185 estimation effect. It can be known that no matter for $p_s(Y|X)$, $p_s(X)$, or $p_t(X)$, the better the
 1186 density estimation, the more the accuracy of Algorithm 1 in the target domain is improved. More-
 1187 over, even when the density estimator is not fully trained, Algorithm 1 shows significant accuracy
 1188 improvements compared to other methods (see Table 1).

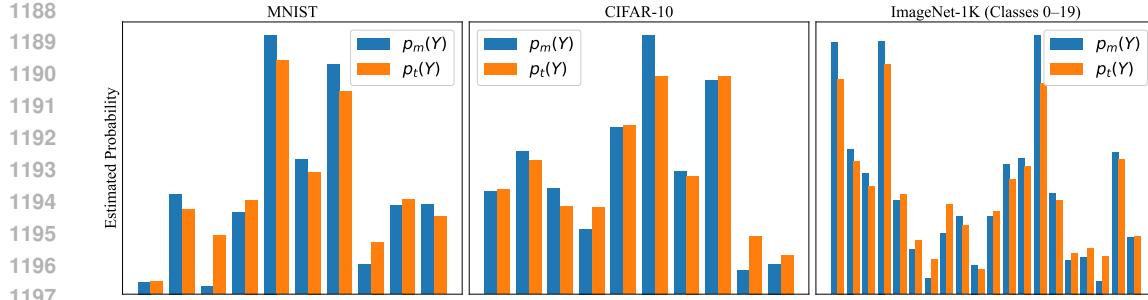


Figure 8: Practical Comparison of $p_m(Y)$ and $p_t(Y)$. Note that it is not necessary for $p_m(Y)$ to approximate $p_t(Y)$ in Algorithm 1.

C.5.3 PRACTICAL COMPARISON OF $p_m(Y)$ AND $p_t(Y)$

Fig. 8 illustrates that the learned label distribution $p_m(Y)$ of the intermediate dataset, obtained via Eq. 8, often differs subtly from the label distribution $p_t(Y)$. This discrepancy is expected and does not undermine the effectiveness of LCSC, because the optimization objective focuses on aligning the marginal distribution $p_m(X)$ with $p_t(X)$ rather than matching label priors. In other words, $p_m(Y)$ serves as an instrumental prior to minimize covariate shift while preserving $p_m(X|Y) = p_s(X|Y)$, ensuring that the resulting model approximates $p_t(Y|X)$. Generally, the larger the covariate shift between the source and target domains, the less likely $p_m(Y)$ is to be close to $p_t(Y)$. If there is no covariate shift, and the joint shift degenerates into a label shift, then $p_m(Y)$ will approach $p_t(Y)$.

D COMPUTATIONAL OVERHEAD

Our method introduces extra training-time cost mainly from two normalizing flow models for estimating $p_s(X)$ and $p_t(X)$. As quantified in Table 6, the flows dominate parameters and FLOPs across datasets (e.g., on ImageNet-1K, TarFlow has 460.8M params/931.45 GFLOPs versus the classifier's 2.98M/7.09 GFLOPs), whereas inference remains unaffected since only the classifier is used at test time. In practice, one NVIDIA RTX 3090 GPU (24GB VRAM) suffices for MNIST/CIFAR-10 and one NVIDIA A100 GPU (80GB VRAM) for ImageNet-1K, suggesting the training overhead is manageable; future work will explore more efficient high-dimensional density estimators to further reduce the cost.

Table 10: Computational Overhead Report. Param(M) represents the number of model parameters and the unit is mega. GFlops represent calculation amount.

Datasets	Model	Param (M)	GFlops
MNIST	LeNet-5	0.0444	0.0006
	TarFlow (2-128-4-4- $\mathcal{N}(0, 0.1)$)	3.2794	0.6255
CIFAR-10	ResNet-56	0.8557	0.2547
	TarFlow (2-256-4-4- $\mathcal{N}(0, 0.05)$)	12.936	6.5017
ImageNet-1K	ResNet-152	2.9797	7.0913
	TarFlow (4-768-8-8- $\mathcal{N}(0, 0.15)$)	460.80	931.45

E DESCRIPTION OF LARGE LANGUAGE MODEL USAGE

We only used the large language model to polish the writing.