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SUMMARY

The combination of rational machine learning with creative mate-
rials science makes materials informatics a powerful way of discov-
ering, designing, and screening new materials. However, moving
from a promising prediction to a practical strategy often requires
more than just an instructive structure-property relationship; under-
standing how a machine learning method uses the structural feature
to predict the target properties becomes critical. Explainable artifi-
cial intelligence (XAl) is an emerging field in computer science based
in statistics that can augment materials informatics workflows. XAl
can be used as a forensic analysis to understand the consequences
of data, model, and application decisions or as a model refinement
method capable of distinguishing important features from nuisance
variables. Here, we outline the state of the art in XAl and highlight
methods most useful to the physical sciences. This practical guide
focuses on characteristics of XAl methods that are relevant to mate-
rials informatics and will become increasingly important as more
researchers move toward using deeper neural networks and large
language models.

INTRODUCTION

At a high-level, machine learning (ML) is a computational tool that seeks to improve
performance for a task using data. The many varieties of ML techniques and algo-
rithms are becoming widespread, impacting multiple social, environmental, eco-
nomic, and scientific domains. As a result of this increased adoption, we are now
seeing significant advances in the sciences aided by ML techniques.’™

An example of a typical ML workflow in the physical sciences is shown in Figure 1.
Here, we can see the first steps involving the data generation process, which may
involve gathering the data experimentally or via physics-based simulations with
some process to generate the machine-readable outputs that can then be fed into
an analysis model. The input to the ML model (features) can take many forms and
can be grouped into descriptors drawn from scientific instrumentation or from
computational and statistical analysis. Training ML models then involves splitting
the data into training, testing, and validation sets to mitigate the bias and variance
of such models.” The output is a model capable of assigning a target property (label)
with predictable accuracy and performance. Before the advent of ML, scientists
needed to know the structure of the model (the mathematical expression) in advance 1School of Computing, Australian National
to be able to solve it and make a prediction, or they turned to statistical models and University, Canberra, ACT, Australia

processes, which involve assumptions and knowledge about the underlying process *Correspondence: tommy.liu@anu.edu.au

itself.® By using ML, scientists are now able to develop the model and solve complex https://doi.org/10.1016/j.xcrp.2023.101630
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Figure 1. Example scientific workflow combining conventional simulation and machine learning
The input data pipeline could equally be replaced with the synthesis and characterization of
experimental samples, followed by appropriate processing to generate observable data.

Figure adapted incorporating elements from Brehmer et al.” and Huang et al."’

challenges at the same time, which represents an acceleration of the scientific
method. This offers significant advantages but comes with a new set of challenges
that depend on the algorithm. These methods are becoming more common in the
materials sciences and have given rise to the sub-field of materials informatics
(MI), which seeks to make use of advances in computation power and algorithmic
design to drive scientific discovery.™®

A significant hurdle to the further adoption of ML in Ml is the core question of how
algorithms derive their results and how we can trust that the results are correct. Many
advanced algorithms, such as neural networks, are “black boxes"” that provide no in-
sights into how the input features relate to the target label. This is because many
contemporary ML models are so complex that is becomes impossible to track the
relationship between the inputs and outputs. To tackle these challenges, the field
of explainable artificial intelligence (XAl) has emerged to provide robust and repro-
ducible techniques to understand how a model operates and insights into how the
results can be translated into practice."’

In this perspective, we provide an overview of XAl and how ML and XAl can be suc-
cessfully combined in the context of the materials sciences. Some works in the liter-
ature use the term interpretable ML (IML) interchangeably with XAl, which we will
also do in this perspective. This work focuses on the cases for “classical” ML tech-
niques used to discover, design, and develop new materials,’'*"* as a comprehen-
sive review of deep neural networks (DNNs) in materials science can be found in a

review paper by X. Zhong et al.’

Background

The overlap between statistics and ML is significant. Statistics begins with data and is
concerned with the analysis and insights that can be generated from that data.” This
is also one of the aims of many studies using ML in modern research, and it is difficult
to determine where statistics stops and ML begins. Traditionally the main difference
is the division between inference and prediction tasks.” Inference is the process of
creating rigorous mathematical models to more deeply understand or criticize some
phenomena, whereas prediction primarily seeks to identify the best course of action
to take (or predict) without requiring a significantly deeper understanding of
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underlying mechanisms.* The techniques from within one field can also be signifi-
cantly informed by the other. There are many overlapping techniques within these
two fields, such as linear regression, which can be used for both inference and pre-
diction,*"®"® and the difference manifests in how they are evaluated and analyzed.
However, the challenges involved in the sciences are becoming increasingly com-
plex, so many studies are naturally becoming more oriented toward ML. Interpret-
ability lies within the domain of statistics, but using insights from statistics and novel
new research, XAl methods can aid in bridging the gap between these domains and
further drive innovation in the sciences.”

Although a clear consensus regarding definitions has not been reached, we begin
with the two core concepts of “interpretability” and “explainability.”'’~'? These
concepts refer to different aspects of understanding a workflow, although some
literature uses these terms interchangeably,’
on the properties of the techniques rather than attempting to distinguish them.’

However, there is some value to clear definitions in fields such as MI, where this

and others advocate for focusing

information is used to make practical decisions in the lab. Interpretability can be
defined as “the ability to explain or provide meaning in understandable terms to
a human” and is related to the historical differences between statistical and ML ap-
proaches. Statistical models are inherently more interpretable since they are both
simpler and underpinned by strong assumptions.”® Explainability more broadly
seeks to “provide an interface between humans and the decision maker that is
both accurate and comprehensible to humans.“?"*? In practice, regardless of
the approach, XAl provides insights into the decisions made by a model, which im-
plies interpretability has a slightly broader scope and includes factors such as
model complexity and the transformations or the form that the data themselves
take (i.e., data-process interpretability).”*?* Some models are regarded as highly
interpretable, such as decision trees/rules and linear models,””*'*> but the main
difference between these two definitions depends on the stage of a workflow.
Interpretable approaches consider the intrinsic aspects of a learning model, while
explainable approaches provide insights into the model outputs and how they
were derived (Table 1).

XAl is desirable to ensure that several human-centered considerations surrounding
Al are preserved, which is relevant to MI. Several of the target areas are as follows.*”

(1) Trustworthiness: how can researchers trust that the model produces correct
outcomes? To use a model, we need to trust many aspects (including the
following points) held in many situations. However, the task of trust is difficult

to quantify®**”

and may need to be defined on an individual researcher level
such as advocated by Dazeley et al.'’

Causality: how can we understand or be sure that the input features truly
affect the target outputs? This is a common goal within Ml where we seek
to understand the causes behind particular phenomena. ML can play a role
in providing evidence for causal links but is not typically sufficient for deter-
mining causation.”?>?

Transferability: can the knowledge produced by the model be applied to
different situations, and if so, is there evidence that the underlying mecha-
nism is being correctly captured?””

Confidence: how can we be sure that the model will perform as expected in

S

&

=

different situations or even in the same situation? The concepts of robustness

|49

and stability of a model™ provide errors regarding uncertainty and statistical

methods (confidence intervals) or confidence-aware learning are also relevant.”
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Table 1. Selection of popular XAl methods for tabular data, relevant to materials science applications

Instances or Global or Intrinsic or
Method features local post hoc Description Example works
Permutation importance features global post hoc calculates the relative increase Breiman, Fisher,
in model performance attributed Xu et al.”*™?
to a particular feature
Feature importance features global intrinsic calculates the importance Breiman,
of each feature from internal Groemping et al.””’
parameters of a model
Global surrogates features global post hoc fits a simpler, interpretable Ramprasad,
model as an approximation Gorissen,
to the trained model Teichert et al.”*%>"
Local surrogates features local post hoc fits a simpler, interpretable Ribeiro, Lorenzi et al.*”*?
model around a particular
region (datums) of interest
Counterfactual features, local post hoc finds the smallest change to a Oviedo, Karimi, Wachter,
explanations instances sample (features) that changes Ribeiro, Wellawatte
the result a desired amount etal.'#¥%
Shapley values features local, global post hoc finds a set of Shapley values that Rodriguez-Pérez, Lundberg,
represent the individual feature Zhang, Huang et al.*%274041
contribution to the output of a
model according to the game
theory concept of how much
each player (feature) affects the
final output of the model)
Influence statistics instances local intrinsic finds the “influence” or how Cook, Chatterjee,
much impact that data instances Azari et al.”*=**
have upon the model parameters
or outputs
(Data) Shapley values instances local post hoc finds the Shapley value of the Ghorbani, Jia, Barnard,
instances instead of the features, Liu et al.*>™¢
determining the most influential
instances

Many of these issues have been previously addressed in the social sciences,'®
including several important aspects such as ethics, bias, and trust.*?>>%% From
the social sciences, we learn that a single explanation method is typically insufficient
since different researchers understand concepts differently. This means that the
same computational explanation that makes sense to a materials chemist (for
example) may not make sense to a materials physicist (and vice versa).

This brings us to the key issue of what constitutes an “explanation.” For example, is it
sufficient to explain exactly how the model uses data to derive an output, or is some
other motivation description required? An ML model is itself a mathematical
description of how the outputs are derived, so any simpler explanation is, at best,
an approximation of how the model operates and may be an oversimplification of
the scientific problem. An infinite number of possible explanations that are more
or less correct exist. As a result, the properties of explanations and how they can
be interpreted become important. Some works refer to the difference between
the true model and the explanation as “completeness.”'”“" Furthermore, there re-
mains a gap between mathematical descriptions or explanations and the human task
of understanding; some works advocate for a “conversation” between explanations
and the human end user where different viewpoints are presented until the human
becomes convinced.'”'® As ML expands into more areas of materials science, the
need for XAl to overcome these knowledge gaps will also increase. The European
Union GDPR regulations already state that "a data subject” has the right to "an
explanation of the decision reached after [algorithmic] assessment,”%? and we can
foresee a need for the industry to be able to justify investment decisions based on
the predictions of ML models of material structures and processes.
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Current state of the field of XAl

In computer science, XAl techniques can be broadly divided into intrinsic and post
hoc methods.®? Intrinsic methods make use of simpler models or those underpinned
by strong assumptions, or internal architecture, which reduces the number of ques-
tions about how outputs were produced.®***

Intrinsic interpretability is concerned with the structure of the model itself. If we
consider a linear regression model of the form Ax + vy, it is immediately clear how
each individual prediction is made; that is, the output consists of each input feature
based on the weights present in weight vector A. Another example is that of a deci-
sion tree, where each of the individual decisions used to arrive at the final output are
determined only by a given threshold on each feature. In general, as models get
more complex, the less intrinsically interpretable they are, but this is not always
the case since we can impose interpretability constraints on structures of models
themselves if necessary.®? One example is that of localGLMnet,*” where a particular
structure was incorporated into a neural network in order to provide explanations
similar to that of the linear regression model.

While there has been a significant focus on DNNs and their XAl interpretations,’
there is a strong case to be made against universally using DNNs for tabular data.
Tree-based models (XGBoost, random forests) have been empirically found to
outperform DNNs in many applications,”® and interpretability concerns regarding
complex DNN model architectures have been raised.®>* As a result, there are
many domains and datasets where state-of-the-art performances, computational
limitations, or explainability concerns mean that DNNs may not be the best choice
of technique?®¢-¢%:¢7

Post hoc methods seek to probe a given model and ascertain some desired form of
information about those outputs. Post hoc explanations take a model as input and
generate a useful approximation of how the outputs were produced.”’ These
methods are model agnostic and provide an interface between complex un-inter-
pretable black boxes and an understandable explanation to the researcher.®?

The field of post hoc explanations has seen the greatest research focus in recent
years due to their convenient incorporation into any ML workflow and the lack of pre-
sumptions about the underlying model. Table 1 lists a selection of popular XAl tech-
niques along with descriptions and some relevant examples. The most straightfor-
ward approach is that of model feature importances (how impactful the effect of
removing or adding this feature); by directly considering the weights of, say, a linear
regression model, it can be determined what are the most important features glob-
ally (assuming the data are normalized/standardized). At the same time, very simple
models can be considered on a local level as well, particularly in the linear regression
case. Permutation importance extends the global notion of importance by consid-
ering the removal or permutation of features to determine their overall effect
upon the model.”" Global surrogates seek to approximate the model by fitting a
simpler model such as linear regression to a more complex model, and the previous
techniques can be applied to interpret this simpler model.®

Another much less discussed aspect of XAl is that of the data-process interpretability
which use interpretable techniques to transform and pre-process the data, including
interpretable dimension reduction or data imputation.”*’?’? Data-process
methods, while not as popular as the two other areas in the current field of XAl,

are equally important.”* Imputation deals with missing or incorrect values in the

¢ CellP’ress

OPEN ACCESS

Cell Reports Physical Science 4, 101630, October 18, 2023 5




¢ CellP’ress

OPEN ACCESS

Interpretable Intrinsically
Post-Hoc
Data-Process Interpretable Exolanations
Techniques Models P

Data —> Model —»  Outputs

\ \/
Data and
Model Insights

Figure 2. lllustration of data analysis workflow and where the stages of XAl fit
The three groups of XAl methods and which stage of an Ml pipeline they may fit into.

data, while dimension reduction reduces the number of features or descriptors in
order to better fit models or remove sources of multicollinearity, where features
are related to each other.”® Attempts have been made to interpret commonly
used data transformation methods such as imputation’> and dimensionality
reduction.”*’® This is particularly relevant to materials scientists since many of the
data formats commonly used include tabular structured data.

The connection between these three groups of XAl methods and which stage of an
Ml pipeline they may fit into is illustrated in Figure 2. These XAl techniques can be
further sub-divided into two groups, including global techniques, which seek to
find patterns across the whole dataset, and local techniques, which seek to explain

the process of what happens to an individual sample.’?*

Counterfactual explanations are concerned with the question of “what is the mini-
mum change required to change the predicted outcome?”*® An illustrative question
may be “how much of this element | can remove from this reaction before there is no
reaction.” Counterfactual explanations are “human friendly” in the sense that they
are typically the way that humans look at the world or at phenomena. The issue arises
in generating counterfactuals from mathematical models, which produce mathemat-
ical representations of what needs to be changed. Based on the approach chosen,
very different (sets of) counterfactuals may be generated, leaving the end user to
search through them until a suitable one is found. Counterfactual explanations can
aid in determining what are minimal sets of changes to the data features that will
affect the target outputs of a model. This can identify which structural characteristics
are not related to properties and can safely be omitted from design strategies or
tuned to accommodate other needs such as material manufacturability.

Perhaps the most different approach, yet the one most familiar to materials scien-
tists, is that of influence statistics.”” Influence statistics is primary concerned with
quantities derived from (linear) regression models such as Cooks’ distance,
leverage,* and difference in fits (DFFITS).”” These quantities are a measure of
how much the model changes in the presence of data instances and are derived
from closed-form statistical expression. A significant drawback is that the closed
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form solution of these quantities must be derived for each new model class and
generally rely on the data projection (hat) matrix and do not generalize to other
model classes such as random forests, which are the preferred method for regression
modeling in contemporary ML tasks. The exception to this is that of influence func-
tions, which approximate the change in the model with respect to a given instance by
means of the Hessian matrix and allows this approach to be applied to all models
with twice differentiable loss functions such as DNNs; however, random forests
remain out of reach. The XAl counterpart to instance importance for tabular data
would be that of data Shapley values, which simply apply Shapley values over the in-
stances to decompose the instance contribution to the loss of the model. The signif-
icant drawback of data Shapley values, however, lies in the computational cost, as it
requires retraining the model many times."”

Evaluation

There have been attempts to unify descriptions of various XAl tasks to have consis-
tent evaluation methodologies, as is common in many areas in the physical sciences.
Additional requirements that accompany any explanation method may include the
functional details (scope, methodology, usage). Operational and usability (how
techniques can be used and their properties) criteria should be provided to guide
researchers’ understanding.”® Security, privacy, and validation details should be
provided to understand the risks and benefits of given methods, particularly given
the transnational aspect of a lot of materials science research. Security and privacy
in ensuring that data are not leaked or biases enforced are becoming increasingly
relevant with ethical concerns around Al and ML usage. Validation needs to be car-
ried out to ensure that results are correct and consistent with the scientific nature of
materials sciences. Sokol and Flach’® argue for a “fact sheet” spanning these five di-
mensions so that XAl methods may be compared due to a lack of common
consensus in the field, which will be a familiar concept to materials scientists accus-
tomed to standards and the use of materials safety data sheets (SDSs). This is rele-
vant because there is little use comparing the actual outputs of individual XAl
methods given that they produce explanations with different degrees of
correctness.’

Shapley value analysis

Shapley values are a concept from co-operative game theory and seek a solution to
the problem of giving attribution to a set of actors who produce some final output.”’
In the context of ML, the actors may be the feature values themselves, and the output
would be the final model predictions. Shapley values are particularly useful and are
increasingly used in many scientific disciplines.'®®° Shapley values are highly acces-
sible, most notably through the Shapley additive explanations (SHAP) framework,*”
which provides fast and accurate approximations to the true Shapley value. They
also satisfy a set of properties that makes interpreting them much simpler compared
to LIME,** which is a popular local surrogate method®’ that can similarly provide in-
sights into how features are combined. LIME is concerned with fitting an interpretable
model such asalinearregression to the local area around a point of interest. [t does so
by perturbing the pointand treating these perturbations as new data. This provides a
very similar interpretation compared to the Shapley approach; however, itis only a
local approximation and cannot be extrapolated across the whole dataset.

The SHAP framework computes how much of each feature contributes to the final
prediction of the model for the local effects of each instance and can be aggregated

to describe the global effects of features. An example of such a local data visualiza-

182

tion strategy using Shapley values, called the "Force-Plot,””“ can be seen in Figure 3.
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Figure 3. Force plot showing the model predicted value of raw energy (eV) for a single instance within the dilute solution diffusion dataset

Model trained using a random forest® and evaluated using the TreeExplainer using SHAP.*” Reproduced with permission under the MIT license. The
meaning of the features (i.e., Site1_mendeleevNumber) is the Mendeleev number of the element present at the first site of the material) are not so
relevant but illustrate that each feature contributes a certain amount to the final model output of 2.77 eV.

Furthermore, the types of data are not limited to simple features, and these tech-
niques have found use in visualizing the most important areas of images or most
important sets of molecular bonds in compound classification (Figure 4).

One useful aspect of Shapley values is that they are capable of both local and global
feature analyses. The Shapley values for each individual prediction can be aggre-
gated to form the global feature importance of a particular feature. These local
and global explanations can be presented for post hoc analysis to verify the results
of the models developed in a clear and understandable way for almost any workflow.
Indeed, we are seeing many such works that incorporate Shapley values as a final
step after model development.*®*"*/4 This contrasts with other feature-based ex-
planations that involve adding additional steps into the ML workflow (such as
training a local or global surrogate), which makes interpretations slightly more
complex.

Application of XAl in materials science

The number of papers in materials sciences making use of ML has increased exponen-
tially over the past few years,”” including applications in materials discovery, property
predictions, process optimization, and many more.?> A significant part of the XAl liter-
ature is focused on the feature space, determining how much each feature contributed
to the model or final prediction results,”” which is consistent with the aims in materials
science and is the basis of structure-property relationships. This suggests an ideal
combination of methods and applications, and we have already seen feature selection
techniques applied to improve predictive models in materials science”® % with
varying choices of global feature importance used. These global approaches are use-
ful for generally analyzing trends across the entire dataset to identify physicochemical
characteristics that are consistently correlated to functional properties, regardless of
individual structural nuances. Restricting ML models to these universally important
features can reduce model complexity and improve computational efficiency, without
compromising accuracy. Global ranking of structural features can be easily achieved
using Shapley values by aggregating across instances, or global rankings of individual
materials can be obtained by aggregating across features.*” In both cases, this can be
applied to any dataset or model, allowing for simple cross-model comparison, even in
the absence of intrinsic interpretability.

Local feature-based approaches can also aid in determining the importance of fea-
tures for individual data instances that are important, interesting, or different. They
can also facilitate more detailed understanding of results, such as which physico-
chemical features of a material make it particularly important to the model
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Reproduced under the Creative Commons Attribution 4.0 International License.
(A) The contribution of the most important tabular features.

(B) The contribution of the top-1 and top-5 most important graphical features.

prediction or which particular materials cause certain features to be so critical. If
those materials or features were omitted from the dataset, the prediction would
likely change, and so local-feature-based approaches become invaluable in quanti-
fying the impact of these decisions.

Combining these benefits, SHAP is gaining popularity in Ml across a variety of sub-
domains and applications. In pharmaceutical research, Rodriguez-Pérez and Bajor-
ath®” studied 10 bioactivity classes and structure-activity relationships (SARs) of a
range of compounds using random forests (RFs), support vector machines (SVMs),
and DNNs. SHAP was used to explain activity predictions and identify features
thatincrease or reduce the probability of predicted activity for mapping onto molec-
ular graphs. Other applications in biomaterials have also benefited from Shapley
analysis, including the optimization of small molecules,” the binding of macromol-
ecules,”’ and the stability of compounds.”” SHAP has also been incorporated into

pipelines for screening.'%?

On a larger length scale, Shapley analysis has been applied to porous materials”7°
to determine the properties that impact the optimal loading of fuels”” and cata-
lysts.”® At the device level, Wang et al.”” used RFs and a genetic algorithm to study
thermally evaporated perovskite solar cells based on both material characteristics
and fabrication parameters to improve power conversion efficiency (PCE). SHAP
analysis was used to show that the ratio of cations to anions in the perovskite layer
and the annealing temperature contribute the most to PCE, leading to the optimum
device architecture and fabrication conditions that could exceed state-of-the-art ef-
ficiency records. In both cases, the prediction explanation was cited as particularly
important to translating the findings into practice.

Future opportunities for XMl

Compared with materials science, or even other areas of ML, the field of XAl is still in
its infancy. XAl has still yet to be incorporated into all facets of ML itself since the
topic of understanding is still a secondary concern in many predictive tasks. As the
challenges in materials science change and become more complex,’ we can expect
to see wider acceptance and adoption of these methods.

A major challenge in many areas of materials sciences is the prohibitive costs of ob-

100)

taining data (via experiments or electronic structure simulations'~-). Some raw ma-

terials are expensive, toxic, flammable, radioactive, or difficult and dangerous to
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work with, meaning that experiments are difficult to carry out or verify. This is often
compensated by extensive characterization and extraction of a significant number of
features since the cost of obtaining additional features is much lower than that of
additional material instances. This results in very high dimensionality that can be
alleviated using XAl, particularly interpretable data-process techniques such as
interpretable dimensionality approaches. The automatic discovery and elimination
of uninformative data are particularly desirable, especially when they cannot be
related to domain knowledge, making XAl a powerful tool for model refinement.
Alternatively, XAl can also drive experimental design to find increasingly relevant
features,'”" i.e., by means of the local and global feature contribution scores.

Techniques to reduce the number of instances required for an analysis or to deter-
mine what sort of future data to gather are also desirable (as opposed to reducing
the number of features). The study of the influence of a data instance has traditionally
been seen in statistics.**** Today, it is seeing increasing research focus in XAl do-
mains.*>*¢ Many existing works are limited to data valuation tasks,*>"'%? which can
be useful for improving the quality of the datasets available. However, these tech-
niques provide little insight into why particular data may be important. New XAl
techniques must be developed to address the sorts of challenges presented here,
as determining the most useful types of data and informing the experimental design
process can save time, money, and effort when developing materials datasets.

As MI continues to develop, the advances in XAl techniques will certainly become
increasingly critical. We speculate that such a sub-branch incorporating these elements
may be called XMI and will further accelerate scientific developments in the same way
that ML did for materials science. An immediate possibility is the inclusion of post hoc
analysis techniques, which can be incorporated into almost any workflow and can pro-
vide further guarantees, particularly in the presence of domain experts that models
are performing correctly. By including these approaches, we are already seeing cases
where materials science discoveries are aided by XAI28858897 Fyurthermore, there re-
mains a gap between scientific understanding and numerical explanations from current
XAl techniques. Current XAl techniques provide an explanation of the model outputs,
and itis up to the users to translate this into meaningful science. With the advent of large
language models (LLMs), this understanding may be incorporated into XAl workflows to
critique the models until suitable explanations may be found.

While existing XAl techniques may not be sufficient to achieve all the materials science
goals of today, they may necessarily provide additional evidence to verify the results of
ML methodologies. Despite the pushback from some domains such as in health infor-

matics, 103104

the benefits that XAl techniques can provide to the materials sciences
are numerous. Approaches such as Shapley values are particularly relevant and can
be used as additional evidence of the underlying phenomena,'*'%>'% including high-
ly prized structure-property relationships. The adoption of ML has met some resis-
tance from such domains due to scientific, regulatory, or social concerns'®*'%” but
has significant potential in Ml to translate predictions into meaningful insights that
can inform investment decisions and future research directions. We anticipate that
the demand for XAl in Ml will increase in future years as more advanced ML methods

are applied to this domain, such as large pre-trained transformer models."*
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