
Under review as submission to TMLR

C2-DPO: Constrained Controlled Direct Preference Optimiza-
tion

Anonymous authors
Paper under double-blind review

Abstract

Direct preference optimization (DPO) has emerged as a promising approach for solving the
alignment problem in AI. In this paper, we make two counter-intuitive observations about
DPO. First, we show that the DPO loss could be derived by starting from an alternative
optimization problem that only defines the KL guardrail on in-sample responses, unlike the
original RLHF problem where guardrails are defined on the entire distribution. Second,
we prove a surprising property of this alternative optimization problem, where both the
preferred and rejected responses tend to decrease in probability under its optimal policy, a
phenomenon typically displayed by DPO in practice. To control this behavior, we propose
a set of constraints designed to limit the displacement of probability mass between the
preferred and rejected responses in the reference and target policies. The resulting algorithm,
which we call Constrained Controlled DPO (C2-DPO), has a meaningful RLHF interpretation.
By hedging against the displacement, C2-DPO provides practical improvements over vanilla
DPO when aligning several language models using standard preference datasets.

1 Introduction

Ensuring AI systems act in accordance with human preferences, also known as the alignment problem, has
become a critical focus in machine learning. Reinforcement Learning from Human Feedback (RLHF) has
emerged as one promising approach (Christiano et al., 2017). RLHF proceeds by first learning a reward
model (RM), and then employing standard RL algorithms to maximize the RM while keeping the model
close to a reference model. Recent years have witnessed the emergence of algorithms that solve the two
RLHF sub-problems in a single step, chief among them being the Direct Preference Optimization (DPO)
algorithm (Rafailov et al., 2023). DPO proceeds by leveraging the closed-form solution of the RLHF objective
and using the preference dataset to align the model, thus bypassing the explicit reward-learning and the need
to sample new responses during training. Since then, numerous extensions and successors have been proposed,
e.g., IPO (Azar et al., 2024) and CDPO (Mitchell, 2024), underscoring the need for a deeper investigation into
this emerging class of algorithms to connect the underlying principles.

In this paper, we start with the counter-intuitive observation that the DPO loss can be derived from an
alternative optimization problem that imposes the KL penalty only on in-sample responses - those present
in the preference dataset - rather than on the full output distribution, as done in traditional RLHF. We
show that this subtle shift has a significant implication: the alternative optimization problem incentivizes
in-sample probability reduction in DPO. We formally prove that under the optimal solution to this new
problem, both the preferred and rejected responses tend to decrease in probability. This phenomenon, while
counter-intuitive, mirrors recent findings about DPO behavior (e.g., Adler et al. 2024; Xu et al. 2024; Pal
et al. 2024; Fisch et al. 2024; Xiao et al. 2024; Shen et al. 2024; Wu et al. 2024; D’Oosterlinck et al. 2024; Pang
et al. 2024), and is referred to as likelihood displacement by Razin et al. (2025). We then show that the above
in-sample probability reduction phenomenon is shared among DPO extensions/successors by developing a
simple classification framework that unifies the family of DPO-style algorithms.

Leaning on these insights, we propose a family of constraints that provably control likelihood displacement in
DPO-style algorithms. The constraints are designed to limit the movement of winner-loser probability mass

1

Under review as submission to TMLR

between the reference and target policies. Our proposed algorithm, Constrained Controlled DPO (C2-DPO),
optimizes the DPO objective under these constraints, has a meaningful RLHF interpretation, and requires no
extra computation. We evaluate the effectiveness of our constraints in enhancing preference alignment across
two datasets and three models with up to 13B parameters, and show that C2-DPO outperforms vanilla DPO
and several other baselines, delivering higher-quality final models when assessed holistically on the standard
MT-Bench dataset (Zheng et al., 2023).

2 Preliminaries

We present the key ingredients of preference optimization on which we will build in the subsequent sections.
In this setting, we are given a dataset D of triplets (x, yw, yl), where x is a prompt, while yw and yl reflect
our preference in choosing response yw over yl conditioned on x. We are also given a reference policy πref
(often the SFT checkpoint πSFT) which serves as a guardrail.

In RLHF, we first employ D to train a parameterized RM, rϕ, and then use it to solve the following:

max
θ

Ex

[
Ey∼πθ

[
rϕ(x, y)

]
− βKL

(
πθ(·|x)||πref(·|x)

)]
, (1)

where β > 0 is a hyper-parameter denoting the relative importance of reward maximization against ensuring
a low deviation from πref. The RM is learned by minimizing the cross-entropy (CE) loss:

min
ϕ

∑
(x,yw,yl)∈D

− log σ
(
rϕ(x, yw) − rϕ(x, yl)

)
, (2)

assuming that preferences follow the Bradley-Terry (BT) model: p(yw ≻ yl | x) = σ
(
r(x, yw) − r(x, yl)

)
where σ(x) = 1/(1+exp(−x)) is the sigmoid function and r is the latent reward of the annotator. Fine-tuning
πθ in the RLHF approach splits into two stages: reward-learning using the BT model, followed by a policy
optimization using equation 1. More recently, an emerging family of algorithms solve the above two problems
in a single stage: Direct Preference Optimization (DPO)-style algorithms. The loss function of DPO is derived
from the RLHF problem equation 1 using the recipe from (Rafailov et al., 2023). The key insight here is
that problem equation 1 admits the following closed-form solution: π∗(y|x) = πref(y|x) exp

(
r(x, y)/β

)
/Z(x)

with Z(x) as the partition function. We can rewrite this as

r(x, y) = β log Z(x)π∗(y|x)
πref(y|x) . (3)

Substituting r(x, y) from equation 3 into equation 2, the partition function Z(x) cancels out, leading to the
optimization problem solved by DPO:

min
θ

∑
(x,yw,yl)∈D

− log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
. (4)

3 KL in DPO: Implicit Guardrailing with a Counter-intuitive Side Effect

Recall from the RLHF problem equation 1 that large deviations from πref are penalized by KL, and note
that the penalty applies to the entire distribution πθ(·|x), not limited to samples from the dataset D. One
may wonder whether the KL guardrail is maintained in DPO, given the equivalence between DPO and RLHF
shown in Rafailov et al. (2023).

We now show that the standard DPO loss (4) can be obtained by applying guardrails only to in-sample
responses, highlighting the fact that DPO does not explicitly enforce KL regularization beyond the data it
is trained on. To this end, we replace the KL-penalty in equation 1 with a similar penalty, but one that only
operates on in-sample responses Sx = {yw, yl | (yw, yl, x) ∈ D}:

max
θ

Ex

[
Ey∼πθ

[
rϕ(x, y)

]
− β

∑
y∈Sx

πθ(y|x) log πθ(y|x)
πref(y|x)

]
. (5)

2

Under review as submission to TMLR

When comparing to the penalty term in equation 5, recall that KL
(
πθ(·|x)||πref(·|x)

)
:=∑

y πθ(y|x) log πθ(y|x)
πref(y|x) .

We now prove that starting from problem equation 5 and following a recipe similar to the one in Rafailov
et al. (2023) described in Section 2, we ultimately arrive at the same standard DPO loss equation 4. We
report the proof of the following lemma in Appendix A.
Lemma 3.1. Problem equation 5 has a closed-form solution. While this closed-form solution is different
from the closed-form solution to problem equation 1, substituting it into the BT model and following the
recipe of Rafailov et al. (2023) leads to the same standard DPO loss in equation 4.

At first glance, the two optimization problems equation 1 and equation 5 look quite similar, but finding the
closed-form solution of equation 5 requires a delicate analysis. In particular, the new penalty is only summing
over the set Sx, so the resultant KKT optimality conditions are more involved (details in Appendix A).

Note that the introduced penalty in equation 5 is not even a proper divergence, in the sense that it could be
negative. Thus, the lemma could be viewed as evidence that when we move to DPO, we no longer explicitly
enforce the KL penalty. However, as using larger values of β results in smaller KL deviations during DPO
training (see Figure 1-Left), we can still empirically use KL regularization as an effective guardrail. This
arguably makes sense, because in DPO there is little incentive for the model to shift probability mass for
responses that are quite different from in-sample responses, and so explicit out-of-sample guardrailing may
not be necessary.

0 1
Epoch

10 2

10 1

100

101

102

103

KL
(

re
f)

= 1
= 10 1

= 10 2

= 10 3

= 10 4

0 1
Epoch

10 1

100

101

102

103

(x
,y

w
,y

l)
D
lo

g
(y

w
|x

)
re

f(y
w
|x

)+
lo

g
(y

l|x
)

re
f(y

l|x
)

= 1
= 10 1

= 10 2

= 10 3

= 10 4

Figure 1: Left: Increasing β in DPO leads to effective out-of-sample guardrailing. We ran DPO with
different values of β starting from the Zephyr-7B initial checkpoint on the UltraFeedback dataset. We then
estimated the KL divergence between πθ and πref by autoregressively sampling N = 32 responses from πθ

for each prompt in the test set, followed by computing 1
N

∑N
i=1 log πθ(yi|x)

πref(yi|x) and averaging over prompts.
Right: Reduction of in-sample probabilities in DPO training.

While this minimal guardrailing is effective, we show that it nevertheless leads to counter-intuitive behavior.
Notice again that the new penalty term in equation 5 can be negative, in sharp contrast to the original
KL term, which is non-negative by definition. More importantly, the overall objective in equation 5 can be
increased by decreasing the probability of both winner and loser responses, making the new penalty term
negative, i.e., log πθ(y | x)/πref(y | x) < 0, ∀y ∈ Sx. Note that this behavior is not incentivized in the original
optimization problem equation 1. We know that the KL penalty in equation 1 is always non-negative, so even
if we reduce the in-sample portion of the KL by decreasing in-sample probabilities, the out-of sample portion
must get more and more positive, and so there is no point in blindly reducing the in-sample probabilities.
We now formalize our intuitions:
Lemma 3.2. Let (x, y) be an in-sample prompt-response pair, i.e., x ∈ D and y ∈ Sx. Suppose that
rϕ(x, y) ≤ maxy′ /∈Sx

rϕ(x, y′). Then, any optimal solution θ to the optimization problem equation 5 satisfies
πθ(y|x) ≤ e−1πref(y|x).

The proof, reported in Appendix A, hinges on the fact that the penalty term in equation 5 is defined on
in-sample responses. Therefore, this result does not hold when solving problem equation 1, indicating that

3

Under review as submission to TMLR

the standard RLHF formulation is not susceptible to this counter-intuitive behavior. To better understand
the result, note that for a prompt x, if the reward of an in-sample response (whether the response is preferred
or rejected) is smaller than the maximal reward of out-of-sample responses, then any optimal solution of
equation 5 decreases the probability of this in-sample response. Clearly the size of the in-sample response
set Sx is relatively small in comparison to the rest of the set (in the extreme case, a single preferred and
rejected response), so the condition is likely to hold.

Interestingly, it has been observed recently that during DPO training all in-sample probabilities - even those
associated with preferred responses - tend to decrease in magnitude (e.g., Adler et al. 2024; Xu et al. 2024;
Pal et al. 2024; Fisch et al. 2024; Xiao et al. 2024; Liu et al. 2024; Yin et al. 2024; Guo et al. 2024; Yuzi
et al. 2025; Razin et al. 2025; Deng et al. 2025; Xiliang et al. 2025; Huang et al. 2025; Yunan et al. 2025;
Pang et al. 2024). We also observe this clear trend in our experiments, as is apparent in Figure 1 (Right),
where we show that the sum of log ratios (log πθ(yw|x)

πref(yw|x) +log πθ(yl|x)
πref(yl|x)) tends to decrease radically. Lemma 3.2

hints at the underlying reason for this counter-intuitive behavior, which has been referred to as likelihood
displacement of in-sample probabilities (Razin et al., 2025). To the best of our knowledge, while this has
been reported in previous empirical studies, Lemma 3.2 is among very few theoretical results explaining this
counter-intuitive phenomenon.

We conclude this section by noting that we proved in-sample probability reduction for DPO alone, and so
it would be natural to ask if some of its main successors, e.g., IPO (Azar et al., 2024) and CDPO (Mitchell,
2024), share the same property. In the next section, we answer this question affirmatively by developing a
classification framework that unifies the family of DPO-style algorithms.

4 A Classification View of DPO-style Algorithms

We now show that DPO-style algorithms can be interpreted as classification methods, where the objective
is defined solely over in-sample responses. As a result, similar to DPO, none of these algorithms applies any
direct guardrailing on out-of-sample responses. Recall that the standard classification setting has three main
ingredients.

First, we construct a hypothesis space by defining probabilities assigned to each class. In DPO-style algo-
rithms, these probabilities are implicitly defined as:

pθ(x, yw, yl) := softmax
(
rθ(x, yw), rθ(x, yl)

)
, (6)

where rθ is the reward defined in equation 3 having substituted π∗ with πθ. Under pθ, the probability
assigned to the winner (preferred) response yw, denoted by pw

θ , does not depend on the partition function
Z(x) and can be written as:

pw
θ (x, yw, yl) :=

(πθ(yw|x)
πref(yw|x)

)β(πθ(yw|x)
πref(yw|x)

)β +
(πθ(yl|x)

πref(yl|x)
)β

. (7)

The probability assigned to the loser (rejected) response yl, denoted by pl
θ, can be defined similarly. Note

that the distribution pθ in equation 6 can be thought of as a generalization of the conditional probability of
a response y given that y ∈ {yw, yl}.

Second, in the standard classification setting, the dataset gives us access to labels, which we use to extract
target probabilities associated with each class. To obtain these target probabilities, we simply use any
distribution p = (pw, pl) from the simplex ∆2, which is defined as the set of all vectors p ∈ R2 satisfying
pw, pl ≥ 0 and pw + pl = 1. In the most basic case, we just use the one-hot vector (pw, pl) = (+1, 0) akin to
using hard labels. More generally, we can use soft labels, meaning that we put some non-zero weight behind
each class (Müller et al., 2019).

Third, we define a classification loss L between two distributions pθ and p, leading us to the optimization
problem: minθ

∑
D L(pθ, p). A good example is the CE loss.

We can now show that a large number of DPO-style algorithms can be viewed as specific instances of this
classification framework. The generality arises from the ability to use (a) hard or soft labels for the target
distribution p and (b) different classification losses L.

4

Under review as submission to TMLR

Data Algorithm Labels Loss

Pairs
DPO(BT) Hard CE

CDPO Soft CE
IPO Soft Remark 4.2

List (Appendix. B) DPO(PL) Hard CE
Auxiliary Info RPO Soft Appendix B
(Appendix. B) Distilled DPO Soft Appendix B

Table 1: Unifying DPO-style
algorithms. By DPO(PL), we
mean DPO with Plackett-Luce
model. See our proofs for
RPO (Adler et al., 2024) and
Distilled DPO (Fisch et al.,
2024) in Appendix B.

Remark 4.1 (DPO). Suppose that we use the CE loss and hard labels p := (pw, pl) = (+1, 0) in the above
classification framework. Then, using equation 7, we can write

L
(
pθ, p

)
=−

(
pw log pw

θ + pl log pl
θ

)
=− log pw

θ = − log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
,

which is exactly the DPO loss equation 4 if it is summed over D.

Another popular DPO-style algorithm is IPO (Azar et al., 2024). While the derivation of IPO in the original
paper looks completely different than DPO, we now show that IPO can also be viewed as a specific instance
of our classification framework (see Appendix B.1 for the detailed derivation).
Remark 4.2 (IPO). We can recover IPO (Eq. 17 in Azar et al. 2024) using the loss L

(
pθ, p

)
=
(

log(pw
θ /pl

θ)−
log(pw/pl)

)2 and soft labels p := (pw, pl) = (σ(1/2), σ(−1/2)).

Table 1 shows that several DPO-style algorithms can be formulated using this framework. Given this
framework, we can formulate the set of optimal solutions (those that achieve 0 loss) for any DPO-style
algorithm. An optimal parameter θ is one that achieves 0 loss for all samples in D, i.e., pθ(x, yw, yl) =
p, ∀(x, yw, yl) ∈ D. Setting pw

θ (x, yw, yl) in equation 7 equal to pw = 1 − ε, we obtain

πθ∗(yw|x) = η · πθ∗(yl|x), with η := β
√

(1 − ε)/ε · πref(yw|x)
πref(yl|x) . (8)

Note that the derivation using yl yields the same result. Thus, we have two probabilities, πθ∗(yw|x) and
πθ∗(yl|x), that we aim to learn, but minimizing the loss only gives us one constraint specified in equation 8.
This means that the original classification problem (loss-minimization in DPO-style algorithms) is under-
specified. In Figure 2, we provide an illustration of this phenomenon. We also provide a concrete example
to further highlight that winner-loser probabilities can move in arbitrary directions, and most notably, can
both go to zero.
Remark 4.3 (A Concrete Example). Suppose we have ε = 1/11 and for simplicity we set β = 1, πref(yw|x) =
0.02, and πref(yl|x) = 0.01, which result in η = 20. (See Eqn 8 for the definition of η) We identify two pairs
of probabilities that satisfy equation 8:

1.
(
πθ∗(yw|x), πθ∗(yl|x)

)
= (0.4, 0.02) .

2.
(
πθ∗(yw|x), πθ∗(yl|x)

)
= (0.001, 0.0002) .

In the first case both probabilities (including the loser) increase under πθ∗ relative to πref. In sharp contrast,
both probabilities (including the winner) decrease under πθ∗ relative to πref. Note that the increase is bounded
as the two probabilities can go up until they hit πθ∗(yw|x) + πθ∗(yl|x) = (1 + η)πθ∗(yl|x) = 1. Perhaps more
concerning is the observation that the two probabilities can decrease arbitrarily and even collapse to 0 while
still maintaining L

(
pθ∗ , p

)
= 0.

List of Preferences Our classification framework can can extend to work with lists, rather than pairs,
of preferences. In particular, assume that we have N responses for each prompt x, giving us a dataset
of the form D = {(x, y1, y2, . . . , yN)}. In this case, we can define a list version of the probability vector
pθ(x, y1, . . . , yN) similarly to equation 6, together with a target distribution p. With this simple extension

5

Under review as submission to TMLR

we can now incorporate existing DPO-style algorithms that work with lists. For instance, we can show that
DPO with the Plackett-Luce model for preferences Rafailov et al. (2023) can be captured in our classification
framework, again using hard labels and the CE loss. See Appendix B.3 for a proof.

Auxiliary Information A second important extension pertains to the definition of soft labels in our
classification setting. So far we have only worked with soft labels that are fixed across the entire dataset,
for instance, p := (pw, pl) = (σ(1/2), σ(−1/2)) for all (x, yw, yl) in IPO. These fixed labels are agnostic
about any extra information we may have about our data triplets (x, yw, yl). However, in some applications
we may have access to some auxiliary scores, sw, sl, (e.g., ratings) associated with each response, which
can then be used to enrich our soft labels. More formally, suppose now that our dataset is comprised of
D = (x, yw, sw, yl, sl). To obtain the soft labels we can employ, for instance, p = softmax(sw, sl). Combining
this with the IPO loss, we recover Distilled DPO (Eq. 7 in Fisch et al. 2024). Using the same soft labels,
but with the CE loss recovers RPO (see Sec. 3.3.2 in Adler et al. 2024). We provide more details on both
algorithms in Appendix B.4. These natural extensions further demonstrate that our classification framework
is fairly general as well as sufficiently flexible to capture a large number of existing DPO-style algorithms.

Figure 2: An illustration of the set of solutions that
achieve 0 loss in DPO-style algorithms. The shaded
gray is the set of feasible solutions. The red line pass-
ing through the feasible set indicates the set of optimal
solutions. Note that the case where the probability
belonging to in-sample responses displace entirely to
out-of-sample responses, i.e., pθ(x, yw, yl) = (0+, 0+)
also lies on this line.

5 Constrained Controlled DPO (C2-DPO)

We now present a general family of constraints to control the likelihood displacement of in-sample probabili-
ties in DPO-style algorithms described in Section 3. These constraints can also help with the under-specified
nature of these algorithms discussed in Section 4. We define the constraints on the probability mass of the
winner-loser pair and use them to control how much this mass changes from the reference policy πref to the
target policy πθ. We then show how these constraints can be incorporated into any DPO-style loss function
and propose our algorithm, which we refer to as the Constrained Controlled Direct Preference Optimization
(C2-DPO).

The constraint, with respect to an arbitrary function φ : R → R, takes the general form
φ
(
πθ(yw|x)

)
+ φ

(
πθ(yl|x)

)
= φ

(
πref(yw|x)

)
+ φ

(
πref(yl|x)

)
. (9)

Note that the RHS is fixed during training, so the two terms on the LHS cannot move in the same direction.
We now generalize this intuition by showing that when the constraint function φ is monotonic and added to
the solution characterization of DPO-style algorithms given by

πθ∗(yw|x)
πref(yw|x) = β

√
1 − ε

ε
· πθ∗(yl|x)

πref(yl|x) , (10)

then we can control the direction of the movement of probability mass for all winner-loser pairs.
Proposition 5.1. Let φ : R → R be a monotonic function and assume that equation 9 holds. Then,
πθ∗(yw|x) > πref(yw|x) and πθ∗(yl|x) < πref(yl|x).

Proposition 5.1, whose proof is reported in Appendix C.1, shows that any monotonic constraint function φ
guarantees that the learned policy, πθ∗ , assigns a higher (lower) probability to the winner (loser) response
than the one assigned to it by the reference policy πref. It is natural to ask what φ should be used in the
context of this constraint, and we present two interesting candidates below.

6

Under review as submission to TMLR

5.1 Logarithmic Constraint φ(x) := log x

Our first choice is to employ the logarithmic constraint:

log (πθ(yw|x)) + log (πθ(yl|x)) = log (πref(yw|x)) + log (πref(yl|x)) , (11)

which is nice to work with empirically in light of the fact that all terms are in the log-space. Moreover,
these log probabilities are already computed in DPO, which makes the implementation of the corresponding
C2-DPO algorithm more efficient.

Rather than using hard constraints, it is easier to compute the deviation from the constraint using either ℓ1
or ℓ2 norm, and then add it as a regularizer to the original DPO-style loss with a regularization parameter
λ that trades-off the relative importance of the two terms. Equipping the DPO loss equation 4 with the
logarithmic constraint equation 11, we obtain the following loss for C2-DPO:

min
θ

∑
D

− log σ

(
β log πθ(yw|x)

πref(yw|x) −β log πθ(yl|x)
πref(yl|x)

)
+ λ

(
log πθ(yw|x)

πref(yw|x) +log πθ(yl|x)
πref(yl|x)

)2
. (12)

In contrast to the hard constraint, in this case we do not necessarily force the winner (loser) probability to
go up (down). Rather, we impose a penalty when the learner violates the constraint. Notice also that we
added the penalty term to the original loss of DPO for simplicity, but in principle, the penalty term can be
added to any DPO-style loss covered in our classification framework.

Further, we can show that employing the logarithmic constraint equation 11 has a meaningful RLHF in-
terpretation. Recall that Rafailov et al. (2023) defined r̂θ(x, y) := β log

(
πθ(y|x)/πref(y|x)

)
, ∀y ∈ Y as an

implicit reward learned during DPO training. Using this notation, we can rewrite objective equation 12
simply as

− log σ
(
r̂θ(x, yw) − r̂θ(x, yl)

)
+ λ

β2

(
r̂θ(x, yw) + r̂θ(x, yl)

)2
.

Under φ(x) = log x, we solve the original RLHF problem akin to DPO, but we also incentivize the sum of the
implicit rewards for the winner and loser to remain around zero. It follows that the constraint regularizes
the implicit rewards so as to avoid rewards that are (a) very large and (b) have the same sign. These
two properties cannot co-exist when employing φ(x) = log x, since doing so would yield a large magnitude
inside the square and ultimately a large magnitude in the second term of the loss. Intuitively, this can hedge
against the likelihood displacement, because in the case of displacement both implicit rewards are large in
magnitude and both have a negative sign, which the constraint will greatly penalize.

5.2 Identity Constraint φ(x) := x

A second interesting choice would be to simply use the identity constraint:

πθ(yw|x) + πθ(yl|x) = πref(yw|x) + πref(yl|x) . (13)

While equation 13 is also a plausible constraint, at first glance it is unclear how to implement it since the
constraint is no longer in the log-space and is specified in terms of raw probabilities. Working with raw
probabilities is prone to numerical underflow issues; thus, we would like to derive a constraint which is
equivalent to equation 13 and operates in the log-space. To do so, we make use of the following lemma whose
proof is reported in Appendix C.2.
Lemma 5.1. For any two numbers a and b, we have log(a + b) = log a − log σ(log a − log b).

Applying log to both sides of equation 13, we obtain log(πθ(yw|x) + πθ(yl|x)) = log(πref(yw|x) + πref(yl|x)),
which can be rewritten using Lemma 5.1 as

log
(
πθ(yw|x)

)
− log σ

(
log πθ(yw|x)

πθ(yl|x)

)
= log

(
πref(yw|x)

)
− log σ

(
log πref(yw|x)

πref(yl|x)

)
. (14)

7

Under review as submission to TMLR

Moving from equation 13 to equation 14, we have rewritten the constraint entirely in the log-space, thus
avoiding numerical issues, and similar to the logarithmic constraint in Section 5.1, allowing a straightfor-
ward implementation of the corresponding C2-DPO algorithm. Equipping the DPO loss equation 4 with the
logarithmic constraint equation 14, we obtain the following loss for C2-DPO:

min
θ

∑
D

− log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)

+ λ

(
log πθ(yw|x)

πref(yw|x) + log σ

(
log πref(yw|x)

πref(yl|x)

)
− log σ

(
log πθ(yw|x)

πθ(yl|x)

))2
. (15)

Note that unlike φ(x) = log x, deriving an RLHF interpretation under φ(x) = x is subtle. That said, an
interesting property under φ(x) = x is that the winner probability can increase only by an amount equal to
πref(yl|x). This means that we will not put the entire probability mass on yw.

6 Experiments

In this section, we present experiments on two data sets that demonstrate that C2-DPO outperforms vanilla
DPO and several other baselines and delivers higher-quality final models when assessed holistically on the
standard MT-Bench dataset (Zheng et al., 2023).

0.25 0.5 0.75 1
Epoch

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

wi
n

ra
te

 a
ga

in
st

 D
PO

C2DPO Log 1 Vs DPO

0.25 0.5 0.75 1
Epoch

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
C2DPO Log 2 Vs DPO

0.25 0.5 0.75 1
Epoch

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
C2DPO 1 Vs DPO

0.25 0.5 0.75 1
Epoch

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
C2DPO 2 Vs DPO

Figure 3: Head-to-head win-rate of C2-DPO against DPO. For each individual plot, we take the prompts from
the held-out test set of Ultrafeedback Binarized and generate responses from the C-3DPO and DPO model.
Then we present the prompt and two responses to Anthropic Claude Sonnet and ask which of the two answers
is more helpful and honest. We compute the average win rates across 10 different random seeds

100 200 300 400
Steps

0.3

0.4

0.5

0.6

0.7

0.8
DPO
C2DPO log 1

100 200 300 400
Steps

0.3

0.4

0.5

0.6

0.7

0.8
DPO
C2DPO log 2

100 200 300 400
Steps

0.3

0.4

0.5

0.6

0.7

0.8
DPO
C2DPO 1

100 200 300 400
Steps

0.3

0.4

0.5

0.6

0.7

0.8
DPO
C2DPO 2

C2
D

PO
lo

g
1

C2
D

PO
lo

g
2

C2
D

PO
1

C2
D

PO
2

0.50

0.52

0.54

0.56

0.58

0.60

0.
54

6 0.
55

7

0.
54

6 0.
55

4

0.
54

6 0.
55

4

0.
54

6

0.
54

9

DPO
C2DPO

0.25 0.50 0.75 1.00
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

W
in

 R
at

es

Temperature=0.25

0.25 0.50 0.75 1.00
Epoch

Temperature=0.5

0.25 0.50 0.75 1.00
Epoch

Temperature=0.75

0.25 0.50 0.75 1.00
Epoch

Temperature=1.0

0.25 0.50 0.75 1.00
Temperature

W
in

 R
at

es

0.6
87

0.6
54

0.5
71

0.4
22

0.6
87

0.6
56

0.5
77

0.4
39

DPO
C2DPO-log-

Figure 4: Left: win-rates
against the preferred response in
the test set of the UltraFeedback
dataset. Right: win rates on
the TL;DR dataset.

6.1 Ultrafeedback Binarized

This dataset is comprised of 64k prompts, and a winner (preferred) and loser (rejected) continuation per
prompt (yw and yl). We used the standard DPO implementation published with the paper (Mitchell, 2023).
Following Rasul et al. (2024), we train Zephyr-7B-SFT.

8

Under review as submission to TMLR

Figure 5: A comparison between C2-DPO and baselines. (Left) The two variants of C2-DPO-Log better align
Zephyr-7b-SFT relative to vanilla DPO as well as the other baselines (Right).

100 200 300 400
Steps

0.3

0.4

0.5

0.6

0.7

0.8
DPO
C2DPO log 1

100 200 300 400
Steps

0.3

0.4

0.5

0.6

0.7

0.8
DPO
C2DPO log 2

100 200 300 400
Steps

0.3

0.4

0.5

0.6

0.7

0.8
DPO
C2DPO 1

100 200 300 400
Steps

0.3

0.4

0.5

0.6

0.7

0.8
DPO
C2DPO 2

C2
D

PO
lo

g
1

C2
D

PO
lo

g
2

C2
D

PO
1

C2
D

PO
2

0.50

0.52

0.54

0.56

0.58

0.60

0.
54

6 0.
55

7

0.
54

6 0.
55

4

0.
54

6 0.
55

4

0.
54

6

0.
54

9

DPO
C2DPO

Figure 6: Win rates comparison of Zephyr-7B-SFT aligned on Ultrafeedback Binarized using DPO and C-2DPO
. The first 4 plots show win rates of C-2DPO at individual checkpoints across different training trajectories.
The last plot shows mean and standard error of win rates across all checkpoints and all inference runs.

We present the head-to-head win rate of C2-DPO against DPO in Figure 3 by using 200 prompts from the
held-out test set. We compute the win-rate by asking Anthropic’s Claude Sonnet-3.5-v2 which response is
more helpful. The exact prompt used for Claude is in Appendix E.

Recall from Section 5 that we proposed two candidates for the constraint function φ, namely the logarithmic
and identity functions. Moreover, notice from (15) that we measure the deviation from the constraint using
an ℓ2 penalty. Alternatively, we can measure this deviation using an ℓ1 penalty. Altogether, we have four
specific implementations of C2-DPO: C2-DPO-Log-ℓ1, C2-DPO-Log-ℓ2, C2-DPO-I-ℓ1, and C2-DPO-I-ℓ2. In
Appendix D, we include pseudo-code for each of these 4 variations. In Figure 3, we show the head to head
win rate of each of these 4 implementations against DPO, and in Figure 4 (Left), we show win-rate against the
preferred response from the dataset. For all 4 implementations, we used the hyper-parameter λ = 2 × 10−4

and did not tune it for each of the 4 implementations separately. From this result, it is clear that all
4 variations improve upon DPO, with C2-DPO-Log being the highest performer. Figure 6 shows win rates
comparison between Zephyr-7B-SFT aligned with DPO and C-2DPO. We align Zephyr-7B-SFT following Rasul
et al. (2024) using DPO, C-2DPO-Log-ℓ1, C-2DPO-Log-ℓ2, C-2DPO-I-ℓ1, and C-2DPO-I-ℓ2 for one epoch,
all C-2DPO use hyper-parameter λ = 2 × 10−4. With each checkpoint, we generate responses using test
split of Ultrafeedback Binarized using hyperparameters max_tokens=1000, temperature=1.0, top_p=0.9,
top_k=50. Different from the head to head setting, we ask Claude to compare the generated response
directly with the preferred response in the dataset. The win rates and standard errors are calculated based
on 10 different inference runs.

9

Under review as submission to TMLR

Further, to holistically evaluate the final model, we used MT-Bench, a multi-turn benchmark that uses
GPT-4 to judge models’ performance in 8 different categories: Writing, Roleplay, Reasoning, Math, Coding,
Extraction, STEM, and Humanities Rasul et al. (2024). In Figure 5 we show the MT-Bench evaluation for
C2-DPO against vanilla DPO, as well as related DPO-style algorithms that discuss the collapse of probabilities
in DPO and aim to mitigate it, such as Cal-DPO (Xiao et al., 2024), SPPO (Wu et al., 2024), and DPOP (Pal
et al., 2024). C2-DPO is the most competitive algorithm.

We then used C2-DPO-Log on a larger initial checkpoint, namely the Olmo-13B-SFT model from Al-
lenAI OLMo et al. (2024). We compared C2-DPO-Log against DPO. In Figure 7, we see that C2-DPO-Log
outperforms DPO, indicating that C2-DPO improvement may scale to larger models.

Figure 7: Left: A comparison between C2-DPO and DPO in terms of the probability of winner and loser
responses when training the GPT-J model with the Reddit TL;DR dataset. Right: Comparison between
C2-DPO and DPO for aligning the Olmo-13B-SFT model using the Ultrafeedback-Binarized dataset.

6.2 Reddit TL;DR

We then evaluate our proposed method on a summarization task with human-assigned scores for pairs of
summaries. For this purpose, we employ the Reddit TL;DR dataset from Stiennon et al. (2022). We follow
Amini et al. (2024) in creating the dataset and include pairs of summaries where one received a higher
quality score than the other. During training and testing, we select the highest-scoring summary as yw and
a randomly selected alternative as yl.

0.25 0.50 0.75 1.00
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

W
in

 R
at

es

Temperature=0.25

0.25 0.50 0.75 1.00
Epoch

Temperature=0.5

0.25 0.50 0.75 1.00
Epoch

Temperature=0.75

0.25 0.50 0.75 1.00
Epoch

Temperature=1.0

0.25 0.50 0.75 1.00
Temperature

W
in

 R
at

es

0.6
87

0.6
54

0.5
71

0.4
22

0.6
87

0.6
56

0.5
77

0.4
39

DPO
C2DPO-log-

Figure 8: Win rates against yw comparison of GPT-J aligned on TL;DR using DPO and C-2DPO. The first 4
plots show win rates of C-2DPO at individual checkpoints across different training trajectories. The last plot
shows mean and standard error of win rates across all checkpoints and all inference runs.

We align GPT-J Wang & Komatsuzaki (2021) with vanilla DPO as well as C2-DPO algorithms. Specifically, we
first run one SFT epoch with the Reddit TL;DR dataset on GPT-J, and then perform subsequent preference

10

Under review as submission to TMLR

alignment. We evaluate the final checkpoints by computing win rates against yw following Rafailov et al.
(2023); Amini et al. (2024). We use Claude Sonnet 3.5 v2 as a judge, and provide prompt used for Claude
in the Appendix F. As shown in Figure 4, C2-DPO improves upon DPO. Moreover, we show the probability
of individual yw and yl in Figure 4, and the win rates comparison between GPT-J aligned with DPO and
C-2DPO..

7 Related Work

A few recent papers have proposed a unifying perspective on DPO-style algorithms. Notably, Tang et al.
(2024) presented a generalization of DPO where different supervised learning losses are applied to the difference
of implicit rewards

(
r̂(x, yw) − r̂(x, yl)

)
/β. In contrast, we make a clear connection between DPO-style

algorithms and classification, and also extend our results to lists and auxiliary information, as do similar
efforts by (Su et al., 2025; Zhao et al., 2025; Im & Li, 2024; Yao et al., 2025). A second notable example was
to generalize from KL to any f-divergence when measuring the discrepancy between the target and reference
model (Han et al., 2024). We also note that the first ingredient of our classification framework - πθ - was
used by Sharifnassab et al. (2024) to propose a soft version of DPO.

Earlier work studied the decrease of likelihood during training (Feng et al., 2024; Xie et al., 2024), explained
this phenomenon from different angles, and proposed different losses to address it. Here we provide a brief
overview of a number of these results, especially those that we experimentally compare against. Pal et al.
(2024) proposed DPOP which addresses the phenomenon by adding the penalty term max(0, −r̂(x, yw)/β)
within the log-sigmoid of the DPO loss equation 4. DPOP can also be viewed as DPO with a modified BT model.
In this sense, it has similarities with the α-DPO (Shen et al., 2024) (see also (Choi et al., 2025; Shao et al.,
2025)).

Xiao et al. (2024) attributed the undesirable behavior to the contrastive loss of DPO not being scale-calibrated,
i.e., ignoring the absolute values of implicit rewards r̂(x, yw) and r̂(x, yl). They address this by constraining
the implicit rewards to a scale that matches the ground-truth reward r. Thus, in their proposed loss, Cal-DPO,
they add the square-loss (r̂(x, y) − r(x, y))2, y ∈ {yw, yl} to the DPO loss (without β). Of course, since they
do not have access to the ground-truth reward, they replace it with 1/2 and −1/2 for yw and yl, respectively.
A loss similar to Cal-DPO was proposed by Wu et al. (2024) and they named it SPPO. It is simply Cal-DPO
without the DPO loss. Finally, D’Oosterlinck et al. (2024) proposed APO, which offer fine-grained control over
the implicit rewards.

8 Conclusion & Future Work

In this work, we revisited the derivation of DPO and revealed two counter-intuitive findings. We first proved
that the standard DPO loss can arise from a formulation that regularizes only in-sample responses. This, in
turn, uncovered another surprising result: both the preferred and rejected responses are likely to experience
a decrease in likelihood. This insight shed light on the likelihood-displacement phenomenon observed in prior
empirical studies. We then generalized this result through a unifying classification framework, highlighting
a broader absence of out-of-sample KL regularization.

Building on these findings, we introduced the Constrained Controlled DPO (C2-DPO), a principled exten-
sion of DPO that controls probability displacement by constraining the redistribution of likelihood between
preferred and rejected responses. C2-DPO retains the computational efficiency of standard DPO while still
offering a clear RLHF interpretation.

We know that DPO displaces probabilities to unseen samples, but we do not have a clear picture in terms of
the kinds of responses for which the probability increases. While Fisch et al. (2024) and Razin et al. (2025)
present some findings for special cases, it would be interesting to do a more systematic study of the kinds of
unseen responses whose likelihood increases during training.

11

Under review as submission to TMLR

References
Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn, Jared

Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340B technical report. arXiv
preprint arXiv:2406.11704, 2024.

Afra Amini, Tim Vieira, and Ryan Cotterell. Direct preference optimization with an offset, 2024. URL
https://arxiv.org/abs/2402.10571.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. A general theoretical paradigm to understand learning from human preferences.
In International Conference on Artificial Intelligence and Statistics, pp. 4447–4455. PMLR, 2024.

Eugene Choi, Arash Ahmadian, Matthieu Geist, Oilvier Pietquin, and Mohammad Gheshlaghi Azar. Self-
improving robust preference optimization, 2025.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforce-
ment learning from human preferences. Advances in neural information processing systems, 30, 2017.

Xun Deng, Zhong Ha, Ai Rui, Feng Fuli, Wang Zheng, and He Xiangnan. Less is more: Improving llm
alignment via preference data selection. arXiv preprint arXiv:2502.14560, 2025.

Karel D’Oosterlinck, Winnie Xu, Chris Develder, Thomas Demeester, Amanpreet Singh, Christopher Potts,
Douwe Kiela, and Shikib Mehri. Anchored preference optimization and contrastive revisions: Addressing
underspecification in alignment. arXiv preprint arXiv:2408.06266, 2024.

Duanyu Feng, Bowen Qin, Chen Huang, Zheng Zhang, and Wenqiang Lei. Towards analyzing and under-
standing the limitations of dpo: A theoretical perspective. arXiv preprint arXiv:2404.04626, 2024.

Adam Fisch, Jacob Eisenstein, Vicky Zayats, Alekh Agarwal, Ahmad Beirami, Chirag Nagpal, Pete Shaw,
and Jonathan Berant. Robust preference optimization through reward model distillation. arXiv preprint
arXiv:2405.19316, 2024.

Yuxiang Guo, Yin Lu, Jiang Bo, and Zhang Jiaqi. TODO: Enhancing llm alignment with ternary preferences.
arXiv preprint arXiv:2411.02442, 2024.

Jiaqi Han, Mingjian Jiang, Yuxuan Song, Jure Leskovec, Stefano Ermon, and Minkai Xu. f -po: Generalizing
preference optimization with f -divergence minimization. arXiv preprint arXiv:2410.21662, 2024.

Audrey Huang, Wenhao Zhan, Tengyang Xie, Jason D. Lee, Wen Sun, Akshay Krishnamurthy, and Dylan J.
Foster. Correcting the mythos of kl-regularization: Direct alignment without overoptimization via chi-
squared preference optimization, 2025.

Shawn Im and Yixuan Li. On the generalization of preference learning with dpo. arXiv preprint
arXiv:2408.03459, 2024.

Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose Blanchet, and Zhaoran
Wang. Provably mitigating overoptimization in rlhf: Your sft loss is implicitly an adversarial regularizer.
In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances
in Neural Information Processing Systems, volume 37, pp. 138663–138697. Curran Associates, Inc., 2024.

Eric Mitchell. Direct preference optimization. github.com/eric-mitchell/direct-preference-optimization, 2023.
Accessed: 2024-1-01.

Eric Mitchell. A note on DPO with noisy preferences and relationship to IPO, 2024. URL https://
ericmitchell.ai/cdpo.pdf.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Advances in
neural information processing systems, 32, 2019.

12

https://arxiv.org/abs/2402.10571
https://ericmitchell.ai/cdpo.pdf
https://ericmitchell.ai/cdpo.pdf

Under review as submission to TMLR

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling
Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Anderson,
David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal Guerquin,
Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester James V. Miranda,
Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz,
Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi,
Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious, 2024. URL https://arxiv.org/abs/2501.
00656.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White. Smaug:
Fixing failure modes of preference optimisation with DPO-positive. arXiv preprint arXiv:2402.13228,
2024.

Richard Yuanzhe Pang, Weizhe Yuan, He He, Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason E We-
ston. Iterative reasoning preference optimization. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=4XIKfvNYvx.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. In Advances in Neural
Information Processing Systems, volume 36, pp. 53728–53741, 2023.

Kashif Rasul, Edward Beeching, Lewis Tunstall, Leandro von Werra, and Omar Sanseviero. Preference
tuning llms with direct preference optimization methods, 2024. URL https://huggingface.co/blog/
pref-tuning.

Noam Razin, Sadhika Malladi, Adithya Bhaskar, Danqi Chen, Sanjeev Arora, and Boris Hanin. Unintentional
unalignment: Likelihood displacement in direct preference optimization. In International Conference on
Learning Representations, 2025.

Ruichen Shao, Bei Li, Gangao Liu, Yang Chen, Xiang Zhou, Jingang Wang, Xunliang Cai, and Peng Li.
Earlier tokens contribute more: Learning direct preference optimization from temporal decay perspective,
2025.

Arsalan Sharifnassab, Saber Salehkaleybar, Sina Ghiassian, Surya Kanoria, and Dale Schuurmans. Soft pref-
erence optimization: Aligning language models to expert distributions. arXiv preprint arXiv:2405.00747,
2024.

Yaojie Shen, Xinyao Wang, Yulei Niu, Ying Zhou, Lexin Tang, Libo Zhang, Fan Chen, and Longyin Wen.
AIPO: Improving training objective for iterative preference optimization. arXiv preprint arXiv:2409.08845,
2024.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario
Amodei, and Paul Christiano. Learning to summarize from human feedback, 2022. URL https://arxiv.
org/abs/2009.01325.

Xuerui Su, Yue Wang, Jinhua Zhu, Mingyang Yi, Feng Xu, Zhiming Ma, and Yuting Liu. Reveal the mystery
of dpo: The connection between dpo and rl algorithms. arXiv preprint arXiv:2502.03095, 2025.

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Rowland,
Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Generalized preference
optimization: A unified approach to offline alignment. arXiv preprint arXiv:2402.05749, 2024.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play preference
optimization for language model alignment, 2024b. arXiv preprint arXiv:2405.00675, 2024.

13

https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://openreview.net/forum?id=4XIKfvNYvx
https://huggingface.co/blog/pref-tuning
https://huggingface.co/blog/pref-tuning
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
https://github.com/kingoflolz/mesh-transformer-jax

Under review as submission to TMLR

Teng Xiao, Yige Yuan, Huaisheng Zhu, Mingxiao Li, and Vasant G Honavar. Cal-DPO: Calibrated direct
preference optimization for language model alignment. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Shiming Xie, Hong Chen, Fred Yu, Zeye Sun, Xiuyu Wu, and Yingfan Hu. Minor dpo reject penalty to
increase training robustness. arXiv preprint arXiv:2408.09834, 2024.

Yang Xiliang, Jiang Feng, Zhang Qianen, Zhao Lei, and Li Xiao. DPO-shift: Shifting the distribution of
direct preference optimization. arXiv preprint arXiv:2502.07599v1, 2025.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and Yi Wu.
Is DPO superior to PPO for LLM alignment? a comprehensive study. arXiv preprint arXiv:2404.10719,
2024.

Binwei Yao, Zefan Cai, Yun-Shiuan Chuang, Shanglin Yang, Ming Jiang, Diyi Yang, and Junjie Hu. No
preference left behind: Group distributional preference optimization, 2025.

Qingyu Yin, Leong Chak Tou, Zhang Hongbo, Zhu Minjun, Yan Hanqi, Zhang Qiang, He Yulan, Li Wen-
jie, Wang Jun, Zhang Yue, and Yang Linyi. Direct preference optimization using sparse feature-level
constraints. arXiv preprint arXiv:2411.07618, 2024.

Wang Yunan, Li Jijie, Zhang Bo-Wen, Wang Liangdong, and Liu Guang. Inco-DPO: Balancing distribution
shift and data quality for enhancedpreference optimization. arXiv preprint arXiv:2503.15880v1, 2025.

Yan Yuzi, Miao Yibo, Li Jialian, Zhang Yipin, Xie Jian, Deng Zhijie, and Yan Dong. 3D-properties:
Identifying challenges in dpo and charting a path forward. In International Conference on Learning
Representations, 2025.

Hanyang Zhao, Genta Indra Winata, Anirban Das, Shi-Xiong Zhang, David D. Yao, Wenpin Tang, and
Sambit Sahu. Rainbowpo: A unified framework for combining improvements in preference optimization,
2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

A Proof of Lemmas 3.1 and 3.2

In order to prove Lemma 3.1 we will need first the following technical result. We recall that ∆n denotes the
simplex in Rn meaning the set of all vectors p ∈ Rn for which

∑n
i=1 pi = 1 and p ≥ 0.

Lemma A.1. Let q ∈ ∆n and r ∈ Rn. Let S ⊆ [n] := {1, 2, . . . , n} be a subset for which |S| ≥ 2. Any
optimal solution p of the following problem

arg maxp∈∆n

{
rT p − β

∑
i∈S

pi ln pi

qi

}
. (16)

satisfies that β (ln (pi/qi) − ln (pj/qj)) = ri − rj holds true for any i, j ∈ S.

Proof. The problem equation 16 is convex and Slater’s condition is satisfied; hence, the set of optimal
solutions coincides with the set of KKT points. Therefore, we will consider the Lagrangian

L(p, λ, µ) = rT p − β
∑
i∈S

pi ln pi

qi
+ λT p + µ

(
n∑

i=1
pi − 1

)
, (17)

14

Under review as submission to TMLR

where λ ∈ Rn
+ and µ ∈ R are the Lagrange multipliers. The KKT conditions are

∂L
∂pi

= ri − β
(

ln pi

qi
+ 1
)

+ λi + µ = 0, ∀i ∈ S

∂L
∂pi

= ri + λi + µ = 0, ∀i /∈ S,

pi ≥ 0,
∑n

i=1 pi = 1, (feasibility),
λi ≥ 0, ∀i ∈ [n], (multipliers),
λipi = 0, ∀i ∈ [n], (complementary slackness).

(18)

Let i ∈ S, after rearranging the condition we get that pi = qie
(ri+λi+µ)/β−1. Moreover, if qi > 0 then pi > 0

and hence λi = 0. On the other hand, if qi = 0 then pi = 0 and the value of λi does not matter. Hence, for
simplicity, we can take λi = 0 for all i ∈ S. Thus, the KKT conditions can be equivalently written as follows

pi = qie
(ri+µ)/β−1, ∀i ∈ S.

ri + λi + µ = 0, ∀i /∈ S,

p ∈ ∆n, (feasibility),
λi ≥ 0, ∀i /∈ S, (multipliers),
λipi = 0, ∀i /∈ S, (complementary slackness).

(19)

Let r̂ = maxi/∈S ri. We now split the proof into the two cases:

• Case I: r̂ > β ln
∑

i∈S qie
ri/β−1

First, for any i /∈ S, since λi ≥ 0 we have that µ ≤ −ri and therefore in particular µ ≤ −r̂. Thus,
there must be i /∈ S for which pi > 0. Indeed, if this is not the case then pi = 0 for all i /∈ S and we
get a contradiction since (recall that µ ≤ −r̂)

1 =
n∑

i=1
pi =

∑
i∈S

pi =
∑
i∈S

qie
(ri+µ)/β−1 ≤

∑
i∈S

qie
(ri−r̂)/β−1 < 1 , (20)

where the last inequality follows from the condition of Case I. Therefore, for simplicity we take
i∗ /∈ S for which pi∗ > 0. Therefore, λi∗ = 0.
Now, for all j /∈ S, we have ri∗ + λi∗ = rj + λj and thus ri∗ = rj + λj ≥ rj , which means that
ri∗ = r̂. Hence µ = −r̂, and therefore pi = qie

(ri−r̂)/β−1 for all i ∈ S.
Moreover, this shows that if for some i /∈ S we have ri < r̂, then pi = 0. Therefore, by using the
feasibility condition we obtain that any KKT point can be described by

pi = qie
(ri−r̂)/β−1, ∀i ∈ S

pi = 0, ∀i /∈ S, ri < r̂∑
j /∈S,rj=r̂

pj = 1 −
∑
j∈S

qje(rj−r̂)/β−1 .

• Case II: r̂ ≤ β ln
∑

i∈S qie
ri/β−1

In this case, we will first prove that pi = 0 for all i /∈ S. Suppose in contradiction that pℓ > 0 for
some ℓ /∈ S. Then, λℓ = 0 and hence µ = −rℓ. Recall that rℓ ≤ r̂, we obtain that

1 =
n∑

i=1
pi ≥ pℓ +

∑
i∈S

pi = pℓ +
∑
i∈S

qie
(ri−rℓ)/β−1 ≥ pℓ +

∑
i∈S

qie
(ri−r̂)/β−1 ≥ pℓ + 1 > 1 ,

where the third inequality follows from the condition of Case II. Therefore, the unique KKT point
is given by

pi = qie
ri/β∑

j∈S qjerj/β
, ∀i ∈ S

pi = 0, ∀i /∈ S .

15

Under review as submission to TMLR

Finally, we see that in both cases, we have, for any i, j ∈ S, that

β (ln (pi/qi) − ln (pj/qj)) = ri − rj ,

as required.

Now, we can prove Lemma 3.1. To this end, we recall the new optimization problem that we study

max
θ

Ex

Ey∼πθ

[
rϕ(x, y)

]
− β

∑
y∈Sx

πθ(y|x) log πθ(y|x)
πref(y|x)

 . (21)

Proof of Lemma 3.1. From Lemma A.1, the optimization problem equation 21 admits a closed-form solution

πθ, such that for any two responses y, y′ within the set Sx satisfy

rϕ(x, y) − rϕ(x, y′) = β ln πθ(y|x)
πref(y|x) − β ln πθ(y′|x)

πref(y′|x) . (22)

Therefore, in particular, for any triplet in the preference dataset (x, yw, yl) ∈ D, the BT model gives us

p(yw ≻ yl|x) = σ

(
β ln πθ(yw|x)

πref(yw|x) − β ln πθ(yl|x)
πref(yl|x)

)
, (23)

which are exactly the probabilities used in the DPO derivation, and taking the negative-log-likelihood of
equation 23 over the entire dataset yields exactly the DPO loss.

We complete this section with the proof of Lemma 3.2.

Proof of Lemma 3.2. If rϕ(x, y) ≤ r̂x for every y ∈ Sx, than the condition r̂x >
β ln(

∑
y∈Sx

πref(y|x)erϕ(x,y)/β−1) is satisfied. This is because

β ln
∑

y∈Sx

πref(y|x)erϕ(x,y)/β−1 = β ln
∑

y∈Sx

πref(y|x)er̂x/β+(rϕ(x,y)−r̂x)/β−1

= r̂x + β ln
∑

y∈Sx

πref(y|x)e(rϕ(x,y)−r̂x)/β−1

≤ r̂x + β ln
∑

y∈Sx

πref(y|x)e−1

= r̂x + β

−1 + ln
∑

y∈Sx

πref(y|x)


≤ r̂x − β ,

where the last inequality follows from the fact that
∑

y∈Sx
πref(y|x) ≤ 1. This proves that the condition

holds true.

Therefore, as we saw in the proof of Lemma 3.1, in any optimal solution πθ we have for all y ∈ Sx, that

πθ(y|x) = πref(y|x)e(rϕ(x,y)−r̂x)/β−1 ≤ πref(y|x)e−1 = e−1πref(y|x),

which proves the desired result.

16

Under review as submission to TMLR

B Derivations of Existing Algorithms via the Classification Framework

B.1 IPO

We recall that IPO can be formulated as a classification problem with the soft labels p := (pw, pl) =
(σ(1/2), σ(−1/2)) and the loss given by

L
(
pθ, p

)
=
(

log pw
θ

pl
θ

− log pw

pl

)2
. (24)

To show that we indeed recover the IPO, we first note that

pw

pl
= σ(1/2)

σ(−1/2) = 1 + exp(1/2)
1 + exp(−1/2) = exp(1/2) ,

where the second equality follows from the definition of the sigmoid σ(x) = 1/(1 + exp(−x)). Moreover,
using the definitions of pw

θ (see equation 7) and pl
θ, we obtain that

pw
θ

pl
θ

=
(πθ(yw|x)

πref(yw|x)
)β(πθ(yl|x)

πref(yl|x)
)β

=
(

πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x)

)β

. (25)

Plugging these two developments to the loss in equation 24 yields

L
(
pθ, p

)
=
(

log pw
θ

pl
θ

− log pw

pl

)2
=
(

β log πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x) − 1

2

)2
=
(

log πθ(yw|x)πref(yl|x)
πθ(yl|x)πref(yw|x) − 1

2β

)2
,

which is exactly IPO (see Eq. (17) of Azar et al. 2024).

B.2 CDPO

Recall the CDPO Mitchell (2024) loss is given for any triplet (x, yw, yl) by

−(1 − ε) log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
− ε log σ

(
β log πθ(yl|x)

πref(yl|x) − β log πθ(yw|x)
πref(yw|x)

)
,

and then summed over all the triplets in the dataset D. In order to see CDPO as a classification with the soft
labels p := (pw, pl) = (1 − ε, ε) and the CE loss, we will use the following technical fact

σ(β log(a/b)) = 1
1 + exp(−β log(a/b)) = 1

1 + exp log bβ

exp log aβ

= 1
1 + bβ

aβ

= aβ

aβ + bβ
.

Therefore, with a = πθ(yw|x)
πref(yw|x) and b = πθ(yl|x)

πref(yl|x) we get from equation 7 that σ(β log a/b) = pw
θ . Similarly, we

get that σ(β log(b/a)) = pl
θ. Therefore, the CDPO loss can be written as follows

−(1 − ε) log pw
θ − ε log pl

θ = −pw log pw
θ − pl log pl

θ ,

which is exactly the CE loss on the vectors pθ = (pw
θ , pl

θ) and p = (pw, pl).

B.3 DPO (PL)

In this setting, we are given a dataset of the form D = {(x, y1, y2, . . . , yN)}. In order to recover, the DPO
with Plackett-Luce Rafailov et al. (2023), we need to generalize the definition of the probability vector pθ

from pairs as in equation 7 to the following N −1 subsets of the list, namely the first N , then the first N −1,
then first N − 2 and so on. More precisely, for any 1 ≤ n < N we define

pθ(x, yn, yn+1, . . . , yN) = softmax
(

(rθ(x, yn), rθ(x, yn+1), . . . , rθ(x, yN))
)

.

17

Under review as submission to TMLR

In this case, the hard label vectors are defined, for any 1 ≤ n < N , by p[n,N] := (1, 0, . . . , 0) ∈ RN−n+1.
Now, using the CE loss we get the desired result as follows

−
N−1∑
n=1

N∑
i=n

p
[n,N]
i log pi

θ(x, yn, yn+1, . . . , yN) = −
N−1∑
n=1

log
exp

(
β log Z(x)πθ(yn|x)

πref(yn|x)

)
∑N

i=n exp
(

β log Z(x)πθ(yi|x)
πref(yi|x)

)
= −

N−1∑
n=1

log
exp

(
β log πθ(yn|x)

πref(yn|x)

)
∑N

i=n exp
(

β log πθ(yi|x)
πref(yi|x)

)
= − log

N−1∏
n=1

exp
(

β log πθ(yn|x)
πref(yn|x)

)
∑N

i=n exp
(

β log πθ(yi|x)
πref(yi|x)

) .

B.4 RPO and Distilled DPO

As we discussed in Section 3.2, RPO can be reformulated as a classification with soft labels, which are defined
by p = softmax(sw, sl). Therefore, we immediately see that

pw = exp(sw)
exp(sw) + exp(sl)

= 1
1 + exp(−(sw − sl))

,

and thus pw = σ(sw −sl). Similarly, we get that pl = σ(−(sw −sl)). Thus, RPO can be seen as a generalization
of CDPO where the soft labels are given by a certain score and not fixed. To recover the RPO loss we denote
a = β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x) and b = sw − sl. Then, we get that

σ(b) log σ(b)
σ(a) + (1 − σ(b)) log 1 − σ(b)

1 − σ(a) = pw log pw

pw
θ

+ pl log pl

pl
θ

.

By eliminating the constant terms (with respect to θ) pw log pw + pl log pl, we indeed get the CE loss.

To recover the Distilled DPO (Equation (7) of Fisch et al. (2024)), we consider the soft labels p =
softmax(sw, sl) with the loss of IPO.

L
(
pθ, p

)
=
(

log pw
θ

pl
θ

− log pw

pl

)2
.

Indeed, it this case we have that

pw

pl
= exp(sw)

exp(sw) + exp(sl)
· exp(sw) + exp(sl)

exp(sl)
= exp(sw)

exp(sl)
,

and therefore log(pw/pl) = sw − sl. Combining this with equation 25 yields the desired result.

C Proofs of Section 5

C.1 Proof of Proposition 5.1

Proposition 5.1. Let φ : R → R be a monotonic function and assume that equation 9 holds. Then,
πθ∗(yw|x) > πref(yw|x) and πθ∗(yl|x) < πref(yl|x).

Proof. For simplicity we assume that φ is monotonically increasing (the same arguments can be easily
applied to the monotonically decreasing case). Since ε < 1/2, we have that (1 − ε)/ε > 1, and therefore
from equation 10, we get that

πθ∗(yw|x) >
πθ∗(yl|x)
πref(yl|x) · πref(yw|x) . (26)

18

Under review as submission to TMLR

We will show that πθ∗(yl|x) < πref(yl|x) by contradiction. To this end, we assume that πθ∗(yl|x) ≥ πref(yl|x).
From equation 26, we immediately obtain that πθ∗(yw|x) > πref(yw|x). Applying the constraint function φ
to the following two inequalities:

πθ∗(yw|x) > πref(yw|x) and πθ∗(yl|x) ≥ πref(yl|x) ,

and using its monotonicity, we obtain

φ
(
πθ∗(yw|x)

)
> φ

(
πref(yw|x)

)
and φ

(
πθ∗(yl|x)

)
≥ φ

(
πref(yl|x)

)
.

By adding both sides of the above two inequalities, we get a contradiction to equation 9. Thus, proving that
πθ∗(yl|x) < πref(yl|x). Similarly, we can prove that πθ∗(yw|x) > πref(yw|x).

C.2 Proof of Lemma 5.1

Lemma 5.1. For any two numbers a and b, we have log(a + b) = log a − log σ(log a − log b).

Proof. First, we write

a + b = a

(
a

a + b

)−1
,

which tanks to classical logarithmic rules yields that

log(a + b) = log a − log a

a + b
= log a − log 1

1 + b/a
.

Using the definition of the sigmoid function we get

1
1 + b/a

= 1
1 + exp(log b − log a) = σ(log a − log b) ,

which proves the desired result.

D C2-DPO Implementation Details

We show implementation details of C2-DPO-Log-ℓ1, C2-DPO-Log-ℓ2, C2-DPO-I-ℓ1, and C2-DPO-I-ℓ2 below.

def dpo_loss(pi_logps, ref_logps, yw_idxs, yl_idxs, beta, algo_name, reg_coeff):
"""
pi_logps: policy logprobs, shape (B,)
ref_logps: reference model logprobs, shape (B,)
yw_idxs: preferred completion indices in [0, B-1], shape (T,)
yl_idxs: dispreferred completion indices in [0, B-1], shape (T,)
beta: temperature controlling strength of KL penalty
Each pair of (yw_idxs[i], yl_idxs[i]) represents the indices of a single
preference pair.
"""
pi_yw_logps, pi_yl_logps = pi_logps[yw_idxs], pi_logps[yl_idxs]
ref_yw_logps, ref_yl_logps = ref_logps[yw_idxs], ref_logps[yl_idxs]
pi_logratios = pi_yw_logps - pi_yl_logps
ref_logratios = ref_yw_logps - ref_yl_logps
losses = -F.logsigmoid(beta * (pi_logratios - ref_logratios))
if algo_name == ’c2dpo_log_l1’:

reguralized_losses_without_square = \
pi_yw_logps + pi_yl_logps - ref_yw_logps - ref_yl_logps

reguralized_losses = (reguralized_losses_without_square) ** 2

19

Under review as submission to TMLR

losses = losses + reg_coeff * reguralized_losses
elif algo_name == ’c2dpo_log_l2’:

reguralized_losses = F.l1_loss(
pi_yw_logps + pi_yl_logps,
ref_yw_logps + ref_yl_logps

)
losses = losses + reg_coeff * reguralized_losses

elif algo_name == ’c2dpo_i_l1’:
reguralized_losses_without_square = \

pi_yw_logps - F.logsigmoid(pi_yw_logps - pi_yl_logps) - \
(ref_yw_logps - F.logsigmoid(ref_yw_logps - ref_yl_logps))

reguralized_losses = (reguralized_losses_without_square) ** 2
losses = losses + reg_coeff * reguralized_losses

elif algo_name == ’c2dpo_i_l2’:
reguralized_losses = F.l1_loss(

pi_yw_logps - F.logsigmoid(pi_yw_logps - pi_yl_logps),
ref_yw_logps - F.logsigmoid(ref_yw_logps - ref_yl_logps)

)
losses = losses + reg_coeff * reguralized_losses

rewards = beta * (pi_logps - ref_logps).detach()
return losses, rewards

E Ultrafeedback Binarized Claude 3.5 Sonnet v2 win rate prompt and
hyperparameters

In this section we include the prompt used to generate win rates for the Ultrafeedback Binarized experi-
ments. We use Claude Sonnet 3.5 v2 (AWS Bedrock model ID anthropic.claude-3-5-sonnet-20241022-v2:0)
to generate win rates. We set the max_tokens to 1024, temperature to 0, and used default value 0.999 for
top_p and top_k disabled.

For the following query to a chatbot, which response is more helpful?

Query: <prompt>

Response A:
<one of the responses>

Response B:
<the other response>

FIRST provide a one-sentence comparison of the two responses and explain
which you feel is more helpful. SECOND, on a new line, state only "A" or "B"
to indicate which response is more helpful. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"A" or "B">

F Reddit TL;DR Claude 3.5 Sonnet v2 win rate prompt and hyperparameters

In this section we include the prompt used to generate win rates for the Reddit TL;DR experiments. We
use Claude Sonnet 3.5 v2 (AWS Bedrock model ID anthropic.claude-3-5-sonnet-20241022-v2:0) to generate

20

Under review as submission to TMLR

win rates. We set the max_tokens to 1024, temperature to 0, and used default value 0.999 for top_p and
top_k disabled.

Which of the following summaries does a better job of summarizing the most
important points in the given forum post, without including unimportant or
irrelevant details? A good summary is both precise and concise.
Post: {prompt}
Summary A:
{baseline_response}
Summary B:
{generated_response}
FIRST provide a one-sentence comparison of the two summaries, explaining
which you prefer and why. SECOND, on a new line, state only "A" or "B" to
indicate your choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">

21

	Introduction
	Preliminaries
	KL in DPO: Implicit Guardrailing with a Counter-intuitive Side Effect
	A Classification View of DPO-style Algorithms
	Constrained Controlled DPO (C2-DPO)
	Logarithmic Constraint φ(x) = log x
	Identity Constraint φ(x) = x

	Experiments
	Ultrafeedback Binarized
	Reddit TL;DR

	Related Work
	Conclusion & Future Work
	Proof of Lemmas 3.1 and 3.2
	Derivations of Existing Algorithms via the Classification Framework
	IPO
	CDPO
	DPO (PL)
	RPO and Distilled DPO

	Proofs of Section 5
	Proof of Proposition 5.1
	Proof of Lemma 5.1

	C2-DPO Implementation Details
	Ultrafeedback Binarized Claude 3.5 Sonnet v2 win rate prompt and hyperparameters
	Reddit TL;DR Claude 3.5 Sonnet v2 win rate prompt and hyperparameters

