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Abstract

Graph Neural Ordinary Differential Equations
(GODE) integrate the Variational Autoencoder
(VAE) framework with differential equations, ef-
fectively modeling latent space uncertainty and
continuous dynamics, excelling in graph data evo-
lution and incompleteness. However, existing
GODE face challenges in capturing time-varying
relationships and nonlinear node state evolution,
which limits their ability to model complex dy-
namic graphs. To address these issues, we pro-
pose the ControlSynth Graph ODE (CSG-ODE).
In the VAE encoding phase, CSG-ODE introduces
an information transmission-based inter-node im-
portance weighting mechanism, integrating it with
latent correlations to guide adaptive graph con-
volutional recurrent networks for temporal node
embedding. During decoding, CSG-ODE em-
ploys ODE to model node dynamics, capturing
nonlinear evolution through sub-networks with
nonlinear activations. For scenarios or prediction
tasks that require stability, we extend CSG-ODE
to stable CSG-ODE (SCSG-ODE) by constrain-
ing weight matrices to learnable anti-symmetric
forms, theoretically ensuring enhanced stability.
Experiments on traffic, motion capture, and simu-
lated physical systems datasets demonstrate that
CSG-ODE outperforms state-of-the-art GODE,
while SCSG-ODE achieves both superior perfor-
mance and optimal stability.
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1. Introduction
With the rapid development of fields such as social net-
works, traffic flow prediction, and financial market analysis,
dynamic graph representation learning has gradually be-
come one of the important research directions in the field of
graph learning (Yang et al., 2024). A dynamic graph refers
to a graph structure in which the states of nodes and edges,
as well as the graph topology, evolve over time. In these
systems, the interactions and relationships between nodes
are time-varying, presenting both significant challenges and
opportunities for model development.

In recent years, with the increasing popularity of Graph
Neural Networks (GNN) (Scarselli et al., 2008), more and
more dynamic graph representation learning methods have
begun to leverage GNN to handle the temporal information
in dynamic graphs. By introducing strategies such as tem-
poral window mechanisms (Zhu et al., 2023) and temporal
encoding (Chen et al., 2024), GNN can effectively enhance
the model’s ability to process dynamic graph data and cap-
ture the temporal dynamics of nodes and edges. However,
many existing methods still assume that the complete state
of all nodes is available at each time point. This assumption
is often difficult to hold in real-world applications.

LatentODE (Rubanova et al., 2019) effectively addresses
the challenge of modeling irregularly sampled time series
by introducing latent ordinary differential equations (ODE)
within the variational autoencoder (VAE) framework. Build-
ing upon this, Graph Neural ODE (GODE) (such as (Huang
et al., 2021) and (Wen et al., 2022)) have been proposed
to model the uncertainty in multidimensional time series
data and capture its continuous dynamic evolution through
latent space. Specifically, these methods integrate the ag-
gregation function of GNN as part of the ODE function,
effectively capturing the complex interaction information
between nodes. This provides an effective tool for modeling
incomplete dynamic graph data.

However, existing GODE models have limitations in captur-
ing the time-varying relationships between nodes and the
nonlinear evolution of node states. For example, in trans-
portation systems, the road network has a significant impact
on traffic flow, and its fluctuations are affected by factors

1



CSG-ODE: ControlSynth Graph ODE for Modeling Complex Evolution of Dynamic Graphs

such as weather, holidays, and emergencies, leading to com-
plex nonlinear changes. Therefore, modeling the dynamic
relationships and nonlinear evolution of node states remains
a key challenge in complex network modeling.

To address these issues, this paper proposes a model called
ControlSynth Graph ODE (CSG-ODE) based on the VAE
framework. In the encoding phase, CSG-ODE introduces
node importance weights based on information propagation,
overcoming the limitations of relying solely on latent space
correlations between nodes. By combining node importance
with latent correlations, the model effectively guides the
learning of temporal node embeddings through an adaptive
graph convolutional recurrent network. In the decoding
phase, the model uses an ODE to model the dynamic evo-
lution of nodes, considering not only the linear changes
of nodes and their interactions with other nodes but also
capturing the nonlinear evolution characteristics of node
states through multiple sub-networks with nonlinear activa-
tion functions. This comprehensive approach reflects the
dynamic changes in node states. To enhance stability in
high-stability scenarios, we introduce the Stable CSG-ODE
(SCSG-ODE) model based on CSG-ODE and theoretically
demonstrate its improved stability.

Our contributions can be summarized in the following three
aspects: (1) We propose the CSG-ODE model, which en-
ables the model to better capture the complex evolution
of node states through an information propagation-based
inter-node importance weighting method and multiple sub-
networks with nonlinear activation functions. (2) Based
on CSG-ODE, we theoretically give its stabilized version
SCSG-ODE. (3) The experimental results show that the pro-
posed CSG-ODE outperforms the existing GODE model on
five dynamic system datasets. And SCSG-ODE not only
outperforms the existing GODE in terms of performance,
but also exhibits optimal stability.

2. Problem Definition
Given a sequence of discrete timestamps T =
{T1, T2, . . . , Tobs} ∈ Robs with non-uniform intervals,
we define the corresponding sequence of dynamic graphs
GT1:Tobs = {GT1 ,GT2 , . . . ,GTobs}, where the node connec-
tivity remains constant and the features vary across times-
tamps, as illustrated in Figure 1. At timestamp Tt, the
state of the graph is represented as GTt = (V, E ,X Tt),
where V is the set of N nodes and E is the set of edges.
The subset of nodes with observable features at Tt is de-
noted as VTt ⊆ V , with feature vectors X Tt = {xTt

i |
i ∈ VTt} ∈ R|VTt |×d1 . Each node i has an observation
set T i ⊆ Robs totali . Our goal is to learn low-dimensional
latent representations Zt ∈ RN×d2 for each node at any
timestamp t from the dynamic graph sequence GT1:Tobs , and
use these representations to reconstruct unobserved node

Figure 1. Illustration of five nodes in an dynamic graph sequence
sample. The left diagram illustrates the original graph structure
with fixed connections. The right diagram shows the presence or
absence of data for each node at each timestamp.

attributes X unobs = {xt
i | i ∈ V\Vt, t ∈ T \T i}. Addition-

ally, we aim to predict node attributes X Tobs+1:Tobs+F for
the next F timestamps.

3. Method
In this paper, we propose the CSG-ODE model. Follow-
ing the structure of VAE, CSG-ODE consists of two main
components: (1) Latent Distribution Generation: Given in-
complete dynamic graph data, this component generates an
approximate posterior distribution of the latent states for
all nodes; (2) Latent State Generation: Based on the ODE
function we designed, latent states are generated for any
given timestamp by sampling the initial state for each node.
The overall framework is illustrated in Figure 2.

3.1. Latent Distribution Generation

In this section, we describe how to learn the approximate
posterior distribution of the latent states for all nodes from
incomplete dynamic graph data, as shown in Figure 3.

Enhanced Time-varying Relationship between Nodes.
Existing GODE models utilize latent representations to
capture time-varying node relationships but primarily rely
on latent space correlations, overlooking the impact of
edges on information flow. Inspired by edge importance
(Noschese & Reichel, 2024), we propose an Information
Propagation-based Inter-node Importance Weight to better
capture these dynamics. We compute the partial derivative
of edge weights with respect to the total communicability
of the graph (Benzi & Klymko, 2013). A larger derivative
indicates greater contribution to information transmission,
making the edge more significant. By combining inter-node
importance with latent correlations, our model overcomes
the limitations of existing methods that rely solely on latent
space-based edge weights, this process is shown in the left
part of the Figure 3.
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Figure 2. An overview of the proposed CSG-ODE.

Specifically, we first represent the latent correlations be-
tween nodes using a static adaptive adjacency matrix (Wu
et al., 2019). This latent correlation does not require any
prior knowledge and can be dynamically adjusted during the
model’s learning process, thereby automatically discovering
the potential spatial relationships between nodes:

G = SoftMax(ReLU(EsE⊤
t )), (1)

where Es,Et ∈ RN×d1 represent the learnable embedding
of the source and target nodes, respectively, which are ran-
domly initialized. By multiplying Es and Et, we obtain the
latent correlation matrix G, where G = [Gij ] ∈ RN×N

and Gij represents the edge weight or latent correlation be-
tween node i and node j. Next, we calculate the importance
weights D = [Dij ] ∈ RN×N between nodes:

Lf (G
⊤
o , ee

⊤) ≈ exp0(Go
⊤ + βee⊤)− exp0(Go

⊤ − βee⊤)

2β
,

(2)

D =
Go ⊙ Lf (Go

⊤, ee⊤)

||Lf (Go
⊤, ee⊤)||F

, (3)

where Go ∈ RN×N represents the original adjacency matrix
of the graph. The vector e = [1, 1, . . . , 1]⊤ ∈ RN and
exp0(Go) denotes the matrix exponential minus the identity
matrix, represented by the power series expansion of the
exponential function (exp0(Go) = exp(Go) − I = Go +
G2

o

2! +
G3

o

3! + ...).

The term Lf (G
⊤
o , ee

⊤) denotes the Fréchet derivative with
respect to G⊤

o and ee⊤, which quantifies the total trans-
mission rate and is used to measure the contribution of
each edge to the overall information flow in the graph.
Equation (2) shows that this quantity is computed using
a finite difference approximation, where β denotes the
step size; smaller values of β generally yield higher ap-
proximation accuracy. We adopt the empirical formula
β = 2

N ×10−4 (Noschese & Reichel, 2024) for determining

the optimal step size. This choice is based on error analysis
of the finite difference method, aiming to balance truncation
and rounding errors, thereby minimizing the total numerical
error. The notation || · ||F represents the Frobenius norm,
with ||Lf (G

⊤
o , ee

⊤)||F corresponding to the total transmis-
sibility of the graph. The mixed edge weight between node
i and node j, denoted as Gmix

ij , is computed as follows:

Gmix
ij = Gij +W 1

ij ·Dij , (4)

where W 1 ∈ RN×N represents the learnable weight matrix.
Therefore, by integrating both the inter-node importance
and latent correlations, we address the limitations of edge
weights that are solely based on latent spatial correlations
between nodes. This fusion is beneficial for guiding the
subsequent learning of temporal node embeddings.

Theorem 3.1. For the computation of the node importance
weight matrix D ∈ RN×N , the time complexity is O(N3).

Note: Although the subsequent Frobenius norm and associ-
ated linear operations incur an additional O(N2) cost, this
is negligible in comparison to the dominant O(N3) com-
plexity arising from matrix multiplications.

Temporal node embedding. The goal of Latent Distri-
bution Generation Moudle is to learn temporal node em-
beddings from observable dynamic graph sequences and to
approximate the posterior distribution of node latent states
based on these embeddings. The temporal node embedding
process is shown on the right side of the Figure 3. It cap-
tures the structural information between nodes by building a
graph snapshot at each timestamp. (Zhu et al., 2016; Sankar
et al., 2020). Inspired by (Luo et al., 2024c), we dynami-
cally adjust Gmix based on sampling density and use a mask
matrix to construct graph snapshots for guiding the learning
of temporal node embeddings. By adjusting edge weights
based on temporal sampling density, we allocate node in-
fluence according to the differences in sampling density.
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Figure 3. Overview of the Latent Distribution Generation in the proposed CSG-ODE.

Detailed information on the dynamic density adjustment
mechanism is provided in Appendix A. Specifically, the
graph snapshot at timestamp Tt constructed based on the
dynamic adjustment of time sampling density is as follows:

GTt
ij = Gmix

ij ·MTt
ij × (1−W 2

ij ·α|σ
(
RTt

i

)
−σ

(
RTt

j

)
|),
(5)

where RTt
i represents the sampling density of node i at

timestamp Tt, σ represents the activation function, α is
the hyperparameter controlling the proportion of the time
density, W 2 ∈ RN×N denotes the learnable weight matrix,
and MTt ∈ RN×N represents the mask matrix at timestamp
Tt:

MTt
ij =

{
1, if both node i and j are observed at Tt,

0, otherwise.

(6)

For the graph snapshot at timestamp Tt, we use a Graph
Convolutional Recurrent Neural Network (GCRNN) update
operator FGCRNN that integrates graph structure and tem-
poral dynamics:

HTt = FGCRNN(G
Tt ,ETt ,HTt−1 ,Θ), (7)

where HTt ∈ RN×h is the hidden state at timestamp Tt and
Θ ∈ RN×I×O denotes the graph convolution parameters,
with I and O corresponding to the input and output feature
dimensions, respectively. ETt represents the set of all ob-
servable embedding vectors at timestamp Tt, where each
node’s observation is obtained through a MLPE :

ETt
i = MLPE(xTt

i ), Tt ∈ T i. (8)

Due to the varying time evolution patterns of different nodes,
the latent state distribution of each node also differs. As
discussed in (Bai et al., 2020), although there may be strong
spatial correlations between adjacent nodes, the dynamic
nature of time series data and various factors that may in-
fluence the nodes (such as node-specific attributes) lead
to diverse patterns between different nodes. Inspired by
(Bai et al., 2020), we assign dedicated parameters to each
node. Specifically, since the number of observable nodes
varies, we further compute the average of all observable
value embeddings E mean

i ∈ Rk for each node and use a
projection function φ(·):Rk → Rq represented by an MLP
to generate each node’s embedding Qi ∈ Rq:

Emean
i =

1

obs totali

obs totali∑
j=1

ETj,i

i , (9)

Qi = φ(Emean
i ). (10)

The node-specific graph convolution parameters Θ ∈
RN×I×O are obtained by multiplying the node represen-
tation matrix Q ∈ RN×q with weight matrice WC ∈
Rq×I×O,respectively:

Θ = QWC . (11)

We obtain the approximate posterior distribution of the latent
state for each node i by mapping the last observed hidden
state Hi = HTobs

i using a function ϕ(·), and then sample
the initial latent state z0i ∈ Rd2 for each node from this
approximate posterior distribution:

qϕ(z
0
i |GT1:Tobs) = N (µi,Σi), where µi, σi = ϕ(Hi),

(12)
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z0i∼p(z0i ) ≈ qϕ(z
0
i |GT1:Tobs). (13)

Detailed information on the construction method of the
approximate posterior distribution and the sampling process
can be found in the Appendix B.

3.2. Latent State Generation

In this section, we describe how to generate the latent state
of each node at any given timestamp from its initial state
z0i . The GODE model captures the evolution of node states
over continuous time by solving an ODE, allowing for more
accurate modeling of state changes. This provides a key
advantage in understanding the evolution of complex dy-
namic graphs. Existing methods, such as (Huang et al.,
2020; Luo et al., 2024a), typically model node evolution
through linear dynamics and interactions with other nodes,
neglecting nonlinear state evolution. For example, under
adverse weather conditions like heavy rain or snow, traffic
flow drops sharply, with sudden congestion emerging and
worsening over time. This nonlinearity is often overlooked,
limiting the model’s ability to capture complex dynamics.
Inspired by ControlSynth ODE (CSODE) (Mei et al., 2024),
we propose a generative model that uses ODE to model both
linear and nonlinear node state evolution. By incorporating
multiple subnetworks with nonlinear activation functions,
our model more effectively captures dynamic changes in
node states.

Specifically, we introduce interactions between nodes as
control information into the ODE function and use an ad-
ditional control function to represent the external influence
on the nodes. At the same time, we employ multiple sub-
networks with nonlinear activation functions to capture the
nonlinear changes in node states:

żti = A0z
t
i +

M∑
j=1

Ajfj
(
MLPS

j (zti)
)
+ g(cti),

ċti = GNN(zt1, z
t
2, ..., z

t
N ).

(14)

In this model, cti represents the interactions between nodes,
i.e., the external control information of the nodes obtained
through a GNN (Kipf et al., 2018). The control information
directly influences the latent state of the nodes through a
control function g(·),which is parameterized by a neural
network. This mechanism helps the nodes to adapt to ex-
ternal factors, thereby introducing dynamic adjustments to
node behavior within the model. We denote the subnetwork
as MLPS

j , with fj(·) representing the activation function
used by subnetwork j (such as tanh or ReLU, etc.). In this
work, we maintain that each subnetwork uses the same acti-
vation function (f1 = f2 = · · · = fM ). The matrix Aj (for
j = 1, 2, . . . ,M ) represents the learnable weight matrix,
which ensures that the weight matrices appropriately com-
bine to form the overall output of the ODE, thus enhancing
the model’s expressive capacity

To address the demands of high-stability scenarios, we pro-
pose the Stable CSG-ODE based on the CSG-ODE model.
The SCSG-ODE is characterized by the following ODE
form:

żti = Azti +

M∑
j=1

Afj
(
MLPS

j (zti)
)
+ g(cti), (15)

where A is a learnable antisymmetric matrix.
Remark 3.2. For any matrix A, we can control it to be an
antisymmetric matrix by using A−A⊤.

Stability Analysis: Consider the ODE defined by Equa-
tion (15). Under certain conditions, we can prove that the
system is stable. Specifically, when solving this ODE, re-
gardless of the initial values (initial states) sampled from
the approximate posterior distribution, the state evolution
described by the equation remains consistent and is not sig-
nificantly affected by the initial values. This demonstrates
that our model is insensitive to the initial conditions.

Definition 3.3. The initial conditions are insensitive: Even
when the initial conditions of the equation are subject to
minor perturbations, the solution will remain within a finite
and stable range.

When the depth of each subnetwork is set to 1, the subnet-
work MLPS

j can be equivalently represented by a weight
matrix W̃j ∈ Rd2×d2 . Under this setting, we present the
stability theorem of Equation (15) as follows:

Theorem 3.4. Assuming that the control information cti
does not depend on zti , and that for any i, j ∈ {1, 2, ...,M},
the condition W̃jW̃i = W̃iW̃j holds. Then, the Equa-
tion (15) is stable.

Based on Theorem 3.4, we can conclude that the stability
of the system ensures that when different initial latent states
z0i are sampled from the approximate posterior distribution,
the solution of Equation (15) will not experience drastic
fluctuations. Even in the presence of small perturbations,
the solution remains stable within a finite range, preventing
significant oscillations.Theorem 3.4 provides theoretical
guarantees for the stability of the model. A detailed proof
of this theorem can be found in the Appendix C.

By solving the ODE function, we obtain the latent state at
the desired time step:

z0i , ..., z
pred
i =

ODESolve(Equation (14), [z01 , ..., z
0
N ], (t0, ..., tpred)).

(16)
Given the initial latent states of each node z01 , z

0
2 , . . . , z

0
N ,

analytical solutions for ODE are typically unavailable.
Therefore, numerical methods, such as Euler’s method, are
employed to approximate the solution. A numerical ODE
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solver can compute the approximate value of the node state
zti at any time step t,assisting in simulating the system’s
behavior over time.

Finally, a decoder, represented by a neural network, is used
to decode the probability p(xt

i|zti) and recover the node
features xt

i. Under the VAE framework, all modules are
jointly trained by maximizing the evidence lower bound
(ELBO) of the likelihood function, as shown below:

LELBO = EZ0∼
∏N

i=1 qϕ(z0
i |G

T1:Tobs )[logp(X
t0:tpred)]−

KL[

N∏
i=1

qϕ(z
0
i |GT1:Tobs)||p(Z0)],

(17)
where p(Z0) =

∏N
i=1 p(z

0
i ) and p(z0i ) is a standard normal

distribution. The training process of this model is detailed
in Algorithm 1 in the Appendix I.

4. Experiments
4.1. Datasets

We evaluate our model on five diverse datasets: two syn-
thetic datasets, Springs (Kipf et al., 2018) and Charged (Kipf
et al., 2018), and three real-world datasets—CMU motion
capture data (walk capture from subject 35 and jump capture
from subject 118) (CMU, 2003), and the PEMS08 traffic
flow dataset (Song et al., 2020). Further details are provided
in Appendix D.

4.2. Baselines

To evaluate the effectiveness of the proposed CSG-ODE in
the task, we designed a comparative study with several exist-
ing methods, including four baseline models: Latent-ODE
(Rubanova et al., 2019), Edge-GNN (Gong & Cheng, 2019),
Weight-Decay (Cao et al., 2018), and LG-ODE (Huang et al.,
2020), as well as two advanced model variants: NRI+RNN
(Huang et al., 2020) and LG-CSODE. Detailed descriptions
of these models can be found in the Appendix F.

4.3. Experiment Setup

We evaluate our model on two tasks(Rubanova et al., 2019):

• Interpolation Task: Given a dynamic graph with
evolving nodes over the time range (t0, tn), we ob-
serve their state features at specific time points, with
partial observations due to practical constraints. The
task is to predict the complete dynamic trajectory of
nodes over the time range {t0, t1, . . . , tn}, based on
a subset of observed data. The subsampling ratio is
set to 40%, 60%, and 80%, and the observations are
independent across nodes. The objective is to predict
the missing feature values for all time points. We eval-

uate model performance using the Mean Squared Error
(MSE) metric (Huang et al., 2020; Luo et al., 2024a;
Huang et al., 2024), comparing the reconstructed tra-
jectory with the true trajectory.

• Extrapolation Task: We split the time range into two
segments: (t0, tn1) and (tn1, tn). During training, the
model reconstructs the trajectory for the second seg-
ment (tn1, tn) using observations from the first seg-
ment. In testing, the model predicts the trajectory for
the future time range (tn, tn2) based on observations
from (t0, tn). The model is conditioned on partial ob-
servations (40%, 60%, and 80%) from the first segment,
and the reconstructed trajectory is evaluated using the
MSE metric.

Further details on the experimental setup and hyperparame-
ters can be found in Appendix E.

4.4. Results

Table 1 presents the MSE for interpolation tasks across dif-
ferent datasets and methods. Latent-ODE, which does not
consider the interaction information between nodes, exhibits
poor performance. Edge-GNN, although propagating tem-
poral dynamic information in the graph, fails to capture
complex temporal dependencies, resulting in suboptimal
performance. Weight-Decay does not fully account for the
dynamic interactions between nodes and only performs a
simple parameterization of time intervals, leading to unsat-
isfactory results. LG-ODE leverages neural ODE to infer
complex latent dynamics but still falls short in modeling
the temporal relationships and nonlinear evolution between
nodes, limiting its performance. Although LG-CSODE em-
ploys our designed ODE function for modeling, it relies
solely on latent correlations to model node relationships dur-
ing encoding, which negatively impacts performance. As
the observation ratio increases, the reconstruction loss for all
models decreases, as expected, because more observed data
helps the model more accurately reconstruct the unobserved
portions.

Table 2 shows the MSE for extrapolation tasks, which is
higher compared to interpolation tasks, as predicting future
trajectories is more challenging than reconstructing missing
data. Similar to interpolation tasks, the prediction errors
for all models decrease gradually as the observation ratio
increases. Our model demonstrates significant performance
improvements across multiple datasets and settings, further
validating the effectiveness of the proposed design. The
results are visualized in the Appendix G.

Furthermore, we analyzed the potential sources of error in
CSG-ODE. The model assumes that the underlying interac-
tion graph remains static over time; however, this assump-
tion does not fully hold in real physical systems, which may
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Table 1. Mean Squared Error (MSE×10−2) on Interpolation task.
Dataset Springs Charged Motion-walk Motion-jump PEMS08

ration 40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80%
Latent-ODE 0.4729 0.4207 0.3757 1.0185 1.0352 0.7411 0.1405 0.0799 0.0766 0.1598 0.1688 0.1028 0.4855 0.4710 0.4672

Weight-Decay 0.9127 0.9504 0.9416 2.4532 2.0855 1.3690 0.3465 0.3314 0.3139 0.3940 0.7005 0.4820 1.0356 1.0641 1.1443
Edge-GNN 1.0488 1.0681 0.7171 1.3635 1.4446 1.0158 0.5044 0.4414 0.4305 0.5736 0.5571 0.5274 1.1901 1.1959 1.0826
NRI+RNN 0.4098 0.3382 0.3107 1.2010 1.0784 0.9201 0.1065 0.0893 0.1211 0.1212 0.1287 0.1185 0.4651 0.3787 0.4691
LG-ODE 0.2628 0.2648 0.2313 0.7971 0.7656 0.7157 0.0823 0.0475 0.0795 0.0936 0.1004 0.0974 0.2982 0.2965 0.3492

LG-CSODE 0.2158 0.1666 0.1937 0.7794 0.7556 0.7229 0.0461 0.0426 0.0435 0.0665 0.0648 0.0649 0.3214 0.2890 0.3525
Ours 0.1550 0.1440 0.1386 0.7947 0.7169 0.7099 0.0439 0.0406 0.0400 0.0426 0.0414 0.0405 0.2526 0.2827 0.3360

Table 2. Mean Squared Error (MSE×10−2) on Extrapolation task.
Dataset Springs Charged Motion-walk Motion-jump PEMS08

ration 40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80%
Latent-ODE 5.5751 3.7938 3.8878 11.7554 10.7649 18.8735 0.7222 1.0262 0.9042 0.5166 0.5331 0.5947 6.2301 4.4778 3.8409

Weight-Decay 5.1282 5.1279 4.8347 8.2000 7.6614 7.3471 5.0175 4.8270 4.6517 3.5887 2.9780 3.0594 5.7307 6.0525 4.7664
Edge-GNN 5.0331 4.3959 2.9056 7.9716 7.6917 7.1133 3.9712 4.9322 3.3552 2.8404 2.7429 2.2067 5.6244 5.1885 3.8706
NRI+RNN 2.2191 2.1437 2.2998 6.2108 5.8829 6.1291 1.0565 1.0636 0.8843 0.7556 0.6562 0.5816 2.4798 2.5302 2.2721
LG-ODE 1.4861 1.6151 1.5427 5.6522 5.4162 5.7353 0.3835 0.4391 0.4084 0.2743 0.2709 0.2686 1.7726 1.9063 1.5241

LG-CSODE 1.3508 1.2975 1.2750 5.8291 5.5811 5.6171 0.1853 0.1583 0.1638 0.2536 0.2837 0.3242 2.4391 3.5231 3.4111
Ours 1.3495 1.2969 1.2691 5.5086 4.7690 4.4966 0.1791 0.1539 0.1593 0.1393 0.1290 0.1248 1.6607 1.7436 1.4937

introduce a certain degree of bias. Numerical errors inherent
in the ODE solving process are also unavoidable. In addi-
tion, real-world data are often influenced by complex factors
such as environmental changes, noise, and latent unmod-
eled dynamics, none of which are considered in the current
model, potentially further exacerbating error accumulation.

4.5. Ablation Study

To further analyze the components of the model, we conduct
an ablation study by considering four model variants. First,
due to the differing time patterns across nodes, simply shar-
ing a single parameter space for all nodes is insufficient to
capture these differentiated time dependencies. Therefore,
we adjust the parameter space for each node according to its
representation to accommodate its respective time pattern.
We compare the learnable adaptive node representation ma-
trix Q ∈ RV×q with the handcrafted node representation
matrix, where the former is denoted as Ours-AQ. Addi-
tionally, we remove the node importance weights based on
information propagation, resulting in the variant Ours-no
EI. Second, in terms of the control term in the neural differ-
ential equation, we remove the control function g(·), which
influences the node states, effectively using only the interac-
tion information between nodes. This variant is denoted as
Ours-no g(·). Finally, we remove the nonlinear term in the
neural ODE equation, retaining only the control informa-
tion and linear terms; this variant is referred to as Ours-no
NI. Through these variants, we aim to gain a deeper under-
standing of the role of each component in the model and its
contribution to the overall performance.

The results in Table 3 and Table 4 reveal several key find-
ings: (1) Using the mean of node observations to construct

node representations yields better interpretability and per-
formance than adaptive node embeddings. (2) Removing
the information transmission-based inter-node importance
weighting causes a significant performance drop, as this
weighting encodes both the graph topology and the role
of edges in global information propagation. Integrating
this weighting with latent pairwise correlations enhances
the model’s ability to capture time-varying inter-node rela-
tionships. (3) Excluding the control function g(·) degrades
performance, since g(·) bridges external control inputs and
internal dynamics; its absence reduces the node’s sensitivity
to external influences. (4) Removing the nonlinear term
weakens the model’s capacity to capture complex dynamics,
as real-world systems are inherently nonlinear; incorporat-
ing nonlinearity improves expressiveness and adaptability.

4.6. Parameter Sensitivity

To investigate the impact of the hyperparameter α, which
controls the proportion of time density, we conducted experi-
ments using walk capture data from Subject 35. We varied α
from the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
and analyzed its effect across two tasks. As shown in Fig-
ure 4, for the interpolation task, changes in α had minimal
impact, and the model’s performance remained stable. This
suggests that, regardless of sampling density, the model can
effectively infer missing data based on existing trends. For
the extrapolation task, we observed that when the observa-
tion ratio was low, changes in α had little effect. However,
as the observation ratio increased, performance improved
with higher sampling density, as the increased density bet-
ter captured the data dependencies. Accordingly, we se-
lected α = 0.5 for the majority of experiments, since the
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Table 3. Ablation study on all datasets (MSE ×10−2) for the Interpolation task.
Dataset Springs Charged Motion-walk Motion-jump PEMS08

ration 40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80%
CSG-ODE AQ 0.1520 0.1526 0.1463 1.8275 1.0288 0.8397 0.0674 0.0614 0.0618 0.0880 0.0691 0.0664 0.7949 0.6989 0.6058
CSG-ODE no EI 0.1841 0.1712 0.1577 0.8005 0.7323 0.7855 0.0470 0.0435 0.0411 0.0440 0.0429 0.0413 0.2644 0.2531 0.4137
CSG-ODE no g(·) 0.1655 0.1918 0.1417 0.8236 0.6531 0.7422 0.0480 0.0440 0.0433 0.0432 0.0449 0.0436 0.2595 0.2466 0.4857
CSG-ODE no NI 0.1913 0.1592 0.1507 0.7950 0.7775 0.7768 0.0456 0.0426 0.0478 0.0430 0.0409 0.0443 0.2681 0.2811 0.3744

CSG-ODE 0.1550 0.1440 0.1386 0.7947 0.7169 0.7099 0.0439 0.0406 0.0400 0.0426 0.0414 0.0405 0.2526 0.2602 0.3360

Table 4. Ablation study on all datasets (MSE ×10−2) for the Extrapolation task.
Dataset Springs Charged Motion-walk Motion-jump PEMS08

ration 40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80%
CSG-ODE AQ 4.4046 3.0096 2.0561 11.8165 8.3525 6.5031 0.2337 0.1840 0.1695 0.2620 0.2075 0.1978 2.8898 2.6808 2.5539
CSG-ODE no EI 2.4394 2.0790 1.6435 5.6443 5.0040 4.5996 0.1784 0.1549 0.1212 0.1413 0.1298 0.1253 1.9424 1.7881 1.7049
CSG-ODE no g(·) 2.4239 2.0039 1.4903 5.6228 5.0025 4.6865 0.1849 0.1545 0.1494 0.1424 0.1311 0.1264 1.9448 1.6178 2.2629
CSG-ODE no NI 1.5368 1.5077 1.4983 5.5850 5.0550 4.5048 0.1954 0.1635 0.1601 0.1405 0.1293 0.1261 1.7763 1.8778 1.5109

CSG-ODE 1.3495 1.2969 1.2691 5.5086 4.7690 4.4966 0.1791 0.1539 0.1593 0.1393 0.1290 0.1248 1.7726 1.7436 1.4937

results tend to stabilize and achieve a local optimum around
α = 0.5 in the extrapolation experiments.

4.7. SCSG-ODE Performance

We performed a comparison experiment of SCSG-ODE with
walk capture data from subject 35 with baselines. The Ta-
ble 5 indicate that CSG-ODE outperforms all other models,
while SCSG-ODE achieves near-optimal performance, a
result that is reasonable. Compared to CSG-ODE, SCSG-
ODE fixes the learnable weight matrix to the same skew-
symmetric matrix, while different subnetworks simulate the
nonlinear evolution of the nodes. Using distinct weight
matrices ensures that these subnetworks, when appropri-
ately combined, produce the overall output of the model,
thus enhancing the model’s expressive power. Although
CSG-ODE outperforms SCSG-ODE, we have theoretically
demonstrated that by controlling the weight matrices, this
design significantly improves the model’s stability. More-
over, relative to LG-ODE, NRI+RNN, Edge-GNN, Weight-
Decay, and Latent-ODE models, the performance of SCSG-
ODE is optimal. To verify the correctness of the theoretical
derivations, we conducted additional experiments on the per-
formance of CSG-ODE and SCSG-ODE in the extrapolation
task. Specifically, we conducted 5 rounds of experiments
for each model with different subsampling ratios on walk
motion capture data from subject 35 and calculated their
means and standard deviations. The experimental results
are shown in the Table 6. It is worth noting that the stan-
dard deviation of SCSG-ODE is always about half of that
of CSG-ODE under all subsampling ratios, which indicates
that SCSG-ODE significantly improves the stability of the
model under the same experimental setup, and thus verifies
the correctness of our theoretical derivations. Therefore, the
SCSG-ODE is an ideal choice when we face the demands
of scenarios that require high stability.

Table 5. Performance comparison of SCSG-ODE, CSG-ODE, LG-
ODE, NRI+RNN, Edge-GNN, Weight-Decay and Latent-ODE
on motion-walk datasets. The best and second best results are
highlighted in blue and brown, respectively.

Task Interpolation Extrapolation
ratio 40% 60% 80% 40% 60% 80%

Latent-ODE 0.1405 0.0799 0.0766 0.7222 1.0262 0.9042
Weight-Decay 0.3465 0.3314 0.3139 5.0175 4.8270 4.6517

Edge-GNN 0.5044 0.4414 0.4305 3.9712 4.9322 3.3552
NRI+RNN 0.1065 0.0893 0.1211 1.0565 1.0636 0.8843
LG-ODE 0.0823 0.0475 0.0795 0.3835 0.4391 0.4084

CSG-ODE 0.0439 0.0406 0.0400 0.1791 0.1539 0.1593
SCSG-ODE 0.0435 0.0410 0.0438 0.2447 0.2035 0.1883

Table 6. Comparison of the stability performance of SCSG-ODE
and CSG-ODE on motion-walk.

ratio 40% 60% 80%
CSG-ODE 0.1883± 0.0092 0.1676± 0.0109 0.1524± 0.0097

SCSG-ODE 0.2304± 0.0056 0.1978± 0.0050 0.1787± 0.0043

5. Related Work
5.1. GNN for Dynamic Graph Representation

GNN (Scarselli et al., 2008) have become a powerful tool for
dynamic graph representation learning. In dynamic graphs,
time affects not only node features and edge weights but
also the structure of the graph itself. Recent GNN-based
models (Wu et al., 2019; Hajiramezanali et al., 2019; Rossi
et al., 2020) focus on capturing temporal changes in node
features. These models have been widely applied in areas
such as traffic prediction (Zhao et al., 2019; Guo et al., 2020)
and healthcare (Gao et al., 2021; Wang & Jin, 2025).How-
ever, most of these models assume complete, synchronized
observations with uniform time intervals. This assumption
limits their effectiveness in handling incomplete data, par-
ticularly when time intervals are irregular. To address this,
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Figure 4. Comparison of the effect of different α values on model performance in two tasks.

we introduce a VAE-based framework, using a GNN en-
coder to infer an approximate posterior distribution of node
latent states from irregularly sampled partial data. We also
integrate a neural ODE to model the dynamic evolution of
node states, enabling the generation of latent node states at
any timestamp and overcoming the limitations of existing
methods in incomplete data scenarios.

5.2. NODE for Irregularly Sampled Multivariate Time
Series Modeling

Modeling irregularly sampled multivariate time series is
challenging due to uneven time intervals and incomplete ob-
servations. Neural Ordinary Differential Equations (NODE)
(Chen et al., 2018) combine neural networks and ODE to
model dynamic systems and have proven effective for time
series data. Several variants have been proposed (Rubanova
et al., 2019; Kidger et al., 2020; Mei et al., 2024), with some
addressing the GNN over-smoothing problem and extending
its use in multivariate time series modeling through GNN or
message-passing mechanisms (Deng et al., 2019; Poli et al.,
2019; Xhonneux et al., 2020).Recently, GODE has been in-
tegrated into the VAE framework to model irregularly sam-
pled multivariate time series (Huang et al., 2021; Wen et al.,
2022; Yıldız et al., 2022; Luo et al., 2024b; Gravina et al.,
2024). LG-ODE (Huang et al., 2020) employs unsupervised
learning to infer initial states from irregular observations and
uses NODE for continuous-time latent dynamics. (Yıldız
et al., 2022) accurately decompose the independent dynam-
ics of individual objects from their interactions and infer
the independent dynamics and its interaction with reliable
uncertainty estimates using ODE for underlying Gaussian
processes. PGODE (Luo et al., 2024a) incorporates latent
representations into the graph ODE, enhancing the model’s
expressiveness by identifying interaction prototypes. How-
ever, existing GODE models mainly capture latent correla-

tions between nodes but overlook nonlinear changes in node
states. In contrast, our model addresses this limitation by
introducing node importance weights based on information
propagation. During the decoding phase, we use multiple
subnetworks with nonlinear activation functions to capture
the nonlinear evolution of node states, providing a more
comprehensive representation of their dynamic behavior.

6. Conclusion
The CSG-ODE model proposed in this paper effectively
addresses the limitations of existing GODE models in mod-
eling time-varying relationships between nodes by introduc-
ing node importance weights based on information propaga-
tion. Additionally, the model utilizes multiple sub-networks
with nonlinear activation functions to capture the nonlinear
evolution of node states, further enhancing its expressive
power. To improve the model’s stability, we introduce an ex-
tended version, SCSG-ODE, and theoretically demonstrate
that this extension significantly enhances stability. Exper-
imental results show that CSG-ODE outperforms existing
GODE models across multiple datasets. Although CSG-
ODE outperforms SCSG-ODE in terms of performance, the
latter demonstrates a more pronounced advantage in sta-
bility. Future research could focus on further optimizing
the computational efficiency and generalization ability of
both CSG-ODE and SCSG-ODE for large-scale and more
complex graph data.
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A. Detail of Density-aware Dynamic Adjustment
By adjusting the edge weights between nodes based on temporal sampling density (Luo et al., 2024c), we can reasonably
allocate the influence of each node in the graph according to the differences in sampling density. Nodes with lower sampling
density may have less accurate or incomplete information, so their edge weights with other nodes are reduced to avoid
excessive interference from inaccurate state data during node evolution.In contrast, nodes with higher sampling density
have more accurate information, enabling effective information sharing with other nodes, thus their edge weights are larger,
ensuring their influence in the graph. The calculation formula for the sampling density RTt

i of node i at each observable
timestamp Tt is as follows:

RTt
i =


(Tt,i−Tt−1,i)+(Tt+1,i−Tt,i)

2 if both Tt−1,i and Tt+1,i exist,
Tt,i − Tt−1,i if only Tt−1,i exist,
Tt+1,i − Tt,i if only Tt+1,i exist,
Tobs−T1

2 if neither Tt−1,i nor Tt+1,i exist.

The sampling density is determined by calculating the average time interval between each observation point and its preceding
and succeeding observation points. For timestamp Tt, if node i has no preceding or succeeding observation points at this
timestamp, it indicates that this is the only observation point for node i. In this case, its sampling density is set to half of the
maximum observation time span.

B. Detail of Distribution Generation and Sampling
To obtain the approximate posterior distribution of the latent state for each node, we input the hidden state Hi ∈ Rh updated
at the last observed timestamp of node i into a MLP ϕ(·) : Rh → R2d2 , which outputs a distribution vector HD ∈ R2d2 :

HD = ϕ(Hi).

Next, we split this vector into two parts, with the first d2-dimensional vector representing the mean vector µi =
[µi,1, µi,2, ..., µi,d2

] ∈ Rd2 of node i, and the second d2-dimensional vector representing the variance vector σi =
[σi,1, σi,2, ..., σi,d2

] ∈ Rd2 of node i. Notably, the approximate posterior distribution of the latent state generated by
the node is a d2-dimensional Gaussian distribution N (µi,Σi), with the assumption that the distributions across dimensions
are independent. Thus, the covariance matrix Σiis represented as a diagonal matrix diag(σi,1, σi,2, ..., σi,d2), where the
diagonal elements correspond to the variance in each dimension of the variance vector, and each element of µi and σi

corresponds to the mean and variance of the Gaussian distribution in each dimension, respectively.

We apply the Reparameterization Trick (Kingma et al., 2013) to sample the initial latent state z0i ∈ Rd2 for each node from
this approximate posterior distribution N (µi,Σi). Specifically, when sampling from a multivariate Gaussian distribution
where each dimension’s distribution is independent, we first sample from each univariate Gaussian distribution, then combine
them into a d2-dimensional vector:

z0i = (µi,1 + σi,1 ∗ ε1, µi,2 + σi,2 ∗ ε2, ..., µi,d2
+ σi,d2

∗ εd2
),

where ε ∼ N (0, 1) is sampled from the standard normal distribution.

C. Proof of Theorem 3.4
Lemma C.1. (Haber & Ruthotto, 2017; Gravina et al., 2024)The equation is stable if and only if the real part of all
eigenvalues of the Jacobian matrix J(t) of the equation is zero, i.e., Re(λi(J(t))) = 0,∀i = 1, . . . , d2.

Proof. Since we set the depth of each subnetwork to 1 and the subnetwork MLPS
j is represented as the weight matrix W̃j ,

the equation can be simplified to the following form:

żti = Azti +

M∑
j=1

Afj(W̃j(z
t
i)) + g(cti).

The eigenvalues of the Jacobian matrix are key factors in controlling the sensitivity of the solution to initial conditions. The
Jacobian matrix describes how the system state responds to small perturbations, and its eigenvalues determine the rate of
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expansion or contraction of the system in different directions.

J(t) = (I +

M∑
j=1

W̃jf
′(zti))A.

Let P = (I+
∑M

j=1 W̃jf
′(zti)).In the space of non-diagonal real d2×d2 matrices, the set of non-diagonalizable matrices (in

the complex field) has zero measure (Bhatia, 2013). Therefore, under random initialization, the matrix W̃j is diagonalizable
with probability 1,i.e., W̃j = VjΛjV

−1
j , where Λj = diag(λj1 , . . . , λjd2

) ∈ Cd2×d2 . By assumption, for any i, j ∈
{1, 2, ...,M}, all W̃jW̃i = W̃iW̃j holds, then all matrices W̃j can be diagonalized simultaneously. Hence, by similarity, we
can rewrite it as:

P = (I +

M∑
j=1

Λjf
′(zti)).

Moreover, since the derivative of the activation function tanh is non-negative, P is clearly invertible. Therefore, the Jacobian
matrix is the result of the matrix multiplication between an invertible diagonal matrix and the weight matrix, i.e.,

J(t) = PA.

Let λ be an eigenvalue of PA with the corresponding eigenvector ṽ. We haves

PAṽ = λṽ,

Aṽ = λP−1ṽ,

ṽ∗Aṽ = λ(ṽ∗P−1ṽ).

where * denotes the conjugate transpose, and it is important to note that ṽ∗P−1ṽ is a real number. Since A is a anti-symmetric
matrix over the complex field, we have A∗ = A⊤ = −A,and thus

(ṽ∗Aṽ)∗ = ṽ∗A∗ṽ = −ṽ∗Aṽ.

This implies that ṽ∗Aṽ must be purely imaginary, because the conjugate transpose of a real number equals its negative,
which only holds when the number is purely imaginary. Since ṽ∗Aṽ is purely imaginary, it follows that λ must be purely
imaginary, i.e, Re(λi(J(t))) = 0 for all i = 1, . . . , d2. By Lemma C.1, this proves that the equation is stable.

D. Dataset Details
D.1. Simulated Datasets

Following the method in (Kipf et al., 2018), we constructed two simulated datasets: Spring and Charged. In the spring
system, particles are interconnected by springs, and their interactions follow Hooke’s law. Each particle interacts with others
with equal probability. In the charged particle system, particles carry electric charges and interact via electromagnetic forces,
which can be either attractive or repulsive, each occurring with equal probability. Each dataset comprises samples of five
particles evolving within a 2D box without external forces (aside from possible wall collisions). Particle trajectories are
simulated by solving two distinct partial differential equations (PDEs), one for each interaction type. Simulations run for
6000 time steps, with data subsampled every 100 steps. Each particle is represented by four features: position and velocity
in both x and y directions. To simulate irregular partial observations, we adopt the approach from (Huang et al., 2020).
For each particle, the number of observed points n is drawn from a uniform distribution U(40, 52), and n time steps are
uniformly sampled from the 6000-step trajectory for training. For extrapolation evaluation, 40 observations are sampled
from steps [6000, 12000] using the same method. Sampling is performed independently for each particle. Following
(Huang et al., 2020), we generate 20k training and 5k test samples for both datasets. All features are standardized to have a
maximum absolute value of 1 in both the training and test sets.
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Table 7. Statistics of the datasets used in the experiments.

Spring Charged Motion-walk Motion-jump PEMS08
#Nodes 5 5 29 29 170
#Node ft 4 4 6 6 3
#Edges 1-20 25 56 56 548
#Edge ft 1 2 1 1 1
#Train 20000 20000 16 21 199
#Test 5000 5000 7 9 49

#Number of samples in Train U(40,52) U(40,52) U(30,42) U(30,42) U(40,52)
#Number of samples in Test U(40,52)+40 U(40,52)+40 U(30,42)+40 U(30,42)+40 U(40,52)+40

D.2. CMU Datasets

The CMU dataset (CMU, 2003) is used for human pose recognition and motion analysis, containing three-dimensional
human motion data obtained through motion capture systems such as optical cameras or sensors. We selected two datasets:
the walk sequence of subject 35 and the jump sequence of subject 118. Each sample consists of 29 trajectories, each tracking
a joint. Each joint has six features: displacement along the x, y, and z axes, and angles relative to the x, y, and z axes. Similar
to the simulated datasets, for each joint in the motion capture data, we sample the number of observations n from a uniform
distribution U(30, 42), and uniformly extract n observations from the first 50 frames as the training trajectory. For testing,
40 observations are sampled from frames [51,99]. We divide the walk experiments into non-overlapping training (16 trials)
and test sets (7 trials), and similarly, the jump experiments into non-overlapping training (21 trials) and test sets (9 trials).
All features are normalized such that the maximum absolute value is 1 in both the training and testing datasets.

D.3. PEMS08

The PEMS08 dataset (Song et al., 2020) originates from the traffic flow monitoring system in California, USA and records
traffic flow data from various sensor points over different time periods. The PEMS08 dataset includes traffic flow data from
170 nodes over a continuous 62-day period, starting from July 1,2016. The data collection frequency is every 5 minutes, with
each sample containing three features: the number of vehicles passing through in 5 minutes, the speed of the vehicles, and
the occupancy rate. Similar to the generated datasets, for the training data, we divide the first 11,940 time steps into groups
of 60 time steps, resulting in 199 non-overlapping subsequences. Observations for each node are randomly sampled from a
uniform distribution U(40, 52), with n observations selected from each group of 60 time steps. For the test set, data from
time steps [11,941,17,820] is selected, and every 120 time steps are divided into a group, generating 49 non-overlapping
subsequences. For each test sequence, the first 60 time steps are sampled using the same method as the training set, and 40
observations are randomly selected from the 61st to the 120th time steps. All features are standardized, ensuring that the
maximum absolute value in both the training and test datasets is 1.

The statistics of the five datasets are reported in Table 7.

E. Experiment Setup
E.1. Interpolation

Fora system consisting of multiple nodes, the first observable time point for each node may differ. This means that the
observation timestamps for each node are not aligned, and thus we cannot simply use a fixed time point as the starting time
for all nodes. To handle these misaligned observation times consistently, we define a unified starting time tstart = 0 for all
nodes, which serves as the initial time point for the system, and normalize all observation times to the range [0, 1]. This
normalization process ensures that the time series for all objects are processed within a unified time frame, eliminating the
issue of inconsistent time points across objects. By applying such time normalization, we assume that interactions between
objects are continuous, starting from tstart = 0 and modeled within the time range [0,1]. This allows us to apply ODE
within this standardized time frame to describe the dynamic behavior of the system and infer the complete traiectories based
on the qiven partial observation data.

15



CSG-ODE: ControlSynth Graph ODE for Modeling Complex Evolution of Dynamic Graphs

Table 8. Hyperparameter settings for every dataset .

Hyper
parameter

Values
Spring Charged Motion-walk Motion-jump PEMS08

batch 256 256 8 32 4
learing rate 0.0005

dropout 0.2
k 64 64 64 64 16
q 32 32 32 32 8

Alpha 0.5
M 2

clip 10
epoch 50
h 16

augment dim 64 64 64 64 0
L2 0.001

subnetworks width 128 128 128 128 64
subnetworks dipth 1

ODEsolve Euler
Optimizer Adam

E.2. Extrapolation

During the training process, we manually segment each sequence, selecting the system’s starting time as tstart = tn1 =
tn−t0

2 ,and the observations prior to tstart are fed into the encoder to estimate the latent initial state. Observations at or after
tstart are treated as ground truth data for reconstructing the latter part of the trajectory. For the testing process, in addition
to using the first half of the data from (t0, tn),we also sample observation data from the range (tn, tn2) to evaluate the
model’s extrapolation capability. Therefore, we set tstart = tn′ with observations before tn being input into the encoder and
observations at or after tn used as ground truth data to reconstruct the latter part of the trajectory. All observation times are
normalized to the range [0, 1].

E.3. Hyper-Parameter

In the Table 8, we report the hyperparameters used for all datasets in the experiments.

F. Details of Baselines
We first consider Latent-ODE (Rubanova et al., 2019), which is suitable for modeling a single incomplete time series. This
method uses NODE to encode information from incompletely sampled time points, but it does not account for interactions
between nodes, making it incapable of directly capturing information transfer between nodes. Edge-GNN (Gong & Cheng,
2019) models time intervals as edge attributes, combining temporal information with graph structure to learn interactions
between nodes via GNN. The time intervals are reflected in the edge attributes through a weighting mechanism, thus
propagating temporal dynamic information across the graph. Weight-Decay (Cao et al., 2018) employs a simple exponential
decay function to model time intervals as h(t + ∆t) = exp{−τ∆t} · h(t),capturing the influence of time intervals on
features through the decay function. However, it does not fully consider the dynamid interactions between nodes, as it is
merely a simple parametrization of time. RNN-D (Che et al., 2018) is a multivariate time series (MTS) model based on
RNNs for handling incomplete data. It fills missing values by connecting the feature vectors of all nodes uniformly, but it
neglects interactions between nodes and assumes independence across all nodes, thus failing to model dynamic interactions
and capture information transfer between nodes. NRI (Kipf et al., 2018) is a method for modeling relationships between
nodes and predicting time series in dynamic systems, particularly suited for data with a graph structure. (Huang et al., 2020)
combines RNN-D with NRI to form RNN-NRI, which is evaluated in two tasks. LG-ODE (Huang et al., 2020) combines the
interaction functions of GNN with NODE, providing a flexible and powerful tool for modeling dynamic systems. It excels
in continuous-time dynamic modeling, handling irregular sampling, and utilizing node interactions, making it suitable for a
wide range of dynamic graph tasks. Additionally, we replace the ODE function in LG-ODE with the ODE function we

16



CSG-ODE: ControlSynth Graph ODE for Modeling Complex Evolution of Dynamic Graphs

designed, retaining the encoding scheme of LG-ODE. This modelis referred to as LG-CSODE, LG-CSODE is better suited
for complex node evolution, offering significant advantages in capturing the nonlinear evolution of node states.

G. Results Visualization
The Figure 5 visualizes the results of our model in the interpolation task on the Spring dataset, with observation percentages
of 40% and 60%. The Figure 6 illustrates the results of our model in the extrapolation task on the Spring dataset

Figure 5. Visualization of interpolation results for spring system.

Figure 6. Visualization of extrapolation results for spring system.

H. More Experiment Results
H.1. Model Scaling

In the previous experiments, our model demonstrated significant advantages over various baseline models while maintaining
the same number of parameters and architecture configuration. Building on these findings, our extended experiments
primarily focus on exploring the scalability of the model, rather than further comparisons with other models Taking the
walk capture data from Subject 35 as an example, we investigate the impact of increasing the number of sub-networks,
sub-network width, and sub-network depth on system performance. Specifically, the network width refers to the number of
hidden layers in the fully connected layers, set to 128, 256, 512, 1024, and 2048; the network depth refers to the number
of hidden layers in the fully connected layers, set to 1,2,3,4,and 5; and the number of sub-networks is set to 1,2,3,4,and 5.
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Figure 7. Comparison of the performance of the CSG-ODE model that increases only the number of sub-networks, sub-network width, or
sub-network depth in both tasks (with fixed learning rate).

To maintain consistency across experiments, when adjusting one variable, the other two variables and the model’s other
hyperparameters (e.g., learning rate) remain unchanged.

In this experiment, we controlled the learning rate to be 0.0005, and the experimental results are shown in the Figure 7.
In terms of overall performance, increasing the network width network depth, and number of sub-networks resulted in
improved performance for both tasks. Moreover, we found that the MSE for both tasks first decreased and then increased
as the three parameters above were increased, with the minimum MSE typically occurring whem these parameters were
adjusted to their median values. For the CSODE (Mei et al., 2024) model, the learning rate formula used in the design of
this experiment is: learning rate = k

width×
√
M

, where k is a constant, and M is the number of sub-networks. This formula
adjusts the learning rate based on the width and moderately adjusts it according to the number of sub-networks to address the
complexity. For example, with a width of 512 and 2 sub-networks, the learning rate is 1

512×
√
2

. Therefore, we applied this
learning rate formula during the validation process to adjust the initial learning rate and observe the model’s performance as
complexity increases. Using the same data, we conducted experiments for both tasks with a 60% observation ratio, and
the experimental results are shown in the Figure 8. The results indicate that increasing the network width, the number of
sub-networks, and appropriately adjusting the learning rate can lead to a stable performance improvement for our model.

H.2. Impact of Solver Choice

Table 9. Comparison of Mean Squared Error (MSE×10−2) and running time of Euler and Dopri5 solvers for two tasks

Interpolation Extrapolation

40% Time 60% Time 80% Time 40% Time 60% Time 80% Time
Dopri5 0.0427 1600s 0.0384 1700s 0.0377 1800s 0.1583 900s 0.0919 900s 0.0972 1000s
Euler 0.0439 900s 0.0406 950s 0.0400 1050s 0.1791 550s 0.1539 550s 0.1593 600s

Differential equations are fundamental tools for describing many dynamic systems, and NODE use these equations to model
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Figure 8. Comparison of the performance of CSG-ODE models with different numbers and widths of subnetworks on both tasks (dynamic
adjustment of learning rate).

the dynamic evolution of nodes. In order to simulate the solution of differential equations via computers, numerical solvers
are required to approximate the solutions of these equations. The choice of numerical solver directly influences both the
accuracy of the model and its computational efficiency.

Numerical solvers can generally be classified into two categories: explicit methods and implicit methods. Explicit methods
are relatively simple in terms of computation, as each step only depends on the current known values. As a result, they are
usually faster in computation, but their accuracy may be lower. Implicit methods, on the other hand, involve not only the
current known values but also require consideration of future values in each step. While this makes the computation more
complex, implicit methods typically offer higher accuracy and better stability. Furthermore, solvers can also be classified
based on their order of accuracy and their ability to adapt the step size. A higher order generally corresponds to better
accuracy, while an adaptive step size allows the solver to dynamically adjust the step length based on error estimates, thereby
improving computational efficiency without compromising precision.

The Euler method is a first-order explicit solver known for its simplicity and computational efficiency. Although it has lower
accuracy, its simplicity makes it suitable for preliminary trials and rapid computations. Dopri5, a fifth-order explicit adaptive
solver (a variant of the Runge-Kutta method), offers higher accuracy and can adjust the step size based on estimated errors,
thus providing a balance between accuracy and computation time. In this experiment, we used the walk capture data from
Subject 35 as an example to compare the impact of two solvers (Euler’s method and Dopri5) on the model’s prediction
accuracy and computational efficiency.

Table 10. Friedman test statistics

Task ratio Friedman statistic(χ2) Degrees of Freedom Significance ps

Interpolation
40% 28.54 6 7.42×10−5

60% 28.97 6 6.16×10−5

80% 28.03 6 9.28×10−5

Extrapolation
40% 25.80 6 2.42×10−4

60% 26.40 6 1.88×10−4

80% 27.77 6 1.04×10−4

The results are presented in the Table 9. The use of the Dopri5 method significantly improved the model’s performance,
particularly in the extrapolation task, where a substantial enhancement in performance was observed. However, compared to
the Euler method, the computational time for Dopri5 increased on average by 71.7%.
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H.3. Statistical Significance Analyses

In order to verify the robustness of the experimental results and to strengthen the empirical claims, we conducted the
Friedman test on the experimental results in Table 1 and Table 2.The statistical results of the Friedman test are shown in
Table 10. Among them, the significance level αs = 0.05, the significance ps are much less than the significant level, which
indicates the rejection of the original hypothesis (the original hypothesis is that there is no significant difference in the
predictive effect of these seven models), i.e., it indicates that there is a significant difference in the predictive effect of the
seven models on the individual datasets. And the larger the Friedman statistic (χ2), the more significant the difference in
prediction results within the set.

I. Algorithm
We summarize the learning algorithm of our CSG-ODE in Algorithm 1.

Algorithm 1 Training Algorithm of CSG-ODE
Input: Observation data GT1:Tobs

Output: The parameters in the model
Initialize model parameters
while not convergence do

for each training sequence do
Construct the temporal graph with Equation (5)
Generate a representation of each node by Equation (7)
Generate an approximate posterior distribution of potential states for each node using Equation (12)
Sample the initial latent state z0i of each node
Solve our ODE in Equation (14)
Output the trajectories using the decoder
Compute the final objective, i.e., Equation (17)
Update parameters in our CSG-ODE using gradient descent

end for
end while
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