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Figure 1. Our model MirrorFusion 2.0, trained on our enhanced dataset SynMirrorV2 surpasses previous state-of-the-art diffusion-based
inpainting models at the task of generating mirror reflections. All images were created by appending the prompt: “A perfect plane mirror
reflection of ” to the object description. All text prompts can be found in the supplementary.

Abstract

Diffusion models have become central to various image001
editing tasks, yet they often fail to fully adhere to physi-002
cal laws, particularly with effects like shadows, reflections,003
and occlusions. In this work, we address the challenge of004
generating photorealistic mirror reflections using diffusion-005
based generative models. Despite extensive training data,006
existing diffusion models frequently overlook the nuanced007
details crucial to authentic mirror reflections. Recent ap-008
proaches have attempted to resolve this by creating syn-009
thetic datasets and framing reflection generation as an in-010
painting task; however, they struggle to generalize across011
different object orientations and positions relative to the012
mirror. Our method overcomes these limitations by intro-013
ducing key augmentations into the synthetic data pipeline:014

(1) random object positioning, (2) randomized rotations, 015
and (3) grounding of objects, significantly enhancing gener- 016
alization across poses and placements. To further address 017
spatial relationships and occlusions in scenes with multi- 018
ple objects, we implement a strategy to pair objects during 019
dataset generation, resulting in a dataset robust enough to 020
handle these complex scenarios. Achieving generalization 021
to real-world scenes remains a challenge, so we introduce 022
a three-stage training curriculum to develop the MirrorFu- 023
sion 2.0 model to improve real-world performance. We pro- 024
vide extensive qualitative and quantitative evaluations to 025
support our approach. 026
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‘A perfect plane mirror 
reflection of a mug which 
is placed in front of the 

mirror.’
’

‘A perfect plane mirror 
reflection of a stuffed 
toy bear which is placed 
in front of the mirror.’

’

‘A perfect plane mirror 
reflection of a chair 

model which is placed in 
front of the mirror.’

’

St
ab

le
 D

iff
us

io
n 

3.
5

Fl
ux

Figure 2. We observe that current state-of-the-art T2I models,
SD3.5 [2] (top row) and Flux [22] (bottom row), face significant
challenges in producing consistent and geometrically accurate re-
flections when prompted to generate reflections in the scene.

1. Introduction027

In recent years, diffusion-based generative models have re-028
defined what is possible in fields spanning from image029
generation to video synthesis, producing impressive re-030
sults across various applications [14, 17, 18, 22, 35, 38].031
The evolution of these models has been accompanied by032
a range of methods designed to fine-tune the generation033
process through conditional inputs, such as edge maps,034
sketches, depth maps, and segmentation maps [30, 54, 56,035
58]. However, there remains a significant gap in their ca-036
pacity to replicate intricate physical effects—particularly037
those rooted in the subtlety of real-world physics, includ-038
ing shadows [41], specular reflections [49], and perspective039
cues [46]. More challenging still, these techniques struggle040
to authentically generate mirror reflections, a task requir-041
ing a nuanced understanding of light, geometry, and real-042
ism that current methods do not adequately address. In this043
work, we address the question: “Can current methods be044
fine-tuned to generate plausible mirror reflections?”045

We motivate the problem further by providing genera-046
tions from current text-to-image (T2I) generation models.047
We prompt Stable Diffusion 3.5 [2] and FLUX [22] with048
prompts to generate a scene with a mirror reflection. Fig. 2049
shows that these methods fail to generate plausible mir-050
ror reflections. Specifically, check the reflection of “teddy-051
bear” in the generated outputs from both the methods. Fur-052
ther, inpainting methods like HD-Painter [27] also fail for053
this task, as shown in Fig. 1. A contemporary method called054
MirrorFusion [12], claiming to generate mirror reflections,055
falls short on real-world and challenging scenes as apparent056
in Fig. 1.057

Despite their impressive capabilities, powerful diffusion058
models struggle to generate mirror reflections accurately.059

Table 1. Our proposed dataset, SynMirrorV2, surpasses existing
mirror datasets in terms of attribute diversity and variability. While
recent work [12] introduced the synthetic SynMirror dataset, it
lacks key augmentations and scenario, limiting its performance in
complex and real-world settings (See Fig. 1).

Dataset Type Size (#Images) Attributes

MSD [52] Real 4,018 RGB, Masks
Mirror-NeRF [55] Real & Synthetic 9 scenes RGB, Masks, Multi-View
DLSU-OMRS [15] Real 454 RGB, Mask
TROSD [44] Real 11,060 RGB, Mask
PMD [24] Real 6,461 RGB, Masks
RGBD-Mirror [28] Real 3,049 RGB, Depth
Mirror3D [45] Real 7,011 RGB, Masks, Depth

SynMirror [12] Synthetic 198,204
Single Fixed Objects: RGB, Depth,

Masks, Normals, Multi-View

SynMirrorV2 (Ours) Synthetic with Single &
Multiple Objects 207,610 Single + Multiple Objects: RGB, Depth,

Masks, Normals, Multi-View, Augmentations

This limitation stems from the models’ reliance on poorly 060
learned priors, a consequence of the quality and quantity 061
of their training data. The scarcity of high-quality, real- 062
world images featuring mirrors and their reflections, as ev- 063
idenced in Tab. 1, poses a significant challenge. While re- 064
cent work [12] has attempted to address this issue by train- 065
ing on a synthetic dataset, the results, as illustrated in Fig. 1, 066
suggest that the method’s performance suffers in complex 067
scenes and real-world settings. We hypothesize that this is 068
due to inherent limitations in the synthetic data generation 069
process and the training dynamics of the model. 070

To address the shortcomings in the synthetic data gener- 071
ation pipeline, we create an enhanced pipeline incorporat- 072
ing useful augmentations such as randomizing object po- 073
sition and rotation. We also ensure that the objects are 074
anchored to the ground level in the 3D world. We ob- 075
serve that this diverse data improves the generalization of 076
a trained model across the pose and position of objects in 077
the scene. However, it does not generalize to more complex 078
scenes with multiple objects. To address this, we propose 079
a novel pipeline that places multiple objects in the scene 080
based on their semantic categories, further enhancing the 081
quality and utility of the proposed synthetic dataset. Draw- 082
ing inspiration from previous works, such as those that have 083
improved the generation quality on various tasks, notably 084
image-editing [29], multilingual T2I generation [23, 50, 53] 085
and several others, we aim to leverage the stage-wise train- 086
ing approach that enhanced the results in these methods. 087

We briefly sum up our contributions as follows: 088

• We propose SynMirrorV2, a large-scale synthetic dataset 089
with diversity in objects and their relative position and 090
orientation in the scene. 091

• Further, we create a pipeline to add multiple objects to a 092
scene in SynMirrorV2. 093

• We show that with a curriculum strategy of training 094
on SynMirrorV2, a generative method can also generalize 095
to real-world scenes. We show this generalization capa- 096
bility on the challenging real-world MSD [52] dataset. 097
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2. Related Work098

Image Generative models. Diffusion models [43] have be-099
come quite popular for image generation tasks. Diffusion100
models work by gradually adding noise to data and then101
learning to reverse this process to generate data from a vari-102
ety of distributions [8, 11, 17]. Subsequent works have ex-103
panded the scope of image generation by incorporating text104
guidance [37, 40] into the diffusion process, simplifying the105
reverse process [48], and reformulating diffusion to occur106
in a latent space [38] for improved speed. [31] explore ad-107
vancements in diffusion models by addressing bias through108
distribution-guided debiasing techniques. Further, meth-109
ods [32, 33] are developed to provide more fine-grained110
generation control to these models. Building on the success111
of vision transformers [47], recent approaches [7, 34, 60]112
have replaced the U-Net architecture in diffusion models113
with transformer-based designs, leading to high-quality im-114
age generation results. Further, there are popular meth-115
ods [2, 22] for high-quality image generation. However,116
these methods also fail for the task of generating reflections117
on the mirror as shown in Fig. 2118
Image Inpainting. Building on the advancements in im-119
age diffusion models, methods like Palette [39] and Re-120
paint [26] leverage known regions through the denois-121
ing process to reconstruct missing parts. Blended Diffu-122
sion [3, 4] refines this approach by replacing noise in un-123
masked areas with known content but struggles with com-124
plex scenes and shapes. Stable-Diffusion Inpainting [38]125
(SDI) enhances results by fine-tuning the denoiser with126
noisy latents, masks, and masked images. Recent methods,127
such as HD-Painter [27], PowerPaint [61], SmartBrush [51]128
build on SDI with additional training. Recently, Brush-129
Net [20] introduces a plug-and-play architecture that pre-130
serves unmasked content while improving coherence with131
textual prompts. However, Fig. 1 highlights the limitations132
of these methods in generating reflections on the mirror.133
Diffusion Models and 3D concepts. Recently, LRM [19]134
based methods predict 3D model from a single image.135
Some methods [21] utilize diffusion-based methods to en-136
able editing of these 3D presentations. Other diffusion-137
based methods [29] use synthetic image pairs for 3D-aware138
image editing. However, the synthetic-to-real domain gap139
can limit their applicability. Further, ObjectDrop [49] trains140
a diffusion model for object insertion/removal using a coun-141
terfactual dataset that can handle shadows and specular re-142
flections. Sarkar et al. [41] shows that generated images143
have different geometric features such as shadows and re-144
flections from the real images. Upadhyay et al. [46] pro-145
posed a geometric constraint in the training process to im-146
prove the perspective cues in the generated images. Al-147
chemist [42] provides control over the material properties148
of an object by proposing an object-centric synthetic dataset149
with physically-based materials.150

3. Dataset 151

3.1. Data Generation Pipeline 152

Fig. 2 highlights the failure of state-of-the-art models in 153
handling the reflection generation task. MirrorFusion [12] 154
addresses this challenge by proposing a synthetic dataset 155
but struggles in complex scenarios involving multiple ob- 156
jects and real-world scenes ( Fig. 1). We attribute this limi- 157
tation to the lack of diversity in their dataset. To mitigate 158
these shortcomings, we introduce SynMirrorV2, a large- 159
scale dataset which significantly expands diversity with var- 160
ied backgrounds, floor textures, objects, camera poses, mir- 161
ror orientation, object positions, and rotations. Tab. 1 com- 162
pares existing mirror datasets, while Fig. 3 showcases sam- 163
ples from SynMirrorV2. 164

Object Sources. We source objects from Objaverse [9] and 165
Amazon Berkeley Objects (ABO) [6] datasets. Objaverse, a 166
large-scale dataset, contains 800K diverse 3D assets, while 167
ABO contributes 7, 953 common household objects. To en- 168
sure quality, we refine our selection using a curated list of 169
64K objects from OBJECT 3DIT [29] and the filtering pro- 170
cedure discussed in [12], eliminating low-quality textures 171
and sub-par renderings. After filtering, we get 58, 109 ob- 172
jects from Objaverse. In total, we utilize 66, 062 objects. 173

Scene Resources. To create a realistic scene, we require 174
assets such as a mirror, floor and background. We cre- 175
ate a plane for the floor and apply diverse textures sourced 176
from CC-textures [10]. We use HDRI samples provided by 177
PolyHaven [16] to represent the background. In our exper- 178
iments, we use different kinds of mirrors: full-wall mirrors 179
and tall rectangular mirrors. For lighting, we position an 180
area-light slightly above and behind the object at a 45◦ an- 181
gle, directing it towards both the object and the mirror. 182

Object Placement in the scene. To begin, we fix the mir- 183
ror’s position within the scene as a fixed reference point. 184
The sampled object is then scaled to fit within a unit cube, 185
ensuring uniformity in size across all objects. We proceed 186
by sampling the object’s x-y position from a pre-computed 187
region that guarantees both visibility of the object in the 188
mirror and camera. This pre-computed region is determined 189
by identifying the intersection between the mirror’s viewing 190
frustum and the camera’s viewing frustum. Once the posi- 191
tion is set, we randomly sample an angle for the object’s 192
rotation around the y-axis to introduce variability. How- 193
ever, even with these steps, there may be instances where 194
the object appears to float in the air, which can undermine 195
the dataset’s utility. To address this, we apply a straightfor- 196
ward grounding technique, detailed in the supplementary 197
material. Together, these strategies contribute to the diver- 198
sity and overall quality of the proposed dataset. 199

Multiple Objects. A typical scene includes multiple ob- 200
jects arranged in varied layouts, producing a range of depth 201
and occlusion scenarios that enhance scene realism. To 202
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Figure 3. Dataset Generation Pipeline. Our dataset generation pipeline introduces key augmentations such as random positioning,
rotation, and grounding of objects within the scene using the 3D-Positioner. Additionally, we pair objects in semantically consistent
combinations to simulate complex spatial relationships and occlusions, capturing realistic interactions for multi-object scenes.

Algorithm 1 Procedure to Render Multiple Objects

Require: Input 3D modelM1

1: Function GETPAIREDOBJECTCATEGORY(M )
2: c← GetSemanticCategory(M)
3: L← GetPairedCategoriesList(c)
4: cpaired ← SampleCategory(L)
5: return cpaired
6: Function SAMPLEOBJECT(c)
7: Lobj ← GetListObjects(c)
8: M← Sample3DObject(Lobj)
9: return M

10: Main Algorithm
11: cpaired ← GETPAIREDOBJECTCATEGORY(M1)
12: M2 ← SAMPLEOBJECT(cpaired)
13: Initialize position ofM2 at X
14: whileM2 collides withM1 do
15: Tr ← SampleRandomPosition()
16: X ← Tr

17: end while

capture this complexity, our dataset incorporates scenes203
with multiple objects, as described in Algorithm 1. We204
start by sampling K objects from the original ABO dataset205
and identifying each object’s class from [6]. Categories206
are manually paired to ensure semantic coherence—for in-207
stance, pairing a chair with a table. During rendering, af-208
ter positioning and rotating the primary object K1, an addi-209
tional object K2 from the paired category is sampled and ar-210
ranged to prevent overlap, ensuring distinct spatial regions211
within the scene. This process yields 3,140 scenes featuring212
diverse object configurations and spatial relationships, pro-213
viding a robust foundation for realistic scene representation.214

Rendering. Following scene composition, we randomly 215
sample three camera poses from a predefined list of 19 cam- 216
era positions and render each scene using BlenderProc [10] 217
to obtain RGB, depth, normal, and semantic label outputs. 218
All renderings are produced at a resolution of 512×512 pix- 219
els. We set the “cycles rendering” parameter to 1024, which 220
is necessary for accurately capturing reflections. Represen- 221
tative samples are provided in Fig. 3 and additional exam- 222
ples are available in the supplementary material. 223

4. Method 224

Preliminaries Diffusion models are generative models 225
that can construct data samples by progressively remov- 226
ing noise. In the forward diffusion process, Gaussian noise 227
ϵ ∼ N (0, 1) is incrementally added to an initial clean sam- 228
ple x0 over T timesteps to create a noisy sample xT . In 229
the reverse process, a clean image x0 is reconstructed by 230
iteratively denoising xT . This denoising process is carried 231
out by a denoising network ϵθ which is conditioned on the 232
timestep t ∈ {1, T} and optional additional conditioning c 233
(e.g. text prompts, inpainting masks). Training loss of the 234
denoiser is as follows: 235

LDM = Ex0,ϵ∼N (0,I),t||ϵ− ϵθ (zt, t, c) ||2 (1) 236

Model Architecture. Building upon MirrorFusion [12], 237
we also formulate this task as an inpainting task. Our model 238
employs a base dual branch network similar to Brush- 239
Net [20] and additionally uses depth map conditioning for 240
the condition branch of BrushNet. In particular, we con- 241
catenate the noisy latent zt, masked image zm, inpainting 242
mask xm and depth map xd, and provide this as an input to 243
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(a) (b)MirrorFusion Ours MirrorFusion Ours

Figure 4. Comparison on MirrorBenchV2. The baseline fails to
maintain accurate reflections and spatial consistency, showing (a)
incorrect chair orientation and (b) distorted reflections of multiple
objects. In contrast, our method correctly renders (a) the chair
and (b) the sofas with accurate position, orientation, and structure,
demonstrating superior performance.

the conditioning U-Net branch. Each layer of the generation244
U-Net ϵi is conditioned with the corresponding layer of the245
conditioning U-Net ϵ

′
with the help of zero-convolutions246

(Z) as follows:247

ϵθ (zt, t, c)i = ϵθ (zt, t, c)i+w·Z
(
ϵ
′

θ ([zt, zm, xm, xd] , t)i

)
(2)248

w is the preservation scale to adjust the influence of condi-249
tioning. We set w to be 1.0 for all our experiments. We,250
train the model with the loss in Eq. (1).251

Training details. We follow a 3 stage training curriculum252
to improve the generalization of the model on real-world253
scenes. We utilize the AdamW [25] optimizer with a learn-254
ing rate of 1e−5 and a batch size of 4 per GPU. We train on255
4 NVIDIA A100 GPUs in all stages.256

• Stage 1. In the first stage, we initialize the weights of257
both the conditioning and generation branch with the Sta-258
ble Diffusion v1.5 checkpoint and finetune the model on259
the single object train split of our proposed SynMirrorV2.260
In contrast to [12], we do not keep the generation branch261
frozen and train the model till 40, 000 iterations. The262
variation in the position and rotation in the SynMirrorV2263
compared to SynMirror allows us to train the model for264
longer iterations without any degradation in the genera-265
tion quality compared to [12].266

• Stage 2. In the second stage, we finetune the model267
for 10, 000 iterations on the multiple objects train split268
of SynMirrorV2 to incorporate the concepts of occlusions269
as present in realistic scenes.270

• Stage 3. We propose a third stage training on real-world271
data from the MSD [52] dataset for another 10, 000 it-272
erations to bridge the domain gap between synthetic and273
real-world image inpainting.274

In the first two stages, we use ground truth depth maps275
and for the third stage, we generate depth maps using a276

(a) (b)MirrorFusion Ours MirrorFusion Ours

Figure 5. Comparison on GSO [13] dataset. In (a), the base-
line method misrepresents object structure, while our method pre-
serves spatial integrity and produces realistic reflections. In (b),
the baseline yields incomplete and distorted reflections of the mug,
whereas our approach generates accurate geometry, color, and de-
tail, showing superior performance on out-of-distribution objects.

monocular depth estimator [5]. To enhance learning and 277
reduce reliance on text prompts, we randomly drop them 278
20% of the time during training, enabling the model to uti- 279
lize depth information better. 280
Inference. During inference, we use a CFG value of 7.5 and 281
utilize the UniPC scheduler [59] for 50 time steps. During 282
inference, we allow the user to provide the mask depicting 283
the mirror and estimate the input depth map using Depth- 284
Pro [5] by passing the masked image as input. 285

5. Experiments & Results 286

We discuss the evaluation strategy and compare our current 287
method with the previous state-of-the-art method, Mirror- 288
Fusion [12], referring to this as the baseline. Additionally, 289
we also provide ablation studies on different design choices 290
in Sec. 5.1. 291

Dataset. Compared to MirrorBench, MirrorBenchV2 con- 292
sists of renderings of single and multiple objects in a scene. 293
Additionally, we qualitatively test our method on several 294
images from the MSD dataset and renderings from the 295
Google Scanned Objects(GSO) [13] dataset. For single ob- 296
ject renderings, we have a total of 2, 991 images, which 297
come from categories that are both seen and unseen dur- 298
ing training. We create 300 images that contain two objects 299
from the ABO dataset in the same scene to test the model 300
on generating reflections for multiple objects. 301
Metrics. We benchmark various methods on the quality of 302
the generated reflection and textual alignment of the gener- 303
ated image with the input prompt. 304

• Reflection Generation Quality. We evaluate reflection 305
quality using Peak-Signal-to-Noise ratio (PSNR), Struc- 306
tural Similarity (SSIM) and Learned Perceptual Image 307
Patch Similarity (LPIPS) [57] on the masked mirror re- 308
gion. 309
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Figure 6. Results on MirrorBenchV2. We compare our method with the baseline MirrorFusion [12] on MirrorBenchV2. The baseline
method shown struggles with pose variations, even in single-object scenes, and fails to produce accurate reflections for multiple objects.
In contrast, our method handles variations in the object orientation effectively and generates geometrically accurate reflections, even in
complex, multi-object scenarios.

• Text Alignment. We use CLIP [36] Similarity for assess-310
ing textual alignment.311

Qualitative results on MirrorBenchV2. In Fig. 4 (a), a312
single chair that is slightly rotated is placed in front of a313
mirror. We observe that the baseline method completely314
misrepresents the chair’s orientation in the generated reflec-315
tion as seen in the mirror. Notice the zoomed-in region316
where the reflection appears as if the object was cut and317
pasted onto the mirror. In contrast, MirrorFusion 2.0 trained318
on SynMirrorV2 accurately captures the chair’s orientation319
in the reflection, as shown in the zoomed-in region high-320
lighted by the green circle.321

Fig. 4 (b), shows a scene with a white sofa rotated and322
placed to the right of a gray sofa. The baseline method pro-323
duces two artifacts in the reflection: 1) the gray sofa ap-324
pears to be floating in the air, and 2) the generated reflec-325
tion of the white sofa is completely incorrect. In contrast,326
our method accurately generates the scene in the reflection.327
These results demonstrate the effectiveness of our augmen-328

tation strategies, as described in Sec. 3. We show more ex- 329
amples with both single and multiple objects in Fig. 6. 330

Qualitative results on GSO [13]. We further evaluate 331
the generalization ability of MirrorFusion 2.0 on real-world 332
scanned objects from GSO, shown in Fig. 5. MirrorFusion 333
2.0 generates significantly more accurate and realistic re- 334
flections. For instance, in Fig. 5 (a), MirrorFusion 2.0 cor- 335
rectly reflects the drawer handles (highlighted in green), 336
while the baseline model produces an implausible reflection 337
(highlighted in red). Likewise, for the “White-Yellow mug” 338
in Fig. 5 (b), MirrorFusion 2.0 delivers a convincing geom- 339
etry with minimal artifacts, unlike the baseline, which fails 340
to accurately capture the object’s geometry and appearance. 341

Qualitative results on the Real-World MSD dataset. 342
MirrorFusion 2.0 performs well on MirrorBenchV2 and 343
real-world objects from GSO but struggles with complex 344
scenes, such as cluttered cables on a table and reflections 345
across multiple mirrors (see Fig. 7). To improve coher- 346
ence, we fine-tune it on a subset of the MSD dataset and 347
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MirrorFusion Ours Ours - FT MirrorFusion Ours Ours - FT

Figure 7. Real World Scenes. We show results for MirrorFusion [12], our method and our method fine-tuned on the MSD [52] dataset.
We observe that our method can generate reflections capturing the intricacies of complex scenes, such as a cluttered cable on the table and
the presence of two mirrors in a 3D scene.

test it on a held-out split, enhancing its ability to handle348
real-world scenarios. As shown in Fig. 7, this fine-tuning349
enables high-fidelity reflections, accurately capturing de-350
tails like the “black cable” on the table and the “towel” in351
both mirrors. These results demonstrate how our dataset im-352
proves diffusion models, enabling more realistic reflections353
in challenging settings. Fig. 7 illustrates further examples354
on the real-world MSD dataset.355

Quantitative results with baselines. For evaluating the356
metrics, we generate images using four seeds for a particu-357
lar prompt and select the image that has the best SSIM score358
on the unmasked region. For a particular metric, we report359
the average value across MirrorBenchV2 by averaging the360
metric for all the selected images. Tabs. 2 and 3 show that361

Table 2. Single Object Reflection Generation Quality. We com-
pare the quantitative results between the baseline and MirrorFu-
sion 2.0 on the single object split of MirrorBenchV2. The best
results are shown in bold. This shows the effectiveness of the
dataset by achieving improved scores.

Metrics Reflection Generation Quality Text Alignment

Models PSNR ↑ SSIM ↑ LPIPS ↓ CLIP Sim ↑
baseline [12] 18.31 0.76 0.122 26.00

Ours 40k 18.79 0.77 0.108 25.96

our method outperforms the baseline method and finetuning 362
on multiple objects improves the results on complex scenes. 363
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Table 3. Multiple Object Reflection Generation Quality. We
compare the quantitative results between MirrorFusion 2.0 trained
without multiple objects and MirrorFusion 2.0 trained with multi-
ple objects on the multiple object split of MirrorBenchV2. The
best results are shown in bold. This shows the effectiveness of
finetuning further on multiple objects.

Metrics Reflection Generation Quality Text Alignment

Models PSNR ↑ SSIM ↑ LPIPS ↓ CLIP Sim ↑
Ours 40k 17.77 0.743 0.126 26.17
Ours 50k 18.00 0.744 0.119 26.09

(a) (b)- multiple +  multiple (Ours) - multiple +  multiple (Ours)

Figure 8. Impact of adding multiple objects. We observe that
training without multiple objects leads to (a) poor reflection gen-
eration and (b) artifacts like object blending, supporting the need
for finetuning the model on such scenarios.

User study. To evaluate the effectiveness of our proposed364
strategy, we also conducted a user study where we provided365
users with 40 different samples containing single, multiple,366
GSO objects, and real-world generations from the baseline367
and MirrorFusion 2.0. 84% of users preferred generations368
from MirrorFusion 2.0 over the baseline method. We369
provide more details in Appendix D.5.370
Limitations. Fig. 10 illustrates examples where our method371
accurately captures overall geometry but introduces minor372
artifacts which can be easily addressed by synthesizing ad-373
ditional training data and fine-tuning the model.374

5.1. Ablation Studies375

Impact of multiple objects dataset. To evaluate the im-376
pact of adding multiple objects to our dataset, we com-377
pare MirrorFusion 2.0 with ( “+ multiple”) and without (“-378
multiple”) object training in Fig. 8.“ MirrorFusion 2.0-w/o379
multiple” struggles to generate plausible mirror reflections,380
as evident in Fig. 8 (b), where the bed and sofa appear to381
blend together. In contrast,“ MirrorFusion 2.0-with multi-382
ple” accurately captures the spatial relationships between383
objects within the mirror reflection. These results highlight384
the importance of including multiple objects in the dataset,385
enabling the model to learn spatial relationships and effec-386
tively handle occlusions.387
Ablation on architecture. To further validate our architec-388
tural choice, we adapt Stable Diffusion Inpainting to accept389
depth maps as input similar to the changes made for Mir-390
rorFusion 2.0 and train this modified model on our pro-391

(a) (b)SDI+Depth  Ours SDI+Depth Ours

Figure 9. Comparison with SDI+Depth baseline. We observe
color leakage issues in “SDI+Depth” generations. A dual-branch
architecture proves to be a better choice, yielding superior out-
comes.

GT Generated

GenerationGround-Truth GenerationGround-Truth

Figure 10. Limitations. Our method performs well in multi-object
scenes (more than two objects) but retains some artifacts, which
can be reduced by synthesizing the dataset through the proposed
data-generation pipeline and further increasing the diversity and
scale.

posed dataset referring to it as “SDI+Depth”. We com- 392
pare “SDI+Depth” with MirrorFusion 2.0 in Fig. 9. While 393
“SDI+Depth” accurately positions objects in the mirror, it 394
suffers from significant artifacts, including color leakage in 395
contrast to MirrorFusion 2.0. We suspect that this happens 396
due to the early combination of the noisy latent features, 397
mask, and conditioning information in the initial convolu- 398
tion layer, restricting later layers from accessing clean fea- 399
tures. These findings suggest that a dual branch architecture 400
to provide the conditioning information separately as done 401
in MirrorFusion 2.0 is a better choice. 402

6. Conclusion 403

We introduce SynMirrorV2, a novel large-scale synthetic 404
dataset designed to advance mirror reflection generation 405
significantly. By employing targeted data augmentations, 406
we achieved robust variability in object pose, position, 407
and occlusion, alongside the ability to handle multi-object 408
scenes. Our qualitative and quantitative evaluations demon- 409
strate SynMirrorV2’s efficacy in reflection generation, with 410
promising generalization to real-world scenes using cur- 411
riculum training. This dataset holds substantial potential for 412
driving progress in various mirror-related tasks. Future re- 413
search will explore advanced data augmentation techniques 414
to enhance real-world performance further. 415
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