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Abstract001

Vision-language models (VLMs) excel in vari-002
ous multimodal tasks but frequently suffer from003
poor calibration, resulting in misalignment be-004
tween their verbalized confidence and response005
correctness. This miscalibration undermines006
user trust, especially when models confidently007
provide incorrect or fabricated information. In008
this work, we propose a novel Confidence Cal-009
ibration through Semantic Perturbation (CSP)010
framework to improve the calibration of ver-011
balized confidence for VLMs. We first in-012
troduce a perturbed dataset where Gaussian013
noise is applied to the key object regions to014
simulate visual uncertainty at different confi-015
dence levels, establishing an explicit mapping016
between visual ambiguity and confidence lev-017
els. We further enhance calibration through018
a two-stage training process combining super-019
vised fine-tuning on the perturbed dataset with020
subsequent preference optimization. Extensive021
experiments on popular benchmarks demon-022
strate that our method significantly improves023
the alignment between verbalized confidence024
and response correctness while maintaining or025
enhancing overall task performance.026

1 Introduction027

Modern vision-language models (VLMs) have demon-028
strated remarkable success on tasks ranging from im-029
age captioning to visual question answering (Achiam030
et al., 2023; Bubeck et al., 2023). Beyond delivering031
correct results, real-world deployment of these mod-032
els also requires trustworthy outputs. One key aspect033
of trustworthiness is a model’s ability to verbalize its034
own confidence, typically by starting how certain it is035
about its answer, e.g. “I’m about 80% sure that this036
is a cat”. This verbalized confidence help users appro-037
priately weight its responses in downstream decisions.038
However, model often exhibits overconfidence, giving039
high certainty even when they provide incorrect answers,040
as shown in Figure 1 top. Therefore, even if the model041
produces incorrect answers, it is still essential to cali-042
brate its confidence appropriately so that users can ac-043
curately gauge the model’s uncertainty and avoid being044
misled by high-confidence yet erroneous responses, as045
shown in Figure 1 bottom. Thus, verbalized confidence046

Incorrect Response
✖Misaligned

High Confidence

Is there a motorcycle in the image? Yes, there is a motorcycle next to the bus. Yes, there is a motorcycle next to the bus. 

Model's Confidence: 100%

Incorrect Response
✖Misaligned

High Confidence

Is there a motorcycle in the image? Yes, there is a motorcycle next to the bus. 

Model's Confidence: 100%

Incorrect Response
✔ Aligned

Low Confidence

Is there a motorcycle in the image? Yes, there is a motorcycle next to the bus. Yes, there is a motorcycle next to the bus. 

Model's Confidence: 20%

Incorrect Response
✔ Aligned

Low Confidence

Is there a motorcycle in the image? Yes, there is a motorcycle next to the bus. 

Model's Confidence: 20%

Figure 1: (Top): Most current VLMs tend to generate
high verbalized confidence on incorrect response. (Bot-
tom): After calibration, model’s verbalized confidence
will be aligned with response correctness.

calibration which ensure that the expressed confidence 047
reliably reflects model’s response correctness becomes 048
crucial. 049

While extensive research has addressed verbalized 050
confidence calibration for text-only large language mod- 051
els (LLMs) (Kumar et al., 2023; Yin et al., 2023), these 052
techniques are often inadequate when generalized to 053
multimodal settings. Compared to text-based methods, 054
VLMs face challenges in accurately verbalizing confi- 055
dence due to difficulty of semantic understanding in vi- 056
sual features from two aspects. First, images may suffer 057
from occlusion or poor lighting, which can obscure key 058
objects, leading to incomplete semantic extraction and 059
introducing uncertainty in visual understanding (Khan 060
and Fu, 2024). Second, current VLMs relies heavily on 061
textual cues such as language priors while neglecting 062
critical visual content that causes multimodal imbalance 063
(Zhao et al., 2024a). Consequently, due to the combined 064
effects of introduced visual uncertainty and multimodal 065
imbalance, the verbalized confidence calibration for 066
VLMs still remains an unsolved issue. 067

To address these challenges, we introduce Confidence 068
Calibration through Semantic Perturbation (CSP), a 069
novel framework designed to improve the calibration of 070
verbalized confidence for VLMs. Our key insights is to 071
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introduce a perturbed dataset that modifies key visual072
elements based on different confidence levels, allowing073
the model to learn explicit mappings between visual un-074
certainties and verbalized confidence. To construct the075
perturbed dataset, we first extract key object regions ref-076
erenced in a multimodal query using GroundingDINO077
(Liu et al., 2025) and Segment Anything (SAM) (Kir-078
illov et al., 2023). We then apply varying levels of079
Gaussian noise to these regions, effectively creating080
progressively perturbed images that mimic different de-081
grees of occlusion or distortion. Each perturbed im-082
age is associated with a ground-truth confidence label,083
teaching the model to explicitly modulate its verbalized084
confidence based on the severity of visual uncertain-085
ties. After that, we apply supervised fine-tuning and086
preference optimization to reinforce verbalized confi-087
dence calibration. In this way, our approach accounts088
for visual uncertainties in semantic extraction and en-089
courages more visually-grounded confidence judgments,090
leading to more accurate and well-calibrated verbalized091
confidence in VLMs.092

We conduct extensive experiments on widely-used093
VLM benchmarks across multiple state-of-the-art094
VLMs. Comparing their performance before and af-095
ter calibration using our CSP framework, our results096
demonstrate substantial improvements in verbalized097
confidence calibration across a diverse set of evalua-098
tion metrics. We achieve consistent gains in accuracy,099
F1 score, and AUC, while simultaneously reducing Ex-100
pected Calibration Error (ECE) and Brier Score (BS)101
between verbalized confidence and correct labels. These102
improvements show that models trained with CSP corre-103
late their expressed confidence more faithfully with ac-104
tual correctness, reducing the likelihood of misleadingly105
high-confidence errors. Moreover, these calibration im-106
provements do not come at the cost of task performance.107
CSP preserves or enhances the VLMs’ task accuracy,108
confirming that our method improves trustworthiness109
and interpretability without sacrificing predictive capa-110
bility.111

In summary, our primary contributions are:112

1. Novel Calibration Framework. We introduce CSP,113
a new framework for training VLMs for better cali-114
bration with verbalized confidence and response cor-115
rectness.116

2. Semantic Perturbation Data Construction. We117
present a systematic approach to local image pertur-118
bation that simulates diverse levels of visual ambi-119
guity, enabling more fine-grained calibration during120
training.121

3. Extensive Validation. Empirical results on multiple122
benchmarks and model architectures show that CSP123
significantly reduces calibration error and improves124
trustworthiness, without sacrificing task accuracy.125

2 Related Work 126

LLM Confidence Calibration. Confidence calibra- 127
tion has emerged as a critical challenge in LLMs to 128
ensure reliable and trustworthy outputs. Early meth- 129
ods predominantly focused on calibrating internal confi- 130
dence derived from model logits. These logit-based ap- 131
proaches often employ statistical techniques like temper- 132
ature scaling or model-based re-calibration (Duan et al., 133
2024; Kuhn et al., 2023) to adjust probability distribu- 134
tions and mitigate overconfidence. More recent research 135
extends beyond simple scaling by exploiting semantic 136
features and contextual cues to better align token-level 137
probabilities with actual prediction correctness (Burns 138
et al., 2023). In particular, linguistic uncertainty mod- 139
eling and sequence likelihood calibration have shown 140
promise for managing generation tasks susceptible to 141
compounding errors (Lin et al., 2022). Although effec- 142
tive in text-only settings, these calibration techniques 143
largely overlook the additional complexity introduced 144
by visual or other multimodal inputs. 145

Verbalized Confidence. While most traditional cali- 146
bration work centers on the gap between predicted prob- 147
abilities and true correctness, a growing line of research 148
emphasizes the verbalized confidence explicitly stated 149
by the model (Yin et al., 2023; Kumar et al., 2024). Such 150
verbalized confidence can help users better gauge the re- 151
liability of model outputs. Recent studies have explored 152
prompting strategies and self-reflection pipelines that 153
encourage LLMs to articulate their confidence levels, 154
thereby improving transparency (Xu et al., 2024; Xiong 155
et al., 2023). 156

Towards Multimodal Calibration. Despite the 157
progress in unimodal confidence calibration and ver- 158
balized confidence expression, few frameworks system- 159
atically address these issues in VLMs. Recent work 160
highlights the need for calibration techniques tailored to 161
multimodal data, which present unique challenges such 162
as object occlusion and semantic ambiguity (Geng et al., 163
2024; Huang et al., 2023; Groot and Valdenegro-Toro, 164
2024). In contrast to existing methods that primarily 165
focus on textual uncertainty or straightforward logit 166
manipulation, our approach introduces semantic mask 167
perturbation to simulate varying degrees of visual un- 168
certainty, laying the groundwork for more trustworthy 169
multimodal systems. 170

3 Methodology 171

In this section, we begin by formally defining the prob- 172
lem of verbalized confidence calibration. Then we in- 173
troduce the CSP framework to improve the calibration 174
of verbalized confidence. As illustrated in Figure 2, the 175
proposed CSP framework consists of two stages: dataset 176
construction and training. In dataset construction stage, 177
we produce a dataset by generating images with differ- 178
ent levels of visual uncertainties by systematically ap- 179
plying varying degrees of noise to the key visual regions 180
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of the given visual input, and explicitly associates the vi-181
sual uncertainties with corresponding confidence labels.182
In training stage, based on the constructed dataset, we183
perform supervised fine-tuning and preference optimiza-184
tion to achieve better verbalized confidence calibration.185
Together, these components form a cohesive framework186
that systematically enhances verbalized confidence cal-187
ibration of VLMs, ensuring that VLMs produce more188
trustworthy and interpretable outputs.189

3.1 Problem Definition of Verbalized Confidence190
Calibration191

The goal of verbalized confidence calibration is to en-192
able a VLM to assign a verbalized confidence score193
to a candidate answer to reflects the probability of cor-194
rectness. In other words, the correct answer should195
be assigned with the highest confidence score, while196
the other incorrect answers should be assigned with197
lower scores. Specifically, given a visual input v0 and198
a textual query q, considering there exists a set of can-199
didate answers {a1, a2, . . . , ak}, the VLM will assign200
a verbalized confidence score c(ai) to each candidate201
response ai. For the correct answer a∗, verbalized con-202
fidence calibration aims to enable the VLM to increase203
the verbalized confidence score c(a∗) to be the highest,204
while decrease the verbalized confidence score of the205
other incorrect answers to be low. In this way, the ob-206
jective of generating verbalized confidence score that207
accurately reflects the correctness of the VLM’s answer208
can be achieve.209

To evaluate the effectiveness of verbalized confidence210
calibration, a convenience way is to assess whether211
the answer â with highest verbalized confidence score212
matches the correct answer a∗ with a metric M , namely213
calculate the similarity M(a∗, â). Here, M can be any214
commonly used similar metrics, such as Accuracy, F1215
Score, Area Under the Curve (AUC), Brier Score, Ex-216
pected Calibration Error (ECE). In this way, we can217
evaluate both the correctness of the model’s chosen re-218
sponses and the fidelity of its verbalized confidence in219
reflecting true likelihoods of correctness.220

3.2 Dataset Construction with semantic221
perturbation222

To address the challenges of verbalized confidence cal-223
ibration in VLMs, we construct a specialized dataset224
incorporating semantic perturbations. This design is225
motivated by two key challenges that hinder accurate226
confidence expression in VLMs. First, visual uncer-227
tainty arises from factors such as occlusion or poor228
lighting, which obscure key objects and lead to incom-229
plete semantic extraction. Existing training data often230
lack explicit examples reflecting such conditions, mak-231
ing it difficult for VLMs to modulate their confidence232
in response to uncertain visual input. Second, VLMs233
exhibit a strong reliance on textual priors while often234
overlooking critical visual details, creating a multimodal235
imbalance. Without explicit guidance, VLMs tend to236
verbalize confidence based primarily on linguistic pat-237

terns rather than the actual uncertainty in visual per- 238
ception. To mitigate this issue, we construct a dataset 239
where varying levels of perturbations are applied accord- 240
ing to different confidence levels. The perturbations are 241
applied selectively to semantically relevant objects or 242
regions rather than indiscriminately across the entire 243
image, ensuring that verbalized confidence is directly 244
grounded in affected visual features. Thus, this dataset 245
provides a more structured learning framework for ad- 246
dressing verbalized confidence calibration in VLMs. 247

As illustrated in Figure 2, given a text query and a cor- 248
responding image, we begin by identifying the most rel- 249
evant object mentions and localize those regions in the 250
image using GroundingDINO and SAM. We then inject 251
varying intensities of Gaussian noise into the segmented 252
relevant object region, creating a series of perturbed 253
images that mimic different levels of visual uncertainty 254
according to a confidence label. The confidence la- 255
bel is sampled from 0% to 100%. Finally, we convert 256
each sample into new confidence query which consist 257
of original query and answer, and new confidence re- 258
sponse which is the confidence label. By covering di- 259
verse noise levels and confidence targets, the expanded 260
dataset forms the foundation for both supervised fine- 261
tuning and preference optimization, ultimately improv- 262
ing the model’s ability to align its verbalized confidence 263
with true uncertainty. 264

Key Object Region Extraction: To construct the spe- 265
cialized dataset, we begin with extract the key object 266
region that are relevant to the input query. This process 267
consists of three main steps: key object descriptions 268
extraction, object localization and semantic segmenta- 269
tion. Given a textual query q and a response r, first 270
we extract key object descriptions Mdesc(q, r) by using 271
a small LLM, for example, the word “steak” shown 272
in the image. Then based on the extracted key object 273
descriptions, we use GroundingDINO to localize the 274
most relevant objects in the image that correspond to 275
terms mentioned in the multimodal query-response pair. 276
Given the corresponding image v0, which has the size 277
of H ×W , GroundingDINO outputs object bounding 278
boxes that approximate the regions of interest. Next, we 279
apply SAM to refine these localized object regions into 280
precise semantic masks. Given the bounding boxes pro- 281
vided by GroundingDINO, SAM generates pixel-wise 282
segmentation masks that more accurately delineate the 283
object’s shape and boundaries. The final binary mask m 284
is computed as: 285

m = SAM(v0,GroundingDINO(v0,Mdesc(q, r))), 286

where m ∈ {0, 1}H×W denotes the binary mask of size 287
H×W which is same as the visual input v0. By combin- 288
ing object detection with fine-grained segmentation, we 289
ensure that only the most relevant semantic regions are 290
perturbed in the next step, allowing for precise control 291
over visual uncertainty in the dataset. 292

Confidence Labeling and Semantic Perturbation 293
Mechanism: To simulate visual uncertainty in a con- 294
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Query: What method was used to cook this 

meat?

Response: Based on the image, it is likely 

that the meat on the plate, which is steak, 

was cooked using a grilling method. Grilled 

meat is often characterized by its slightly 

charred exterior and tender interior.

LLM Steak
GroundingDINO & 

SAM

Confidence Label: 
70.37%

Confidence Query: A Language model was 

asked: { Q u e r y  }, Model's answer was { 

Response } Analyse its answer. How certain 

are you about model’s answer from 1%-

100% ?"

Confidence Response: 70.37%

Dataset Construction

VLMVLM

Supervised Fine-tuning Preference Optimization

Confidence Query: A Language model was 

asked: { Q u e r y  }, Model's answer was { 

Response } Analyse its answer. How certain 

are you about model’s answer from 1%-

100% ?"

Confidence Response: 70.37%

Rejected Confidence Response: 29.63%

Training Pipeline

Calibrated 
VLM

Calibrated 
VLM

Key Object Region Extraction

Semantic Perturbation

Figure 2: The image illustrates the dataset construction and training pipeline for improving confidence calibra-
tion in VLM. It highlights the two-stage process: Dataset Construction: Extracting key object regions using
GroundingDINO and SAM, applying semantic perturbations, and assigning confidence labels based on noise levels.
Training Pipeline: Fine-tuning the VLM with supervised learning, followed by preference optimization, to improve
probability-confidence alignment and response calibration.

trolled way, we apply Gaussian noise only to the key ob-295
ject regions identified by the mask m. Let c ∈ [0, 100]%296
be the desired confidence label, where c = 100% indi-297
cates no perturbation and c = 0% indicates maximal298
noise. In this context, a higher confidence corresponds299
to lower uncertainty, so we inject less (or no) noise.300
Conversely, a lower confidence corresponds to higher301
uncertainty, so more noise is applied to the key object re-302
gions. Therefore, by decreasing confidence from 100%303
to 0%, we increase the noise to simulate a progressive304
increase in visual uncertainty.305

Following the forward diffusion process in image306
generation (Ho et al., 2020), we inject Gaussian noise307
to the key object region by mapping c to a diffusion step308
Tc by a linear schedule:309

Tc =
⌊
Tmax ×

(
1− c

100

)⌋
,310

where Tmax is a chosen upper bound on the number of311
diffusion steps. Starting from the original image v0, we312
iteratively sample:313

vt ∼ N
(√

1− γ vt−1, γ I
)

for t = 1 . . . Tc ,314

with N denotes a Gaussian distribution. γ is a predefined315
parameter that controls the noise intensity introduced in316
each step. A larger γ results in stronger noise injection317
per step, leading to a more rapid degradation of the318
image. This diffusion-based approach enables a gradual319
and controlled degradation of visual features, allowing320
for a continuous mapping between the confidence label321
and the level of perturbation. After Tc iterations, we322

combine the noised image vTc
with the unperturbed 323

background of v0 using the binary mask m: 324

vperturbed = m ⊙ vTc
+

(
1−m

)
⊙ v0, 325

where ⊙ denotes element-wise multiplication. 326

This procedure distorts only the object region rele- 327
vant to the given query-response pair, as illustrated in 328
Figure 2 (where the region of the object “steak” is par- 329
tially occluded, while the plate and background remain 330
clear). Each confidence label c thus produces a distinct 331
visually perturbed image, ranging from minimal to se- 332
vere noise. By pairing these images with the appropriate 333
textual instructions (e.g., “How certain are you about the 334
model’s answer from 1% to 100%?”), we give the model 335
explicit supervision on how to verbalize confidence in 336
accordance with visible uncertainty. 337

Dataset Integration: The resulting dataset is con- 338
structed through dataset modification and augmentation 339
of the RLAIF dataset (Yu et al., 2024), which is a large- 340
scale multimodal AI feedback dataset collected from 341
a diverse sources. We enhance the original dataset by 342
applying the proposed semantic perturbation technique, 343
generating diverse image-query-response samples. Each 344
sample in the dataset consists of a transformed query qc 345
and a corresponding confidence-labeled answer rc. The 346
transformed qc is generated from the original query q 347
and response r. To ensure objective and generalized con- 348
fidence evaluation, we transform qc in a Third-Person 349
Perspective (TPP) format, framing the query as an exter- 350
nal assessment rather than a direct model introspection, 351
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as shown in Figure 2. The corresponding confidence-352
labeled answer rc is assigned as: rc = c where c is the353
confidence label derived from the semantic perturba-354
tion process. Finally we construct modified semantic355
perturbed dataset D = {(vperturbed, qc, rc)}. By fram-356
ing confidence estimation in TPP format, we reduce357
self-referential bias, ensuring that the model assesses358
confidence based on visual and textual evidence rather359
than internal heuristics (Kumar et al., 2024). By sim-360
ulating real-world visual uncertainties, this dataset is361
capable of supporting a robust framework for addressing362
verbalized confidence calibration challenges in vision-363
language models.364

3.3 Training365

Supervised Fine-tuning (SFT) Using the constructed366
dataset D = {(vperturbed, qc, rc)}, we perform SFT to367
establish the model’s capability to associate visual un-368
certainty with verbalized confidence. The objective of369
SFT minimizes the cross-entropy loss:370

LSFT = −E(vperturbed,qc,rc)∼D

[
logPθ(rc | vperturbed, qc)

]
,371

where Pθ(rc | vperturbed, qc) is the model’s probability372
of generating the response given the visual and textual373
inputs. This step enables the model to learn the relation-374
ship between visual uncertainty (as affected by diffusion375
noise) and verbalized confidence.376

Preference Optimization To further refine the377
model’s verbalized confidence calibration, we adopt378
SimPO (Simple Preference Optimization) (Meng et al.,379
2024) on top of the SFT model. Specifically,380
for each training example in the perturbed dataset381
{(vperturbed, qc, rc)}, we take rc as the winning response382
and define the rejected response rrej = 100%− c. This383
pairwise preference setting encourages the model to pro-384
duce confidence estimates that more closely reflect the385
visual uncertainty. Formally, let πθ denote the policy386
model and (qc, yw, yl) be a preference sample in which387
yw ≡ rc and yl ≡ rrej. SimPO optimizes the following388
margin-based objective:389

LSimPO(πθ) = −E(x,yw,yl)∼D[
log σ

(
β

|yw|
log πθ(yw | x)− β

|yl|
log πθ(yl | x)− λ

)]
,

390

where σ is the sigmoid function, β is a scaling factor391
for the reward, λ is a target margin ensuring the policy392
assigns sufficiently higher probability to the winning393
response compared to the losing response. In conjunc-394
tion with the SFT step, this preference-based fine-tuning395
further ensures that the final model’s verbalized confi-396
dence provides a faithful reflection of the true visual397
uncertainty in the input.398

4 Experiments399

4.1 Experimental Settings400

Dataset We conduct experiments on two popular401
datasets POPE (Li et al., 2023) and AMBER (Wang402

et al., 2023) to verify the effectiveness of our proposed 403
method. POPE, the Polling-based Object Probing Evalu- 404
ation, is designed to assess object hallucination in VLMs 405
regarding the presence of objects in images. POPE is 406
divided into three settings: random, popular, and adver- 407
sarial, indicating different methods of sampling halluci- 408
nation objects. AMBER is a comprehensive benchmark 409
designed to evaluation multiple different types of hal- 410
lucination including attribute hallucination and relation 411
hallucination. We choose hallucination benchmarks to 412
validate verbalized confidence calibration because cali- 413
bration tends to be more challenging in scenarios with 414
severe hallucination, making these benchmarks partic- 415
ularly representative for assessing the effectiveness of 416
our approach. 417

Models We benchmarked the proposed method 418
against several state-of-the-art vision-language mod- 419
els: Qwen-VL-Chat (Bai et al., 2023), Qwen2-VL- 420
7B-Instruct (Wang et al., 2024), InternVL2-8B (Chen 421
et al., 2024), and Phi-3.5-vision-instruct (Abdin et al., 422
2024). Qwen-VL is a versatile vision-language model 423
adept at understanding, localization, and text reading 424
tasks. Qwen2-VL, an advanced iteration of Qwen-VL, 425
enhances image comprehension across various resolu- 426
tions and ratios, and extends capabilities to video un- 427
derstanding and multilingual support. InternVL2 is an 428
open-source multimodal large language model designed 429
to bridge the gap between open-source and proprietary 430
commercial models in multimodal understanding. Phi- 431
3.5 is a vision-language model that provides general- 432
purpose AI capabilities, handling both visual and textual 433
inputs efficiently. For each baseline, we utilized the offi- 434
cial pre-trained models and followed the recommended 435
evaluation protocols to ensure a fair comparison. For 436
more detailed information on the experimental configu- 437
ration, please refer to the appendix. 438

4.2 Evaluation Metrics 439

We employ five metrics to evaluate our model’s ver- 440
balized confidence calibration. Let ŷi be the prediction 441
chosen by the highest confidence c(ŷi), yi be the ground- 442
truth, and pi ∈ [0, 1] denote the corresponding verbal- 443
ized confidence score served as the soft probability to 444
compute confidence-aware metrics. We define: 445

• Accuracy (Acc): Acc =
1

N

N∑
i=1

I(ŷi = yi). 446

• F1 Score: The harmonic mean of precision and recall. 447
• AUC (Area Under ROC Curve): The probability 448

that a randomly chosen correct instance is ranked 449
higher (by c(ŷi)) than an incorrect instance. 450

• Brier Score (BS): BS =
1

N

N∑
i=1

(
pi − yi

)2
, where 451

pi ∈ [0, 1] is the model’s predicted probability (ver- 452
balized confidence) for the event yi = 1. 453

• Expected Calibration Error (ECE): Partition sam- 454
ples into K bins of equal confidence range; measure 455
the average gap between mean predicted confidence 456
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and empirical accuracy in each bin:457

ECE =

K∑
k=1

|Bk|
N

∣∣acc(Bk)− conf(Bk)
∣∣.458

Here, acc(Bk) is the average correctness and459
conf(Bk) is the average predicted confidence in bin460
Bk.461

Lower BS, ECE and higher Acc, F1, AUC indicate bet-462
ter calibration and overall alignment of confidence with463
correctness. These metrics are complementary: Acc464
and F1 evaluate how reliably the model’s most confi-465
dent predictions align with correctness, while AUC, BS,466
and ECE assess distinct facets of calibration—ranking467
reliability across all confidence thresholds, probability468
sharpness, and bin-wise confidence-accuracy alignment,469
respectively. Together, they provide a holistic view of470
verbalized confidence calibration, measuring both the471
trustworthiness of confidence-guided predictions and472
the statistical alignment between expressed confidence473
and empirical correctness.474

4.3 Experimental Results475

To evaluate the effectiveness of our proposed CSP frame-476
work, we assess the calibration of verbalized confidence477
across multiple datasets according to the metrics we478
introduced above.479

4.3.1 Results of Verbalized Confidence Calibration480

Table 1 demonstrates significant improvements in cal-481
ibration across all models and datasets. Our method482
enhances accuracy and F1 score while reducing ECE,483
indicating better confidence correctness alignment. No-484
tably, Qwen2-VL, initially suffering from severe mis-485
calibration, improves dramatically post-training. In-486
ternVL2, already well-calibrated, still benefits from the487
proposed approach across challenging settings. These488
results highlight that our approach not only improve the489
ability of verbalized confidence prediction in weaker490
models but also refines confidence estimation in stronger491
ones, making VLMs more reliable in uncertainty-prone492
multimodal tasks.493

Moreover, as the results shown in Figure 3 from AM-494
BER attribute dataset, our approach consistently im-495
proves both the Brier Score and the AUC across all496
tested models, underscoring more accurate confidence497
estimation and stronger separability between correct498
and incorrect predictions. From the calibration plots of499
Brier Score, we observe that each model’s calibration500
curve shifts closer to the diagonal “perfect calibration”501
line after training, indicating that predicted probabilities502
better match the actual likelihood of correctness. Corre-503
spondingly, the Brier Scores decrease substantially for504
each model, e.g., Qwen-VL decrease from 0.4731 to505
0.2778, reflecting reduced mean squared error between506
predicted probabilities and binary outcomes. Simultane-507
ously, the ROC Curves show higher AUC, meaning the508
models after calibration separate true and false positives509

more effectively for a wide range of confidence thresh- 510
olds. These joint gains on both Brier Score and AUC 511
confirm that our perturbation-based preference training 512
leads to better verbalized confidence calibration and 513
more reliable confidence judgments, ultimately making 514
the VLMs more trustworthy for multimodal tasks. Ad- 515
ditional results for other datasets can be found in the 516
appendix. 517

4.3.2 Ablation Experiments 518

Below we provide an ablation study to investigate the in- 519
dividual contributions of each component in our frame- 520
work. Specifically, we explore four settings: (1) SFT 521
only: using only supervised fine-tuning, (2) SimPO only: 522
applying preference optimization to the base model with- 523
out SFT, (3) Global Noise: applying perturbation glob- 524
ally on the entire image instead of mask-based pertur- 525
bations, and (4) Original RLAIF: fine-tuning with the 526
original, unmodified RLAIF dataset. We compare these 527
ablations against our full approach, which incorporates 528
semantic mask perturbation, SFT, and SimPO jointly. 529
Figure 4 summarizes the performance of each ablation 530
across representative metrics for verbalized confidence 531
calibration. 532

SFT Only vs. Full Method. Fine-tuning the model 533
with our newly constructed perturbation-based dataset 534
without preference optimization does yield moderate 535
improvements. However, it remains notably behind the 536
performance of our full CSP framework. This suggests 537
that while learning from the perturbed images is bene- 538
ficial, the model also needs preference optimization to 539
robustly align its outputs and confidence estimation. 540

SimPO Only vs. Full Method. Directly applying 541
SimPO to the base model without SFT on perturbed 542
data shows nearly no gains. Without the exposure to 543
semantic perturbations, preference optimization alone 544
struggles to calibrate the model under visual uncertainty. 545

Global Noise vs. Mask-Based Perturbation. Replac- 546
ing our semantic mask perturbation with uniform noise 547
on the entire image do not increase calibration perfor- 548
mance. This underscores the importance of masking 549
only the key objects: local, object-centric perturbations 550
more realistically simulate the uncertainty conditions 551
that VLMs encounter, enabling finer control and better 552
confidence calibration. 553

Original RLAIF vs. Perturbation-Based Data. Fi- 554
nally, using just the original RLAIF dataset for SFT and 555
SimPO does not have improvement. Indeed, the added 556
supervision and varied noise conditions in our semantic 557
perturbation dataset appear crucial for learning robust, 558
multimodal confidence cues. 559

Altogether, the ablation results emphasize that both 560
mask-based noise perturbation and preference optimiza- 561
tion are needed to achieve the best alignment and cal- 562
ibration. Semantic perturbations successfully expose 563
the model to diverse and realistic uncertainty scenar- 564
ios, while SimPO fine-tunes how the model ranks and 565
expresses confidence about those responses. 566

6



Model POPE AMBER

Random Popular Adversarial Attribute Relation
Acc (↑) F1 (↑) ECE (↓) Acc (↑) F1 (↑) ECE (↓) Acc (↑) F1 (↑) ECE (↓) Acc (↑) F1 (↑) ECE (↓) Acc (↑) F1 (↑) ECE (↓)

Qwen-VL 0.25 0.21 0.5699 0.3 0.22 0.5249 0.27 0.21 0.5475 0.37 0.47 0.4732 0.1 0.07 0.4421
using CSP 0.67 0.68 0.4225 0.67 0.68 0.4289 0.61 0.64 0.4407 0.69 0.7 0.4158 0.6 0.7 0.3674
Qwen2-VL 0.11 0.01 0.412 0.04 0.01 0.477 0.04 0.01 0.4767 0.13 0.21 0.4694 0.03 0.02 0.442
using CSP 0.71 0.73 0.4049 0.69 0.72 0.417 0.72 0.74 0.3948 0.78 0.81 0.3951 0.65 0.71 0.4
InternVL2 0.78 0.74 0.0698 0.71 0.69 0.1333 0.66 0.65 0.1846 0.41 0.21 0.2501 0.23 0.18 0.309
using CSP 0.79 0.74 0.0642 0.79 0.73 0.0888 0.78 0.73 0.1285 0.72 0.68 0.2246 0.79 0.82 0.2932
Phi3.5-V 0.48 0.35 0.1798 0.28 0.28 0.3768 0.28 0.28 0.3791 0.25 0.22 0.3953 0.19 0.1 0.3424

using CSP 0.69 0.7 0.095 0.69 0.7 0.2267 0.64 0.67 0.2399 0.54 0.57 0.2878 0.4 0.25 0.3307

Table 1: Evaluation of verbalized confidence alignment with correctness across POPE and AMBER datasets.
Accuracy (Acc) and F1 Score (F1) are higher-the-better (↑), while Expected Calibration Error (ECE) is lower-
the-better (↓). These metrics do not measure dataset performance but rather assess the model’s ability to express
confidence in alignment with correctness. Our proposed method consistently improves confidence calibration across
all models and settings.
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Figure 3: ROC curves (top row) and probability calibration plots (bottom row) on the AMBER attribute dataset,
comparing their performance before and after applying our proposed confidence calibration method. The ROC
curves illustrate improved true positive rates (higher AUC values) after training, while the probability calibration
plots indicate better alignment between predicted confidence and correctness (lower Brier Scores).
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Figure 4: Ablation results for different variants of our
method under POPE adversarial of model Qwen2

4.3.3 Analysis Experiments 567

Our proposed CSP framework not only enhances verbal- 568
ized confidence calibration but also preserves overall all 569
performance. Below, we analyze two key aspects of our 570
results: (1) the positive impact of benchmark overall 571
performance and (2) the improvement in confidence- 572
probability alignment. 573
Preserving and Enhancing Model Performance A 574
key concern in confidence calibration is whether ad- 575
justments to verbalized confidence lead to unintended 576
trade-offs in model accuracy and general task perfor- 577
mance. Our results show that this is not the case, i.e. our 578
approach does not degrade overall model performance 579
and even enhances key evaluation metrics. As illustrated 580
in Figure 5, the bar chart compares key metrics across 581
three configurations: the base vision-language model 582
without additional calibration steps, the model after 583
supervised fine-tuning on the perturbation-augmented 584
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Model POPE AMBER

Random Popular Adversarial Attribute Relation
Spearman ρ Kendall τ Spearman ρ Kendall τ Spearman ρ Kendall τ Spearman ρ Kendall τ Spearman ρ Kendall τ

Qwen-VL 0.06 0.05 0.11 0.09 0.07 0.06 0.16 0.12 -0.02 -0.02
using CSP 0.16 0.11 0.14 0.09 0.14 0.1 0.29 0.2 0.09 0.06
Qwen2-VL 0.26 0.21 0.13 0.11 0.11 0.09 -0.1 -0.08 -0.08 -0.07
using CSP 0.33 0.25 0.29 0.22 0.37 0.27 0.53 0.39 0.22 0.16
InternVL2 0.78 0.63 0.75 0.6 0.7 0.56 0.49 0.39 0.43 0.35
using CSP 0.85 0.68 0.83 0.66 0.82 0.65 0.76 0.6 0.61 0.45
Phi3.5-V 0.55 0.45 0.39 0.31 0.36 0.29 0.17 0.13 0.24 0.19

using CSP 0.6 0.48 0.57 0.45 0.54 0.42 0.38 0.28 0.38 0.29

Table 2: Spearman’s (ρ) and Kendall’s (τ ) correlations between internal and verbalized confidence across models
and datasets. Higher values indicate better alignment. Our calibration method consistently improves performance.
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Figure 5: Comparison of Accuracy, Precision, Recall,
and F1 Score across different model configurations.

dataset, and the model further enhanced through pref-585
erence optimization. From the results, we see that both586
SFT and SFT+SimPO outperform the baseline in all587
metrics. This performance gain is largely due to the588
semantic perturbation embedded in our dataset. By589
applying perturbations specifically to key semantic re-590
gions, the model learns to associate visual uncertainty591
with corresponding confidence levels while preserving592
task-relevant features. Consequently, the model not593
only becomes better at estimating verbalized confidence594
but also maintains or even improves its core predictive595
ability.596

Strengthening Verbalized Confidence-Probability597
Alignment Although our training process does not598
explicitly constrain internal confidence, Table 2 and599
Figure 6 reveal a notable improvement in confidence-600
probability correlation. Before calibration, the model601
exhibited strong overconfidence, assigning excessively602
high probabilities even to uncertain responses. After603
fine-tuning with semantic perturbations and preference604
optimization, the probability distribution becomes more605
balanced, reducing misleadingly high-certainty predic-606
tions. We hypothesize that this improvement arises as607
an indirect effect of our approach that semantic perturba-608
tions expose the model to controlled uncertainty, forcing609
it to modulate confidence more realistically. Besides,610
preference optimization reinforces correct confidence611
ranking, indirectly refining probability estimates. In612
addition, reduced multimodal bias helps mitigate over-613
confidence, as the model learns to rely more on visual614
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Figure 6: Comparison of token-level probability dis-
tributions before (left) and after (right) applying our
method.

cues rather than textual priors. While our method was 615
designed to calibrate verbalized confidence, these results 616
suggest that better uncertainty modeling also aligns in- 617
ternal probabilities, making the model more trustworthy 618
overall. 619

5 Conclusion 620

We introduced a semantic mask perturbation framework 621
that simulates visual uncertainties to improve verbal- 622
ized calibration in vision-language models. By pairing 623
each perturbation level with a corresponding confidence 624
score and further refining model behaviors through pref- 625
erence optimization, our method significantly enhances 626
verbalized confidence calibration of correctness. Exper- 627
imental results across various benchmarks and model 628
architectures demonstrate consistent gains in evaluation 629
metrics, decreased calibration errors, and improved re- 630
liability without sacrificing overall performance. Our 631
approach thus represents a practical step toward more 632
trustworthy multimodal systems. 633
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Limitations634

While our approach demonstrates strong empirical im-635
provements in verbalized confidence calibration for636
VLMs, several important limitations remain:637

• Model Scale Constraints. Due to limited computa-638
tional resources, our experiments primarily focused639
on models with moderate parameter sizes. It remains640
unclear whether these gains will hold or even amplify641
when applied to significantly larger vision-language642
models.643

• Object-Level Perturbation. Our semantic mask per-644
turbation currently targets object-level masks, which645
effectively captures uncertainty around core entities.646
However, many real-world scenarios involve more nu-647
anced uncertainties tied to contextual and knowledge-648
based cues (e.g., subtle background details, temporal649
coherence, or commonsense inferences). Incorporat-650
ing additional perturbation mechanisms that account651
for these richer modalities is left for future work.652

• LoRA vs. Full-Parameter Fine-Tuning. In this653
work, we primarily apply full-parameter fine-tuning,654
which may risk partial forgetting of previously ac-655
quired knowledge. It remains unclear if a parameter-656
efficient strategy such as LoRA can match or sur-657
pass our results while avoiding catastrophic forget-658
ting. Further research comparing different fine-tuning659
techniques would offer deeper insights into this trade-660
off.661

• Generality Beyond Current Benchmarks. Al-662
though our method shows consistent improvements663
on widely adopted benchmarks, its generalizability664
to more diverse or specialized domains (e.g., medical665
imaging, remote sensing) has not been fully estab-666
lished. Subsequent research could explore the adapt-667
ability of our framework in domain-specific settings668
with potentially unique uncertainty factors.669

Addressing these limitations could further enhance670
the robustness, scalability, and versatility of our seman-671
tic perturbation-based calibration framework for vision-672
language models.673
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A Prompt Templates 829

In this section, we present the full prompts in various 830
aspects of our experiments. 831

A.1 Key Object Region Extraction Prompt 832

we use the following prompts when generating the key 833
object region description for the constructed datasets. 834

Extract the single most important keyword (a
noun or object) from each of the following
question-answer pairs. Provide only one key-
word.
Example 1: Question: What kind of potato chips
are on the plate? Answer: There are some light
yellow thin slice-shaped potato chips in this
plate, which look very crispy. Keyword: potato
chips
Example 2: Question: What color is the car
parked outside the house? Answer: The car
parked outside is a bright red sedan. Keyword:
car
Example 3: Question: What kind of fruits are in
the basket? Answer: The basket contains fresh
green apples and ripe yellow bananas. Keyword:
fruits
Now, using the following question and answer,
extract one most important keyword. Just output
the keyword directly.
Question: Question
Answer: Answer
Keyword:

835
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A.2 Prompts for Evaluating Verbalized836
Confidence837

For the following prompt, a few-shot prompt may be838
used in some models.839

"A Language model was asked: {Query},
Model’s answer was {Response} Analyze its
answer. How certain are you about model’s an-
swer from 1%-100% ? "

840

B Additional Experiment Details841

B.1 Implementation Details842

We use SWIFT (Zhao et al., 2024b) framework for the843
training procedure of our method. Details of hyperpa-844
rameters can be seen below. For hyperparameters not845
explicitly mentioned, we use the default settings.846

B.1.1 Hyperparameters used for supervised847
fine-tuning848

• SFT type: Full849

• Batch size: 2850

• gradient checkpointing: True851

• gradient accumulation steps: 8852

• Number of epochs: 1853

B.1.2 Hyperparameters used for preference854
optimization855

• RLHF type: SimPO856

• Batch size: 1857

• gradient checkpointing: True858

• gradient accumulation steps: 16859

• Number of epochs: 1860

• β: 2.0861

• γsimpo: 1.0862

• αcpo: 0.0863

• warm-up ratio 0.03864

B.2 Dataset License865

In this section, we list the licenses of the datasets we866
used in this paper. We used the datasets for research867
purposes as allowed by the corresponding licenses and868
consistent with the intended use.869

POPE (Li et al., 2023): MIT License. We don-870
wloaded the data from POPE.871

AMBER (Wang et al., 2023): Apache License. We872
donwloaded the data from AMBER.873

B.3 Computation Requirements874

We ran our experiments on a server with 2× AMD875
EPYC 7513 32-Core Processor and 4× NVIDIA A100-876
SXM4-80GB and 1T RAM.877

C Additional Results 878

C.1 Additional Calibration Results 879

We illustrate the additional results of Brier Score and 880
ECE of POPE dataset and AMBER relation dataset. 881
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Figure 7: ROC curves (top row) and probability calibration plots (bottom row) on the POPE adversarial dataset.
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Figure 8: ROC curves (top row) and probability calibration plots (bottom row) on the POPE popular dataset.
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Figure 9: ROC curves (top row) and probability calibration plots (bottom row) on the POPE random dataset.
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Figure 10: ROC curves (top row) and probability calibration plots (bottom row) on the AMBER relation dataset.
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