
FORWARD SUPER-RESOLUTION: HOW CAN GANS
LEARN HIERARCHICAL GENERATIVE MODELS FOR
REAL-WORLD DISTRIBUTIONS

Zeyuan Allen-Zhu
Allen-Zhu Research
zeyuan2023@allen-zhu.com

Yuanzhi Li
Mohamed bin Zayed University of AI
Yuanzhi.Li@mbzuai.ac.ae

ABSTRACT

Generative adversarial networks (GANs) are among the most successful models
for learning high-complexity, real-world distributions. However, in theory, due to
the highly non-convex, non-concave landscape of the minmax training objective,
GAN remains one of the least understood deep learning models. In this work, we
formally study how GANs can efficiently learn certain hierarchically generated
distributions that are close to the distribution of real-life images. We prove that
when a distribution has a structure that we refer to as forward super-resolution,
then simply training generative adversarial networks using stochastic gradient de-
scent ascent (SGDA) can learn this distribution efficiently, both in sample and time
complexities. We also provide empirical evidence that our assumption “forward
super-resolution” is very natural in practice, and the underlying learning mecha-
nisms that we study in this paper (to allow us efficiently train GAN via SGDA in
theory) simulates the actual learning process of GANs on real-world problems. 1

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are among the successful models
for learning high-complexity, real-world distributions. In practice, by training a min-max objective
with respect to a generator and a discriminator consisting of multi-layer neural networks, using
simple local search algorithms such as stochastic gradient descent ascent (SGDA), the generator
can be trained efficiently to generate samples from complicated distributions (such as the distribution
of images). But, from a theoretical perspective, how can GANs learn these distributions efficiently
given that learning much simpler ones are already computationally hard (Chen et al., 2022a)?

Answering this in full can be challenging. However, following the tradition of learning theory,
one may hope for discovering some concept class consisting of non-trivial target distributions, and
showing that using SGDA on a min-max generator-discriminator objective, not only the training
converges in poly-time (a.k.a. trainability), but more importantly, the generator learns the target
distribution to good accuracy (a.k.a. learnability). To this extent, we believe prior theory works
studying GANs may still be somewhat inadequate.

• Some existing theories focus on properties of GANs at the global-optimum (Arora et al., 2017;
2018; Bai et al., 2018; Unterthiner et al., 2017); while it remains unclear how the training process
can find such global optimum efficiently.

• Some theories focus on the trainability of GANs, in the case when the loss function is convex-
concave (so a global optimum can be reached), or when the goal is only to find a critical
point (Daskalakis & Panageas, 2018a;b; Gidel et al., 2018; Heusel et al., 2017; Liang & Stokes,
2018; Lin et al., 2019; Mescheder et al., 2017; Mokhtari et al., 2019; Nagarajan & Kolter, 2017).
Due to non-linear neural networks used in practical GANs, it is highly unlikely that the min-max
training objective is convex-concave. Also, it is unclear whether such critical points correspond
to learning certain non-trivial distributions (like image distributions).

1Full version of this paper can be found on https://arxiv.org/abs/2106.02619.

1

https://arxiv.org/abs/2106.02619

• Even if the generator and the discriminator are linear functions over prescribed feature mappings
— such as the neural tangent kernel (NTK) feature mappings — see (Allen-Zhu et al., 2019b;
Arora et al., 2019; Daniely et al., 2016; Du et al., 2018; Jacot et al., 2018; Zou et al., 2018) and
the references therein — the training objective can still be non-convex-concave.

• Some other works introduced notions such as proximal equilibria (Farnia & Ozdaglar, 2020) or
added gradient penalty (Mescheder et al., 2018) to improve training convergence. Once again,
they do not study the “learnability” aspect of GANs. In particular, Chen et al. (2022b) even ex-
plicitly argue that min-max optimality may not directly imply distributional learning for GANs.

• Even worse, unlike supervised learning where some non-convex learning problems can be shown
to haveno bad local minima (Ge et al., 2016), to the best of our knowledge, it still remains unclear
what the qualities are of those critical points in GANs except in the most simple setting when
the generator is a one-layer neural network (Feizi et al., 2017; Lei et al., 2019).

(We discuss some other related works in distributional learning in the full version.)

Motivate by this huge gap between theory and practice, in this work, we make a preliminary step by
showing that, when an image-like distribution is hierarchically generated (using an unknown O(1)-
layered target generator) with a structural property that we refer to as forward super-resolution,
then under certain mild regularity conditions, such distribution can be efficiently learned — both
in sample and time complexity — by applying SGDA on a GAN objective.2 Moreover, to justify
the scope of our theorem, we provide empirical evidence that forward super-resolution holds for
practical image distributions, and most of our regularity conditions hold in practice as well.

We believe our work extends the scope of traditional distribution learning theory to the regime of
learning continuous, complicated real-world distributions such as the distribution of images, which
are often generated through some hierarchical generative models. We draw connections between tra-
ditional distribution learning techniques such as method of moments to the generator-discriminator
framework in GANs, and shed lights on what GANs are doing beyond these techniques.

1.1 FORWARD SUPER-RESOLUTION: A SPECIAL PROPERTY OF IMAGES

Real images can be viewed in multiple resolutions without losing the semantics. In other words, the
resolution of an image can be greatly reduced (e.g. by taking the average of nearby pixels), while
still keeping the structure of the image. Motivated by this observation, the seminal work of Karras
et al. (2018) proposes to train a generator progressively: the lower levels of the generator are trained
first to generate the lower-resolution version of images, and then the higher levels are gradually
trained to generate higher and higher resolution images. In our work, we formulate this property of
images as what we call forward super-resolution:

Forward super-resolution property (mathematical statement see Section 2.1):
There exists a generator G as an L-hidden-layer neural network with ReLU activation, where each
Gℓ represent the hidden neuron values at layer ℓ, and there exists matrices Wℓ such that

the distribution of images at resolution level ℓ is given by WℓGℓ

and the randomness is taken over the randomness of the input to G (usually standard Gaussian).

In plain words, we assume there is an (unknown) neural network G whose hidden layer Gℓ can be
used to generate images of resolution level ℓ (larger ℓ means better resolution) via a linear transfor-
mation, typically a deconvolution. We illustrate that this assumption holds on practical GAN training
in Figure 1. This assumption is also made in the practical work (Karras et al., 2018). Moreover, there
is a body of works that directly use GANs or deconvolution networks for super-resolution (Bulat &
Tzimiropoulos, 2018; Ledig et al., 2017; Lim et al., 2017; Wang et al., 2018; Zhang et al., 2018).

2 PROBLEM SETUP

Throughout this paper, we use a = poly(b) for a > 0, b > 1 to denote that there are absolute
constants C1 > C2 > 0 such that bC2 < a < bC1 . For a target learning error ε ∈ [1

dω(1) ,
1

poly(d)],

2Plus a simple SVD warmup initialization that is easily computable from the covariance of image patches.

2

1x100

deconvolution
+ ReLU

d
ec

o
nv

o
lu

ti
o

n

𝑧

deconvolution
+ ReLU deconvolution

+ ReLU deconvolution
+ ReLU

d
ec

o
nv

o
lu

ti
o

n

d
ec

o
nv

o
lu

ti
o

n

d
ec

o
nv

o
lu

ti
o

n

64x6x6x3

resolution 8x8
resolution 16x16

resolution 32x32
resolution 64x64

4x
4

8
x8

16
x1

6

32
x3

2

64 channels
64 channels

64 channels
64 channels

st
an

d
ar

d
 G

au
ss

ia
n

Figure 1: Illustration of the forward super-resolution structure. Church images generated by 4-hidden-
layer deconvolution network (DCGAN), trained on LSUN Church data set using multi-scaled gra-
dient (Karnewar & Wang, 2019). The structure of the generator is shown as above, and there is a
ReLU activation between each layers. We use simple average pooling to construct low resolution
images from the original training images.

we use “w.h.p.” to indicate with probability ≥ 1 − 1
(d/ε)ω(1) . Recall ReLU(z) = max{z, 0}. In

this paper, for theoretical purpose we consider a smoothed version R̃eLU(z) and a leaky version
LeakyReLU(z). We give their details in the full version, and they are different from ReLU(z) only
by a sufficiently small quantity 1/poly(d/ε).

2.1 THE TARGET DISTRIBUTION: FORWARD SUPER-RESOLUTION STRUCTURE

We consider outputs (think of them as images) {X⋆
ℓ }ℓ∈[L], where X⋆

L is the final output, and X⋆
ℓ

is the “low resolution” version of X⋆
L, with X⋆

1 having the lowest resolution. We think of each
ℓ-resolution image X⋆

ℓ consists of dℓ patches (for example, an image of size 36 × 36 contains 36
patches of size 6 × 6), where X⋆

ℓ = (X⋆
ℓ,j)j∈[dℓ] and each X⋆

ℓ,j ∈ Rd. Typically, such “resolution
reduction” from X⋆

L to X⋆
ℓ can be given by sub-sampling, average pooling, Laplacian smoothing,

etc., but we do not consider any specific form of resolution reduction in this work, as it does not
matter for our main result to hold.

Formally, we define the forward super-resolution property as follows. We are given samples of
the form G⋆(z) = (X⋆

1 , X
⋆
2 , · · · , X⋆

L), where each X⋆
ℓ is generated by an unknown target neural

network G⋆(z) at layer ℓ, with respect to a standard Gaussian z ∼ N (0, Im0×m0
).

• The basic resolution: for every j ∈ [d1],

X⋆
1,j = W⋆

1,jS⋆1,j ∈ Rd for S⋆1,j = S⋆1,j(z) = ReLU(V⋆
1,jz − b⋆1,j) ∈ Rm1

≥0

where V⋆
1,j ∈ Rm1×m0 , b⋆1,j ∈ Rm1 and we assume W⋆

1,j ∈ Rd×m1 is column orthonormal.
• For every ℓ > 1, the image patches at resolution level ℓ are given as: for every j ∈ [dℓ],

X⋆
ℓ,j = W⋆

ℓ,jS⋆ℓ,j ∈ Rd for S⋆ℓ,j = ReLU
(∑

j′∈Pℓ,j
V⋆

ℓ,j,j′S⋆ℓ−1,j′ − b⋆ℓ,j

)
∈ Rmℓ

≥0

where V⋆
ℓ,j,j′ ∈ Rmℓ×mℓ−1 , b⋆ℓ,j ∈ Rmℓ , and we assume W⋆

ℓ,j ∈ Rd×mℓ is column orthonormal.
Here, Pℓ,j ⊆ [dℓ−1] can be any subset of [dℓ−1] to describe the connection graph.

Remark. For every layer ℓ, j ∈ [dℓ], r ∈ [mℓ], one should view of each [S⋆ℓ,j]r as the r-th channel
in the j-th patch at layer ℓ. One should think of

∑
j′∈Pℓ,j

V⋆
ℓ,j,j′S⋆ℓ−1,j′ as the linear “deconvo-

lution” operation over hidden layers. When the network is a deconvolutional network such as in
DCGAN (Radford et al., 2015), we have all W⋆

ℓ,j = W⋆
ℓ ; but we do not restrict ourselves to this

case. As illustrated in Figure 2, we should view W⋆
ℓ,j as a matrix consisting of the “edge-color” fea-

tures to generate image patches. Crucially, when we get a data sample G⋆(z) = (X⋆
1 , X

⋆
2 , · · · , X⋆

L),

3

the learning algorithm does not know the underlying z used for this sample.

𝐖1,𝑗 𝐖2,𝑗 𝐖3,𝑗 𝐖4,𝑗

⟸ examples of patches dominated by edge features

⟸ examples of patches dominated by color features

Figure 2: Visualization of the edge-color features learned in the output layers of G⋆. Each Wℓ,j is of dimen-
sion mℓ × d = 64 × 108 = 64 × (6 × 6 × 3). The network is trained as in Figure 1. Note: For a
deconvolutional output layer, all Wℓ,j’s are equal for all j ∈ [mℓ].

Although our analysis holds in many settings, for simplicity, in this paper we focus on the following
parameter regime (for instance, dℓ can be dℓ):

Setting 2.1. L = O(1), each mℓ = poly(d), each dℓ = poly(d), and each ∥V⋆
ℓ,j,j′∥F ≤ poly(d).

To efficient learn a distribution with the “forward super-resolution” structure, we assume that the
true distribution in each layer of G⋆ satisfies the following “sparse coding” structure:

Assumption 2.2 (sparse coding structure). For every ℓ ∈ [L], j ∈ [dℓ], p ∈ [mℓ], there exists some
kℓ ≪ mℓ with kℓ ∈

[
Ω(logmℓ),m

o(1)
ℓ

]
such that — recalling S⋆ℓ,j ≥ 0 is a non-negative vector:3

Prz∼N (0,I)

[
[S⋆ℓ,j]p > 0

]
≤ poly(kℓ)

mℓ
, Ez∼N (0,I)

[
[S⋆ℓ,j]p

]
≥ 1

poly(kℓ)mℓ

w.h.p. over z : ∥S⋆ℓ,j∥∞ ≤ poly(kℓ), ∥S⋆ℓ,j∥0 ≤ kℓ

Moreover, we within the same patch, the channels are pair-wise and three-wise “not-too-positively
correlated”: ∀p, q, r ∈ [mℓ], p ̸= q ̸= r:

Prz
[
[S⋆ℓ,j]p > 0, [S⋆ℓ,j]q > 0

]
≤ ε1 = poly(kℓ)

m2
ℓ

, Prz
[
[S⋆ℓ,j]p > 0, [S⋆ℓ,j]q > 0, [S⋆ℓ,j]r > 0

]
≤ ε2 = 1

m2.01
ℓ

Remark 2.3. Although we have borrowed the notion of sparse coding, our task is very different from
traditional sparse coding. We discuss more in the full version.

Sparse coding structure in practice. The sparse coding structure is very natural in practice for
generating images (Gu et al., 2015; Zheng et al., 2010). As illustrated in Figure 2, typically, after
training, the output layer of the generator network Wℓ,j forms edge-color features. It is known
that such edge-color features are indeed a (nearly orthogonal) basis for images, under which the
coefficients are indeed very sparse. We refer to (Allen-Zhu & Li, 2021) for concrete measurement
of the sparsity and orthogonality. The “not-too-positive correlation” property is also very natural:
for instance, in an image patch if an edge feature is used, it is less likely that a color feature shall
be used (see Figure 2). In Figure 3, we demonstrate that for some learned generator networks, the
activations indeed become sparse and “not-too-positively correlated” after training.

Crucially, we have only assumed that channels are not-too-positively correlated within a single
patch, and channels across different patches (e.g S⋆ℓ,1 and S⋆ℓ,2) can be arbitrarily dependent. This
makes sure the global structure of the images can still be quite arbitrary, so Assumption 2.2 can
indeed be reasonable.4

3Here, poly(kℓ) can be an arbitrary polynomial such as (kℓ)100, and our final theorem holds for sufficiently
large d because do(1) > poly(kℓ).

4Within a patch, it is natural that the activations are not-too-positively correlated: for example, once a
patch chooses to use a horizontal edge feature, it is less likely that it will pick up another vertical edge feature.

4

histogram of Pr[[S⋆
2,j]p > 0] of Pr[[S⋆

2,j]p > 0, [S⋆
2,j]q > 0] histogram of Pr[[S⋆

2,j]p > 0, [S⋆
2,j]q >

0, [S⋆
2,j]r > 0]

Figure 3: Histograms at random init vs. after training for layer ℓ = 2 of the architecture in Figure 1. Exper-
iments for other layers can be found in Figure 6. It shows the learned network has sparse, not-too-
positively correlated hidden activations (we did not regularize sparsity or correlation during training).
Thus, it can be reasonable to assume that the activations of the target network are also sparse.

Missing details. We also make very mild non-degeneracy and anti-concentration assumptions, and
give examples for networks satisfying our assumptions. We defer them to the full version.

2.2 LEARNER NETWORK (GENERATOR)

We use a learner network (generator) that has the same structure as the (unknown) target network:

• The image of the first resolution is given by:

X1,j = W1,jS1,j ∈ Rd for S1,j = LeakyReLU(V1,jz − b1,j) ∈ Rm1

for W1,j ∈ Rd×m1 , V1,j ∈ Rm1×m′
0 with m′

0 ≥ 2d1m1.
• The image of higher resolution is given by:

Xℓ,j = Wℓ,jSℓ,j ∈ Rd for Sℓ,j = LeakyReLU
(∑

j′∈Pℓ,j
Vℓ,j,j′Sℓ−1,j′ − bℓ,j

)
∈ Rmℓ

for Wℓ,j ∈ Rd×mℓ and Vℓ,j ∈ Rmℓ×mℓ−1 .

One can view Sℓ as the ℓ-th hidden layer. We use Gℓ(z) to denote (Xℓ,j)j∈[dL]. We point out both
the target and the learner network we study here can be standard deconvolution networks.

2.3 THEOREM STATEMENT

This papers proves that by applying SGDA on a generator-discriminator objective (algorithm to be
described in Section 3), we can learn the target distribution using the above generator network.

Theorem E.1. For every d > 0, every ε ∈ [1
dω(1) ,

1
2], letting G(z) = (X1(z), . . . , XL(z)) be

the generator learned after running Algorithm 6 (which runs in time/sample complexity poly(d/ε)),
then w.h.p. there is a column orthonormal matrix U ∈ Rm0×m′

0 such that

Prz∼N (0,Im′
0×m′

0
)

[∥∥G⋆(Uz)−G(z)
∥∥
2
≤ ε

]
≥ 1− 1

(d/ε)ω(1) .

In particular, this implies the 2-Wasserstein distanceW2(G(·), G⋆(·)) ≤ ε.

3 LEARNING ALGORITHM

In this section, we define the learning algorithm using min-max optimization. We assume one
access polynomially many (i.e., poly(d/ε)) i.i.d. samples from the true distribution X⋆ =
(X⋆

1 , X
⋆
2 , · · · , X⋆

L), generated by the (unknown) target network defined in Section 2.1.

To begin with, we use a simple SVD warm start to initialize (only) the output layers Wℓ,j of the
network. It merely involves a simple estimator of certain truncated covariance of the data. We defer

We also point out that if [S⋆
ℓ,j]p’s are all independent, then Pr[[S⋆

ℓ,j]p > 0, [S⋆
ℓ,j]q > 0] ≈ 1

m2
ℓ
≤ ε1 and

Pr[[S⋆
ℓ,j]p > 0, [S⋆

ℓ,j]q > 0, [S⋆
ℓ,j]r > 0] ≈ 1

m3
ℓ
≪ ε2.

5

it to the full paper. Also, we refer stochastic gradient descent ascent SGDA (on the GAN objective)
to an algorithm to optimize minx maxy f(x, y), where the inner maximization is trained at a faster
frequency. We call it Algorithm 4 and include its pseudocode in the full paper.

To make the learning process more clear, we break the learning into multiple parts and introduce
them separately in this section:

• GAN OutputLayer: to learn output matrices {Wℓ,j} per layer.
• GAN FirstHidden: to learn hidden matrices {V1,j} for the first layer.
• GAN FowardSuperResolution: to learn higher-level hidden layers {Vℓ,j,j′}.

We use different discriminators at different parts for our theory analysis, and shall characterize
what discriminator does and how the generator can leverage the discriminator to learn the target
distribution. We point out, although one can add up and mix those discriminators to make it a single
one, how to use a same discriminator across the entire algorithm remains open.

At the end of this section, we shall explain how they are combined to give the final training process.
Remark 3.1. Although we apply an SVD algorithm to get a warm start on the output matrices
Wℓ,j , the majority of the learning of Wℓ,j (e.g., to any small ε = 1

poly(d) error) is still done through
gradient descent ascent. We point out that the seminal work on neurally plausible dictionary learning
also considers such a warm start (Arora et al., 2015a).

3.1 LEARN THE OUTPUT LAYER

We first introduce the discriminator for learning the output layer. For each resolution ℓ ∈ [L] and
patch j ∈ [dℓ], we consider a one-hidden-layer discriminator

D
(1)
ℓ,j (Y) :=

∑
r∈[mℓ]

(
ReLU′([(WD

ℓ,j)
⊤Yj]r − b)⟨Yj , V

D
ℓ,j,r⟩

)
,

where the input is either Y = X⋆
ℓ (from the true distribution) or Y = Xℓ (from the generator).

Above, on the discriminator side, we have default parameter WD
ℓ,j ,b and trainable parameters

V D
ℓ,j = (V D

ℓ,j,r)r∈[mℓ] where each V D
ℓ,j,r ∈ Rd. On the generator side, we have trainable param-

eters Wℓ,j (which are used to calculate Xℓ). (We use superscript D to emphasize WD
ℓ,j are the

parameters for the discriminator, to distinguish it from Wℓ,j .)

In our pseudocode GAN OutputLayer (see Algorithm 1), for fixed WD
ℓ,j ,b, we perform gradient

descent ascent on the GAN objective with discriminator D(1)
ℓ,j , to minimize over V D

ℓ,j and maximize
over Wℓ,j . In our final training process (to be given in full in Algorithm 6), we shall start with some
b ≪ 1 and periodically decrease it; and we shall periodically set WD

ℓ,j = Wℓ,j to be the same as
the generator from a previous check point.

• Simply setting WD
ℓ,j = Wℓ,j involves no additional learning, as all the learning is still being

done using gradient descent ascent.
• In practice, the first hidden layer of the discriminator indeed learns the edge-color detectors (see

Figure 8 in the full paper), similar to the edge-color features in the output layer of the generator.
Thus, setting WD

ℓ,j = Wℓ,j is a reasonable approximation. As we pointed out, how to analyze
a discriminator that exactly matches practice is an important open theory direction.

INTUITION: WHAT DOES THE DISCRIMINATOR DO? To further understand the algorithm, we can
see that for each V D

ℓ,j,r, when its norm is fixed, then the maximizer is obtained at

V D
ℓ,j,r ∝

(
E[ReLU′([(WD

ℓ,j)
⊤X⋆

ℓ,j]r − b)X⋆
ℓ,j]− E[ReLU′([(WD

ℓ,j)
⊤Xℓ,j]r − b)Xℓ,j]

)
Thus, for the generator to further minimize the objective, the generator will learn to match the
moments of the true distribution. In other words, generator wants to ensure

E[ReLU′([(WD
ℓ,j)

⊤Xℓ,j]r − b)Xℓ,j] ≈ E[ReLU′([(WD
ℓ,j)

⊤X⋆
ℓ,j]r − b)X⋆

ℓ,j]

In this paper, we prove that such a truncated moment can be matched efficiently simply by running
gradient descent ascent. Moreover, we empirically observe (see Figure 4) that GANs can indeed do

6

Algorithm 1 (GAN OutputLayer) method of moments

Input: W
(0)
ℓ,j , b, ℓ, j

1: Set WD
ℓ,j ←W

(0)
ℓ,j ; b← bm0.152; N ← 1

poly(d/ε) , η ← 1
poly(d/ε) , T ← poly(d/ε)

η

2: Set initialization Wℓ,j ←W
(0)
ℓ,j and V D

ℓ,j ← 0.
3: Apply SGDA (Algorithm 4) with N samples, learning rate η for T steps on the following GAN

objective (with c being a small constant such as 0.001):

minWℓ,j
maxV D

ℓ,j

((
E[D(1)

ℓ,j (X
⋆
ℓ)]− E[D(1)

ℓ,j (Xℓ)]
)
−
∑

r∈[mℓ]
∥V D

ℓ,j,r∥
1+c
2

)
⋄ ∥V D

ℓ,j,r∥1+c
2 is an analog of the weight

4: [Wℓ,j]p ← [Wℓ,j]p/∥[Wℓ,j]p∥2

epoch 1 epoch 3 epoch 10 epoch 20

1st order moment matching 2nd order moment matching 3rd order moment matching

4th order moment matching 5th order moment matching 6th order moment matching

Figure 4: Difference between the moments of a generator’s output and the true distribution. The x-axis is
the number of epochs and the y-axis quantifies how close the moments are (the smaller the closer).
Details are in Figure 9. One can see that the moments begin to match after epoch 10.

moment matching within each patch even at the earlier stage of training.

3.2 LEARN THE FIRST HIDDEN LAYER

Due to space limitation we defer the pseudocode and algorithm details of GAN FirstHidden to the
full version of this paper. However, we give the high level intuitions below.

HIGH-LEVEL INTUITIONS. In the process of learning the lowest-resolution images X⋆
1 , one cannot

hope for (even approximately) learning the exact matrices V⋆
1,j , or the exact function that maps from

z 7→ X⋆
1 (because z is unknown during the training). Instead, the task is for learning the distribution

of X⋆
1,j = W⋆

1,jReLU(V
⋆
1,jz − b⋆1,j).

Suppose for a moment that W⋆
1,j are already fully learned; then, it is perhaps not surprising that for

the remaining part S⋆1,j = ReLU(V⋆
1,jz − b⋆1,j), if we can somehow

1. learn the marginal distribution of [S⋆1,j]r for each j, r, and

2. learn the joint distribution of
(
[S⋆1,j]r, [S⋆1,j′]r′

)
for each pair (j, r) ̸= (j′, r′),

then, we can recover the joint distribution of {[S⋆1,j]r}j,r. (As an analogy, for joint Gaussian, it
suffices to learn the pair-wise correlation.) To achieve this, we design discriminators D(4) and D(5).

• D(4) discriminates the mismatch from single neurons by ensuring5

E R̃eLU
(
[(WD

1,j)
⊤X1,j]r − b

)
≈ E R̃eLU

(
[(WD

1,j)
⊤X⋆

1,j]r − b
)

5Like in the previous subsection, we shall periodically set WD
ℓ,j = Wℓ,j to be the same as the generator

from a previous check point; and the bias b≪ 1.

7

1x100

4x4x64
𝑧

8x8x64 16x16
x64

32x32
x64

forward super-resolution: a local operation

Figure 5: Forward super-resolution is a local operation; more details in Figure 7.

E R̃eLU
′ (
[(WD

1,j)
⊤X1,j]r − b

)
≈ E R̃eLU

′ (
[(WD

1,j)
⊤X⋆

1,j]r − b
)

Furthermore, as long as WD
1,j is moderately learned, the sparse coding structure shall ensure

(WD
1,j)

⊤X1,j ≈ S1,j and (WD
1,j)

⊤X⋆
1,j ≈ S⋆1,j . For such reason, and using b ≪ 1, applying

gradient descent ascent using discriminator D(4), in fact guarantees

E R̃eLU ([S1,j]r) ≈ E R̃eLU
(
[S⋆1,j]r

)
and E R̃eLU

′
([S1,j]r) ≈ E R̃eLU

′ (
[S⋆1,j]r

)
Recall [S⋆1,j]r behaves as ReLU(g) for g ∼ N (−µ, σ2) and has only 2 degrees of freedom; thus,

matching moments on R̃eLU and R̃eLU
′

can learn the distribution of a single neuron [S⋆1,j]r.

• D(5) discriminates the mismatch from the moments across two neurons, by ensuring

E
[
R̃eLU

(
[(WD

1,j)
⊤X1,j]r − b

)
R̃eLU

(
[(WD

1,j′)
⊤X1,j′]r′ − b

)]
≈ E

[
R̃eLU

(
[(WD

1,j)
⊤X⋆

1,j]r − b
)
R̃eLU

(
[(WD

1,j′)
⊤X⋆

1,j′]r′ − b
)]

For similar reason, gradient descent ascent learns to match moments on the cross terms:

E R̃eLU ([S1,j]r) R̃eLU ([S1,j′]r′) ≈ E R̃eLU
(
[S⋆1,j]r

)
R̃eLU

(
[S⋆1,j′]r′

)
We show this corresponds to learning ⟨[V⋆

1,j]r, [V
⋆
1,j′]r′⟩ to a moderate accuracy.

In sum, if we apply SGDA on D(4) and D(5) together, we can hope for learning V1 up to a unitary
transformation (see Lemma I.18). This ensures that we learn the distribution of X⋆

1 .

3.3 LEARN HIGHER HIDDEN LAYERS

For resolution ℓ > 1, patch j ∈ [dℓ], channel r ∈ [mℓ], to learn [V⋆
ℓ,j]r, we introduce discriminator

D
(2)
ℓ,j,r(Y1, Y2). It takes as input images of two resolutions: one should think of either (Y1, Y2) =

(X⋆
ℓ , X

⋆
ℓ−1) comes from the true distribution, or (Y1, Y2) = (Xℓ, Xℓ−1) from the generator.

D
(2)
ℓ,j,r(Y1, Y2) := ãbs (sr − LeakyReLU(sr))

where ãbs(x) := R̃eLU(x− b) + R̃eLU(−x− b)

sr :=
[(

[WD
ℓ,j]

⊤Y1,j

)]
r

sr :=
(∑

j′∈Pℓ,j
VD

ℓ,j,j′LeakyReLU
(
[WD

ℓ−1,j′]
⊤Y2,j′

)
− bDℓ,j

)
r

Above, again WD
ℓ,j ,{WD

ℓ−1,j′}j′∈[dℓ−1], b are default parameters (changed only periodically).

On the discriminator side, {[VD
ℓ,j,j′]r}j′∈Pℓ,j

, [bDℓ,j]r are the actual trainable parameters; on the gen-
erator side, {[Vℓ,j,j′]r}j′∈Pℓ,j

, [bℓ,j]r as the trainable parameters. We note this discriminator D(2)

is a three-hidden layer neural network. Yet, we show that such an network (together with the
generator) can still be trained efficiently using gradient descent ascent.

8

Algorithm 2 (GAN FowardSuperResolution) using super-resolution to learn higher hidden layers

Input: W
(0)
ℓ ,W

(0)
ℓ−1, b, ℓ, j

1: Set default parameters WD
ℓ,j ←W

(0)
ℓ,j ,W

D
ℓ−1,j′ ←W

(0)
ℓ−1,j′ ;

2: N ← 1
poly(d/ε) , η ← 1

poly(d/ε) , T ← poly(d/ε)
η ; λG, λD ← 1

poly(d/ε)

3: Initialize Vℓ,j,j′ = VD
ℓ,j,j′ = I for one of j′ ∈ Pℓ,j and setting others as zero. Initialize bℓ,j = 0.

4: for r ∈ [mℓ] do
5: Apply SGDA with N samples, learning rate η for T steps on the following GAN objective

min
{[VD

ℓ,j,j′]r}j′∈Pℓ,j
,[bDℓ,j]r;

max
{[Vℓ,j,j′]r}j′∈Pℓ,j

,[bℓ,j]r

(
E[D(2)

ℓ,j,r(X
⋆
ℓ , X

⋆
ℓ−1)]− E[D(2)

ℓ,j,r(Xℓ, Xℓ−1)]
)

− λG∥Vℓ∥2F + λD∥VD
ℓ ∥2F

6: [b1,j]r ← [b1,j]r + poly(k1)b.

INTUITION: WHAT DOES THE DISCRIMINATOR DO? In this case, applying gradient descent ascent
on D(2) actually learns how to “super-resolute” the image from resolution level ℓ− 1 to level ℓ. In
particular, the discriminator wants to find a way where the patches (Xℓ,j , Xℓ−1,j′) differ statistically
from the patches (X⋆

ℓ,j , X
⋆
ℓ−1,j′). For example, it can discriminate when X⋆

ℓ−1,j′ = v1 =⇒ X⋆
ℓ,j =

v2, but Xℓ−1,j′ = v1, Xℓ,j ̸= v2. In essence, it is discriminating the way where the generator super-
resolutes a patch X⋆

ℓ,j from lower resolution differently from that of the true distribution.

As we demonstrate in Figure 5, such “super-resolution” operation is local, meaning that the learning
process can be separated to learning over individual patches. The global structure across different
patches of the images are learned in lower resolutions. This makes the learning process much simpler
comparing to learning the full image from scratch. 6 We also provide empirical justification of the
power of this “forward super-resolution”, as in Figure 10(top) of the full paper: higher layers can
indeed learn to super-resolute from the lower resolution images, which makes the learning much
easier comparing to learning from scratch.

3.4 FINAL ALGORITHM

We implement our full algorithm in Algorithm 6 (see full paper). It performs layer-wise training.
In each outer loop ℓ = 1, 2, . . . , L, it first warm-starts the output layer {Wℓ,j}j∈[dℓ] — note those
weights are still very inaccurate.7 Next, for this layer ℓ, Algorithm 6 alternatively:

• uses the current output layer Wℓ,j to learn the hidden variables Sℓ,j (or equivalently
the weights Vℓ,j , bℓ,j) to some accuracy — by applying GAN FirstHidden if ℓ = 1 or
GAN FowardSuperResolution if ℓ ≥ 2; and

• uses the current hidden variables Sℓ,j to learn the output layer Wℓ,j to an even better accuracy
— by applying GAN OutputLayer.

This alternating process repeats for T ′ = Õ(1) stages. Once again, we have broken the learning
into multiple parts for analysis purpose, so it becomes clear how the generator can leverage the dis-
criminator at different stages to learn the target distribution. (With more careful choices of learning
rates, one can also combine them altogether.) Please note besides a simple SVD warm-start that is
called only once per output layer Wℓ,j , all the learning is done using minmax optimization on a
generator-discriminator objective.

What’s in Full Paper. We encourage readers to see our full paper at https://arxiv.org/
abs/2106.02619. In the full version, we includes more related works and missing figures to
better support the connection between our theory and practice. We also includes missing details for
our technical assumptions from Section 2, and pseudocodes from Section 3. We restate our main
theorem and the high level proof plan, and shall also discuss limitations and open directions there.

6At resolution 1 the learning is global; in this case the one-hidden-layer generator can be trained via SGDA
to capture the “global structure” of images (see Section 3.2 and Figure 1), with the help from properties of
Gaussian random variable.

7Since the hidden variables Sℓ,j at this layer ℓ — which depend on weights {Vℓ,j}j∈[dℓ] — are still not
learned, at this point, the best one can do is to look at the data covariance and give Wℓ,j a very rough estimate.

9

https://arxiv.org/abs/2106.02619
https://arxiv.org/abs/2106.02619

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain.
In NeurIPS, pp. 974–982, 2016. Full version available at http://arxiv.org/abs/1607.03463.

Zeyuan Allen-Zhu and Yuanzhi Li. What Can ResNet Learn Efficiently, Going Beyond Kernels? In NeurIPS,
2019a. Full version available at http://arxiv.org/abs/1905.10337.

Zeyuan Allen-Zhu and Yuanzhi Li. Can SGD Learn Recurrent Neural Networks with Provable Generalization?
In NeurIPS, 2019b. Full version available at http://arxiv.org/abs/1902.01028.

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep learning.
arXiv preprint arXiv:2001.04413, 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust deep learn-
ing. In FOCS, 2021. Full version available at http://arxiv.org/abs/2005.10190.

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear Coupling: An Ultimate Unification of Gradient and Mirror
Descent. In Proceedings of the 8th Innovations in Theoretical Computer Science, ITCS ’17, 2017. Full
version available at http://arxiv.org/abs/1407.1537.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and Generalization in Overparameterized Neural
Networks, Going Beyond Two Layers. In NeurIPS, 2019a. Full version available at http://arxiv.
org/abs/1811.04918.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019b. Full version available at http://arxiv.org/abs/1811.03962.

Sanjeev Arora, Rong Ge, Tengyu Ma, and Ankur Moitra. Simple, efficient, and neural algorithms for sparse
coding. Journal of Machine Learning Research, 40(2015), 2015a.

Sanjeev Arora, Rong Ge, Ankur Moitra, and Sushant Sachdeva. Provable ica with unknown gaussian noise,
and implications for gaussian mixtures and autoencoders. Algorithmica, 72(1):215–236, 2015b.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium in gen-
erative adversarial nets (gans). In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 224–232. JMLR. org, 2017.

Sanjeev Arora, Andrej Risteski, and Yi Zhang. Do gans learn the distribution? some theory and empirics. 2018.
Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization

and generalization for overparameterized two-layer neural networks. CoRR, abs/1901.08584, 2019. URL
http://arxiv.org/abs/1901.08584.

Francis Bach and Michael Jordan. Learning graphical models with mercer kernels. Advances in Neural Infor-
mation Processing Systems, 15:1033–1040, 2002.

Yu Bai, Tengyu Ma, and Andrej Risteski. Approximability of discriminators implies diversity in gans. arXiv
preprint arXiv:1806.10586, 2018.

Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified neural networks in poly-
nomial time. arXiv preprint arXiv:1811.01885, 2018.

Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. SIAM Journal on Computing,
44(4):889–911, 2015.

Stefano Beretta, Mauro Castelli, Ivo Gonçalves, Roberto Henriques, and Daniele Ramazzotti. Learning the
structure of bayesian networks: A quantitative assessment of the effect of different algorithmic schemes.
Complexity, 2018.

Quentin Berthet, Philippe Rigollet, and Piyush Srivastava. Exact recovery in the ising blockmodel. Annals of
Statistics, 47(4):1805–1834, 2019.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of machine Learning
research, 3(Jan):993–1022, 2003.

Digvijay Boob and Guanghui Lan. Theoretical properties of the global optimizer of two layer neural network.
arXiv preprint arXiv:1710.11241, 2017.

Guy Bresler. Efficiently learning ising models on arbitrary graphs. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pp. 771–782, 2015.

Guy Bresler, Frederic Koehler, Ankur Moitra, and Elchanan Mossel. Learning restricted boltzmann machines
via influence maximization. arXiv, pp. arXiv–1805, 2018.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian inputs.
arXiv preprint arXiv:1702.07966, 2017.

Adrian Bulat and Georgios Tzimiropoulos. Super-fan: Integrated facial landmark localization and super-
resolution of real-world low resolution faces in arbitrary poses with gans. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 109–117, 2018.

10

http://arxiv.org/abs/1607.03463
http://arxiv.org/abs/1905.10337
http://arxiv.org/abs/1902.01028
http://arxiv.org/abs/2005.10190
http://arxiv.org/abs/1407.1537
http://arxiv.org/abs/1811.04918
http://arxiv.org/abs/1811.04918
http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1901.08584

Sitan Chen, Jerry Li, and Yuanzhi Li. Learning (very) simple generative models is hard. arXiv preprint
arXiv:2205.16003, 2022a.

Sitan Chen, Jerry Li, Yuanzhi Li, and Raghu Meka. Minimax optimality (probably) doesn’t imply distribution
learning for gans. arXiv preprint arXiv:2201.07206, 2022b.

Dario Cordero-Erausquin, Matthieu Fradelizi, and Bernard Maurey. The (b) conjecture for the gaussian measure
of dilates of symmetric convex sets and related problems. Journal of Functional Analysis, 214:410–427, 09
2004. doi: 10.1016/j.jfa.2003.12.001.

Rónán Daly, Qiang Shen, and Stuart Aitken. Learning bayesian networks: approaches and issues. The knowl-
edge engineering review, 26(2):99, 2011.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The power
of initialization and a dual view on expressivity. In Advances in Neural Information Processing Systems
(NIPS), pp. 2253–2261, 2016.

Sanjoy Dasgupta. Learning mixtures of gaussians. In 40th Annual Symposium on Foundations of Computer
Science (Cat. No. 99CB37039), pp. 634–644. IEEE, 1999.

Constantinos Daskalakis and Ioannis Panageas. Last-iterate convergence: Zero-sum games and constrained
min-max optimization. arXiv preprint arXiv:1807.04252, 2018a.

Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gradient descent in min-max
optimization. In Advances in Neural Information Processing Systems, pp. 9236–9246, 2018b.

Mathias Drton and Marloes H Maathuis. Structure learning in graphical modeling. Annual Review of Statistics
and Its Application, 4:365–393, 2017.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Farzan Farnia and Asuman Ozdaglar. Do gans always have nash equilibria? In International Conference on
Machine Learning, pp. 3029–3039, 2020.

Soheil Feizi, Farzan Farnia, Tony Ginart, and David Tse. Understanding gans: the lqg setting. arXiv preprint
arXiv:1710.10793, 2017.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points?online stochastic gradient for
tensor decomposition. In Conference on Learning Theory, pp. 797–842, 2015.

Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In Advances in
Neural Information Processing Systems, pp. 2973–2981, 2016.

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape design.
arXiv preprint arXiv:1711.00501, 2017.

Rong Ge, Rohith Kuditipudi, Zhize Li, and Xiang Wang. Learning two-layer neural networks with symmetric
inputs. arXiv preprint arXiv:1810.06793, 2018.

Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Remi Lepriol, Gabriel Huang, Simon Lacoste-
Julien, and Ioannis Mitliagkas. Negative momentum for improved game dynamics. arXiv preprint
arXiv:1807.04740, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information process-
ing systems, pp. 2672–2680, 2014.

Shuhang Gu, Wangmeng Zuo, Qi Xie, Deyu Meng, Xiangchu Feng, and Lei Zhang. Convolutional sparse
coding for image super-resolution. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 1823–1831, 2015.

David Heckerman. A tutorial on learning with bayesian networks. In Innovations in Bayesian networks, pp.
33–82. Springer, 2008.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural information
processing systems, pp. 6626–6637, 2017.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In Advances in neural information processing systems, pp. 8571–8580, 2018.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle points
efficiently. In International Conference on Machine Learning, pp. 1724–1732, 2017.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I. Jordan. On nonconvex optimization
for machine learning: Gradients, stochasticity, and saddle points. arXiv preprint arXiv:1902.04811, 2019.

Animesh Karnewar and Oliver Wang. Msg-gan: multi-scale gradient gan for stable image synthesis. arXiv
preprint arXiv:1903.06048, 2019.

11

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. In International Conference on Learning Representations, 2018.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information Processing
Systems, pp. 586–594, 2016.

Adam Klivans and Raghu Meka. Learning graphical models using multiplicative weights. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 343–354. IEEE, 2017.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew
Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-resolution
using a generative adversarial network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4681–4690, 2017.

Qi Lei, Jason D Lee, Alexandros G Dimakis, and Constantinos Daskalakis. Sgd learns one-layer networks in
wgans. arXiv preprint arXiv:1910.07030, 2019.

Yuanzhi Li and Zehao Dou. When can wasserstein gans minimize wasserstein distance? arXiv preprint
arXiv:2003.04033, 2020.

Yuanzhi Li and Yingyu Liang. Provable alternating gradient descent for non-negative matrix factorization with
strong correlations. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 2062–2070. JMLR. org, 2017.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation. In Ad-
vances in Neural Information Processing Systems, pp. 597–607. http://arxiv.org/abs/1705.09886, 2017.

Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of non-negative matrix factorization via
alternating updates. In Advances in neural information processing systems, pp. 4987–4995, 2016.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized matrix sens-
ing and neural networks with quadratic activations. In COLT, 2018.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer neural networks
beyond ntk. In Conference on Learning Theory, pp. 2613–2682, 2020.

Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic local convergence of gener-
ative adversarial networks. arXiv preprint arXiv:1802.06132, 2018.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual networks
for single image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, pp. 136–144, 2017.

Tianyi Lin, Chi Jin, and Michael I Jordan. On gradient descent ascent for nonconvex-concave minimax prob-
lems. arXiv preprint arXiv:1906.00331, 2019.

Andrey Y Lokhov, Marc Vuffray, Sidhant Misra, and Michael Chertkov. Optimal structure and parameter
learning of ising models. Science advances, 4(3):e1700791, 2018.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In Advances in Neural
Information Processing Systems, pp. 1825–1835, 2017.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans do actually con-
verge? In International conference on machine learning, pp. 3481–3490, 2018.

Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of gaussians. In 2010 IEEE
51st Annual Symposium on Foundations of Computer Science, pp. 93–102. IEEE, 2010.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and optimistic
gradient methods for saddle point problems: Proximal point approach. arXiv preprint arXiv:1901.08511,
2019.

Vaishnavh Nagarajan and J Zico Kolter. Gradient descent gan optimization is locally stable. In Advances in
neural information processing systems, pp. 5585–5595, 2017.

Richard E Neapolitan et al. Learning bayesian networks, volume 38. Pearson Prentice Hall Upper Saddle
River, NJ, 2004.

Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overparameterization: global convergence guar-
antees for training shallow neural networks. arXiv preprint arXiv:1902.04674, 2019.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization landscape
of over-parameterized shallow neural networks. arXiv preprint arXiv:1707.04926, 2017.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees for multi-
layer neural networks. arXiv preprint arXiv:1605.08361, 2016.

Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere. In 2015 International
Conference on Sampling Theory and Applications (SampTA), pp. 407–410. IEEE, 2015.

12

Yuandong Tian. An analytical formula of population gradient for two-layered relu network and its applications
in convergence and critical point analysis. arXiv preprint arXiv:1703.00560, 2017.

Thomas Unterthiner, Bernhard Nessler, Calvin Seward, Günter Klambauer, Martin Heusel, Hubert Ramsauer,
and Sepp Hochreiter. Coulomb gans: Provably optimal nash equilibria via potential fields. arXiv preprint
arXiv:1708.08819, 2017.

Santosh Vempala and John Wilmes. Polynomial convergence of gradient descent for training one-hidden-layer
neural networks. arXiv preprint arXiv:1805.02677, 2018.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan:
Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 0–0, 2018.

Bo Xie, Yingyu Liang, and Le Song. Diversity leads to generalization in neural networks. arXiv preprint
Arxiv:1611.03131, 2016.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for understanding neural
networks. arXiv preprint arXiv:1904.00687, 2019.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer relu networks via
gradient descent. arXiv preprint arXiv:1806.07808, pp. 3262–3271, 2018.

Miao Zheng, Jiajun Bu, Chun Chen, Can Wang, Lijun Zhang, Guang Qiu, and Deng Cai. Graph regularized
sparse coding for image representation. IEEE transactions on image processing, 20(5):1327–1336, 2010.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees for one-
hidden-layer neural networks. arXiv preprint arXiv:1706.03175, 2017.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes over-
parameterized deep relu networks. arXiv preprint arXiv:1811.08888, 2018.

13

	1 Introduction
	1.1 Forward Super-Resolution: A Special Property of Images

	2 Problem Setup
	2.1 The Target Distribution: Forward Super-Resolution Structure
	2.2 Learner Network (Generator)
	2.3 Theorem Statement

	3 Learning Algorithm
	3.1 Learn the Output Layer
	3.2 Learn the First Hidden Layer
	3.3 Learn Higher Hidden Layers
	3.4 Final Algorithm

	A More on Related Works
	B Missing Figures
	C Missing Problem Setup for Section 2
	D Missing Pseudocodes for Section 3
	D.1 Simple Initialization of Output Layers
	D.2 Gradient Descent Ascent for GAN
	D.3 Learn the First Hidden Layer
	D.4 The Final Algorithm

	E Main Theorem and High-Level Proof Plan
	F Discussion: Learning Hierarchical Generative Models
	G Output Layer Warm-Start Initialization
	G.1 Proof of Lemma G.1

	H Learning the Output Layer
	H.1 Axuliary Claims: Between R-R2 and W- W2
	H.2 Proof of Lemma H.2: Optimization using Gradient Descent

	I Learning the First Hidden Layer
	I.1 Initialization
	I.2 Sparsity
	I.3 Objective D(4)
	I.3.1 Invariants from Self-Regularization
	I.3.2 Existence of Descent Direction
	I.3.3 Proof of Lemma I.6: Optimization using Gradient Descent

	I.4 Objective D(5)
	I.4.1 Initialization and Invariant
	I.4.2 Existence of Hessian Update
	I.4.3 Proof of Lemma I.10: Optimization by Hessian Update

	I.5 Putting All Together
	I.6 Missing Math Propositions
	I.6.1 Simple Properties on ReLU
	I.6.2 Gaussian Correlation
	I.6.3 Anti-Concentration for Not-So-Correlated Gaussians
	I.6.4 Sensitivity of Gaussian
	I.6.5 Sensitivity of Joint Gaussian
	I.6.6 Functions under Gaussian Variable
	I.6.7 Basics for Hessian Update

	J Learning Other Hidden Layers
	J.1 Generator
	J.1.1 Existence of Ascent Direction
	J.1.2 Optimization

	J.2 Discriminator
	J.2.1 Existence of Descent Direction
	J.2.2 Optimization

	J.3 Proof of Lemma J.2: Putting All Together
	J.4 Proof of Theorem E.1

