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Abstract

Understanding the causal graph underlying a system is essential for enabling causal infer-
ence, particularly in fields such as medicine and genetics. Identifying a causal Directed
Acyclic Graph (DAG) from observational data alone is challenging because multiple DAGs
can encode the same set of conditional independencies, collectively represented by a Com-
pleted Partially Directed Acyclic Graph (CPDAG). Effectively approximating the CPDAG
is crucial because it facilitates narrowing down the set of possible causal graphs underlying
the data. We introduce CPDAG-GFN, a novel approach that uses a Generative Flow Net-
work (GFlowNet) to learn a posterior distribution over CPDAGs. From this distribution,
we can sample to create a set of plausible candidates that approximate the ground truth.
This method focuses on sampling high-reward CPDAGs, with rewards determined by a score
function that quantifies how well each graph fits the data. Experimental results on both
simulated and real-world datasets demonstrate that CPDAG-GFN performs competitively
with state-of-the-art methods for learning CPDAG candidates from observational data.

1 Introduction

Causal graphs produced from observational data are highly sought after, because knowing the causal dag
underlying a system enables counterfactual reasoning, allows predictions about the system, and may enhance
the generalizability of machine learning models (Schölkopf et al., 2021). A causal structure is typically
represented by a DAG which encodes the conditional independence relationships between variables. However,
a significant challenge arises because multiple DAGs can encode the same set of conditional independencies,
often making it impossible to distinguish from observational data alone which DAG represents the true
causal structure (Koller & Friedman, 2009)1. This problem scales poorly in the number of variables, where
the number of sparse DAGs encoding the same conditional independencies increases in an exponential like
behavior (He et al., 2015)2. This presents several challenges: first, it can significantly raise computational
costs and storage requirements; second, analyzing these individual DAGs to learn about the causal DAG
can be cumbersome and redundant, as they essentially provide the same information regarding statistical
relationships between variables in the data (Koller & Friedman, 2009). Consequently, it is common for
DAGs that encode the same conditional independencies to be grouped into a single class known as a Markov
Equivalence Class (MEC) (Castelletti et al., 2018). A MEC is represented by a graph called a Completed
Partially Directed Acyclic Graph (CPDAG, Castelletti et al., 2018, see Figure 1). Accurately approximating
the CPDAG underlying the dataset can enable us to narrow down potential causal DAGs with greater
accuracy (Lorch et al., 2021).

Popular methods, such as the PC algorithm (Spirtes et al., 2001), typically identify only a single CPDAG from
observational data, potentially overlooking other promising candidates. Like all algorithms, these methods

1While it is commonly the case that DAGs can be learned only up to their Markov Equivalence Class (MEC) from observa-
tional data alone, there are special cases under certain conditions where exact identification is possible. For detailed examples,
see Shimizu et al. (2006); Hoyer et al. (2008); Peters & Bühlmann (2014).

2It has been observed that causal DAGs tend to be more sparse than non-causal DAGs (Koller & Friedman, 2009). By
non-causal DAGs, we mean DAGs whose edges do not exclusively represent causal relationships. These DAGs can consist of
edges that represent both correlations and causal relations when modeling the real world, thus often making them denser than
causal graphs.
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rely on certain assumptions for optimal performance, some of which are challenging to meet in practice. For
instance, the PC algorithm often requires unrealistic conditions, such as infinite data or perfect oracles for
independence tests - conditions that are difficult to meet in practice. Consequently, these methods may fail
to accurately identify the true CPDAG. If the true causal structure falls into a different equivalence class
than the one predicted by the model, sticking to one class may overlook potential better-fitting models.
Given these limitations, it is preferable to employ an algorithm that can return multiple CPDAGs from
observational data.

One approach is to adopt a Bayesian method to obtain a posterior distribution over all possible CPDAGs,
allowing for the sampling of multiple CPDAGs that could explain the data. Our aim, on the other hand,
is to produce a set of plausible CPDAG candidates by generating a distribution directly over CPDAGs. In
this spirit, we propose to combine a Bayesian approach and a filtering mechanism. This approach differs
fundamentally from methods like DAG-GFlowNet, introduced by Deleu et al. (2022).

Deleu et al. (2022) introduce a novel approach called DAG-GFlowNet, which uses GFlowNet with a uniform
prior to approximate the posterior distribution over DAGs from observational data, where probabilities are
approximately proportional to the reward. The reward is determined by a score function that measures
how well a DAG fits the observations. The better the fit, the higher the probability of sampling that DAG.
CPDAGs can be obtained by converting the sampled DAGs to CPDAGs.

Given our aim to produce a set of CPDAG candidates, we identify two drawbacks that stem from using
this approach, primarily due to its reliance on a score function and a uniform prior. Since the posterior
distribution trained by DAG-GFN is approximately proportional to the density induced by the score function,
the learned distribution is heavily influenced by this function. If the score function assigns high scores to
many DAGs, including those not representing the ground truth and potentially even those with higher
scores than the ground truth (a scenario likely to occur in settings with insufficient observational data
(Friedman & Koller, 2013)), the posterior distribution may become skewed, diverging significantly from the
true distribution underlying the data. In other words, it is likely that our prior over graphs matters. In
DAG-GFN, the choice of a uniform prior treats all DAGs as equally likely, not incorporating any knowledge
that could guide the model toward a more accurate distribution. This can lead to poor approximations of
the dataset’s underlying distribution, resulting in samples that may not adequately reflect the true graph.

The second drawback concerns potential redundancy in the samples obtained from the DAG space. When
DAGs are sampled and subsequently converted to CPDAGs, this can yield duplicate CPDAGs from different
DAGs that are Markov equivalent. Furthermore, if a MEC is large 3 and has a high probability of getting
sampled, this conventional approach can lead to significant oversampling from that equivalence class.

To address these challenges, we introduce a new algorithm called CPDAG-GFN, which uses GFlowNet to
produce sets of CPDAG candidates from observational data. Unlike DAG-GFN, which searches within the
DAG space, our approach operates directly in the CPDAG space, enabling direct CPDAG sampling and
reducing duplicate CPDAGs from distinct DAGs. Moreover, instead of relying on the posterior to produce a
final set of candidates, as in DAG-GFN, we rely on the posterior as an amortized sampler from which we can
select an ideal set of candidates. In particular, our approach yields relatively high top-K scoring CPDAGs
from this amortized sampling. This is possible because GFlowNets can be seen as amortized samplers capable
of exploring multiple high-reward states (e.g., scores) during training.

As mentioned above, relying solely on scores to prioritize graphs may lead to discrepancies with the ground
truth, as high-scoring graphs might significantly deviate from it. To address this, we refine the sampled
candidate graphs by incorporating additional knowledge into our CPDAG-GFN algorithm. One can think of
this as imposing a prior belief into our CPDAG-GFN algorithm, though not in the Bayesian sense. Specif-
ically, we enhance our CPDAG-GFN algorithm by applying a heuristic filter, removing the least common
edges among the sampled graphs. This additional step is based on the conjecture that the top-K graphs
sampled from GFlowNet often share common edge features likely present in the true graph, helping to align
the top-K scoring graphs more closely with the actual CPDAG underlying the data.

3This gets worse as the variable space increase in size; the number of sparse DAGs encoding the same conditional indepen-
dencies grows in an exponential-like manner (He et al., 2015).
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The contributions of this paper are as follows: We introduce a novel algorithm named CPDAG-GFN 4,
designed to learn multiple CPDAG candidates from observational data. We evaluate our method using
both synthetic and real-world datasets and demonstrate that it performs competitively with state-of-the-art
methods.

2 Preliminaries

In this section, we review the concepts relevant to our proposed method, CPDAG-GFN.

2.1 Bayesian networks, Markov Equivalence Class, CPDAGs

A Bayesian network (Pearl, 2009; Koller & Friedman, 2009) is a probabilistic graphical model represented
by a DAG over a set of random variables X1, . . . , Xn. Each variable Xi is associated with a collection of
conditional distributions given its parent nodes, denoted as Pa(Xi) 5. The dependency structure of a Bayesian
network leverages the Markov Property, which asserts that each variable Xi is conditionally independent of
its non-descendants in the graph, given its parents Pa(Xi). This property allows us to factorize the joint
distribution of the network into the product of conditional probabilities for each node given its parents (Jin
et al., 2023):

P (X1, X2, . . . , Xn) =
n∏

i=1
P (Xi | Pa(Xi)) (1)

Markov Equivalence Classes (MECs): DAGs that encode the same conditional independencies are
Markov equivalent and are said to belong to the same MEC. These DAGs induce the same joint distribution
(Jin et al., 2023). DAGs that are Markov equivalent share the same skeleton 6 and v-structures (see below
for definition).

CPDAGs: A MEC is represented by a CPDAG, also known as an essential graph (Castelletti et al., 2018).
A CPDAG is a type of partially directed graph that may consist entirely of directed edges, entirely of
undirected edges, or a combination of both. It primarily consists of the following three types of edges:

• Directed edge: If an edge x→ y appears in every DAG in the MEC, then the CPDAG contains a directed
edge x→ y.

• Undirected edge: If the edges x → y and y → x each appear in at least one DAG in the MEC, then the
CPDAG contains an undirected edge between x and y.

• V-structure: If an ordered triple of nodes (x, y, z) forms a configuration where x → y ← z and x and z
are not connected by any edge, then this configuration is classified as a v-structure (Pearl, 2009).

The following theorem provides necessary and sufficient conditions for a graph to be the CPDAG of some
MEC, which is essential for defining the search space for our CPDAG-GFN algorithm in Section 3.2.1.
Theorem 1 (Andersson et al. (1997)). A graph G is a CPDAG if and only if it satisfies all of the following
four conditions:

(a) G contains no directed cycle.
(b) Every chain component of G is chordal.
(c) The graph a→ b− c does not occur as an induced subgraph of G.
(d) Every directed edge a→ b in G is strongly protected in G.7

Note that not every partially directed graph qualifies as a CPDAG of some MEC, as indicated in the theorem
above.

4Code can be found at https://anonymous.4open.science/r/for_TMLR-5867/
5Pa(Xi) represents the collection of values of all parent nodes; for a node without parents, this set is empty.
6The skeleton of a DAG refers to the undirected graph obtained by ignoring the direction of all edges in the DAG.
7Refer to Andersson et al. (1997) for the definition of ‘strongly protected’ and a review of the terms in (b) above.
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Figure 1: Illustration of a MEC and its correspond-
ing CPDAG for 3 variables. The MEC consists
of multiple DAGs (i.e. G0, G1, G2) that share
identical conditional independencies, represented by
X1 ⊥ X3 | X2. The CPDAG is a single graph that
compactly represents these DAGs, encapsulating the
same conditional independencies.

# variables # MECs MECs/DAGs

1 1 1.00000
2 2 0.66667
3 11 0.44000
4 185 0.34070
5 8782 0.29922
6 1067825 0.28238
7 312510571 0.27443
8 212133405200 0.27068
9 32626056291213 0.26888
10 111890205449597514 0.26799

Figure 2: The number of CPDAGs as a function
of the number of variables. The column labeled
’CPDAG/DAG’ represents the ratio between the
number of CPDAGs and the number of DAGs for
each variable count (Gillispie & Perlman, 2002).

2.2 GFlowNet

Generative flow networks (Bengio et al., 2021; 2023), or GFlowNets, were introduced as a framework to learn
to sample from an unnormalized density function, typically referred to as the reward R(s) in GFlowNet
literature, by decomposing the generative process in a trajectory of constructive steps. GFlowNets work by
modelling the flow that goes through the network representing the space of possible constructions, accounting
for all possible construction orders of an object. We introduce the framework for a discrete setting, but
continuous settings are also possible (Lahlou et al., 2023).

In a GFlowNet the state space is defined by a pointed DAG, which we denote H = (S,A), with a unique
initial state s0 ∈ S and some terminal states X ⊆ S on which R : X → R≥0 the reward function is defined.
We define the exact state space we use in Section 3.2.1, but note that the GFlowNet DAG is distinct from
the (CP)DAGs presented above; in fact, states within H are themselves (CP)DAGs. Elements of the action
space (s→ s′) ∈ A denote valid constructive steps, such as adding a directed edge in a CPDAG (see Figure
3), or may represent the action of ending generation. GFlowNets define a forward policy used for sampling
objects, PF (s′|s), a backward policy PB(s|s′) (a policy on the reverse Markov decision process, i.e., a model
giving a distribution over the parents of any state), and an estimate of the partition function Z representing
the sum of all rewards–and the total flow when interpreting H as a network. The policy PF determines a
terminating distribution P ⊤

F over X , which is the marginal distribution over the final states of trajectories
sampled following PF (i.e., those at which the termination action is taken).

GFlowNets are trained by driving a model to respect constraints which preserve the flow within H. One
such set of constraints are the trajectory balance constraints (Malkin et al., 2022), whereby for any trajectory
τ = (s0 → s1 → ...→ sn = x):

Z

n∏
i=1

PF (si+1|si) = F (sn)
n−1∏
i=1

PB(si|si+1) (2)

where F (sn) = R(x) is the flow of the terminal (sink) state x. With the above constraints satisfied, sampling
transitions starting from s0 and using PF guarantees that the marginal terminating distribution P ⊤

F (x) ∝
R(x).

In the present work we parameterize log Zθ and PF (·|·; θ), use a uniform PB , and apply the trajectory balance
objective (Malkin et al., 2022), which for a trajectory τ = (s0 → s1 → ...→ sn = x) is:

LTB(τ) =
(

log Zθ

∏n−1
i=0 PF (si+1|si; θ)

R(x)
∏n−1

i=0 PB(si|si+1)

)2

. (3)
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When training with GFlowNet objectives, one samples trajectories from some behaviour policy (which may
either coincide with PF – on-policy training, as done in this paper – or use off-policy exploration) and
performs gradient descent steps on the loss, in our case the one in (3).

3 Method

The goal of CPDAG-GFN is to return multiple CPDAGs that approximate the true CPDAG underlying
the data. The objective of using GFlowNet is to construct a posterior distribution over CPDAGs that will
allow us to sample K high-reward CPDAGs. GFlowNet is suitable for this because of its capabilities as an
amortized sampler, which allows for sampling during the training process and facilitates the exploration of
high-reward CPDAGs throughout. Since the top K sampled high-scoring CPDAGs may often not align well
with the true CPDAG underlying the data Koller & Friedman (2009), we incorporate a heuristic filter into
our algorithm.

3.1 Heuristic Edge-Sparsity Filter

We introduce a heuristic filter that removes the L least common edges among the top K sampled graphs
at the end of training, while ensuring that each removal does not violate CPDAG properties in 1, thereby
maintaining the graph’s validity as a CPDAG. L is a hyperparameter. This approach is motivated by
our observation that edges consistently appearing across top K high-scoring models tend to reflect shared
patterns in the true underlying graph. This observation led us to hypothesize that high-scoring graphs may
share common edge features with the true CPDAG. The filter targets edges that do not consistently appear
across models, which may mitigate the presence of spurious edges in the sampled graphs.

3.2 GFlowNet setup

The setup for GFlowNet includes defining a state space, a reward function, a graph neural network (GNN),
and a loss function. For the loss function, we employ the trajectory balance function, which is covered in
Section 2.2. We will now discuss each of these components in turn.

3.2.1 State space

We define the state space to consist solely of CPDAGs, and the GFlowNet’s action space as transitions from
one CPDAG graph to the next.

Recall from Section 2.1 that a CPDAG may consist entirely of undirected edges, solely of directed edges, or a
combination of both directed and undirected edges. We thus use the following three actions: add a directed
edge, add an undirected edge, apply the makeV operator which transforms a graph structure from x− y − z
to x → y ← z. In Appendix G, we show that these three actions are enough to construct any CPDAG in
the search space.

In CPDAG-GFN, graphs are built starting from an edge-less graph s0, with transitions to a new state
achieved by applying one of the three actions mentioned above. For any given state, we limit allowable
actions to those that lead to a new graph satisfying all the CPDAG properties outlined in Theorem 1 section
1. This ensures that the graph resulting from any permitted action will also be a CDPAG.

Additionally, we introduce a stop action, which serves as the termination point for a trajectory through the
state space. If a stop action is sampled in si, we consider the state terminal and compute its reward R(si)
(see Figure 3).

3.2.2 Reward function

Let D represent a dataset of N i.i.d. observations. Since we aim to sample CPDAGs that fit the data well,
we define the reward as the score function R(G) = score(G, D). We follow the definition of the score function
by Koller & Friedman (2009):

score(G, D) = P (D | G)P (G), (4)
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Figure 3: This figure illustrates the CPDAG construction process during GFlowNet training. It shows
transitions from an initial edge-less graph state G0 to subsequent states, distinguishing between valid actions
that lead to new CPDAGs and invalid actions prohibited because they result in non-CPDAG states. Sampling
a stop action at state G3 concludes the trajectory, with the reward R(G3) then computed.

where P (G) is a structure prior which we set to be uniform. This configuration enables GFlowNet to explore
the space of CPDAGs without any initial bias, and is a common choice (Eggeling et al., 2019; Koller &
Friedman, 2009; Deleu et al., 2022).

The marginal likelihood P (D | G) can be calculated using any score-equivalent function such as the BGe
score (Kuipers et al., 2014; Geiger & Heckerman, 1994), the BDe score (Heckerman et al., 1995; Chickering,
2013).8 To obtain a score for a CPDAG, we first find a DAG belonging in the MEC that this CPDAG
represents using an algorithm by Dor & Tarsi (1992), then assign that score to the CPDAG.

3.2.3 Parameterization with graph neural networks

In GFlowNet, we need to learn a policy that gives the probability of each state. Considering the exponential
number of CPDAG states, it is impossible to store all these probabilities in a lookup table. Meanwhile, the
training trajectories may not cover every state in the CPDAG space, which means we have to predict the
probability for unseen states at test time. Following previous works Bengio et al. (2021); Deleu et al. (2022),
we parameterize the policy with a neural network over the graph structure of the current state.

Considering the directed nature of CPDAGs, we employ a relational graph neural network
(RGCN) Schlichtkrull et al. (2018) to encode the node representations, where directed and undirected edges
are treated as different relations. For any node u, RGCN iteratively computes its representation hu with
the following message passing step

h(t+1)
u = σ

∑
r∈R

∑
v∈Nr(u)

1
|Nr(u)|W

(t)
r h(t)

v + W
(t)
0 h(t)

u

 (5)

where R = {directed, directed−1, undirected} is the set of relations, Nr(u) is the set of nodes connected by
relation r from node u, W

(t)
r and W

(t)
0 are learnable matrices and σ is the activation function. The input

embeddings h
(0)
u are initialized with one-hot embeddings to distinguish different nodes in the graph.

The three actions in Sec.3.2.1 correspond to link prediction and graph classification tasks on graph structure.
Therefore, we decode the actions of adding edges with SimplE score function Kazemi & Poole (2018), a
common choice for relational link prediction. Specifically, SimplE computes the following for a head node u,

8Other score-equivalent functions – that is, those that assign the same score for any two Markov-equivalent graphs – include
the Akaike information criterion (AIC) (Akaike, 1974), the Bayesian information criterion (BIC) (Schwarz, 1978), the minimum
description length (MDL) (Rissanen, 1986), etc.
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a relation r and a tail node v

score(u, r, v) = (hu ⊙ rr)⊤Khv (6)

where rr is a learnable embedding for relation r, ⊙ is element-wise multiplication and K is an anti-diagonal
identity matrix. Thanks to the asymmetry of the anti-diagonal kernel, SimplE can have different predictions
for (u, r, v) and (v, r, u), thereby is suitable for the action of adding directed edges in our model. To
accommodate the action of adding a v-structure, we consider it as a link prediction problem between a
set of two nodes u1, u2 and a collider node v, i.e. predicting ({u1, u2}, r, v). The stop action is modeled by
an MLP over the graph representation, which is obtained by a min pooling operation applied over all node
representations in the graph.

4 Experiments

In this section, we evaluate the performance of our methods against state-of-the-art approaches by comparing
the learned CPDAGs to the ground truth on both synthetic and real datasets.

4.1 Experimental evaluation

Evaluation metric We adopt the evaluation metrics used in prior work (Deleu et al., 2022; Lorch et al.,
2021). We assess the performance of each algorithm using the Expected Structural Hamming Distance
(E-SHD) — which measures the discrepancy between the inferred and the true CPDAGs (see appendix
B for further detail), with lower E-SHD indicating better performance—and the Area Under the Receiver
Operating Characteristic curve (AUROC), where a higher value signifies better performance. Additionally,
we compute the average Structural Hamming Distance (SHD) between all pairs of CPDAGs in the sample,
providing a measure of average dissimilarity across the CPDAGs. While this distance is not a formal
evaluation metric, it gives us an indication of the diversity within the sampled graphs, with a higher average
indicating greater dissimilarity.

Baselines To provide a comprehensive evaluation of our proposed method, we have selected baselines that
use different approaches for approximating distributions over structural models. We include bootstrapping
with PC (Spirtes et al., 2001) and Greedy Equivalence Search (GES) (Chickering, 2002). Additionally, we
employ DAG-GFN (Deleu et al., 2022), which leverages GFlowNet; DiBS (Lorch et al., 2021), which uses
a variational inference approach; and MC3 (Madigan et al., 1995; Giudici & Castelo, 2003), representing
MCMC-based methods.

4.2 Evaluation on synthetic data

In our experiments, we use the BGe score function as our reward function. Following Lorch et al. (2021),
we generate ground truth networks using linear-Gaussian Bayesian networks, with their structures sampled
according to the Erdős-Rényi (ER) model (ERDdS & R&wi, 1959) and the scale-free (SF) model (Barabási
& Albert, 1999). These models were selected for their contrasting structural properties to ensure a diverse
evaluation of CPDAG-GFN’s adaptability and efficacy across different network topologies. In addition, we
designed our experiments to include several scenarios: different observational data sizes ranging from small
(100) to large (a million) to demonstrate scalability, varying levels of noise in the data from small (0.01)
to moderate (0.1), and different network complexities with expected degrees of 1d, 2d, and 3d, where d is
the number of nodes, in which we set to d=10 in our experiments. For each experimental run, we sample
K graphs, with K set to 100. Performance metrics (e.g. E-SHD and AUROC) are derived from 10 distinct
datasets, each one generated from a unique Bayesian network.

Performance Analysis and Insights Our experimental results (Figures 4 to 7) show that CPDAG-GFN
performs competitively against the baselines across all metrics in various settings while maintaining diversity
in the sampled graphs. We observed across all settings that lower distance metrics generally correspond to
higher AUROC scores and lower E-SHD values, which is intuitive since being closer to the ground truth
graph typically results in more similar graphs. The exception is in Figure 4, where CPDAG-GFN exhibits a
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Figure 4: Comparison of E-SHD and AUROC metrics for a dataset generated from 1 million observations
using a ground truth graph sampled from an Erdős-Rényi model (ER-deg1) with a noise level of 0.1. Lower
E-SHD and higher AUROC are preferred. A higher distance in the third figure indicates greater dissimilarity
among the graphs.

Figure 5: Comparison of E-SHD and AUROC metrics for a dataset generated from 100 observations using a
ground truth graph sampled from an Erdős-Rényi model (ER-deg2) with a noise level of 0.1. Lower E-SHD
and higher AUROC are preferred. A higher distance in the third figure indicates greater dissimilarity (e.g.
more diversity) among the graphs.

Figure 6: Comparison of E-SHD and AUROC metrics for a dataset generated from 100 observations using a
ground truth graph sampled from an Erdős-Rényi model (ER-deg2) with a noise level of 0.01. Lower E-SHD
and higher AUROC are preferred. A higher distance in the third figure indicates greater dissimilarity among
the graphs.

higher distance than B-GES and B-PC, yet still achieves overall lower E-SHD. We postulate that this might
be because the samples from B-GES and B-PC are less diverse than those of CPDAG-GFN (as indicated
by the lower distance), and these sampled graphs deviate further from the ground truth (resulting in higher
E-SHD values overall) than the graphs learned by CPDAG-GFN.

While B-GES shows competitive performance across various settings (Figures 5 to 7), its dependence on
resampling can introduce bias and potentially obscure subtle data patterns. In contrast, CPDAG-GFN uses
the entire dataset in each run, ensuring that every data point contributes to model training and preserving
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Figure 7: Comparison of E-SHD and AUROC metrics for a dataset generated from 100 observations using
a ground truth graph sampled from a scale-free model (SF-deg3) with a noise level of 0.1. Lower E-SHD
and higher AUROC are preferred. A higher distance in the third figure indicates greater diversity among
the graphs.

Method E[SHD] AUROC E[# Edges]
MC3 39.32 ± 1.79 0.645 ± 0.041 39.46 ± 0.97
Bootstrap GES 19.74± 0.097 0.751 ± 0.011 11.11 ± 0.090
Bootstrap PC 17.61± 0.23 0.728 ± 0.019 8.45 ± 0.335
DiBS 13.28± 0.17 0.756± 0.017 11.47 ± 0.34
DAG-GFN 18.92± 0.019 0.658 ± 0.019 23.02 ± 0.14
CPDAG-GFN 16.61 ± 0.65 0.757 ± 0.029 15.42 ± 0.61

Table 1: Inference of protein signaling pathways from cytometry data (Sachs et al., 2005) Metrics are the
mean ± SD of 10 experimental run

the fidelity of the original data. This comprehensive use and data integrity are particularly valuable in
applications like clinical studies, where using the entire dataset is crucial.

4.3 Real world data: Protein network from cell data

A well-known benchmark in structure learning is the causal protein-signaling network derived from data on
11 nodes reperesenting proteins with 17 edges Sachs et al. (2005). We evaluate our method and baselines on
a subset of this dataset, consisting of N = 852 continuous observations. The results, presented in Table 1,
compare the evaluation metrics E-SHD and AUROC of CPDAG-GFN against the baselines. For AUROC,
a higher value is better, and for E-SHD, a lower value is better.

CPDAG-GFN demonstrates competitive performance against state-of-the-art methods, achieving an E-SHD
of 16.61 ± 0.65. Notably, while DiBS achieves the lowest E-SHD, it predicts only 11.47 edges on average. In
contrast, CPDAG-GFN’s edge count of 15.42 ± 0.81 is closest to the ground truth network, which consists
of 17 edges. Although the AUROC values for DiBS, Bootstrap GES, and CPDAG-GFN are relatively close,
CPDAG-GFN maintains a balance of a relatively low E-SHD, a comparatively high AUROC, and an edge
count closer to the ground truth, indicating its overall competitive performance.

5 Related work

Markov Chain Monte Carlo (MCMC) Earlier papers that explored structure learning in the space of
CPDAGs by means of MCMC include: Madigan et al. (1996) and Castelo & Perlman (2004). A more recent
approach is by Castelletti et al. (2018). The paper focuses on learning sparse CPDAGs. To enhance the
structure learning of these CPDAGs and ensure the graphs remain sparse, the authors introduce a sparsity
constraint. This constraint limits the CPDAG space to a subspace where the number of edges does not exceed
1.5 times the number of nodes in the graph. While this approach can be effective, it can be a drawback in
scenarios where the data-generating process is more complex and less sparse. In such cases, the constraint
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may bias the learning towards sparse graph that fail to capture more complex relationships within the data.
Another draw back of using MCMC methods is their tendency to become trapped in a single mode of high
probability (Syed, 2022), restricting their ability to explore diverse graph structures across different regions
of high-probability modes. By using the GFlowNet approach instead of MCMC, the method we propose
mitigates being confined to a single mode.

Point estimate methods Two widely known point estimate methods for computing a CPDAG from
observational data are constraint-based methods and score-based methods. Constraint-based methods, such
as the PC (Peter and Clark) algorithm and the Fast Causal Inference (FCI) algorithm (Spirtes et al., 2001),
rely on conditional independence tests to identify the CPDAG that represents causal structures consistent
with a given dataset (Eberhardt, 2017). In contrast, score-based methods, such as the Greedy Equivalence
Search (GES; Chickering (2002)), rely on a score function. These methods traverse the space of CPDAGs,
assigning scores to graphs to measure their fit to the data. At each step, an edge is either added, removed, or
reversed. As the name suggests, the search is greedy, choosing the state with the highest score to progress.

Amortized sampling methods Recent approaches to Bayesian structure learning that approximate the
posterior distribution over DAGs include DAG-GFN (Deleu et al., 2022) and DiBS (Lorch et al., 2021), both
operate within the space of DAGs. The DiBS method employs a variational approach, representing DAGs
in a continuous latent space to facilitate the learning of the posterior distribution over network structures.
Conversely, the DAG-GFN method uses GFlowNet to achieve a posterior distribution over DAGs where
probabilities are approximately proportional to assigned rewards. CPDAGs can be obtained by converting
the sampled DAGs to CPDAGs.

6 Conclusion

We have introduced a novel method for learning CPDAG candidates underlying observational data using
GFlowNet. To better align the candidates with the ground truth, we applied a heuristic filter by removing
the least common edges from the sample. Unlike traditional methods that produce a single CPDAG, our
approach generates multiple CPDAG candidate structures by sampling directly from CPDAG distributions.
In future work, we aim to explore the integration of domain-specific knowledge into the CPDAG-GFN
algorithm. This could involve incorporating Bayesian priors to guide the sampling process toward more
plausible causal structures, or developing heuristic-based constraints that reflect expert knowledge. By
further incorporating specific causal hypotheses within the model, we hope to improve the accuracy and
relevance of the generated CPDAGs, particularly in applications where expert knowledge is available.
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A Sufficiency of actions to traverse CPDAG search spaces

In this section, we demonstrate that the three traversal actions—adding a directed edge, adding an undirected
edge, and applying ’make V’ operators—are sufficient to reach any CPDAG within the search space. To do
so, we introduce the following two propositions:
Proposition 2 (Andersson et al. (1997)). Let G and H be two CPDAGs graphs with the same vertex set
V . Then there exists a finite sequence G ≡ G1, . . . , Gk ≡ H of CPDAGs with vertex set V such that each
consecutive pair of Gi, Gi+1 differs by one of the three traversal traversal actions: add directed edge, add
undirected edge, or makeV.

Building upon the aforementioned proposition, we present the following proposition:
Proposition 3. For any essential G, there exists a sequence of graphs G0, . . . , Gn such that:

• G0 is the graph with no edges, and Gn = G.
• Each Gi is a CPDAG.
• For each i, Gi+1 can be obtained from Gi by one of the operators: add directed edge, add undirected edge,

or makeV.

Proof. This is immediate from the construction in the proof of Andersson’s Proposition 4.5, which provides
an algorithm for constructing such a sequence for any G. Note that the statement of Andersson’s Proposition
4.5 alone does not imply this result, as it only guarantees a sequence Gi such that for each i, either Gi is
obtained from Gi+1 by one of the operators, or Gi+1 is obtained from Gi by one of the operators.

Proposition 3 above asserts that we can traverse the entire search space of CPDAGs starting from the empty
graph G0 and using only the three traversal actions (add a directed edge, add an undirected edge, or makeV
operation), i.e., every state is reachable from the initial state. Each traversal action either increases the
number of edges or does not change the number of edges while increasing the number of directed edges,
which implies the search space is acyclic.

B Evaluation metric

We adopt the evaluation metrics used in prior work (Deleu et al., 2022; Lorch et al., 2021). We assess the
performance of each algorithm using two primary measures: the Expected Structural Hamming Distance
(E-SHD) to the ground truth graph G∗, and the Area Under the Receiver Operating Characteristic Curve
(AUROC). Intuitively, the AUROC measures the ability of the algorithms to accurately identify the presence
or absence of edges compared to the ground truth. The higher the metric the better. We follow the
methodology described in Deleu et al. (2022) to calculate the AUROC.

Following the methodology of (Deleu et al., 2022), the E-SHD to the ground truth graph (G∗) is defined as:

E-SHD ≈ 1
n

n∑
k=1

SHD(Gk,G∗)

where n represents the number of unique CPDAGs, and Gk denotes a CPDAG. The SHD(G,G∗) counts
the number of edge changes that separate the learned CPDAGs Gk from the ground truth G∗ (Peters &
Bühlmann, 2015; Lorch et al., 2021).
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C Additional experiments

The ground-truth graphs are sampled according to an Erdos-Rényi model with average degrees equal to 1,
2, and 3, respectively, denoted ER-deg1, ER-deg2, and ER-deg3. Each experiments is ran between 7 to 9
seeds. The DAG-GFN was run using the publicly available code from Deleu et al. (2022).

For the following experiments, the ground-truth graphs are sampled according to an scale-free model with
average degrees equal to 1 and 2 respectively, denoted SF-deg1 and SF-deg2.

14



Under review as submission to TMLR

D DAG vs CPDAG comparison

To ensure a fair comparison, both DAG-GFN and CPDAG-GFN were implemented with the same setup,
including the same optimizer, learning rate, neural network architecture, and dataset. We used the trajectory
balance (TB) loss and BGe score function to train both models. Comparison of E-SHD and AUROC metrics
for a dataset generated from large (e.g. 1 million) and small (e.g. 100) observations using a ground truth
DAG sampled from an Erdős-Rényi model (ER-deg1) and scale-free model.

Since there are two important differences between Deleu et al. (2022)’s DAG-GFN and our work, namely
the top-K sampling evaluation and the heuristic filtering, we compare four settings:

1. DAG-GFN with top-K sampling (denoted topK-DAG) during training versus CPDAG-GFN with
top-K sampling (denoted topK-cpdag) during training.

2. DAG-GFN with K samples after training (denoted rand-DAG) versus CPDAG-GFN with K samples
(denoted rand-cpdag) after training.

3. The same as in 1, but with the filter applied.

4. The same as in 2, but with the filter applied.

Baselines with a plus sign in front indicate the application of the least common edge removal technique.
Figures 8 and 9 show experiments conducted for 5-variable graphs, and Figures 10 and 11 for 10-variable
graphs.

Figure 8: 5 variables: Lower E-SHD and higher AUROC indicate better performance compared to those
with higher E-SHD and lower AUROC.

Figure 9: 5 variables: Lower E-SHD and higher AUROC indicate better performance compared to those
with higher E-SHD and lower AUROC.
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Figure 10: 10 variables: Lower E-SHD and higher AUROC indicate better performance compared to those
with higher E-SHD and lower AUROC.

Figure 11: 10 variables: Lower E-SHD and higher AUROC indicate better performance compared to those
with higher E-SHD and lower AUROC.

16



Under review as submission to TMLR

E Impact of Edge Removal on Baseline Methods

In this appendix, we investigate the impact of the heuristic filter (least common edge removal) on baseline
methods using the same setup as in the main experiment (10 variables). In Figures 12, 13, 14, and 15, we
compare baseline performance with (blue boxes) and without (green boxes) the removal technique.

While the edge removal technique leads to noticeable improvements for the baselines, as shown in the E-SHD
figures, these gains are not always as substantial as those observed with our method. The bootstrap method
showed the least improvement, suggesting that removing infrequent edges minimally impacts bootstrapped
graphs, likely due to the initial similarity of the graphs, as indicated in the distance plots (Figures 5 to 7).

Our method consistently performs competitively across different settings compared to the baselines with the
edge removal technique applied (blue box). This outcome shows that even with the addition of removing the
least common edges, our method performs as well as or better than other baselines. In the figures below,
baselines with a plus sign indicate the application of the least common edge removal technique. Moreover,
topK-DAG represents K unique DAGs sampled from a posterior distribution over DAGs using GFlowNet,
and then converting it to CPDAGs.

Figure 12: Baselines with lower E-SHD and higher AUROC indicate better performance compared to those
with higher E-SHD and lower AUROC. Baselines with a plus sign indicate the application of the least
common edge removal technique.

Figure 13: Lower E-SHD and higher AUROC indicate better performance compared to those with higher
E-SHD and lower AUROC. Baselines with a plus sign indicate the application of the least common edge
removal technique.
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Figure 14: Lower E-SHD and higher AUROC indicate better performance compared to those with higher
E-SHD and lower AUROC.Baselines with a plus sign indicate the application of the least common edge
removal technique.

Figure 15: Lower E-SHD and higher AUROC indicate better performance compared to those with higher
E-SHD and lower AUROC. Baselines with a plus sign indicate the application of the least common edge
removal technique.
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