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Abstract

Vision-language models (VLMs) excel in vari-
ous multimodal tasks but frequently suffer from
poor calibration, resulting in misalignment be-
tween their verbalized confidence and response
correctness. This miscalibration undermines
user trust, especially when models confidently
provide incorrect or fabricated information. In
this work, we propose a novel Confidence Cal-
ibration through Semantic Perturbation (CSP)
framework to improve the calibration of ver-
balized confidence for VLMs. We first in-
troduce a perturbed dataset where Gaussian
noise is applied to the key object regions to
simulate visual uncertainty at different confi-
dence levels, establishing an explicit mapping
between visual ambiguity and confidence lev-
els. We further enhance calibration through
a two-stage training process combining super-
vised fine-tuning on the perturbed dataset with
subsequent preference optimization. Extensive
experiments on popular benchmarks demon-
strate that our method significantly improves
the alignment between verbalized confidence
and response correctness while maintaining or
enhancing overall task performance.

1 Introduction

Modern vision-language models (VLMs) have demon-
strated remarkable success on tasks ranging from im-
age captioning to visual question answering (Achiam
et al., 2023; Bubeck et al., 2023). Beyond delivering
correct results, real-world deployment of these mod-
els also requires trustworthy outputs. One key aspect
of trustworthiness is a model’s ability to verbalize its
own confidence, typically by starting how certain it is
about its answer, e.g. “I’m about 80% sure that this
is a cat”. This verbalized confidence help users appro-
priately weight its responses in downstream decisions.
However, model often exhibits overconfidence, giving
high certainty even when they provide incorrect answers,
as shown in Figure 1 top. Therefore, even if the model
produces incorrect answers, it is still essential to cali-
brate its confidence appropriately so that users can ac-
curately gauge the model’s uncertainty and avoid being
misled by high-confidence yet erroneous responses, as
shown in Figure 1 bottom. Thus, verbalized confidence
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Figure 1: (Top): Most current VLMs tend to generate
high verbalized confidence on incorrect response. (Bot-
tom): After calibration, model’s verbalized confidence
will be aligned with response correctness.

calibration which ensure that the expressed confidence
reliably reflects model’s response correctness becomes
crucial.

While extensive research has addressed verbalized
confidence calibration for text-only large language mod-
els (LLMs) (Kumar et al., 2023; Yin et al., 2023), these
techniques are often inadequate when generalized to
multimodal settings. Compared to text-based methods,
VLMs face challenges in accurately verbalizing confi-
dence due to difficulty of semantic understanding in vi-
sual features from two aspects. First, images may suffer
from occlusion or poor lighting, which can obscure key
objects, leading to incomplete semantic extraction and
introducing uncertainty in visual understanding (Khan
and Fu, 2024). Second, current VLMs relies heavily on
textual cues such as language priors while neglecting
critical visual content that causes multimodal imbalance
(Zhao et al., 2024a). Consequently, due to the combined
effects of introduced visual uncertainty and multimodal
imbalance, the verbalized confidence calibration for
VLMs still remains an unsolved issue.

To address these challenges, we introduce Confidence
Calibration through Semantic Perturbation (CSP), a
novel framework designed to improve the calibration of
verbalized confidence for VLMs. Our key insights is to



introduce a perturbed dataset that modifies key visual
elements based on different confidence levels, allowing
the model to learn explicit mappings between visual un-
certainties and verbalized confidence. To construct the
perturbed dataset, we first extract key object regions ref-
erenced in a multimodal query using GroundingDINO
(Liu et al., 2025) and Segment Anything (SAM) (Kir-
illov et al., 2023). We then apply varying levels of
Gaussian noise to these regions, effectively creating
progressively perturbed images that mimic different de-
grees of occlusion or distortion. Each perturbed im-
age is associated with a ground-truth confidence label,
teaching the model to explicitly modulate its verbalized
confidence based on the severity of visual uncertain-
ties. After that, we apply supervised fine-tuning and
preference optimization to reinforce verbalized confi-
dence calibration. In this way, our approach accounts
for visual uncertainties in semantic extraction and en-
courages more visually-grounded confidence judgments,
leading to more accurate and well-calibrated verbalized
confidence in VLMs.

We conduct extensive experiments on widely-used
VLM benchmarks across multiple state-of-the-art
VLMs. Comparing their performance before and af-
ter calibration using our CSP framework, our results
demonstrate substantial improvements in verbalized
confidence calibration across a diverse set of evalua-
tion metrics. We achieve consistent gains in accuracy,
F1 score, and AUC, while simultaneously reducing Ex-
pected Calibration Error (ECE) and Brier Score (BS)
between verbalized confidence and correct labels. These
improvements show that models trained with CSP corre-
late their expressed confidence more faithfully with ac-
tual correctness, reducing the likelihood of misleadingly
high-confidence errors. Moreover, these calibration im-
provements do not come at the cost of task performance.
CSP preserves or enhances the VLMs’ task accuracy,
confirming that our method improves trustworthiness
and interpretability without sacrificing predictive capa-
bility.

In summary, our primary contributions are:

1. Novel Calibration Framework. We introduce CSP,
a new framework for training VLMs for better cali-
bration with verbalized confidence and response cor-
rectness.

2. Semantic Perturbation Data Construction. We
present a systematic approach to local image pertur-
bation that simulates diverse levels of visual ambi-
guity, enabling more fine-grained calibration during
training.

3. Extensive Validation. Empirical results on multiple
benchmarks and model architectures show that CSP
significantly reduces calibration error and improves
trustworthiness, without sacrificing task accuracy.

2 Related Work

LLM Confidence Calibration. Confidence calibra-
tion has emerged as a critical challenge in LLMs to
ensure reliable and trustworthy outputs. Early meth-
ods predominantly focused on calibrating internal confi-
dence derived from model logits. These logit-based ap-
proaches often employ statistical techniques like temper-
ature scaling or model-based re-calibration (Duan et al.,
2024; Kuhn et al., 2023) to adjust probability distribu-
tions and mitigate overconfidence. More recent research
extends beyond simple scaling by exploiting semantic
features and contextual cues to better align token-level
probabilities with actual prediction correctness (Burns
et al., 2023). In particular, linguistic uncertainty mod-
eling and sequence likelihood calibration have shown
promise for managing generation tasks susceptible to
compounding errors (Lin et al., 2022). Although effec-
tive in text-only settings, these calibration techniques
largely overlook the additional complexity introduced
by visual or other multimodal inputs.

Verbalized Confidence. While most traditional cali-
bration work centers on the gap between predicted prob-
abilities and true correctness, a growing line of research
emphasizes the verbalized confidence explicitly stated
by the model (Yin et al., 2023; Kumar et al., 2024). Such
verbalized confidence can help users better gauge the re-
liability of model outputs. Recent studies have explored
prompting strategies and self-reflection pipelines that
encourage LLMs to articulate their confidence levels,
thereby improving transparency (Xu et al., 2024; Xiong
et al., 2023).

Towards Multimodal Calibration. Despite the
progress in unimodal confidence calibration and ver-
balized confidence expression, few frameworks system-
atically address these issues in VLMs. Recent work
highlights the need for calibration techniques tailored to
multimodal data, which present unique challenges such
as object occlusion and semantic ambiguity (Geng et al.,
2024; Huang et al., 2023; Groot and Valdenegro-Toro,
2024). In contrast to existing methods that primarily
focus on textual uncertainty or straightforward logit
manipulation, our approach introduces semantic mask
perturbation to simulate varying degrees of visual un-
certainty, laying the groundwork for more trustworthy
multimodal systems.

3 Methodology

In this section, we begin by formally defining the prob-
lem of verbalized confidence calibration. Then we in-
troduce the CSP framework to improve the calibration
of verbalized confidence. As illustrated in Figure 2, the
proposed CSP framework consists of two stages: dataset
construction and training. In dataset construction stage,
we produce a dataset by generating images with differ-
ent levels of visual uncertainties by systematically ap-
plying varying degrees of noise to the key visual regions



of the given visual input, and explicitly associates the vi-
sual uncertainties with corresponding confidence labels.
In training stage, based on the constructed dataset, we
perform supervised fine-tuning and preference optimiza-
tion to achieve better verbalized confidence calibration.
Together, these components form a cohesive framework
that systematically enhances verbalized confidence cal-
ibration of VLMs, ensuring that VLMs produce more
trustworthy and interpretable outputs.

3.1 Problem Definition of Verbalized Confidence
Calibration

The goal of verbalized confidence calibration is to en-
able a VLM to assign a verbalized confidence score
to a candidate answer to reflects the probability of cor-
rectness. In other words, the correct answer should
be assigned with the highest confidence score, while
the other incorrect answers should be assigned with
lower scores. Specifically, given a visual input vy and
a textual query ¢, considering there exists a set of can-
didate answers {a1,as, ...,ax}, the VLM will assign
a verbalized confidence score c¢(a;) to each candidate
response a;. For the correct answer a,, verbalized con-
fidence calibration aims to enable the VLM to increase
the verbalized confidence score c¢(a. ) to be the highest,
while decrease the verbalized confidence score of the
other incorrect answers to be low. In this way, the ob-
jective of generating verbalized confidence score that
accurately reflects the correctness of the VLM’s answer
can be achieve.

To evaluate the effectiveness of verbalized confidence
calibration, a convenience way is to assess whether
the answer a with highest verbalized confidence score
matches the correct answer a, with a metric M, namely
calculate the similarity M (a., a). Here, M can be any
commonly used similar metrics, such as Accuracy, F1
Score, Area Under the Curve (AUC), Brier Score, Ex-
pected Calibration Error (ECE). In this way, we can
evaluate both the correctness of the model’s chosen re-
sponses and the fidelity of its verbalized confidence in
reflecting true likelihoods of correctness.

3.2 Dataset Construction with semantic
perturbation

To address the challenges of verbalized confidence cal-
ibration in VLMs, we construct a specialized dataset
incorporating semantic perturbations. This design is
motivated by two key challenges that hinder accurate
confidence expression in VLMs. First, visual uncer-
tainty arises from factors such as occlusion or poor
lighting, which obscure key objects and lead to incom-
plete semantic extraction. Existing training data often
lack explicit examples reflecting such conditions, mak-
ing it difficult for VLMs to modulate their confidence
in response to uncertain visual input. Second, VLMs
exhibit a strong reliance on textual priors while often
overlooking critical visual details, creating a multimodal
imbalance. Without explicit guidance, VLMs tend to
verbalize confidence based primarily on linguistic pat-

terns rather than the actual uncertainty in visual per-
ception. To mitigate this issue, we construct a dataset
where varying levels of perturbations are applied accord-
ing to different confidence levels. The perturbations are
applied selectively to semantically relevant objects or
regions rather than indiscriminately across the entire
image, ensuring that verbalized confidence is directly
grounded in affected visual features. Thus, this dataset
provides a more structured learning framework for ad-
dressing verbalized confidence calibration in VLMs.

As illustrated in Figure 2, given a text query and a cor-
responding image, we begin by identifying the most rel-
evant object mentions and localize those regions in the
image using GroundingDINO and SAM. We then inject
varying intensities of Gaussian noise into the segmented
relevant object region, creating a series of perturbed
images that mimic different levels of visual uncertainty
according to a confidence label. The confidence la-
bel is sampled from 0% to 100%. Finally, we convert
each sample into new confidence query which consist
of original query and answer, and new confidence re-
sponse which is the confidence label. By covering di-
verse noise levels and confidence targets, the expanded
dataset forms the foundation for both supervised fine-
tuning and preference optimization, ultimately improv-
ing the model’s ability to align its verbalized confidence
with true uncertainty.

Key Object Region Extraction: To construct the spe-
cialized dataset, we begin with extract the key object
region that are relevant to the input query. This process
consists of three main steps: key object descriptions
extraction, object localization and semantic segmenta-
tion. Given a textual query ¢ and a response r, first
we extract key object descriptions Myesc (g, ) by using
a small LLM, for example, the word “steak” shown
in the image. Then based on the extracted key object
descriptions, we use GroundingDINO to localize the
most relevant objects in the image that correspond to
terms mentioned in the multimodal query-response pair.
Given the corresponding image vy, which has the size
of H x W, GroundingDINO outputs object bounding
boxes that approximate the regions of interest. Next, we
apply SAM to refine these localized object regions into
precise semantic masks. Given the bounding boxes pro-
vided by GroundingDINO, SAM generates pixel-wise
segmentation masks that more accurately delineate the
object’s shape and boundaries. The final binary mask m
is computed as:

m = SAM(vg, GroundingDINO(vg, Mesc(q,7))),

where m € {0, 1}7XW denotes the binary mask of size
H x W which is same as the visual input vy. By combin-
ing object detection with fine-grained segmentation, we
ensure that only the most relevant semantic regions are
perturbed in the next step, allowing for precise control
over visual uncertainty in the dataset.

Confidence Labeling and Semantic Perturbation
Mechanism: To simulate visual uncertainty in a con-
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Figure 2: The image illustrates the dataset construction and training pipeline for improving confidence calibra-
tion in VLM. It highlights the two-stage process: Dataset Construction: Extracting key object regions using
GroundingDINO and SAM, applying semantic perturbations, and assigning confidence labels based on noise levels.
Training Pipeline: Fine-tuning the VLM with supervised learning, followed by preference optimization, to improve
probability-confidence alignment and response calibration.

trolled way, we apply Gaussian noise only to the key ob-
ject regions identified by the mask m. Let ¢ € [0, 100]%
be the desired confidence label, where ¢ = 100% indi-
cates no perturbation and ¢ = 0% indicates maximal
noise. In this context, a higher confidence corresponds
to lower uncertainty, so we inject less (or no) noise.
Conversely, a lower confidence corresponds to higher
uncertainty, so more noise is applied to the key object re-
gions. Therefore, by decreasing confidence from 100%
to 0%, we increase the noise to simulate a progressive
increase in visual uncertainty.

Following the forward diffusion process in image
generation (Ho et al., 2020), we inject Gaussian noise
to the key object region by mapping c to a diffusion step
T, by a linear schedule:

c
Tc = Tmax X (1—-— ’

where Tiax 1 a chosen upper bound on the number of

diffusion steps. Starting from the original image vy, we

iteratively sample:

vp o~ N(s/lffyvt_l, fyI) for t=1...T,,

with A denotes a Gaussian distribution. + is a predefined
parameter that controls the noise intensity introduced in
each step. A larger vy results in stronger noise injection
per step, leading to a more rapid degradation of the
image. This diffusion-based approach enables a gradual
and controlled degradation of visual features, allowing
for a continuous mapping between the confidence label
and the level of perturbation. After T iterations, we

combine the noised image vy, with the unperturbed
background of vy using the binary mask m:

Uperturbed = ™M O U1, + (1 - m) ® 2o,
where ® denotes element-wise multiplication.

This procedure distorts only the object region rele-
vant to the given query-response pair, as illustrated in
Figure 2 (where the region of the object “steak” is par-
tially occluded, while the plate and background remain
clear). Each confidence label ¢ thus produces a distinct
visually perturbed image, ranging from minimal to se-
vere noise. By pairing these images with the appropriate
textual instructions (e.g., “How certain are you about the
model’s answer from 1% to 100%?”), we give the model
explicit supervision on how to verbalize confidence in
accordance with visible uncertainty.

Dataset Integration: The resulting dataset is con-
structed through dataset modification and augmentation
of the RLAIF dataset (Yu et al., 2024), which is a large-
scale multimodal Al feedback dataset collected from
a diverse sources. We enhance the original dataset by
applying the proposed semantic perturbation technique,
generating diverse image-query-response samples. Each
sample in the dataset consists of a transformed query ¢,
and a corresponding confidence-labeled answer .. The
transformed ¢, is generated from the original query ¢
and response r. To ensure objective and generalized con-
fidence evaluation, we transform ¢, in a Third-Person
Perspective (TPP) format, framing the query as an exter-
nal assessment rather than a direct model introspection,



as shown in Figure 2. The corresponding confidence-
labeled answer . is assigned as: r, = ¢ where c is the
confidence label derived from the semantic perturba-
tion process. Finally we construct modified semantic
perturbed dataset D = {(Uperturbed, Ge; 7'c) }- By fram-
ing confidence estimation in TPP format, we reduce
self-referential bias, ensuring that the model assesses
confidence based on visual and textual evidence rather
than internal heuristics (Kumar et al., 2024). By sim-
ulating real-world visual uncertainties, this dataset is
capable of supporting a robust framework for addressing
verbalized confidence calibration challenges in vision-
language models.

3.3 Training

Supervised Fine-tuning (SFT) Using the constructed
dataset D = {(Uperturbed; ¢c, T'c) }, we perform SFT to
establish the model’s capability to associate visual un-
certainty with verbalized confidence. The objective of
SFT minimizes the cross-entropy loss:

Lspr = *E(vpenu,bed,qc,rc)ND [log Py (Tc | Uperturbed » QC)} 5

where Py(7¢ | Uperturbed, gc) 18 the model’s probability
of generating the response given the visual and textual
inputs. This step enables the model to learn the relation-
ship between visual uncertainty (as affected by diffusion
noise) and verbalized confidence.

Preference Optimization To further refine the
model’s verbalized confidence calibration, we adopt
SimPO (Simple Preference Optimization) (Meng et al.,
2024) on top of the SFT model. Specifically,
for each training example in the perturbed dataset
{ (Uperturbed, Ges Tc) }» We take 7 as the winning response
and define the rejected response rj = 100% — c. This
pairwise preference setting encourages the model to pro-
duce confidence estimates that more closely reflect the
visual uncertainty. Formally, let 7y denote the policy
model and (g, yw, y;) be a preference sample in which
Yw = 7e and y; = rrj. SImPO optimizes the following
margin-based objective:

Lsimpo(m0) = —E(z,y,,y1)~D

loga(hfu log 7o (yw | ) — ‘;%'logm(yl | z) — )\>:|7

where o is the sigmoid function, § is a scaling factor
for the reward, ) is a target margin ensuring the policy
assigns sufficiently higher probability to the winning
response compared to the losing response. In conjunc-
tion with the SFT step, this preference-based fine-tuning
further ensures that the final model’s verbalized confi-
dence provides a faithful reflection of the true visual
uncertainty in the input.

4 Experiments

4.1 Experimental Settings

Dataset We conduct experiments on two popular
datasets POPE (Li et al., 2023) and AMBER (Wang

et al., 2023) to verify the effectiveness of our proposed
method. POPE, the Polling-based Object Probing Evalu-
ation, is designed to assess object hallucination in VLMs
regarding the presence of objects in images. POPE is
divided into three settings: random, popular, and adver-
sarial, indicating different methods of sampling halluci-
nation objects. AMBER is a comprehensive benchmark
designed to evaluation multiple different types of hal-
lucination including attribute hallucination and relation
hallucination. We choose hallucination benchmarks to
validate verbalized confidence calibration because cali-
bration tends to be more challenging in scenarios with
severe hallucination, making these benchmarks partic-
ularly representative for assessing the effectiveness of
our approach.

Models We benchmarked the proposed method
against several state-of-the-art vision-language mod-
els: Qwen-VL-Chat (Bai et al., 2023), Qwen2-VL-
7B-Instruct (Wang et al., 2024), InternVL2-8B (Chen
et al., 2024), and Phi-3.5-vision-instruct (Abdin et al.,
2024). Qwen-VL is a versatile vision-language model
adept at understanding, localization, and text reading
tasks. Qwen2-VL, an advanced iteration of Qwen-VL,
enhances image comprehension across various resolu-
tions and ratios, and extends capabilities to video un-
derstanding and multilingual support. InternVL2 is an
open-source multimodal large language model designed
to bridge the gap between open-source and proprietary
commercial models in multimodal understanding. Phi-
3.5 is a vision-language model that provides general-
purpose Al capabilities, handling both visual and textual
inputs efficiently. For each baseline, we utilized the offi-
cial pre-trained models and followed the recommended
evaluation protocols to ensure a fair comparison. For
more detailed information on the experimental configu-
ration, please refer to the appendix.

4.2 Evaluation Metrics

We employ five metrics to evaluate our model’s ver-
balized confidence calibration. Let g; be the prediction
chosen by the highest confidence ¢(; ), y; be the ground-
truth, and p; € [0, 1] denote the corresponding verbal-
ized confidence score served as the soft probability to
compute confidence-aware metrics. We define:

N
1 N
¢ Accuracy (Acc): Acc = N 2_1 (g = vi).

¢ F1 Score: The harmonic mean of precision and recall.
¢ AUC (Area Under ROC Curve): The probability
that a randomly chosen correct instance is ranked

higher (by ¢(¢;)) than an incorrect instance.
N

* Brier Score (BS): BS = Jb;(pl - yi)z, where
p; € [0, 1] is the model’s predicted probability (ver-
balized confidence) for the event y; = 1.

¢ Expected Calibration Error (ECE): Partition sam-
ples into K bins of equal confidence range; measure
the average gap between mean predicted confidence



and empirical accuracy in each bin:

o~ 1B
ECE = Z Tk|acc(Bk) — conf(By)|.
k=1

Here, acc(Bj) is the average correctness and

conf(By,) is the average predicted confidence in bin

By.
Lower BS, ECE and higher Acc, F1, AUC indicate bet-
ter calibration and overall alignment of confidence with
correctness. These metrics are complementary: Acc
and F1 evaluate how reliably the model’s most confi-
dent predictions align with correctness, while AUC, BS,
and ECE assess distinct facets of calibration—ranking
reliability across all confidence thresholds, probability
sharpness, and bin-wise confidence-accuracy alignment,
respectively. Together, they provide a holistic view of
verbalized confidence calibration, measuring both the
trustworthiness of confidence-guided predictions and
the statistical alignment between expressed confidence
and empirical correctness.

4.3 Experimental Results

To evaluate the effectiveness of our proposed CSP frame-
work, we assess the calibration of verbalized confidence
across multiple datasets according to the metrics we
introduced above.

4.3.1 Results of Verbalized Confidence Calibration

Table 1 demonstrates significant improvements in cal-
ibration across all models and datasets. Our method
enhances accuracy and F1 score while reducing ECE,
indicating better confidence correctness alignment. No-
tably, Qwen2-VL, initially suffering from severe mis-
calibration, improves dramatically post-training. In-
ternVL2, already well-calibrated, still benefits from the
proposed approach across challenging settings. These
results highlight that our approach not only improve the
ability of verbalized confidence prediction in weaker
models but also refines confidence estimation in stronger
ones, making VLMs more reliable in uncertainty-prone
multimodal tasks.

Moreover, as the results shown in Figure 3 from AM-
BER attribute dataset, our approach consistently im-
proves both the Brier Score and the AUC across all
tested models, underscoring more accurate confidence
estimation and stronger separability between correct
and incorrect predictions. From the calibration plots of
Brier Score, we observe that each model’s calibration
curve shifts closer to the diagonal “perfect calibration”
line after training, indicating that predicted probabilities
better match the actual likelihood of correctness. Corre-
spondingly, the Brier Scores decrease substantially for
each model, e.g., Qwen-VL decrease from 0.4731 to
0.2778, reflecting reduced mean squared error between
predicted probabilities and binary outcomes. Simultane-
ously, the ROC Curves show higher AUC, meaning the
models after calibration separate true and false positives

more effectively for a wide range of confidence thresh-
olds. These joint gains on both Brier Score and AUC
confirm that our perturbation-based preference training
leads to better verbalized confidence calibration and
more reliable confidence judgments, ultimately making
the VLMs more trustworthy for multimodal tasks. Ad-
ditional results for other datasets can be found in the
appendix.

4.3.2 Ablation Experiments

Below we provide an ablation study to investigate the in-
dividual contributions of each component in our frame-
work. Specifically, we explore four settings: (1) SFT
only: using only supervised fine-tuning, (2) SimPO only:
applying preference optimization to the base model with-
out SFT, (3) Global Noise: applying perturbation glob-
ally on the entire image instead of mask-based pertur-
bations, and (4) Original RLAIF: fine-tuning with the
original, unmodified RLAIF dataset. We compare these
ablations against our full approach, which incorporates
semantic mask perturbation, SFT, and SimPO jointly.
Figure 4 summarizes the performance of each ablation
across representative metrics for verbalized confidence
calibration.

SFT Only vs. Full Method. Fine-tuning the model
with our newly constructed perturbation-based dataset
without preference optimization does yield moderate
improvements. However, it remains notably behind the
performance of our full CSP framework. This suggests
that while learning from the perturbed images is bene-
ficial, the model also needs preference optimization to
robustly align its outputs and confidence estimation.
SimPO Only vs. Full Method. Directly applying
SimPO to the base model without SFT on perturbed
data shows nearly no gains. Without the exposure to
semantic perturbations, preference optimization alone
struggles to calibrate the model under visual uncertainty.
Global Noise vs. Mask-Based Perturbation. Replac-
ing our semantic mask perturbation with uniform noise
on the entire image do not increase calibration perfor-
mance. This underscores the importance of masking
only the key objects: local, object-centric perturbations
more realistically simulate the uncertainty conditions
that VLMs encounter, enabling finer control and better
confidence calibration.

Original RLAIF vs. Perturbation-Based Data. Fi-
nally, using just the original RLAIF dataset for SFT and
SimPO does not have improvement. Indeed, the added
supervision and varied noise conditions in our semantic
perturbation dataset appear crucial for learning robust,
multimodal confidence cues.

Altogether, the ablation results emphasize that both
mask-based noise perturbation and preference optimiza-
tion are needed to achieve the best alignment and cal-
ibration. Semantic perturbations successfully expose
the model to diverse and realistic uncertainty scenar-
10s, while SImPO fine-tunes how the model ranks and
expresses confidence about those responses.



Model POPE AMBER
Random Popular Adversarial Attribute Relation

Acc(h) FI(1) ECE(l) Acc(t) FI(M) ECE(l) Acc(t) FI(M) ECE(l) Acc(t) FI(1) ECE() Acc(t) FI(1) ECE()
Qwen-VL 0.25 0.21 0.5699 0.3 022 0.5249 0.27 0.21 0.5475 0.37 0.47 04732 0.1 0.07  0.4421
using CSP 0.67 0.68  0.4225 0.67 0.68  0.4289 0.61 0.64  0.4407 0.69 0.7 0.4158 0.6 0.7 0.3674
Qwen2-VL  0.11 0.01 0.412 0.04 0.01 0.477 0.04 0.01 0.4767 0.13 0.21 0.4694 0.03 0.02 0.442
using CSP 0.71 0.73  0.4049 0.69 0.72 0.417 0.72 0.74  0.3948 0.78 0.81 0.3951 0.65 0.71 0.4
InternVL2 0.78 0.74  0.0698 0.71 0.69  0.1333 0.66 0.65 0.1846 0.41 0.21 0.2501 0.23 0.18 0.309
using CSP 0.79 0.74  0.0642 0.79 0.73  0.0888 0.78 073  0.1285 0.72 0.68  0.2246 0.79 0.82  0.2932
Phi3.5-V 0.48 0.35 0.1798 0.28 0.28 03768 0.28 0.28 03791 0.25 022 0.3953 0.19 0.1 0.3424
using CSP 0.69 0.7 0.095 0.69 0.7 0.2267 0.64 0.67  0.2399 0.54 0.57  0.2878 0.4 025 0.3307

Table 1: Evaluation of verbalized confidence alignment with correctness across POPE and AMBER datasets.
Accuracy (Acc) and F1 Score (F1) are higher-the-better (1), while Expected Calibration Error (ECE) is lower-
the-better ({). These metrics do not measure dataset performance but rather assess the model’s ability to express
confidence in alignment with correctness. Our proposed method consistently improves confidence calibration across

all models and settings.
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Figure 3: ROC curves (top row) and probability calibration plots (bottom row) on the AMBER attribute dataset,
comparing their performance before and after applying our proposed confidence calibration method. The ROC
curves illustrate improved true positive rates (higher AUC values) after training, while the probability calibration
plots indicate better alignment between predicted confidence and correctness (lower Brier Scores).
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Figure 4: Ablation results for different variants of our
method under POPE adversarial of model Qwen2

4.3.3 Analysis Experiments

Our proposed CSP framework not only enhances verbal-
ized confidence calibration but also preserves overall all
performance. Below, we analyze two key aspects of our
results: (1) the positive impact of benchmark overall
performance and (2) the improvement in confidence-
probability alignment.

Preserving and Enhancing Model Performance A
key concern in confidence calibration is whether ad-
justments to verbalized confidence lead to unintended
trade-offs in model accuracy and general task perfor-
mance. Our results show that this is not the case, i.e. our
approach does not degrade overall model performance
and even enhances key evaluation metrics. As illustrated
in Figure 5, the bar chart compares key metrics across
three configurations: the base vision-language model
without additional calibration steps, the model after
supervised fine-tuning on the perturbation-augmented



Model POPE AMBER
Random Popular Adversarial Attribute Relation
Spearman p  Kendall T Spearman p  Kendall T Spearman p  Kendall T Spearman p  Kendall T Spearman p  Kendall T
Qwen-VL 0.06 0.05 0.11 0.09 0.07 0.06 0.16 0.12 -0.02 -0.02
using CSP 0.16 0.11 0.14 0.09 0.14 0.1 0.29 0.2 0.09 0.06
Qwen2-VL 0.26 0.21 0.13 0.11 0.11 0.09 -0.1 -0.08 -0.08 -0.07
using CSP 0.33 0.25 0.29 0.22 0.37 0.27 0.53 0.39 0.22 0.16
InternVL2 0.78 0.63 0.75 0.6 0.7 0.56 0.49 0.39 0.43 0.35
using CSP 0.85 0.68 0.83 0.66 0.82 0.65 0.76 0.6 0.61 0.45
Phi3.5-V 0.55 0.45 0.39 0.31 0.36 0.29 0.17 0.13 0.24 0.19
using CSP 0.6 0.48 0.57 0.45 0.54 0.42 0.38 0.28 0.38 0.29

Table 2: Spearman’s (p) and Kendall’s (7) correlations between internal and verbalized confidence across models
and datasets. Higher values indicate better alignment. Our calibration method consistently improves performance.
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Figure 5: Comparison of Accuracy, Precision, Recall,
and F1 Score across different model configurations.

dataset, and the model further enhanced through pref-
erence optimization. From the results, we see that both
SFT and SFT+SimPO outperform the baseline in all
metrics. This performance gain is largely due to the
semantic perturbation embedded in our dataset. By
applying perturbations specifically to key semantic re-
gions, the model learns to associate visual uncertainty
with corresponding confidence levels while preserving
task-relevant features. Consequently, the model not
only becomes better at estimating verbalized confidence
but also maintains or even improves its core predictive
ability.

Strengthening Verbalized Confidence-Probability
Alignment Although our training process does not
explicitly constrain internal confidence, Table 2 and
Figure 6 reveal a notable improvement in confidence-
probability correlation. Before calibration, the model
exhibited strong overconfidence, assigning excessively
high probabilities even to uncertain responses. After
fine-tuning with semantic perturbations and preference
optimization, the probability distribution becomes more
balanced, reducing misleadingly high-certainty predic-
tions. We hypothesize that this improvement arises as
an indirect effect of our approach that semantic perturba-
tions expose the model to controlled uncertainty, forcing
it to modulate confidence more realistically. Besides,
preference optimization reinforces correct confidence
ranking, indirectly refining probability estimates. In
addition, reduced multimodal bias helps mitigate over-
confidence, as the model learns to rely more on visual
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Figure 6: Comparison of token-level probability dis-
tributions before (left) and after (right) applying our
method.

cues rather than textual priors. While our method was
designed to calibrate verbalized confidence, these results
suggest that better uncertainty modeling also aligns in-
ternal probabilities, making the model more trustworthy
overall.

5 Conclusion

We introduced a semantic mask perturbation framework
that simulates visual uncertainties to improve verbal-
ized calibration in vision-language models. By pairing
each perturbation level with a corresponding confidence
score and further refining model behaviors through pref-
erence optimization, our method significantly enhances
verbalized confidence calibration of correctness. Exper-
imental results across various benchmarks and model
architectures demonstrate consistent gains in evaluation
metrics, decreased calibration errors, and improved re-
liability without sacrificing overall performance. Our
approach thus represents a practical step toward more
trustworthy multimodal systems.



Limitations

While our approach demonstrates strong empirical im-
provements in verbalized confidence calibration for
VLMs, several important limitations remain:

* Model Scale Constraints. Due to limited computa-
tional resources, our experiments primarily focused
on models with moderate parameter sizes. It remains
unclear whether these gains will hold or even amplify
when applied to significantly larger vision-language
models.

* Object-Level Perturbation. Our semantic mask per-
turbation currently targets object-level masks, which
effectively captures uncertainty around core entities.
However, many real-world scenarios involve more nu-
anced uncertainties tied to contextual and knowledge-
based cues (e.g., subtle background details, temporal
coherence, or commonsense inferences). Incorporat-
ing additional perturbation mechanisms that account
for these richer modalities is left for future work.

¢ LoRA vs. Full-Parameter Fine-Tuning. In this
work, we primarily apply full-parameter fine-tuning,
which may risk partial forgetting of previously ac-
quired knowledge. It remains unclear if a parameter-
efficient strategy such as LoRA can match or sur-
pass our results while avoiding catastrophic forget-
ting. Further research comparing different fine-tuning
techniques would offer deeper insights into this trade-
off.

e Generality Beyond Current Benchmarks. Al-
though our method shows consistent improvements
on widely adopted benchmarks, its generalizability
to more diverse or specialized domains (e.g., medical
imaging, remote sensing) has not been fully estab-
lished. Subsequent research could explore the adapt-
ability of our framework in domain-specific settings
with potentially unique uncertainty factors.
Addressing these limitations could further enhance

the robustness, scalability, and versatility of our seman-

tic perturbation-based calibration framework for vision-
language models.
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A Prompt Templates

In this section, we present the full prompts in various
aspects of our experiments.

A.1 Key Object Region Extraction Prompt

we use the following prompts when generating the key
object region description for the constructed datasets.
4 N
Extract the single most important keyword (a
noun or object) from each of the following
question-answer pairs. Provide only one key-
word.
Example 1: Question: What kind of potato chips
are on the plate? Answer: There are some light
yellow thin slice-shaped potato chips in this
plate, which look very crispy. Keyword: potato
chips
Example 2: Question: What color is the car
parked outside the house? Answer: The car
parked outside is a bright red sedan. Keyword:
car
Example 3: Question: What kind of fruits are in
the basket? Answer: The basket contains fresh
green apples and ripe yellow bananas. Keyword:
fruits
Now, using the following question and answer,
extract one most important keyword. Just output
the keyword directly.
Question: Question
Answer: Answer
Keyword:



https://doi.org/10.18653/v1/2024.acl-long.20
https://doi.org/10.18653/v1/2024.acl-long.20
https://doi.org/10.18653/v1/2024.acl-long.20
https://doi.org/10.18653/v1/2024.acl-long.20
https://doi.org/10.18653/v1/2024.acl-long.20

A.2 Prompts for Evaluating Verbalized
Confidence

For the following prompt, a few-shot prompt may be
used in some models.

"A Language model was asked: {Query},
Model’s answer was {Response} Analyze its
answer. How certain are you about model’s an-
swer from 1%-100% ? "

B Additional Experiment Details

B.1 Implementation Details

We use SWIFT (Zhao et al., 2024b) framework for the
training procedure of our method. Details of hyperpa-
rameters can be seen below. For hyperparameters not
explicitly mentioned, we use the default settings.

B.1.1 Hyperparameters used for supervised
fine-tuning

* SFT type: Full

* Batch size: 2

* gradient checkpointing: True

* gradient accumulation steps: 8§
¢ Number of epochs: 1

B.1.2 Hyperparameters used for preference
optimization
* RLHF type: SimPO

* Batch size: 1

* gradient checkpointing: True

* gradient accumulation steps: 16
¢ Number of epochs: 1

« (5:2.0

* Ysimpo: 1.0

* Qepot 0.0

e warm-up ratio 0.03

B.2 Dataset License

In this section, we list the licenses of the datasets we
used in this paper. We used the datasets for research
purposes as allowed by the corresponding licenses and
consistent with the intended use.

POPE (Li et al., 2023): MIT License. We don-
wloaded the data from POPE.

AMBER (Wang et al., 2023): Apache License. We
donwloaded the data from AMBER.

B.3 Computation Requirements

We ran our experiments on a server with 2x AMD
EPYC 7513 32-Core Processor and 4x NVIDIA A100-
SXM4-80GB and 1T RAM.
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C Additional Results
C.1 Additional Calibration Results

We illustrate the additional results of Brier Score and
ECE of POPE dataset and AMBER relation dataset.


https://huggingface.co/datasets/lmms-lab/POPE
https://github.com/junyangwang0410/AMBER/blob/master/
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Figure 7: ROC curves (top row) and probability calibration plots (bottom row) on the POPE adversarial dataset.
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Figure 8: ROC curves (top row) and probability calibration plots (bottom row) on the POPE popular dataset.
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Figure 9: ROC curves (top row) and probability calibration plots (bottom row) on the POPE random dataset.
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Figure 10: ROC curves (top row) and probability calibration plots (bottom row) on the AMBER relation dataset.
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