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ABSTRACT

The most basic form of a rigid object is a cloud of unordered points, for example,
a set of corners or other salient features. The rigid shape of a point cloud in the
Euclidean plane is its SE(2)-equivalence class under rigid motion (a composition
of translations and rotations). We introduce complete invariants (with no false
negatives, no false positives) and a bi-Lipschitz continuous metric that satisfies all
axioms, provides a 1-1 matching between points in clouds, and is computable in a
quadratic time of the number m of points. The realizability property implies that
the space of all rigid clouds is efficiently parametrized by vectorial invariants like
geographic coordinates. The new invariants justified that any of 130K+ molecules
in the QM9 database is uniquely determined by the rigid shape of its atomic cloud.

1  MOTIVATIONS FOR NEW COMPLETE AND BI-CONTINUOUS INVARIANTS

Many real objects are rigid so that their shapes are preserved under rigid motion composed of trans-
lations and rotations in R™ |Atz et al| (2021), which form the group SE(n). The slightly weaker
equivalence is by isometries (distance-preserving transformations), which form the group E(n).

The basic input of a rigid shape is a cloud of m unordered points in R™ [Wang & Solomon| (2019).
The practical cases are dimensions n < 3 and larger numbers m (hundreds) of unordered points
without outliers |Shi et al.[(2021)). Because of noise, repeated measurements of the same object can
produce slightly different point clouds that cannot be exactly matched with the original one by rigid
motion. If noise is ignored up to any threshold € > 0, sufficiently many tiny perturbations make all
clouds equivalent by the transitivity axiom: if A ~ B and B ~ C, then A ~ C'[Brink et al.|(1997).

Hence all small deviations between rigid classes of point clouds should be distinguished, all
these classes live in a continuous space of rigid clouds. This important space was continuously
parametrized only for m = 3 points. Even the case of m = 4 unordered points was open, see Fig.[I]
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Figure 1: Left: the space of 3-point clouds {0 < a < b < ¢ < a+b} under isometry is parametrized
by distances. Right: 4-point clouds were split only in discrete classes but live in a continuous space.

Machine learning mostly focused on discrete classifications (label prediction, clustering) or on im-
proving various success measures for finite datasets, which can be considered discrete samples (of
measure 0) in a continuous space of shapes. To make this approach generalizable to all real data
outside finite datasets, we need to map continuous data spaces similar to a geographic map of Earth.

A continuous extension of machine learning needs new requirements because past accuracies were
developed for discrete classifications or finite data. Though the key concepts of complete invariants
and distance metrics were already studied |[Schmidt & Roth| (2012)); [Li et al.| (2021), Problem E]
introduces new conditions such as realizability and point matching that were not previously stated.
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Problem 1.1 (clouds and rigid motion can be replaced by any data and relations). Find an invariant
I : {clouds of unordered points in R"} — a space with a distance d satisfying the conditions below.

(a) Completeness: any clouds A, B are related by a rigid motion of R™ if and only if I(A) = I(B).
(b) Metric axioms: 1) d(a,b) = 0< a=1b; 2) d(a,b) = d(b,a); 3) d(a,b) + d(b,c) > d(a,c).

(c) Lipschitz continuity: there is a constant \ such that if each point of a cloud A C R"™ is perturbed
up to Euclidean distance ¢, then the invariant I(A) changes by at most \e in the metric d.

(d) Realizability: the image space {I(A) | all clouds A C R™ of m unordered points} is
parametrized so that one can reconstruct A up to rigid motion from any realizable value of I.

(e) Point matching: there is a constant p such that a distance d = d(I(A), I(B)) guarantees a
rigid motion matching all m unordered points of clouds A, B up to Euclidean distance pd.

(f) Computability: for a fixed dimension n, the invariant I, metric d, reconstruction in (d), and 1-1
point matching in (e) are all computable in polynomial time of the number m of points. |

The completeness (or injectivity) in (I.Tp) means that an invariant I finalizes the discriminative
approach and provably distinguishes all clouds A 2 B (not only from a finite dataset) that cannot
be matched by rigid motion, so [ is a descriptor with no false negatives and no false positives. The
universal approximation aims for the completeness of infinite-size invariants [Maron et al.| (2019));
Keriven & Peyré (2019); [Yarotsky| (2022), so polynomial time in (I.Iff) makes all conditions harder.

A complete invariant can give a discontinuous metric, say d(A, B) = 1 for all non-equivalent clouds
without quantifying the similarity of near-duplicates. The Lipschitz continuity in (I.Tk) is stronger
than the classical € — ¢ continuity because the Lipschitz constant A is universal for all inputs and
perturbations. Due to the first axiom in (I.Ip), any metric d detects rigidly equivalent clouds by
checking if d(A, B) = 0. Without the first axiom, many more distances including the zero d = 0
satisfy the other axioms and are called pseudo-metrics Brécheteau| (2019). If the third axiom in
(I.Ip) fails with any error € > 0, results of clustering may not be trustworthy Rass et al.| (2024).

The realizability in (I.Id) implies that the invariant I is an invertible 1-1 map from the compli-
cated Cloud Rigid Space CRS(R™; m) of classes of clouds under rigid motion to the explicitly
parametrized space I(CRS(R™; m)) of realizable values. Then with 100% certainty, we can sample
any realizable value in I(CRS(R"™;m)) and reconstruct its cloud A C R™ up to rigid motion.

Point matching in ) can be interpreted as the Lipschitz continuity of the inverse map 1! so that
any close values I(A), I(B) guarantee the closeness of A, B under rigid motion. Conditions (I.1k.e)
mean that the metric d is bi-Lipschitz: ¢/p < d(I(A),I(B)) < Ae, where ¢ is the minimum
perturbation needed to match all points of A, B. One can define metrics satisfying (I.Th,b,c) by
minimizing deviations of unordered points over infinitely many rotations. Polynomial time in

for all ingredients makes Problem [I.1|notoriously hard, previously solved only for m = 3 points.

Conditions (I.Tp,b,c.f) and (I.1[d,e,f) formalize the discriminative and generative goals, respectively.
A full solution to Problem|[I.1|will imply that the rigid classes of clouds can be efficiently visualized
in the moduli space I(CRS(R"™; m)) replacing any latent space of non-invariants or incomplete (or
discontinuous or non-realizable) invariants. Geographically, I(CRS(R"™;m)) can be compared with
Earth’s map, where any location can be reconstructed with all properties (altitude, precipitation,
images, ...) from the latitude and longitude coordinates in known (realizable) ranges.

Contributions: the new invariant Nested Distributed Projection solves Problem [I.1]for all clouds of
m unordered points in dimension n = 2. Any cloud A C R" can be reconstructed from a small part
of the invariant (a vector in R™(m~("+1)/2)) whose realizability in ) is guaranteed by explicitly
written inequalities. Hence coordinates of this vector can be chosen in known ranges like latitude and
longitude on Earth maps. The appendices cover all dimensions n > 2 and visualize geographic-style
maps of cloud spaces for m = 4 points in R2. The implementation is in supplementary materials.

2  PAST WORK ON CLOUD CLASSIFICATIONS RELATED TO PROBLEM [I.]]

This section reviews past approaches to Problem which was open for m > 3 points even in R2,
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Ordered points. Kendall’s shape theory [Kendall et al.| (2009) studies m ordered points
Ply-.-,Pm € R™ under isometries from the Euclidean group E(n). In this case, a complete in-
variant is the distance matrix |Schoenberg| (1935)); Kruskal & Wish| (1978)) or the Gram matrix of
scalar products p; - p;, see (Weyl, |1946| chapter 2.9), Villar et al.|(2021). A brute-force extension to
m unordered points requires m! matrices due to m! permutations, which is ruled out by (I.T}).

Point cloud registration for unordered points samples rotations |Lin et al.|(1986)); Yang et al.|(2020)
and uses scale-invariant features [Lowe (1999; [2004) to approximately match clouds. Trying to
sort points along a fixed direction or in a clockwise order around their center of mass leads to
discontinuities because distant points can have equal projections to a line or a circle. A basis (say,
of principal directions) of a cloud [Toews & Wells 111l (2013); Rister et al.| (2017); |Spezialetti et al.
(2019); Zhu et al.| (2022)); Kurlin| (2024) is similarly unstable under perturbations of points in cases
of high symmetry, e.g. when eigenvalues degenerate, which often happens in real molecules for our
main application. Converting a cloud by using extra parameters into a more complex object such as
a continuous field R? — R Chauvin et al.| (2022) or the persistent homology transform leads to the
harder analog of Problem|[I.1|for continuous surfaces instead of discrete clouds [Turner et al.| (2014).

Geometric Deep Learning Bronstein et al.[(2021)) studies neural networks that guarantee invariance
or equivariance [Thomas et al.| (2018)); |[Kondor & Trivedi| (2018); [Cohen et al.| (2019)); |[Fuchs et al.
(2020); |IDeng et al.|(2021). An equivariant descriptor E satisfies the weaker condition E(f(A4)) =
Ty(E(A)) for any rigid motion f of a cloud A, where Ty may not be the identity as required for
invariants Satorras et al.| (2021);|Chen et al.| (2021)); |Aronsson| (2022); |Assaad et al.| (2023)); Xu et al.
(2022); |Su et al.| (2022)). Any linear combination of points such as the center of mass is equivariant
but cannot distinguish clouds under translation. Equivariants were used for predicting forces acting
on atoms to move them to a more optimal configuration. These time-dependent clouds A; can be
studied directly by their invariant values I(A;) without intermediate forces. So neural networks
optimize millions of parameters as in (Goyal et al.|[2021] Table 4) to improve accuracies Dong et al.
(2018); |Akhtar & Mian| (2018)); Laidlaw & Feizil (2019); |Guo et al.| (2019)); |(Colbrook et al.| (2022)
but need re-training any for new data. All such networks will have better generalizability if the
inputs are invariants that satisfy the conditions of Problem [I.T|for all possible point clouds in R™.

General metrics between fixed clouds extend to their rigid classes by minimization over infinitely
many rigid motions [Huttenlocher et al.(1993); (Chew & Kedem| (1992); [Chew et al.| (1999). In R?,
the time O(m5 log m) |Chew et al.[|(1997)) for the Hausdorff distance [Hausdorff| (1919) will be im-
proved in Theorem to O(m*>*°logm) for a new metric, see approximations in |Goodrich et al.
(1999). The Gromov-Hausdorff and Gromov-Wasserstein metrics IMémoli (2011) are defined for
metric-measure spaces also by minimizing over infinitely many correspondences between points,
but cannot be approximated with a factor less than 3 in polynomial time unless P=NP, see Corol-
lary 3.8 in[Schmiedl|(2017) and polynomial algorithms for partial cases in Majhi et al.[(2024). Also,
computing a metric between rigid classes of clouds is only a small part of Problem[I.1]| Indeed, to
efficiently navigate on Earth, in addition to distances between cities, we need a satellite-type view
of the whole planet and hence a realizable bi-continuous invariant I, which can be considered an
analog of the latitude and longitude coordinates on Earth.

Can we ‘sense’ a shape? Informally, Problem|l.1|asks the questions ‘same or different clouds, and
how much different?” The related problem ‘Can we hear the shape of a drum?’ |[Kac|(1966) has the
negative answer in terms of 2D polygons that are indistinguishable by spectral invariants |Gordon
et al. (1992agb); [Reuter et al.| (2006)); (Cosmo et al.| (2019); Marin et al.| (2021]). Problem looks
for stronger invariants that can completely ‘sense’ (not only ‘hear’) the rigid shape of any cloud.

The simple cases when Problem was fully solved are only n = 1 or m < 3. In dimension
n = 1, any rigid motion of R is a translation, so CRS(R;m) of m points p1,...,p, € Ris
the space Rf_l of sequential inter-point distances d; = p;41 —p; > Ofori = 1,...,m — 1.
Including reflections, the Cloud Isometry Space CIS(R; m) is the quotient of ]R’]:_l under the cyclic
equivalence (dy,...,dm-1) ~ (dm—1,-..,d1). For clouds of only m = 2 points in any dimension
n > 1, CRS(R™;2) is parametrized by a single inter-point distance d > 0. The final known case
is m = 3 due to the SSS theorem saying that any triangles are congruent (isometric) if and only if
they have the same side lengths. The space CRS(R™; 3) of 3-point clouds under isometry has the
geographic-style parametrization {0 < a < b < ¢ < a + b} by inter-point distances a, b, c.

Problemasks for a similarly explicit parametrization of CRS(R™; m) for all m > 4 and n > 2.
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Partial solutions include the extensions Delle Rose et al.| (2024); |Hordan et al. (2024) of the
Weisfeiler-Leman test Leman & Weisfeiler| (1968)), giving a binary answer |[Brass & Knauer| (2000;
2004) by distinguishing all non-isometric clouds but without Lipschitz continuous metrics.
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Figure 2: Non-isometric clouds of 4 points with the same 6 pairwise distances. Left: the trapezoid
T has points (+2, 1), (£4, —1). The kite K has (5, 0), (—3,0), (—1, £2). Right: the infinite family
of non-isometric clouds C* % C~ sharing p1, p2, ps and depending on parameters a, b, ¢, d > 0.

Attempting to extend the SSS theorem, we can consider the Sorted Distance Vector (SDV) of all

w inter-point distances between m > 4 unordered points. This SDV distinguishes all non-
isometric clouds in general position in R", see |Boutin & Kemper (2004), but not infinitely many
4-point clouds even in R?, see Fig. 2l The SDV was strengthened [Widdowson & Kurlin| (2022)
to the Pointwise Distance Distribution (PDD), which still cannot distinguish infinitely many non-
isometric clouds in R3 (Pozdnyakov & Ceriotti, 2022, Fig, S4). All these counter-examples were
distinguished by the Simplexwise Centered Distributions from |Widdowson & Kurlin| (2023)), which
satisfy (I.Th,b,c,f) but not (I.1ld,e). Distance-based invariants do not allow easy realizability already
for m = 4 points in R? whose 6 inter-point distances should satisfy a non-trivial polynomial equa-
tion saying that the tetrahedron on 4 points has volume 0 in R?. Hence random distances between
unordered points are realized by a point cloud in R? with probability 0 Duxbury et al. (2016).

3 COMPLETE INVARIANTS OF UNORDERED CLOUDS UNDER RIGID MOTION

n
Any point p = (21,...,2,) € R™ has Euclidean norm [p| = /> z?. Any points p and ¢ =
\/ i=1

(y1,...,yn) € R™ are also interpreted as vectors, have the Euclidean distance |p — ¢| and the scalar

n
(dot) product of p - ¢ = > x;y;. Any vectors p L g are orthogonal if and only if p - ¢ = 0.
i=1
While past representations used one basis (say, of principal directions of a given cloud A C R"™), this
section introduces a new representation based on variable projections that depend on n — 1 ordered
points in C consisting of m unordered points. For simplicity, we consider dimension n = 2 when
we have only m choices for a single point p € A. The appendices discusses the general case n > 2.

Fig.[3]summarizes the new invariant Nested Distributed Projection I = NDP and Nested Bottleneck
Metric d = NBM, which solve Problemfor n = 2, extended to n > 2 in the appendices.
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Figure 3: A Point-based Representation (PR) encodes a cloud A in the basis of a point p € A.
All PRs are combined into the complete invariant NDP(A). NDPs are compared by the Nested
Bottleneck Metric (NBM) computed from a graph I'( A, B) with weights = distances between PRs.
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1
For any cloud A C R? of m unordered points, the center of mass is O(A) = — >~ p. Shift A so
m pEA
that O(A) is the origin 0 € R2. For any p = (x1,z2) € A, the vector p- = (—z2, 1) is orthogonal
to p, so p - p~ = 0, which holds even if p = 0. If p is not at the origin (center of mass of A), we use
the orthogonal basis p, p* to represent all other points of A. Deﬁnitionmakes sense for p = 0.

Definition 3.1 (point-based representation PR(A;p1)). Let A C R? be a cloud of points with the
center of mass at the origin 0. Fix a point p = (x,y) € A and set p* = (—y,x). For any
q € A—{p}, the 2 x (m — 1) matrix M (A; p) has a column of the scalar products q - p, q - p*. The
point-based representation of A with respect to p is the pair PR(A; p) = [ Ip|?, M(A4;p) ] |

We use |p|? and scalar products to make all components polynomial (smooth) in point coordinates.
The matrix M (A;p) has two rows (ordered according to p, p) and m — 1 unordered columns, so
M (A;p) can be considered a fixed cloud of m — 1 unordered points, not under rigid motion in R?.

2miy/—1
TV CR, G =
m

1,...,m, be the vertex set of a regular m-sided polygon. Then A,,, has the center of mass O(A,,) =
(0,0) at the origin and is inscribed in the circle of the radius R = R(A,,). In Definition[3.1] choose
the point p = (R,0) € A,,, which doesn’t affect PR(A,,; p) due to the rotational symmetry of A,.

R2 cos(2mi/m) .
R sin(2ri/m) )’ 1=1,...,m—1. The

Example 3.2 (regular polygons in R?). (a) For m > 2, let A, = {Rexp

Then the matrix M (A,,; p) consists of m — 1 columns <

R2cos 20 \"™7!
point-based representation is the pair PR(A,; p) = [RQ, ( ( 12 gip 2% ) )} .
m =1
(b) Let the cloud B,, C R? be A,, after adding the extra point at the origin 0 € R2. For any
point p € A,,, the new point-based representation PR(By,; p) is obtained from PR(A,,;p) above
by adding the zero column to the matrix M(A,,;p). For the new point at the origin 0, we get

PR(B;0) = [0, M (By;0)], where M (B,,;0) is the 2 x m matrix consisting of zeros.

Table 1: Acronyms and references of all key concepts in the paper.

BD Bottleneck Distance
NBM Nested Bottleneck Metric
SRV Sorted Radial Vector
SDV  Sorted Distance Vector
CRS  Cloud Rigid Space

PR Point-based Representation
NDP  Nested Distributed Projection
NCP  Nested Compress. Projection
BMD  Bottleneck Matching Distance
PDD  Pointwise Distance Distribution

Theorem 3.3 (realizability of abstract PR). Let s > 0 and M be any 2 x (m — 1) matrix for m > 2.
The pair [s, M) is realizable as a point-based representation PR(A; p) for a cloud A C R™ of m

m—1 m—1
unordered points with O(A) = 0 and a point p € Aifandonly if s+ >, My, =0= > M,;.
j=1 j=1

In Theorem3.3] s = |p|? is the squared distance from a point p € A to 0 € R?. The equations mean
that the sums of scalar products (¢ - p) and (q - p*) for all ¢ € A equal to 0, which is equivalent to
> q € A = 0 meaning that the center of mass O(A) is 0. Hence s > 0 and m — 2 columns of M
can be considered free parameters, which uniquely determine the remaining column of M.

Deﬁnitioncombines point-based representations PR(A; p) for all points p € A into one invariant
NDP (Nested Distributed Projection) that will be proved to satisfy all conditions of Problem

The major advantage of NDP is its applicability to all real clouds A C R? without any requirement
of general position. Some points of a cloud A may coincide, so A can be a multiset of points.

Definition 3.4 (invariants NDP,NCP). Let A C R? be any cloud of m unordered points. The
Nested Distributed Projection NDP (A) is the unordered set of PR(A;p) forallp € A. If k > 1 rep-
resentations PR(A; p) are equal then we collapse them to one representation with the weight k/m.
The resulting set of unordered PRs with weights is the Nested Compressed Projection NCP(A). B
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For the vertex cloud A,,, from Example the Nested Distributed Projection NDP(A,,,) consists
of m identical representations, so NCP(A4,, ) is the single representation PR(A,,; p) with weight 1.
The invariant NDP is an expanded version of the NCP, where all PRs have equal weights 1/m.

The full invariant NDP(A) includes the faster Radial Distance Invariant RDI(A) of only squared
distances |p|? to the center of mass O(A) = 0 € R? from all points p € A. If A has a distinguished
point p, e.g. a special atom in a molecule, the point-based representation PR(A; p) is invariant.

Theorem 3.5 (completeness of NDP). The Nested Distributed Projection is complete in the sense
that any clouds A, B C R? of m unordered points are related by rigid motion in R? if and only if
NDP(A) = NDP(B) so that there is a bijection NDP(A) — NDP(B) matching all PRs. [ ]

Under a mirror reflection, for any point p € A, one can assume after applying rigid motion that the
basis p, p maps to its mirror image p, —p*. The mirror image A has NDP(A) equal to NDP(A)
that is obtained from NDP(A) by reversing all signs in the last row of M (A; p) for every p € A.

The completeness of NDP(A) under rigid motion in Theorem implies the completeness of the
pair NDP(A), NDP(A) under isometry including reflections. Further work can focus simplifying
this pair to a smaller invariant while keeping the completeness. Since a bijection NDP(A) —
NDP(B) between all (uncollapsed) PRs induces a bijection NCP(A) — NCP(B) respecting all
weights of collapsed PR, Theoremimplies the completeness of NCP under rigid motion in R2.

4 THE NESTED BOTTLENECK METRIC (NBM) ON COMPLETE INVARIANTS

We will define the metric NBM on invariants NDP by using the bottleneck distance BD in Defini-
tion4.1] a metric on point-based representations (PRs) in Definition 4.2} and a bottleneck matching
distance in Definition[4.3] Extensions and proofs in high dimensions are in appendix [D}

Definition 4.1 (bottleneck distance BD). For any v = (v1,...,v,) € R", the Minkowski norm
is |[V]]eo = _max |v;|. For clouds A, B C R™ of m unordered points, the bottleneck distance
1= Hn

BD(A4,B) = inf sup||p — g(p)||eo is minimized over all bijections g : A — B. [ |
g:A—B pEA

Though the bottleneck distance is introduced as a minimum for m/! bijections A — B between fixed
m-point clouds, Theorem 6.5 in [Efrat et al.| (2001) computes BD(A, B) in time O(m'®log® m).
The brute-force extension of BD(A, B) under rigid motion requires a minimization for infinitely
many rotations. However, NDP(A) consists of only m point-based representations PR(A;p) =
[|p|?, M (A;p)], one for each p € A. The fast algorithm for BD above can compare any 2 x (m — 1)
matrices M (A; p) and M (B:; q) as fixed clouds of unordered columns (points in R?).

In Definition the notation M /R means that all elements of the matrix M (A;p) are divided by
the radius R(A) = max |p| of a cloud A. Then PRM and further metrics have units of original
pPE

points, e.g. in meters. One more division by R(A) makes metrics invariant under uniform scaling.

Definition 4.2 (Point-Based Representation Metric). Let PR(A;p), PR(B; q) be point-based rep-
resentations of clouds A, B C R? of m unordered points for p € A and q¢ € B, respectively,
see Definition [3.1] The Point-based Representation Metric between the PRs above is defined as

PRM = max{| |p| — l¢| |, |R(A) — R(B)|, war }, where wy = BD (MR(é;)p)’ 1\4];(12)9)) .

We defined PRM as the maximum of 3 metrics to later get the simplest Lipschitz constant A = 2 in
(1.1d). Replacing the maximum with (say) a sum gives a metric with a higher A depending on m.

Definition 4.3 (bottleneck matching distance BMD(T")). Let I" be a complete bipartite graph with

m white vertices and m black vertices so that every white vertex is connected to every black vertex

by an edge e of a weight w(e) > 0. A vertex matching in I is a set E of m disjoint edges of T..

The weight W (E) = max w(e) is the largest weight in E. The bottleneck matching distance of the
e

weighted bipartite graph T is BMD(T") = rnbin W (E) is minimized over all vertex matchings. H

Because I' is bipartite, any edge from a vertex matching E joins a white vertex with a black vertex.
Then BMD(T") is minimized for all bijections E between all white vertices and all black vertices of
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I similar to Definition[4.1} Definition[4.4]builds a graph I'(4, B) on all point-based representations
of A, B C R™ and introduces the Nested Bottleneck Metric NBM(A, B) as BMD of I'(4, B).

Definition 4.4 (NBM : Nested Bottleneck Metric). Let clouds A, B C R? consist of m unordered
points. The complete bipartite graph T'(A, B) has m white vertices (one for each p € A) and m
black vertices (one for each q € B). Any edge e of T'(A, B) has endpoints associated with point-
based representations PR(A; p), PR(B; q), and the weight w(e) = PRM( PR(A4;p), PR(B;q) ).
The Nested Bottleneck Metric is defined as NBM(A, B) = BMD(I'(A, B)). |

Example 4.5 (4-point clouds C*). In R?, consider the 4-point clouds C* = {p1,p2,p3, pff }, where
p1 = (4a,0), po = (b,c), p3 = —pa = (b, —c), pf = (0,4d), and p; = (0, —4d) for parameters
a,b,c,d > 0, see Fig. We explicitly compute NDP(C%) in the appendices to distinguish all
clouds CT 22 C~. Fig.[4|shows the new metric NBM by fixing one of 4 pairs of parameters, e.g.
b = ¢ = 2 in the top left picture, while other parameters vary between 0 and 4. The simultaneous
swapping a <+ d, b <+ ¢ maps each cloud C* to its mirror image in the diagonal x = y in R?, hence
the metric between C* remains the same, which explains the symmetry of the plots in Fig. [ (top).
The metric NBM is positive, implying that that C+ 3 C~, except in the singular cases below.
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Figure 4: The Nested Bottleneck Metric NBM from Definition 4.4 for the 4-point clouds C* C R?
that are not distinguished by their 6 pairwise distances in Fig. 2] see details in Example[4.3]

Ifa=00rd=0o0rb=c=0, the clouds are related by a 2-fold rotation around the origin 0. If
a = 325 ~ 0.87, b =0, c = 2, d = 0.5, then C™ consists of the vertices (0,+2), (2\/3, 0) of an
equilateral triangle, where (0,2) is the double point ps = pz. For the same parameters, C~ has
the same points, but now (0, —2) is the double point ps = p; . Because these degenerate clouds are
related by rotation, NBM = 0 in the black pixel at a = ‘/75 ~ 0.87, b= 0in Fig. (bottom left). A
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S5 LIPSCHITZ-BI CONTINUITY AND POLYNOMIAL TIME ALGORITHMS

In this section, all algorithms for m unodered points have polynomial times in m in the RAM model.

Theorem 5.1 (Lipschitz continuity of NBM). Let B C R? be obtained from a cloud A C R? by
perturbing every point of A up to Euclidean distance . Then NBM(A, B) < 6e. ]

To illustrate Theorem [5.1} we generated uniformly random clouds A in the unit square and cube.
To get a perturbation B of A, we shifted every point of A by adding a uniformly random value in
[—¢, €] to each coordinate, where ¢ € [0.01,0.1] is a noise bound. Fig. [5| shows how the Nested
Bottleneck Metric (NBM, averaged over several clouds) increases with respect to the noise bound.
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Figure 5: Left: NBM(A, B) between a random cloud A and its e-perturbation B increases at most
linearly in the noise bound € with a Lipschitz constant Ao =~ 2 as expected by Theorem The
experiments in section [f]estimated that A\» ~ 2.76. Right: the times (in microseconds, log scale).

Theorem 5.2 (time of NDP). For any cloud A C R? of m unordered points, the Nested Distributed
Projection NDP(A) from Deﬁnition is computable in time O(m?). ]
Theorem 5.3 (time of NBM). For any clouds A, B C R? of m unordered points, the Nested
Bottleneck Metric NBM(A, B) is computable in time O(m> logm). [ ]

Fig. 5] (right) illustrates the polynomial dependence of the NBM time in Theorem 5.3} Theorem [5.4]
says that any m-point clouds A, B C R? can be matched up to a perturbation proportional to the
Nested Bottleneck Metric d = NBM. If d is small, all points of A, B can be matched (up to 3\@d)

by rigid motion. In section @ the experimental maximum of this approximate factor is 2.2 < 3v/2.

Theorem 5.4 (point matching). For any m-point clouds A,B C R2 one can find in time
O(m3-5logm) a rigid motion f of R? and a bijection 3 : A — B such that the match distance

max |f(q) — B(q)| < 3vV2NBM(A, B), see the comparison of distances in Fig. (left). [ |
a

By Theorem [5.1] perturbing every atom up to ¢ (due to the ever-present thermal vibrations) changes
NDP up to 6¢ in the metric NBM. Conversely, by Theorem[5.4] if NBM(A, B) = § > 0 is small,

the atomic clouds A, B can be approximately matched by rigid motion up to 3v/28 atom-wise.

If clouds A, B C R" consist of ordered points, one can easily morph (continuously transform) A to
B by moving every i-th point of A along a straight-line to the i-th point of B fori =1,...,m.If m
points are unordered, there are m! potential transformations, one for each permutation of m points.

The brute-force association of every point p € A to its nearest neighbor ¢ € B is justified only for
fixed clouds because a rigid motion of A can change a nearest neighbor of any point p € A in B.

Corollary [5.3] resolves this ambiguity challenge by a straight-line path connecting complete invari-
ants in the moduli space NDP(CRS(IR?;m)) of all realizable invariants, which effectively replaces
the complicated Cloud Rigid Space CRS(R?; m) of m-point clouds under rigid motion in R2.

Corollary 5.5 (continuous morphing). Any clouds A, B C R? of m unordered points can be ‘mor-
phed’ into each other in time O(m3-® log m) by inverting a straight-line path between their complete
invariants NDP(A), NDP(B) in the space NDP(CRS(R?;m)) of realizable invariants. [ |
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6 A HIERARCHICAL EXPERIMENT ON 130K+ MOLECULES IN QM9

QM0 has 130K+ (130,808) molecules of up to 29 atoms with 3D coordinates obtained by quantum
mechanical optimizations [Ramakrishnan et al| (2014). Because many atoms are chemically iden-
tical, we compare molecules as clouds of unordered atomic centers without labels. The complete
invariant NDP finalizes the hierarchy of the faster and progressively stronger invariants below.

Definition 6.1 (invariants SRV, SDV,PDD). Let A C R™ be a cloud of m unordered points with
the center of mass at 0 € R". The Sorted Radial Vector SRV (A) has m radial distances |p| in

decreasing order for all p € A. The Sorted Distance Vector SDV(A) is the vector of m(m=1)
pairwise distances |p — q| in decreasing order for distinct p,q € A. For any integer k > 1 and
p € A letdy(p) < -+ < dp—_1(p) be Euclidean distances from p to all other points ¢ € A — {p} in
increasing order. These distance lists become rows of the m x (m — 1) matrix D(S; k). Anyl > 1
identical rows are collapsed into a single row with the weight I /m. The final matrix PDD(S; k) of
unordered rows with weights is the Pointwise Distance Distribution Widdowson & Kurlin|(2022). B

For up to m points, PDDs need sorting m distance lists in time O(m? log m). Then PDDs are com-
pared by the Earth Mover’s Distance EMD Rubner et al.|(2000) in time O(m?). Table 2lemphasizes
that most clouds should be first distinguished by simpler and faster invariants SRV, SDV, PDD, so
the complete NDP is used only in rare cases but is necessary to make important conclusions below.

Table 2: Hierarchy of invariants of m-point clouds A C R?: from the fastest to the complete.

invariant time SRV, O(mInm) SDV,O(m?) PDD,O(m?Ilnm) NDP, O(m?)
metric time Ly, O(m) Lo, O(m?)  EMD, O(m?) NBM, O(m?3:5 Inm)

The ablation study below shows the strength of complete NDP in comparison with the incomplete
but faster SRV, SDV, PDD. All experiments were on AMD Ryzen 9 3950X 16-core RAM 8Gb.

We computed the pseudo-metric L, (max abs difference of corresponding coordinates) on SRV's of
all 873,527,974 pairs of 3D atomic clouds having equal numbers of atoms in QM9, then 8,735,279
distances L., on SDVs of the 1% closest pairs, 87,352 EMDs on PDDs of the 1% closest pairs,
and 10K distances NBM on NDPs for the final closest pairs. In this hierarchical computation, large
values of L., (then EMD) guarantee that molecules are distant and cannot be closely matched by
rigid motion. Tiny (and even zero) values of pseudo-metrics guarantee nothing because SDV and
PDD can coincide for very different clouds, see Fig. 2] (right) and (Pozdnyakov et al| 2020, Fig. S4).
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Figure 6: Left: each dot is a comparison of closest atomic clouds A, B from QM9 by the pseudo-
metric z = EMD(PDD(A),PDD(B)) vs y = NBM(A, B) on complete invariants NDP using
two base points. Middle: zoomed-in comparisons for small distances. Top right: the smallest
NBM = 0.15A for chemically different molecules is for 28141 and 130099. Bottom right: 70954
and 74130 are almost mirror images with EMD ~ 0.0004A, well distinguished by NBM ~ 1.619A.
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Fig. [6] compares the new metric y = NBM on complete NDPs with the pseudo-metric 2 = PDD.
All pairs A, B with (x,y) close to the vertical axis in Fig. |§| (left) have EMD =~ 0 because they
are almost mirror images (indistinguishable by PDD) well distinguished by higher values of NBM.
Bonds in Fig. [f] (right) are shown by standard visualization, not used for invariants of clouds of
points without any edges. Table [3] shows that all chemically different molecules (with non-equal
distributions of elements) are distinguished by all invariants with the best separation by NDP.

Table 3: Closest chemically different molecules by distances in A = 10~'°m, see Fig. |§| (right).

invariant metric distance molecule A molecule B composition A composition B

L SRV 0.02057 131923 5365 H3C4N302 H4C5N20l1
L SDV  0.05505 123533 24547 H3 C4 N5 H3 C5N3 01
EMD PDD  0.05145 123533 24521 H3 C4 N5 H3 C5N3 01
NBM NDP  0.14845 28141 130099 H3C4N302 H3C3N50l1

7 DISCUSSION: CONCLUSIONS, LIMITATIONS, AND SIGNIFICANCE

The experiments imply that mapping any molecule to (the rigid class of) its cloud of atomic centers
is injective without losing any chemical information, so all chemical elements can be reconstructed
from pure geometry. This result confirms our physical intuition that replacing atoms should perturb
geometry at least slightly, which was impossible to establish without complete and Lipschitz con-
tinuous invariants. Hence all molecules of the same number m of atoms live at different locations in
the common Cloud Rigid Space CRS(R?;m) of SE(3)-classes of clouds of m unordered points.

Fig. [7]shows two simplest projections of the atomic clouds from QM9 considered as a finite sample
29
from (J CRS(R3;m), see the familiar molecules such as H20 (water). Any small region on such
m=3

a map can be zoomed in and displayed in other coordinates from the hierarchy in Table[2]
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Figure 7: Left: every dot represents an atomic cloud with the invariant coordinates © = SRVj,
y = SRV, — SRVy, all in Angstroms, where 1A = 1079y ~ the smallest interatomic distance.
Right: the subset of molecules with SRV; = SRV (two equidistant atoms from the center of mass)
is projected to z = SRV5, y = SRVs — SRV 3. The color is by the free energy G from QM9.

Problem [T.1] was stated for unordered clouds under rigid motion but was also solved for isometry
and compositions of these equivalences with uniform scaling in R?, also for dimensions n > 2 in the
appendices. For m = 4 points, plane quadrilaterals were previously classified in discrete classes in
Fig.|1|(right), while appendix hows the first continuous maps of the invariant space CRS(IR?; 4).
Conditions d,e,f) enable a generation of real clouds in CRS(R™; m) from their invariants.

We compared atomic clouds of the same size in QM9 because atoms are real physical objects and
cannot be considered outliers or noise. In other applications, for clouds with different numbers of
points, we can replace the bottleneck distance BD in Definition [4.2] with any metric between fixed
clouds of different sizes, e.g. the Hausdorff distance, to get a metric on PRs. Then we can compare
NDPs of any clouds as weighted distributions by EMD. The limitation is the proof of Theorem @
in dimension n = 2, though the experiments on QM9 indicate the Lipschitz continuity of NDP ™
in R3. All other conditions in Problem are proved in the appendices for any n > 2.

10
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Introduction to appendices. The key contribution is a theoretically justified solution to Prob-
lem[I.T] The experiments on the QM9 database of 130K+ molecules are considered complimentary.

Example and its extension in Example prove that infinitely many pairs of non-isometric
clouds C™ 2 C~ (depending on 4 free parameters and having the same 6 pairwise distances) are
distinguished by the new invariants. This result is impossible to justify by any finite experiment.
Example demonstrated the non-zero distances between the complete invariants of C* in Fig. E]

The completeness and bi-Lipschitz continuity of the proposed invariants enabled the new experi-
ments on 130K+ real molecules in section [f] which were not previously possible because all past
invariants did not satisfy all conditions of Problem especially the realizability condition that
provides geographic-style maps on cloud spaces.

The key contribution is a solution to Problem [I.Tjustified by Theorem [C.9] and Lemmas [3.3] [5.1}
which are extended to any Euclidean space R™ in the appendices. Theorem [3.3]enables a
visualization of cloud spaces, which were unknown even for m = 4 unordered points in R2.

e The Cloud Isometry Space CIS(R™; m) of clouds of m unordered points under isometry in R™.
e The Cloud Rigid Space CRS(R"™; m) of clouds of m unordered points under rigid motion in R™.

e The Cloud Similarity Space CSS(R™; m) of clouds of m unordered points under geometric simi-
larity, which is a composition of isometry and uniform scaling in R".

e The Cloud Dilation Space DCS(R™;m) of clouds of m unordered points under orientation-
preserving geometric similarity (rigid motion and uniform scaling) in R".

Here is a summary of the supplementary materials.

e Appendix [A] extends section [6] with more details of new invariants and metrics computed on the
QMO database and compared with past pseudo-metrics.

o Appendix [B|discusses parametrization of CSS(R?;m) and includes Examples 4.5/ and |B.2| com-
puting the new invariants NDP in detail for infinitely many 4-point clouds from Example 4.5]

e Appendices[C| [D] [E] prove all theoretical results from sections [3] [} [5] respectively.
e The zip folder with supplementary materials includes the code for computing all invariants and

metrics as well as tables with all coordinates of colorful maps of QM9 and distances.

A EXTRA DETAILS OF EXPERIMENTS IN SECTION

The maps of QM9 in Fig. [8are based on eigenvalues and too dense without clear separation. Even if
we zoom in, these incomplete invariants will not separate molecules because 3D clouds have at most
3 eigenvalues. The complete invariants NDP contain much more geometric information. Fig.[9]and
[I0]show that distances on stornger invariants have larger values and hence better separate molecules,
though all these distances have the same Lipschitz constant 2.
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Figure 8: Left: each dot represents one QM9 molecule whose atomic cloud has two largest roots
l1 > Iy of eigenvalues (moments of inertia[Nemec] or elongations in principal directions) in
Angstroms (1A = 10~ '%m ~ smallest interatomic distance). The color represents the free energy
G characterizing molecular stability. Right: each dot represents one QM9 molecule whose atomic
cloud has coordinates x, y expressed via the roots I; > lo > I3 > 0 of three eigenvalues.
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Figure 9: Left: each dot is a comparison of closest atomic clouds A, B from QM9 by the distances
Lo, on SRV vs L, on SDV. Right: zoomed-in comparisons for very small distances.
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Figure 10: Left: each dot is a comparison of closest atomic clouds A, B from QM9 by the distances
L, on SDV vs EMD on PDD. Right: zoomed-in comparisons for very small distances.

B MAPS OF CLOUD SPACES AND EXPLICIT COMPUTATIONS OF INVARIANTS

This section explains how cloud spaces can be visualized by considering the previously known and
new types of 4-point clouds (quads) in R2. This geographic-style approach extends to any number
m of points in R”.
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For any cloud A C R", the center O(A) = 0 € R is the origin. For n = 2, let p{1} consist of
a single point p; € A with |p;| = R(A) = R. We can fix p; = (R,0) in R?. Then all points
P2, .., Pm arein the disk D = {z% +y? < R?}. Since Y. p; = —p1 = (=R, 0), p,, is determined

i=2
from po,...,pm—1 € D that satisfy only one equation

m—1
R*> |pul* = [(R,0)" + > pil* = (R+2) +¢7,
=2

m—1

where (z, y) are the coordinates of s = > p;. The domain of s is the intersection J = D N {(R +
i=2

z)? +y? < R}

For m = 3, we have s = (x,y) = ps. The symmetry py <> ps allows us to choose any po

in the left half (yellow) Ds of the intersection J in Fig. [T1] (left). Then the Rigid Cloud Space
CRS(R™; 3) is parametrized by any radius R > 0 and p; € Ds. All equilateral triangles have

p2 = (—%R7 :I:?R). All isosceles triangles have po in the boundary 0 D3 whose points should be

identified under (z,y) — (z,—y). All po = (z,0) with —R < z < —1R represent degenerate
triangles with the vertices (R, 0), (z,0), (—R — «,0) in the same line.

equilateral Y rectangles YA — squares
\

isosceles

Figure 11: The spaces in yellow for triangles (D3) and parallelograms (D) under rigid motion and
uniform scaling in R2.

For m = 4, we can choose s = ps + p3 € J, then any p3 in the disk with the radius R and center s
so that |pa| = |p3 — s| < R. For any parallelogram in R?, its vertex cloud A has a longest diagonal
between (say) pi, p3 that should be at (£R,0). All possible s = ps + (—R,0) € J mean that py
can be anywhere in D. Due to the symmetry ps <+ pa, the left half D4 of D in Fig. [IT](right) is the
subspace of all parallelograms in DCS(RR?;4) = CRS(R?; 4) /scaling.

Similarly for m > 4, n > 2, we can sequentially sample points po, . .., py,—1 from allowed disks
(high-dimensional for n > 2) to get a unique representation of A under rigid motion. The sym-
metry f : (x,y) — (z,—y) on D identifies mirror images of A. CIS(R™;m) is the quotient of
CRS(R™;m) under (z,y) ~ (x,—y), take the upper halves of D3, D4 for triangles and parallelo-
grams, respectively.

We expand Fig. [T1] above to illustrate severak important subspaces in the Isometry Cloud Space
CIS(R?;m) and the Similarity Cloud Space CSS(R?;m) for m = 3, 4. For simplicity, we call all
clouds of 3 and 4 unordered points triangles and quadrilaterals, respectively.

However, all these polygons are considered equivalent when we re-order their vertices. If all
m points are ordered, parametrizations of the resulting shape spaces were studied in geometry
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Kapovich & Millson| (1996) and shape theory [Kendall et al.| (2009). We focus on the much harder
quotient spaces of m unordered points.

Theorem|C.7]explicitly describes all realizable Point-based Representations. Though the same point
cloud A C R can have many PR(A4;p{n — 1}) depending on a base sequence p{n — 1} C A,
we can easily sample any of them and always reconstruct A, while random sampling distance-
based invariants doesn’t guarantee the existence of A because of extra relations between inter-point
distances.

Though PR(A4; p{n — 1}) consists of scalar products ¢ - p; with basis vectors p1, . .., p,, it is easier
to visualize the isometry spaces by directly using some points ¢ € A as parameters instead of their
projections.

Case m = 3 of triangles is the same in all dimensions n > 2. We consider R? for simplicity.
Fig. [11] (left) showed the Dilation Cloud Space DCS(R?; 3) of triangles A modulo rigid motion
and uniform scaling in R?. We assume that the center of mass is at the origin: C(4) = 0 in R%.
After the radius R = 1 of A is fixed up to scaling, we also fix the first vertex at p; = (R,0).
Then DCS(R?; 3) is parametrized by the second vertex ps € Dj, because the vertex ps is uniquely
determined by p; + p2 + p3 = 0.

The blue boundary of DCS(IR?; 3) consists of points py that define isosceles triangles. The vertical
part of the blue boundary in Fig. [12] (left) represents all isosceles triangles with a unique angle (not
equal to two equal ones) less than 60°. The round part of the blue boundary in Fig. [I2] (right)
represents all isosceles triangles with a unique angle greater than 60°. These boundary parts meet at

the red points (— g, :t@R) representing all equilateral triangles.

degenerate VY

equilateral Y
~

D center
3 of mass

isosceles

Figure 12: The (blue) subspace of all isosceles triangles in CSS(R?;3). Left: isosceles triangles
with |p1 — p2| = |p1 — p3|. Right: isosceles triangles with |[p3 — p1| = |p3 — pa|-

If p = (2,0) for —R < z < —Z&, then p; = (=R — x,0), so the triangle generates to three
points in the line. In the yellow space D3 = CSS°(IR?;3), the mirror reflection (z,y) — (x, —y)
maps every isosceles triangle to itself, more exactly, to an equivalent triangle under rigid motion.
Hence all points of the blue boundary of D3 should be identified under (x,y) — (2, —y). Then the
space D3 of all triangles (including degenerate ones) under rigid motion and uniform scaling can
be visualized as a topological sphere S? whose the northern and southern hemispheres are obtained
from the upper and lower halves of Ds.

Case m = 4 of quadrilaterals in R?. Fix the center of mass O(A4) = 0 € R? at the origin, the radius
R(A) = R, and a most distant (from 0) point p; at (R,0). The other vertices po, ps3, p4 belong to
the disk D = {2? + y? < R?} and have the shifted center of mass % = (—£,0). Hence,
for a fixed radius R, the space CSS(R?;4) is 4-dimensional.
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The subspace of parallelograms in CSS(R?; 4) is 2-dimensional. For any parallelogram A, its other
most distant vertex is ps3 = (—R,0) opposite to p; with respect to 0. Then ps + p4s = 0 and
the symmetry ps <+ p4 allows us to consider only ps in the yellow half-disk D4, which uniquely
determines its symmetric image py4 in Fig. [TT] (left).

rectangles Y YA — squares

Figure 13: The (yellow) subspace D, of all parallelograms with p; = (R, 0) and p3 = (—R,0) in
CSS(R?;4). Left: the (blue) subspace of rectangles. Right: the (orange) subspace of rhombi.

The round (blue) boundary of D, in Fig. ﬂEl (left) represents all rectangles inscribed in the circle
22 + y?> = R2. The vertical (orange) boundary of D, in Fig. (right) represents all thombi
with equal sides. The reflection (z,y) — (z, —y) maps any parallelogram to its mirror image and
preserves the equivalence class (up to rigid motion) of any rectangle or rhombus, which are mirror-
symmetric. Hence all points on the boundary of D, should be identified under (z,y) — (z, —y).
The resulting quotient is a topological sphere S? as D3 for all triangles, unsurprisingly because a
parallelogram can be considered as a double triangle.

Figure 14: Left: the (yellow) subspace of kites in CSS(R?;4) parametrized by p» € K,. Right:
the subspace of qmeds is parametrized by « € [—R, R] and ps in the yellow region.

Another interesting case is when one of the vertices p3 = (x,0) belongs to the z-axis for
x € [—R, R]. Then the (horizontal line passing through) diagonal joining p1, ps intersects another
diagonal at its mid-point 22524 = (z5 4,0) for 294 = — 2% € [—R, 0]. The resulting cloud A can
be called a quadrilateral with a median diagonal, briefly gmed. If a qmed A is also symmetric with
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respect to its median diagonal, the A has two pairs of equal sides and is often called a kife, see the
kite K in Fig. 2] (right).

Since any kite is mirror-symmetric, the points p; = (z,y) and p4 = (z, —y) represents the same
kite up to rigid motion. Hence the (yellow) subspace of all kites in CSS(R?;4) is the upper half
K, of the disk D in Fig. |14 (left). For points p, in the vertical line x = fg, we get a degenerate
kites whose vertices ps, ps, p4 are in the same straight line. If p; = (x, 0), the kite degenerates even
further to the case of identical vertices ps = p4.

So the subspace K4 of kites in CSS(R?;4) is 2-dimensional, while the larger subspace of qmeds
is 3-dimensional, parametrized by z € [—R, R] and a point ps that can take any position in the
intersection of the disk D = {2 + y? < R?} and its symmetric image with respect to the diagonal
mid-point (224, 0) = (—Z££,0).

The full space CSS(R?;4) is parametrized by the sum s = p + p3 in the intersection J = D N
{(R+ x)? + y? < R?} and then taking p in the disk with the radius R and center s to guarantee
that |p3| = |p2 — s| < R.

Case m = 4 of tetrahedra in R®. In R3, we similarly fix the center of mass at the origin and the
most distant points p; at (R, 0,0). The second most distant point ps (if not in the line through 0 and
p1) forms a base sequence py, p2 and can be fixed at (z,y,0) with 22 + y? < R?, which determines
the mid-point p3 4 p3'5p4 = (—#, —%,0). Due to the symmetry p3 <+ py around p3 4, it remains
to choose p3 in the upper half ball with the center ps 4 and radius /z? + y2.

The clouds in Example are instances of C* from Example ??: K = CT,T = C~ for 4a =
b = ¢ = 4d = 2+/2 and are easy enough to write their NDPs below.

Example B.1 (4-point clouds 7T, K in Fig.[2). Both clouds T, K C R? in Fig.[2|have the center of
mass at the origin.

(T) The cloud T has the points p1 = (2,1), po = (=2,1), p3 = (—4,—1), ps = (4,—1). For the
basis point py = (2, 1) with |p1|? = 5 and orthogonal vector pi- = (—1,2) L p; from Lemma

the point-based representation is PR(T; p1) = {5, ( 23 2_9 36 )]

For the second point ps = (—2,1) with |p2|> = 5, p3 = (—1,—2), we have PR(T;ps) =
[5, ( :Z g :g )} which differs from PR(T;p1) by the sign of the last row (up to a per-
mutation of columns). The symmetries under p1 <> pa (above) and ps < py (below) are explained
by the reflection (x,y) — (—x,y) mapping T to itself.

For p3 = (—4,-1) with |p3s|>* = 17, p+ = (1,-4), we have PR(T;p3) =
17 -9 7 —15
"\ -2 -6 8 ’
For the fourth point py = (4,—1) with |ps|*> = 17, pt = (1,4), we have PR(T;ps) =
17 7 -9 -—15
A6 2 -8 ’
So NDP(T) is the unordered set of the four PRs above.
(K) The cloud K has the points p1 = (5,0), po = (—1,2), p3 = (=3,0), py = (-1, -2).
For the basis point py = (5,0) with |p;|?> = 25 and pi- = (0,5) L py, the point-based representa-

o . B -5 —15 =5
tion is PR(K;py) = {25’( 10 0 —10 )}

For the second point py = (—1,2) with |ps|?> = 5 and py = (—2,—1), we have PR(K;p2) =
5 -5 3 1
"\ -10 6 4 )|
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For the third point p3 = (—3,0) with |p3|*> = 9 and p3 = (0,—3), we have PR(K;p3) =

P07 %))

For the point py = (—1,-2) with |ps|*> = 5 and p; = (2,—1), we have PR(K;ps) =
5 -5 1 3
'\ 10 -4 —6 )|

So NDP(K) is the unordered set of the four PRs above.

T % K are distinguished by (unordered) squared distances to their centers: 5,5,17,17 for T, and
25,5,9,5 for K. |

Example@ finishes the computations of the Nested Distributed Projection (NDP) for the 4-point
clouds C R? in Fig. [2} which we started in Example [4.5]

Example B2 (4-point clouds C* in Fig. ' In R?%, consider the 4- poznt clouds C* =

{p1,p2,p3,pi ). where p1 = (4a,0), p2 = (b,c), ps = —p2 = (b, —c), pf = (0,4d), and
p; = (0, —4d) for parameters a, b, c,d > 0.

After shifting the center O(Ct) = (a,d) to the origin (0,0), the points of C become p; =
(3a,—d), p = (b—a,c—d), pi = (—a —b,—c—d), p; = (—a,3d).

Each matrix SD(C™; p) is one squared distance |p|>.

SD(C+,p1 ) = 9a® + d?,
SD(C ’pz) (a*b)2+(0*d)2,
D(C 7p3) (a+b) +(c+d)?
( ’p4)_a +9d2

For the second cloud C~, after shifting the center O(C~) = (a, —d) to the origin (0,0), the points
become p; = (3a,d), p; = (b—a,d+¢), p; = (—a—b,d—c¢), p; = (—a,—3d).

Hence C~ has the following squared distances to its center:

( apl): a +d2
( 1p2) (CL— b) (C+d)27
E ap3§ (a+b) ( - d)Qa

iPy) =a 2 4+ 942

The (unordered) collections of squared distances above differ unless at least one of a, b, c, d is zero.
Indeed, the squared distances 9a® + d? and a® + 9d* are shared by C* but SD(C*;p3) is unique

and cannot equal SD(C~;p5 ) or SD(C~; p3 ). Indeed, if all a,b, c,d # 0, then

(a—b)2+( d)? # (a—b)?+ (c+d)? ored #0,
(a=b)2+(c—d)?# (a+b)*+ (c—d)* orab # 0.

Ifd = 0, then py = (0,0), so the clouds C* are identical.

Ifa = 0, then p; = (0,0) and C* are related by the 180° rotation around the origin: (x,y)
(71:7 7y)

Ifb =0 or c = 0, then C* are related by the reflection (z,y) — (x, —y), so distances cannot distin-
guish these mirror images. We compute NDP(C™) below to distinguish all non-rigidly equivalent
Ct 2 C~, see Fig.

For the basis point p1 , the matrix SD(C‘",p1 ) = 9a% + d? is the single squared distance.

Lemma gives the orthogonal vector q1 = (d,3a) L pf M(C*;p] 1) consists of the 3 un-
ordered columns
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Py 3a(b—a) +d(d—c)

P d(b— a) + 3a(c — d) )’

py ot —3a(a+b) +d(c+d)

pa —d(a + b) —3a(c+d) )’
(5 ) -

I
P

+ 2
D1 3 + d ) . 4+ B o
ot qr < Sad . The second point p; = (b — a,c — d) has the orthogonal
vector ¢ = (d —c,b—a) L p3, SD(C*;pf) = (a — b)? + (c — d)? and M(C+; p3) consisting

of the 3 unardered columns

(2m)- (iz%z:zsiz<d 0 )

py Py \ a2 -+ d?

pya ) (ac — bd)

-
( g} 2)3 ) _ ( aga sgigggc a% ) The third point pj = (—a—b, —c— d) has the vector
g3 = (c+d,—a—10b) Lpd, SD(C*;pd) = (a+b)%+ (c+ d)? and M(C™T;p}) consisting of the
3 unordered columns

py i\ _ [ —3ala+b)+d(c+d)

pi ¢ )\ 3Balc+d)+d(a+bd) )

(oot )= (o)
Py 45 2(bd — ac) ’
-pf ala+b) —3d(c+d o
(Zi ];3 > ( —alc +d) —365(@4—2)) . The fourth point pj = (—a,3d) has the vector
qf = (-3d,—a) J_p4,SD(C+,p4)—a +9d?, M(C*;pf) has the columns

+
+

Py (a® + d?)

~q2‘ —8ad ’
a(a —b) + 3d(c—d)
3da—b Y+ald—c) )

St
P3Py a(a+0b) — 3d(c+d) o o " i
- qr > < 3d(a+b) +alc+d) | The Nested Distributed Projection NDP(C™) con
sists of the four pairs (of a squared distance and 2 X 3 matrix) above.

For C~, after shifting the center O(C~) = (a, —d) to the origin (0,0), the points of C~ become
p; = (3a,d), p; =(b—a,d+c¢), p; =(—a—0b,d—c), p; = (—a,—3d). The first point p; has
the vector q = (—d,3a) L py, SD(C~;p]) = 9a® + d? M(C~;py ) has the columns

Py -p1 \ _ [ 3a(b—a)+d(d+c)

py cq; ) \dla—0b)+3a(d+c) )

P3 oP1\ _ —3a(b +a)+d(d—c)

o5 -ar )= b+a)+3a(d o )

Py -pL + d?) nt e —

b g . The second point p, = (b — a,d + ¢) has the vector

il

¢ =(=d—cb— LPQ,SD(C ipy) = (a—b)*+ (c+d)*, M(C;py) of

Py Dy —a)+d(d+c)

Pl 45 73a +d) +d(b—a) ’

D3 "Dy a —b2 2+ d?

D3 Qs 2(ac + bd) ’

by - Doy a—0)—3d(c+d . - _
( Z;ﬁ qz_ ) ( alc+ d) —|—3dg b; > The third point p; = (—a — b,d — ¢) has q; =
(c—d,—a—10b) Lp;,SD(C~;p3) = (a+b)?+ (c—d)?* M(C;p3) of

p; -ps \ _ [ —3ala+b)+d(d—c)

Py ca; ) 3a(c—d)—d(a+b ’

popy \_ [ @0+

Py a3 ) —2(ac + bd) ’
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Py ps \ _ [ ala+b)+3d(c—d) Coa -
p4~q3) = (a(dc)+3d(a+b) . The fourth point p; = (—a,—3d) has q; =

(3d,—a) L py, SD(C~;py ) = a® + 9d%, M(C~;p; ) consisting of
( pr by ) _ ( —3(a” + d?) )
I 8ad ’
( pz by ) _ ( a(a —b) = 3d(d + ) >
py -q; ) \ 3db—a)—a(d+c) )
( Ps Py ) = ( ala +b) + 3d(c - d)) ) The Nested Distributed Projection NDP(C™) con-

=3d(a+b)+alc—d
sists of the four pairs (of a squared distance and 2 X 3 matrix) above.

Shorter Exampled.5\justified that C* % C~ unless at least of the parameters a, b, c,d is 0. Ifa = 0
ord =0, then CT = C~ are isometric. In the remaining cases b= 0 and ¢ = 0, the clouds C* are
mirror images, which can be distinguished by matrices M above, not by any distances.

Case b = 0. We write down the above matrices M (C; p;) with unordered columns after substitut-
ingb=0.

( —3a®+d(d—c) —3a®>+d(d+c) —3(a®+d?) >
a(3c — 4d) —a(3c+ 4d) 8ad

—3a®>+d(d—c) a®—c*+d*> a®+3d(c—d)
a(4d — 3c) 2ac a(c— 4d)

—3a®> +d(d+c) a®—c2+d* a®—3d(c+d)
a(3c+4d) —2ac —a(c+ 4d)

( —3(a?+d*) a®?+3d(c—d) a*—3d(c+d) )
—8ad a(4d — ¢) a(c+ 4d)

The mirror image C~ has the following matrices:

( ~3a>+d(d+c) —3a®+d(d—c) —3(a®+d?) >
a(3c+ 4d) a(4d — 3c) —8ad

—3a®>+d(d+c) a®—c2+d*> a®—3d(c+d))
—a(3c+ 4d) 2ac a(c+ 4d)

—3a®>+d(d—c) a®—c*+d* a®+3d(c—d)
a(3c — 4d) —2ac a(4d — ¢)

( —3(a® +d?) a®—3d(c+d) a®+3d(c—d) )
8ad —a(c+ 4d) a(c —4d)

By Lemma b ), the reflection C* — C~ changes the sign of the last row in the matrix M from
any point-based representation PR. Indeed, changing the sign of the last row in each matrix M from
NDP(C™) makes this matrix identical to one of the matrices from NDP(C™), up to a permutation
of columns as always. However, with all signs kept, the above unordered collections of four matrices
are different unless all elements in the last row vanish, which happens only for a=0, when C+ = C_
are identical.

Case ¢ = 0 is symmetric to the case ¢ = 0 under the reflection (x,y) — (y,x), which swaps b <> ¢
and a < d.

We have considered only non-negative values of a,b, c, d because all other cases are obtained by
symmetries. For example, the reflection y — —y maps the cloud C™* (a, b, c,d) to C~ (a, —b,c,d) =
C~(a,b,—c,d). [ ]

Example [B.2]importantly demonstrates that the invariant NDP is simple enough for manual compu-
tations.
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A numerical experiment can only illustrate but not prove the conclusion of Example [B.2] that all
(infinitely many) non-rigidly equivalent clouds C* are distinguished by NDP.

C GENERALIZATION OF SECTIONE]AND ALL PROOFS IN DIMENSIONS n > 2

This appendix extends all concepts from section |3| to dimensions n > 2, extends Theorem to
Theorem [C.7] which is proved with Theorem [C.9|for any n > 2.

Lemma C.1 (vector p;- orthogonal to py, . .., p,—1 in R™). Letey, ..., e, be an orthonormal basis
of R, so |e;| = 1l and e; - e; = 0 fori # j. For any n — 1 vectors p1,...,pn—1 € R”, there
is a vector pf; that is orthogonal to all p1,...,p,—1 and has coordinates that are degree n — 1
polynomials in the coordinates of p1,...,Pn_1.

Proof of Lemma Below the ‘unusual determinant’ with the n — 1 vector columns py, ..., pp—1

and the last column of the n vectors ey, ..., e, is only a short notation for the following expansion
| ... | e B
by the last column: | ,, ) = Z(—l)"“ det(i)e;, where det(7) is the usual
] en =t
(n — 1) x (n — 1) determinant obtained from the n — 1 vector columns p, ..., p,_1 by removing
n

the i-th row, so we set p- = > (—1)"* det(i)e;.

i=1

For example, if n = 2 then p; = (z1,x2) has the vector pj‘ = i; 2; ‘ = T1e9 — Toe] =
1 Y1 e
(—=w2,21) Lpi Ifn =3,p1 = (v1,22,23) and po = (y1,y2,y3). thenpz = | x2 ya ea | =
T3 Ys €3
T2 Y2 1 W 1 W% .
e es3 = p1 X pg is the vector product of pq, po.
T3 Us T3 U 2+ zo yo |3 p1 X p2 p D1,P2

To show that pl is orthogonal to each p;, we compute the scalar product p- - p; =

n
S™(=1)"*tdet(i)e; - p;. Since e; - p; equals the i-th coordinate of the vector p;, the last sum
i=1
is the expansion of the n x n determinant obtained from the original p;- above by replacing the
last column with p;. Since the resulting determinant contains two identical columns equal to p;, we
conclude that p;- - p; = 0. O

Lemma holds when given vectors pi,...,p,—1 € R"™ are linearly dependent, even if some
p; = 0. Then p;- = 0 is orthogonal to each p; so that p;- - p; = 0.

Definition extends a point-based representation from Definition to dimensions n > 2. The
key idea is to represent any m-point cloud A C R"™ relative to (a simplex of) any base sequence of
ordered points p1,...,pn—1 € A. If the vectors p1,...,p,—1 are linearly independent, they form
with the vector p;- from Lemma a (not necessarily orthogonal) basis in R™. Below we represent
any point p € A by normalized scalar products, which are valid even if p1,...,p,—1 are linearly
dependent.

Definition C.2 (point-based representation PR for n > 2). For any cloud A C R™ of m unordered

= — Y p. Shift A so that O(A) is the origin 0 € R". The
m pea
radius of A is R(A) = max |p|. For any basis sequence of points p1,...,pn—1 € A, the squared
JUS

points, the center of mass is O(A)

distance matrix SD(p1, . .., pn—1) consists of |p; — p;|* fori,j =0,...,n — 1, where py = 0. Let
p;- be the vector in Lemma For any point ¢ € A — {p1,...,pn—1}, then X (m —n + 1)
matrix M (A;p1,...,Dn—1) has a column of scalar products q - p1,...,q - pn. The point-based
representation PR(A; p1, ..., pn—1) is the pair

[SD(ph s 7pn—1)a M(Aaph s 7pn—1)}~
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The normalized representation NPR(A; p1,...,pn—1) is obtained by dividing all components of
PR(A;p1,...,pn_1) by R%(A), except the last row of M(A;p1,...,pn_1), which is divided by
R"(A). |

Lemma C.3 (PR under isometry). Let a point cloud A C R™ have a base sequence (p1, .. .,Dn—1).

(a) Any rigid motion f of R™ respects point-based representations from Definition[C.2]so that
PR(A;p1,...,pn-1) = PR(f(A); f(p1), - .-, f(Pn-1))-

(b) For any orientation-reversing  isometry f of R", the  representation
PR(f(A); f(p1),--., f(pn—1) differs from PR(A;p1,...,pn—1) by reversing all signs in the
last row of the matrix M (A;p1, ..., Dn-1).

(¢) The normalized point-based representation NPR(A; p1, ... ,pn—1) in Deﬁnitionis preserved
by any composition of rigid motion and uniform scaling.

Proof of Lemma|C.3] (a) Since rigid motion preserves distances and scalar products, all compo-
nents of the point-based representation PR(A;p1, ..., p,—1) are invariant.

(b) Using a composition with a suitable orientation-preserving isometry (rigid motion), one can
assume that f is the mirror reflection in a linear hyperspace H containing the origin 0 and the
base sequence p1,...,pn—1 of A. Since f preserves distances, R(A) and SD(A;p1,...,pn-1)
are invariant. Then f fixes all points from H including p1,...,p,—1, hence the vector p, from
Lemma|[C.I] Any pointq € A — p1,...,p,—1 keeps its scalar product ¢ - p; fori = 1,...,n —1
and changes the sign of ¢ - p,, because ¢ and its mirror image f(q) have opposite projections to
pn. The above arguments hold even if the base sequence p1, ..., p,—1 is degenerate, not generating
an (n — 1)-dimensional subspace in R™. Then there are infinitely many choices of H above and
prn = 0, so the last row of M (A;p1,...,p,—1) consists of zeros.

(¢) Under uniform scaling by a factor s, all squared distances and scalar products ¢-p;, ¢ = 1,...,n—
1, are multiplied by s2. The vector p;- from Lemma is multiplied by s"~!, hence all scalar
products g - p,, in the last row of M (A4;p1,...,pn—1) are divided by R"(A). O

The affine dimension 0 < aff(A) < nofacloud A = {p1,...,pm} C R™ is the maximum
dimension of the vector space generated by all inter-point vectors p; — p;, i,j € {1,...,m}. Then
aff(A) is an isometry invariant and is independent of an order of points of A. Any cloud A of 2
distinct points has aff (A) = 1. Any cloud A of 3 points that are not in the same straight line has
aff(A) = 2.

Lemma [C.4] provides a simple criterion for a matrix to be realizable by squared distances of a point
cloud in R™.

Lemma C.4 (realization of distances). (a) A symmetric m x m matrix of s;; > 0 with s;; = 0 is
realizable as a matrix of squared distances between points pg = 0,p1,...,pm—1 € R™ if and only

Soi + S0j — Sij . .
% has only non-negative eigenvalues.

if the (m — 1) x (m — 1) matrix g;; =
(b) If the condition in (a) holds, aff (0, p1, . .., pm—1) equals the number k < m — 1 < n of positive
eigenvalues. Also in this case, g;j = p;-p; define the Gram matrix GM of the vectors p1, . .. ,pPm—1 €
R™, which are uniquely determined in time O(m?) up to an orthogonal map in R".

Proof of Lemma|C.4] (a) We extend Theorem 1 from Dekster & Wilker] (1987) to the case m <
n + 1 and also justify the reconstruction of py, ..., P, _1 in time O(m?) uniquely in R™ up to an
orthogonal map from the group O(n).

The part only if =. Let a symmetric matrix S consist of squared distances between points py =
0,p1,.--,Pm—1 € R™". Fori,j =1,...,m — 1, the matrix with the elements

S0i + Soj — Sij P?‘FP? — |pi — p;I? _

gij = 5 5 =Di-Pj
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is the Gram matrix, which can be written as GM = PT P, where the columns of the n x (m — 1)
matrix P are the vectors p., ..., p,—1 . For any vector v € R™ ™!, we have

0 < |Pv|* = (Pv)T (Pv) = vT(PTP)v = vT GMu.

Since the quadratic form vTGMuv > 0 for any v € R™~1, the matrix GM is positive semi-definite
meaning that GM has only non-negative eigenvalues, see Theorem 7.2.7 in|Horn & Johnson|(2012).

The part if <. For any positive semi-definite matrix GM, there is an orthogonal matrix @ such that
QTGMQ = D is the diagonal matrix, whose m — 1 diagonal elements are non-negative eigenvalues
of GM. The diagonal matrix /D consists of the square roots of eigenvalues of GM.

(b) The number of positive eigenvalues of GM equals the dimension & = aff ({0, p1,...,pm-1})
of the subspace in R™ linearly spanned by p1,...,p,—1. We may assume that all & < n positive
eigenvalues of GM correspond to the first k coordinates of R™. Since Q7 = Q~1, the given matrix
GM = QDQ" = (QVD)(QvD)T becomes the Gram matrix of the columns of Qv/D. These
columns become the reconstructed vectors p1, . .., pm—1 € R™.

If there is another diagonalization QTGMQ = D for Q € O(n), then D differs from D by a
permutation of eigenvalues, which is realized by an orthogonal map, so we set ) = D. Then
GM = QDQ™ = (QvD)(QvD)" is the Gram matrix of the columns of Q+/D.

The new columns differ from the previously reconstructed vectors p1,...,pm—1 € R" by the or-
thogonal map QQT. Hence the reconstruction is unique up to O(n)-transformations. Computing
eigenvectors p1, . . ., pm—1 Needs a diagonalization of GM in time O(m?), see (Press et al., 2007,
section 11.5). ]

Though Lemma|[C.4] gives a two-sided criterion for realizability of distances by points p1, ..., pm €
R™, the space of distance matrices is highly singular and cannot be easily sampled. Even m = 4
points in R? have 6 distances that should satisfy a polynomial equation saying that the tetrahedron
with these 6 edge lengths has volume 0.

So a randomly sampled matrix of potential distances for m > n + 1 is unlikely to be realizable
by a cloud of m ordered points in R”. Hence Lemma for m < n + 1 is complemented by
Theorem describing the much more practical realizabilty of a point-based representation.

Chapter 3 in |Liberti & Lavor| (2017)) discusses realizations of a complete graph given by a distance
matrix in R™.

Lemma [C.5]a) and later results hold for all clouds including degenerate ones, e.g. for 3 points in a
straight line.

Any points py,...,pp—1 € A have aff(p1,...,pp—1) < n — 2. For example, any two distinct
points in A C R3 generate a straight line. Lemma c) proves that PR(A; p1, ..., pn—1) suffices
to reconstruct a cloud A C R™ for a suitable sequence p1,...,p,_1. In R2, any point p; # O(A)
forms a suitable {p;}. In R3, one can choose any distinct points p;,p2 € A so that the infinite
straight line via p1, ps avoids O(A).

If there are no such p1, ps, then A C R3 is contained in a straight line L, so aff(A) = 1. In this
degenerate case, the stronger condition aff (O(A) U {p1,...,pn—1}) = aff(A) will help reconstruct
A C L by using any point p; # O(A). The first step is to reconstruct any ordered sequence from its
distance matrix in Lemma[C.5|a).

Lemma [C.3] improves Lemma E.5 in[Widdowson & Kurlin| (2023) by justifying a time for a point
cloud reconstruction based on Lemma|[C.4

Lemma C.5 (reconstruction). (a) Any sequence of ordered points p1,. .., Dy in R™ can be recon-

structed (uniquely up to isometry) from the matrix of the Euclidean distances |p;—p;| in time O(m?).

If all distances are divided by R = max |pil|, the reconstruction of p1, ..., pm is unique up to
i=1,....m

isometry and uniform scaling in R".
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(b) If m < n, the uniqueness of reconstructions in part (a) remains true if we replace isometry by
rigid motion in R™.

(c) Any cloud A C R™ of m unordered points can be reconstructed (uniquely up to rigid motion in

R™) from a point-based representation PR(A; p1, . .., pn_1) in time O(m?) forany p1,...,pn_1 €
Awith aff (O(A) U {p1,...,pn-1}) = aff(A). Ifaff (A) = n, then aff (O(A) U {p1,...,pn-1}) =
n — 1 suffices. Any cloud A C R"™ has a suitable sequence p1, ..., pn—1 in all cases.

Proof of Lemma|C.5] (a) By translation, we can put p; at the origin 0 € R". Let G be the (m —

2,2 2
2+ 2 — |pi —pj
1) x (m — 1) matrix G;; = Pt Py = [P pil = p; - p; constructed from squared distances

between p; = 0,...,py, fore, 7 = 2,.. .27 m. By Lemma[C.4]if G has k < n positive eigenvalues,
then p; = 0,...,p,, can be uniquely determined up to isometry in R* C R™ in time O(m?). If all
distances are divided by the same radius R(p{m}), the above construction guarantees uniqueness
up to isometry and uniform scaling.

(b) If m < n, any mirror images of p{m} C R™ after a suitable rigid motion in R"™ can be assumed
to belong to an (n — 1)-dimensional hyperspace H C R", where they are matched by a mirror
reflection H — H with respect to an (n — 2)-dimensional subspace S C H, which is realized by
the 180° orientation-preserving rotation of R around S.

(c) We will reconstruct a cloud A C R”™ so that the center of mass O(A) is the origin 0 € R™. If
aff(A) = k < n, the cloud A C R™ is contained in an affine k-dimensional subspace, which can be
rigidly moved to the linear subspace R¥ C R™ for the first k of n coordinates in R™.

It suffices to reconstruct A C R¥ up to rigid motion in R¥. Since aff (0, p1,...,pn_1) = k, some
k vectors (say) p1,. .., px from py, ..., p,_1 form a linear basis of R*. The k points p1, ..., py are
uniquely reconstructed up to rigid motion in R” by part (b). Any other point g € A — {p1,...,px}
is uniquely determined by its projections (g - p;)/|pi|, which can be found from the first k& < n rows
of the matrix M (A;p1,...,pn—1) for the point g, see Deﬁnition

In the generic case aff (A) = n, the condition aff (0, py, ..., pn—1) = n—1 means that py, ..., p,_1
are linearly independent and hence form a linear basis of R™ with the extra vector p- from
Lemma The sequence (0, p1,...,pn—1) of n points can be uniquely reconstructed up to rigid
motion in R™ by part (b). Any other point ¢ € A — {p1,...,pn—1} is uniquely determined by its

projections q| : ]Ti to the n basis vectors py, . .., pn_1, P, which can be found from the column of
Pi
M(A;p1,...,pn-1) forgq. -

Lemma [C.5(b) for m = n = 3 implies that any triangle is determined by its sides up to rigid
motion in R?. For example, the sides 3, 4,5 define a right-angled triangle whose mirror images are
not related by rigid motion inside a plane H C R3, but are matched by composing a suitable rigid
motion in H and a 180° rotation of R3 around a line in H.

Lemma C.6 (smoothness of PR). For any cloud A C R™ and a base sequence p1,...,pp—1 € A,
all components of PR(A;p1,...,pn—1) have continuous partial derivatives (of any order) with
respect to all (coordinates of) points of A as long as R(A) > 0, so some points of A remain distinct.

Proof of Lemma|C.6] The point-based representation PR(A;p{n — 1}) consists of squared dis-
tances in the matrix SD(p{n — 1}) and scalar products in the matrix M (A; p{n — 1}) of all points
q € A — p{n — 1} with the vectors p1, ..., p,—1 from the base sequence p{n — 1} and the vector
Pn L p1,...,pn—1 from Lemma[C.I] All these components are polynomials in the coordinates of
the points of A, so have all continuous partial derivatives. O

Theorem[C.7]extends Theorem 3.3]to dimensions n > 2.

Theorem C.7 (realizability of abstract PR). Let S be a symmetric n X n matrix of s;; > 0 with
sii = 0. Let M be any n x (m — n + 1) matrix for m > n. The pair [S, M| is realizable as a
point-based representation PR(A;p1, ..., pn—1) for a cloud A C R™ of m points with O(A) = 0

27



Under review as a conference paper at ICLR 2025

1

5(517: =+

s1; — Sij) has only positive eigenvalues, which uniquely determines pi, ..., pn—1 Up to isometry,
n—1 m—n—+1

and (2) Y (pi -pj) + Y. M;; = 0fori=1,...,n, where p, = py is the orthogonal vector
Jj=1 j=1

from Lemma

and a base sequence p1, .. .,pnp—1 if and only if (1) the (n — 1) x (n — 1) matrix G;; =

Proof of Theorem|C.7] The realizability of S as a matrix of squared distances between n points
0,p1,...,pn—1 from the base sequence p1,...,p,—1 follows from Lemma The orthogonal
vector p;- (also denoted by p,, here for uniformity) from Lemmacornplements PlyeeesPrn_qto
a linear basis of R™. By Deﬁnition every element M;; of the matrix M = M (A;p1,. -y Dn-1)
equals p; - ¢ forsome g € A — {p1,...,pn—1}, wherei =1,...,n.

m—n+1

n—1
Hence Y (p; - p;) + Y. M,; =0canberewrittenasp; - (Y, p) =0fori=1,...,n. These
Jj=1 Jj=1 peA
1
n equations mean that O(A) = — > pis at the origin 0 € R"™.
m pEA
Conversely, for any M satisfying condition (2), we interpret every column (Ay,, ..., Mnj)T as
a vector of scalar products (¢ - p1,...,q - pn), Which determine a position of a point ¢ € A —
{p1,...,Pn—1} in the basis p1, ..., p,. O

In Theorem [C.7] condition (2) is equivalent to O(A) = 0 € R™ and implies that m — n columns of
M consist of free parameters, which determine the remaining column.

For n = 2, condition (1) means only that s;5 > 0, so the distance between the points pg = 0 and p;
is positive.

For n = 3, condition (1) about positive eigenvalues of the 2 x 2 matrix G means that 3 distances
a < b < c between points 0, p1, ps in R3 satisfy ¢ > 0 and a + b > ¢, so the triangle on
0, p1, p2 is non-degenerate. By the cosine theorem p; - p = %(a2 +b? — %), so the matrix G =
@’ %(aQ + 62— ¢?) has a? > 0 and a positive determinant:
%(a,2 +b% —c?) b? p )
4det G = 4a?b? — (a® + b — ?)? =
(c? — (a® — 2ab + b)) ((a® + 2ab + b2) — ¢?) =
(¢ = (a—b)2)((a+b)2 — ) > 0.

Assuming that 0 < a < b < ¢, the last inequality is equivalent to one triangle inequality a + b > c.

Now we extend a point-based representation from Definition [C.2]to a complete invariant of a point
cloud A under rigid motion in R™. In applications, A can have distinguished points, for example,
heavy atoms in atomic clouds, which can be used to minimize choices for py,...,pn—1.

Definition will extend Definition to n > 2 by combining all PR(A;p1,...,pn—1) in a
nested invariant by dropping points p1,...,pn—1 € A one at a time. This invariant is needed only
for comparisons (metric computations), while any cloud A can be stored in computer memory as a
single PR(A; p1,...,pn—1) due to Theorem

Definition C.8 (NDP : Nested Distributed Projection). Let A C R™ be any cloud of m unordered
points. For any ordered points p1,...,pn—o € A, let NDP(A;p1,...,pn_2) be the unordered
collection of PR(A;p1,...,pn-1) for all points p,_1 € A — {p1,...,pn—2}. Similarly, for any
1<k <n-—2 let NDP(A;p1,...,pp—_1) be the unordered collection of NDP(A;py, ..., pi) for
all points pi, € A — {p1,...,pr—1}. For k = 1, the full Nested Distributed Projection NDP(A)
depends only on A. |

For n = 2 and any cloud A C R?, the Nested Distributed Projection NDP(A) in Deﬁnition is

the same as in Definition[3.4] i.e. NDP(A) is the unordered collection of point-based representations
PR(A;p;) forall p; € A.
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For n = 3 and any A C R3, the Nested Distributed Projection NDP(A) is the unordered collection
of NDP(A;p;) for all p; € A. Each NDP(A; p;) is the unordered collection of PR(A4; p1, p2) for
allp, € A—{p1}.

Similarly to Definition[3.4] if a cloud A has internal symmetries as in Example[3.2] one can collapse
identical objects to a single one with a weight to speed up computations. We avoid collapsing only
to simplify arguments for n > 2.

Lemma [C.5]c) implies that any cloud A C R™ of m unordered points can be reconstructed from
NDP(A) uniquely up to rigid motion. Indeed, NDP(A) contains (nested) PRs depending on all
possible n — 1 points pi, . ..,p,—1 € A. Atleast one PR(4;py, ..., pn—1) satisfies Lemmal|C.5]c)
and suffices to reconstruct A uniquely up to rigid motion.

In Theorem [C.9|for n > 2, the equality NDP(A) = NDP(B) means a bijection 3 : NDP(A) —
NDP(B) respecting the nested structure of all PRs in Definition [C.8§]

In detail, for any 1 < k < n—1 and points p1, . . ., p, the bijection 3 matches NDP(A; p1, ..., px)
with a unique NDP(B; ¢, . . ., qx) for some q1,...,q; € B.

If n = 3, then 8 matches every NDP(A; p;) with a unique NDP(B;¢q;) in the sense that this
bijection NDP(A;p;) — NDP(DB;q;) matches PR(A;p1,ps) for every po € A — {p1} with
PR(B;q1, q2) for a unique g2 € B — {q1}.

Theorem C.9 (completeness of NDP). The Nested Distributed Projection is complete in the sense
that any clouds A, B C R"™ of m unordered points are related by rigid motion in R" if and only if
NDP(A) = NDP(B) so that there is a bijection NDP(A) — NDP(B) matching all PRs. [ ]

Proof of Theorem The part only if : we will prove that any rigid motion f moving the cloud A
to B = f(A) implies that NDP(A) = NDP(B). By Lemma|C.3|a) the rigid motion f matches ev-
ery PR(A;p1,...,pn—1) from NDP(A) with PR(B; f(p1), ..., f(pn—1)). Then, forany 1 < k <
n—2andpy,...,pr € A, we get a bijection NDP(A;py,...,pr) — NDP(B; f(p1),..., f(pr))
Hence f induces a bijecton NCP(A) — NCP(B) between all PRs respecting the nested structure
in Definition

The part if : NDP(A) = NDP(B) will guarantee a rigid motion f moving the cloud A to B =
f(A). Choose any base sequence p1,...,p,—1 € A that suffices for a unique reconstruction of
A C R up to rigid motion in Lemma c). The given bijection NDP(A) — NDP(B) matches
PR(A;p1,...,pn—1) with an equal PR(B; q1,...,¢n—1) for some g1, ...,¢,—1 € B.

Lemma c) implies that a reconstruction of A,B from PR(4;0(p1,...,pn-1)) =
PR(B;q,...,qn—1) is unique up to rigid motion in R™ so that A, B are matched by a rigid motion
f as required. If aff(A) = aff(B) < n, this motion f may not be unique. For example, any clouds
A, B C R3 that are contained in a straight line L. C R? are pointwise fixed by any rotation around
the line L. O

D GENERALIZATION OF SECTION[Z_f]AND ALL PROOFS IN DIMENSIONS n > 2

This appendix extends the metrics to dimensions n > 2 and proves all metric results from section ]
in full generality.

The point-based representation in Definition included the matrix SD(p1, ..., pn—1) of squared
distances, which can be rewritten as a vector row-by-row.

Below we can take any norm on matrices and choose the simplest max norm below for consistency
with the bottleneck distance and for Lipschitz constant 2 in Theorem

Definition D.1 (max norm and metric on matrices). The max norm ||D||o, = max |D;;| of a matrix
i

is the maximum absolute value of its elements D;;. The max metric between matrices M, M' of the
same size is doo = ||M — M'||co-
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Definition will extend Definition {.2] to dimensions n > 2. Below the notation SD/R means
that all elements of a matrix SD are divided by R. The radius of a base sequence p{n — 1} =
(p1,---sPn—1) C Ais defined as R(p{n — 1}) max |p;| in the same way as R(A) of a

i=1,...,n
full cloud A. The notation M /R means that all elements in the first n — 1 rows of a matrix M are
divided by R, and by R"~! in the n-th row, because p;- in Lemma is a polynomial of degree
n — 1. Then PRM and further metrics have units of original points. One more division by R makes
all metrics invariant under scaling.

Definition D.2 (Point-Based Representation Metric). Let clouds A, B C R™ of m unordered points
have base sequences p{n — 1} = (p1,...,pn—1), ¢{n — 1} = (q1,...,qn—1) of ordered points,
from Definition The Point-Based Representation Metric between the PRis above is

PRM = max{ |R(p{n — 1}) — R(¢{n — 1})|, wp, |R(A) — R(B)|, was }, where

wp = do (SD(p{n —1}) SD(g{n — 1})) " and wyy — BD (M(A;p{n —1}) M(B;qf{n—1})

R(p{n—1}) " R(g{n —1}) R(A) R(B)

Lemma D.3 (axioms for PRM). PRM in Definition satisfies all metric axioms from Prob-
lem ) on any point-based representations from Definition|C.8|

Proof of Lemma The first axiom means that PRM(PR(A; p{n —1}),PR(B;q¢{n—1})) =0
if and only if these PRs are identical. The part if: by Lemma|C.5]c), equal PRs guarantee that the
clouds A, B are rigidly equivalent, so R(p{n—1}) = R(¢{n—1}), R(A) = R(B),SD(p{n—1}) =
SD(g{n — 1}), and M (A; p{n — 1}) = M(B;¢{n — 1}), so PRM = 0.

The part only if: by Definition|D.2|the equality PRM = 0 means that R(4) = R(B) and wp =0 =
wys. The coincidence axioms for the max metric and bottleneck distance together with R(p{n —
1}) = R(g{n—1}) and R(A) = R(B) imply that SD(p{n—1}) = SD(g{n—1}) and M (A; p{n—
1}) = M(B; ¢{n—1}). Then the point-based representations become identical: PR(A;p{n—1}) =
PR(B;q{n —1}).

The symmetry axiom for PRM follows from the symmetry axiom for the bottleneck distance and
max metric doo. Since each of the distances |R(A)—R(B)|, wp, wyy satisfies the triangle inequality,
then so does their maximum, see metric transforms in section 4.1 of Deza & Dezal (2009)). O

Definition [D.4] extends Definition £.4]to all dimensions n > 2.

Definition D.4 (NBM : Nested Bottleneck Metric). Let A, B C R" be any clouds of m unordered
points. For any ordered points py...,pn_o € Aand q1...,qn_o € B, the complete bipartite
graph T(A;p1,...,pn—2; B;q1,...,qn—2) has m — n + 2 white vertices and m — n + 2 black
vertices representing PR(A;p1,...,pn—1) and PR(B;q1,...,qn—1) for all m — n + 1 variable
points pp_1 € A —{p1,...,pn—2}and q,—1 € B—{q1,...,qn—2}, respectively.

Set the weight w(e) of an edge e joining the vertices represented by PR(A;p1,...,pn—1) and
PR(B;q1,---,qn—1) as PRM between these PRs, see Definition Then Definition gives
us the bottleneck matching distance BMD(I'(A;p1, ..., pn—2;B;q1,...,qn-2)). We continue
dropping points iteratively. For any 1 < k < n — 2 and ordered points py...,pp—1 € A
and qy...,qx—1 € B, the complete bipartite graph T'(A;p1,...,pp—1;B;q1,...,qx—1) has
m — k + 1 white vertices and m — k + 1 black vertices representing NDP(A;p1,...,px) and
NDP(B;qi,...,qx) for all m — k + 1 variable points p, € A — {p1,...,pk—1} and q; €
B—{q,...,qx—1}, respectively.

Set the weight w(e) of an edge e joining the vertices represented by NDP(A;py,...,pr) and
NDP(B;qi,--.,qr) as BMD(L(A; py, ..., pk; B qu, - - -, qi)) obtained above. Then Definition|4.3]
gives us the bottleneck matching distance BMD(T'(A; p1, ..., prk—1; B;q1, - - -, qk—1)). Finally, for
k = 1, we get the Nested Bottleneck Metric NBM(A, B) = BMD(I'(4, B)). |

Lemma D.5 (metric axioms for the bottleneck matching distance BMD). Let S, Q) be any unordered
distributions of the same number of objects with a base metric d. Define the complete bipartite
graph I'(S, Q) whose every edge e joining objects Rg € S and Rg € Q has the weight w(e) =
d(Rs, Rq). Then the bottleneck matching distance BMD(I'(S, Q)) from Definitiond.3] satisfies all
metric axioms on such unordered distributions.
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Proof of Lemma|D.5] The coincidence axiom means that NBM(S,Q) = 0 if and only if the
weighted distributions S, Q) are equal in the sense that there is a bijection g : S — @ so that
d(g(R),R) =0forany R € S.

Indeed, if the weighted distributions S, () can be matched by a bijection, we get a vertex matching £
of I'(S, Q) whose all edges have weights w(e) = 0. Definition[4.3|implies that BMD(I'(S, Q)) = 0
as required.

Conversely, if BMD(I'(S, Q)) = 0, there is a vertex matching E in I'(S, Q) with all w(e) = 0. This
matching E defines a required bijection S — (). The symmetry BMD(I'(S, Q)) = BMD(I'(Q, S))
follows from Definition[4.3and the symmetry of the base metric d.

To prove the triangle inequality
BMD(I'(S,Q)) + BMD(I'(Q, T)) > BMD(I'(S,T)),
let Esg, Eqgr be optimal vertex matchings in the graphs I'(S, Q), I'(Q, T'), respectively, such that
BMD(T(S,Q)) = W(Esq), BUD(L(Q,T)) = W (Eqr),

see Definition The composition Egg o Eqr is a vertex matching in I'(S, T), so W(Esqg o
Eqr) > BMD(I'(S,T)). It suffices to prove that

W(ESQ) + W(EQT) > W(ESQ o EQT).

Let egr be an edge with a largest weight from Esg o Egr, so W(Esqg o Egr) = w(esr). The
edge egr can be considered the union of edges esg € Esq, eqr € Egr.

By the triangle inequality for the base metric d,

w(esq) +w(eqr) = wlesr) = W(Esq © Eqr)
implies that
W(Esq) + W(Eqr) > W(Esq o Eqr)
because both terms on the left-hand side are maximized for all edges (not only esq, eqr) from
ESQ, EQT.
Lemma D.6 (metric axioms for NBM between NDPs). The Nested Bottleneck Metric NBM from
Definition satisfies all metric axioms on Nested Distributed Projections.

Proof of Lemma|D.6| Induction on k = n — 2,...,1. The inductive base k = n — 2 follows from
the metric axioms in Lemma[D.3|for PRM in Definition[D.2] The inductive step from 1 < k < n—2
to k — 1 follows from Lemma|[D.5]and the metric axioms in the inductive hypothesis for . O

E GENERALIZATION OF SECTION [3/AND ALL PROOFS

This appendix proves Theorems [E.5} [E.§] and [E.9]extending Lemmas [5.1] [5.2] and [5.3] respectively
to dimensions n > 2 by using auxiliary Lemmas and Proposition [E.3]

Lemma E.1 (orthogonal vector length). For any sequence pi,...,pn—1 € R”, set R =
max |p;i|- Then the orthogonal vector p# L piy.. Pn_q from Lemmahas a length satis-
—

i=1,...,
fing [p3| = R, [p3| < R? and |pt| < /nR"~! for any n > 3.

Proof of Lemma For n = 2, the explicit formula py; = (—y, z) for p; = (x,y) gives the exact
equality |[py | = |p1| = R. For n = 3, p3 equals the vector product p; x ps whose length is |p3 | <
| . | e1

Ip1] - |p2] < R2. For > 3, the expansion of the n x n determinant p;- = T

| ... | €én
along the last column gives p- = Y (—1)"*?det(i)e;, where det(i) is the (n — 1) x (n — 1)

i=1
determinant obtained from the n — 1 vector columns p1,...,p,—1 by removing the row of all i-th
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coordinates. Any determinant on vectors v1,...,v,_1 € R"! equals the signed volume of the
parallelepiped on vy, . . ., U, —1, which has the upper bound |v1] - - - |vy—1].

Since each vector v; is obtained from p; by removing one coordinate, we get |v;| < |p;|. So each
coordinate of p;- in the orthonormal basis ey, . . . , e, has the upper bound |py| - - - |p,_1| < R™L.
Then the Euclidean length has the upper bound |p-| < \/n(R"1)2 = \/nR"~ L. O
Lemma E.2 (vector perturbations). Let points q1,...,qn—1 be e-perturbations of p1,...,Pp—1 €

R™ so that |p; — q;| < eforanyi=1,...,n—1. Set R = max 1{|pi|, |gi|}. The orthogonal
i=1,...,n—

vectors p- L p1,...,pn_1 and g L qi,...,qn_1 from Lemmasatisfy lpy — q3| < e for
n=2 |ps —q5| < e2V6R forn =3, and |p} — q;-| < en(n — 1)R"~2 for any n > 3.

Proof of Lemma[E2} 1f n = 2, then py = (—y,z) for p1 = (2,9),50 [p3 — g5 | = |p1 — 1| < &

Let ;(v;) be the i-th coordinate of a variable vector v; € R™ moving from p; to its e-perturbation

qj fori,j = 1,...,nin the given orthonormal basis e, . . . , e, where we set p, = p;- and ¢, = ¢,
for brevity. For each k = 1, ..., n, the coordinate x(v,,) is the scalar function fj(v1,...,v,—1) of
the (n — 1)? variables z;(v;) fori,j =1,...,n— 1.

The upper bound for |p,, — g, | will follow from the Mean Value Theorem 5.10 from Rudin et al.
(1976) for the functions f1, ..., f,, because the coordinates of the vector q# are fi(q1,---,qn-1)
evaluated at close (coordinates of the) vectors ¢, . . ., ¢,—1 so that [p; —g;| <efori,j=1,...,n—
1.

First we estimate the gradient V fi of fj at any intermediate point in the line segment between
(p1,..-,pn—1)and (qi,...,qn,—1) with respect to the (n—1)? variables z; (v;) fori,j = 1,...,n—

| e | €1
L. For k = i, the k-th coordinate of v, = | ,, =, = 1 |Iis (=1)"** det(k), where
| ... | €n
det(k) is the (n — 1) x (n — 1) determinant obtained from the n — 1 vector columns vy, . .., v,—1
0 O det(k
by removing the row of all k-th coordinates. Then i 1)tk 2 (k) which equals 0

dxi(v;) - Oxi(vj)’

for k = i because f}, is independent of the coordinate xy(v;) for j =1,...,n — L.

After expanding the determinant det(k) along the i-th row, the only terms containing the factor
x;(v;) form the smaller (n — 2) x (n — 2) determinant det(k, ¢) obtained from the n — 2 vector
columns vy, ...,v;_1,Vj41,...,Un—1 after removing the rows of all k-th and i-th coordinates.

Then |v;| < R = | max 1{\pi|, |g:|} for any points (v1,...,v,—_1) in the line segment between
i=1,...,n—

(p1y---,Pn-1)and (q1,...,Gn-1). The (n — 2) x (n — 2) determinant det(k, ) equals the signed
O f

dzi(v;)

|det(k,4)] < R"2. The gradient V f is the vector of (n — 1)? partial derivatives and can be

considered a vector (Vi fy, ..., Vy_1 fx), where V; fr, = ( O fr L Ofr ) has
' z1(v;)" a1 (v))

volume on n—2 vectors of maximum length R and hence has the upper bound R"~2, so

O fx
0x;(vy)

IVifil <vVn—1 max < Vn—1R"2

=1,...,n—1

We consider the k-th coordinate f, of v,, as a function depending on one parameter ¢ € [0, 1] when
the point (v1, ..., v,_1) moves along the line segment from (p1,...,pn—1) t0 (q1,...,Gn—1). Then
Theorem 5.10 from Rudin et al.|(1976)) implies for some intermediate point (v1, ..., v,—1) that

[fe1, . spn—1) = frolqr, s @n-1)| = [Vfr(vr, .. 1) - (1 — @15 -+ Pt — Gn—1)| =

n—1 n—1 n—1
=2 38{19) (zilpy) —wilgy) | = |D_Vide- (05— )| < D IVifel - Ipj — 5] <
j=1

Jj=1
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<e(n—-1) . _max |V fu| <e(n—1)vn—1R"2.

Since ey, ..., e, form an orthonormal ba31s, we get

n
i = ap| = | D Ifalprs - pao1) = filar, - gno1) ]
k=1

< f max |fk(p1, coisPne1)—fr(@rs - guo1)| < Vne(n—1)v/n — 1R"2 < en(n—1)R" 2

.....

for any n > 3. If n = 3, the final upper bound can be improved to £2v/6R. O

Proposition E.3 (Lipschitz continuity of PR under perturbations of a cloud). Let B C R” and a
base sequence ¢{n—1} C B be obtained from a cloud A C R™ and a base sequence p{n—1} C A,
respectively, by perturbing every point in its Euclidean e-neighborhood. Then

(@) [0(4) —O(B)| <,
(b) PRM(PR(A; p{n — 1}),PR(B; ¢{n — 1})) < Aye for A2 = 6, A3 = 16, A, = 3n?, n > 3.

R(p{n — 1} — R(¢g{n — 1})| < 2¢, and |R(A) — R(B)| < 2¢;

Proof of Proposition|E.3| (a) Let p; ...,p, be all points of A so that the first n — 1 points
D1, ..., Pn—1 form the base sequence p{n — 1}. Let ¢; € B be an e-perturbation of p;, S0 ¢q1 ..., ¢m

are all points of B and the first n — 1 points ¢1, . .., g,—1 form the base sequence g{n — 1}. The
1
radius of A is R(A) = max |p — O(A)|, where O(A) = — > pis the center of mass. Then
pEA m pEA

10(4) — O(B

1 m m 1 m
= ;pw;qi SE;mi*QHSE-

If the radius R(A) is attained at a point p; € A, then R(A) = |p; — O(4)| <
< [ps = @il + g ~ O(B)| +|0(B) ~ O(A)| < e + max |g;— O(B)| +& =2 + R(B)

Swapping the clouds A, B gives the opposite inequality R(B) < 2e + R(A), so |R(A) — R(B)| <
2¢. The radii of the base sequences also differ by at most 2¢, i.e. |R(p{n—1})— R(¢{n—1})| < 2e.

(b) All correspondmg points of the given clouds A, B are e-close so that [p; — ¢;| < ¢ for all
i=1,...,m. Any distance |p; — p,| changes by at most 2¢ under perturbation, because

i — i <Ipi — | + o — g5 + lg; — ps| < lai — g;] + 2,
lai — 45| < @i — pil + [pi — pj| + Ipj — @51 < |pi — pj| + 2e.

Hence | |p; — pj| — |gi — q;| | < 2eforalli,j=1,....m

To estimate the max metric d, in (D.2), we rewrite the difference between the corresponding

elements in the matrices SD/R of squared distances normalized by the radii in the notations

r(A) = R(p{n — 1}) and r(B) = R(g{n — 1}). Without loss of generality, assume that

r(A) > r(B).

i —pi* g —q | [pi = pil* = lai — g41* | |QIT(B)—r(z‘l)I
r(A) r(B) |~ r(A) r(A)r(B)

fori,j = 0,...,n — 1, where py = O(A) and gy = O(B) are centers of mass. In the first term
above, we estimate the difference of squares by factorizing:

| 2
Then

+ g —qj

[ pi = 01> =l = i * | = | Ipi = pi| = @i = a3] |- (Ipi = ps| + @i — 45]) < 2e(2r(A) + 2r(B)).
Using r(A) > r(B), the bounds |pi_pj|i(;1)|qi_qj2 < 4e 7"()(7)“( < 8¢, |gi —
WIr(B) —r(A)] _ @r(B)* 2 (SDpln 1)) SDlgfn 1)\ _
WP S Sy < s eeds (PO P <16
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To estimate the bottleneck distance BD between the matrices M /R in , which involve scalar
products, we shift both clouds A, B so that their centers O(A) and O(B) coincide with the origin
0 € R™. We keep the same notation p;, ¢; for all points for simplicity. Since |O(A) — O(B)| < ¢
by part (a), the relative shift by a vector of a maximum length e guarantees all corresponding points
are now 2e-close, i.e. |p; — ¢;| < 2e. Below we estimate the difference between scalsr products
involving any 2¢-close points p € A —p{n—1}andgq € B—¢{n — 1} fort: = 1,...,n — 1
(indexing points from the base sequences) and i = n for the orthogonal vectors p,, = p+, ¢, = ¢;-.

Case: = 1,...,n — 1. The bottleneck distance BD has the upper bound obtained from estimating
the differences below in the M /R matrices for any point p € A — p{n — 1} matched with its
2¢e-perturbation ¢ € B — g{n — 1}. Without loss of generality, assume that R(A) > R(B). Then

PP 4G Ip’prq~q1—|+‘q,q,|w
R(A) R(B)|~  R(A) " R(AR(B)
2 .
Due to |- ¢;| < |q| - |¢;| < R?*(B), the second term above has the upper bound m < 2.

Estimate the difference of products in the first term above:
popi—q-al <I(p—q)-pitq-(pi—a)l <Ip—dl Ipil+ gl [pi — @il <2e(R(A)+ R(B)).
popi—a-ail _ , R(A)+R(B)
R(A) R(A)
p-pi 4-4
R(A)  R(B)

Then 4e. For every 1 = 1,...,n — 1, we get

< 6¢ for every point p € A —p{n — 1} and its 2e-perturbation ¢ € B — g{n —1}.

Case i = n is for the n-th row of the matrices M /R in (D.2), where the scalar products with the
orthogonal vectors p.-, ¢:- from Lemma are divided by R" ! instead of R.

n s An

Subcase i = n = 2 coincides with the ]c\zs(ei4 i {< n a}l?)()v?M b(efgau?e R"_}l) = R. Combin-
ipin —1 ;gin —1
< 6¢e By Def-
R(A) ' R(B) -
inition the Point-based Representation Metric PRM equals the maximum of the bounds
dw = |R(p1) — R(q1)| = |lp1] — l¢1]] < 2e, |R(A) — R(B)| < 2, and BD above, so
PRM (PR(4; p1), PR(B; 1)) < 6e, which finishes the proof of part (b) for n = 2.

ing the upper bounds above, we get BD

Subcase i = n = 3. Without loss of generality, we can assume that R(A) > R(B). The upper
bounds of Lemmas [E.T|and [E.2]imply that

3| < R*(A), o3| < R*(B), Ipy —g3| < 2e-2V6R(A).
We start estimating similarly to the case ¢ < n above:

p-py —q-q31<Ip—q)-p3 +q-(p3 —az3)| < Ilp—al-lp3|+lql - Ip3 —g3| <
2eR?(A) + R(B) - 2¢ - 2V/6R(A) = 2e R(A)(R(A) + 4V6R(B)).
|R2(B) — R2(4)| _

p-ps  q-a|_lp-p3i—q- g3

Then |\ morty ~ wEE)| S @y TG RARB)
R(A) +2V6R(B R?*(A) - R*(B 1 1
< 2T ot sy < 02V R B) (7~ )
We use R(A) < R(B) + 2¢ to bound last term:

R*(B) R(B)
7o) (1 oy ) < B (1~ gy ) < ) a9 < 4

oL 1
]];2 (pj) — ;2 (qé) < 2e(1+4 2\/6) + 4 < 16¢. By Deﬁnition the Point-based Repre-

sentation Metric PRM equals the maximum of

Then
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so PRM (PR(4; p{2}), PR(B; ¢{2})) < 16¢ which finishes the proof of part (b) for n = 3.
Final subcase i = n > 3. Assuming again that R(A) > R(B), Lemmas|[E.1|and [E.2| give

Ipt| < vRR"YH(A), |¢H| < vrR"YB), |pt —qr| <2en(n—1)R"2(A) for any n > 3.
We start estimating similarly to the case ¢ < n.

p-rr—a-axl <|llp—q) vy +a - or —a)| < Ilp—dal - Ipi| + lal - Iy — qi| <
2¢ - /nR" 1 (A) + R(B) - 2en(n — 1)R"2(A).

I 4 4y PPy —q | R*H(B) — R""'(4)
men | - ity < R e e
2e\/nR" 1 (A) 4 2en(n — 1)R"2(A)R(B) 1
: R i | i~ | <
1 1
< 2v/ne +2en(n — 1) + vnR"(B) (R”—l(B) - R”—l(A)> )

We use R(A) < R(B) + 2¢ and the simpler notation R = R(B) to bound last term after factorizing
the difference of the (n — 1)-st powers as follows:

R(B) (1 R(B )) gR(1 (Rnl) _ pBt2e)n - R

Rr— 1( ) R+25>"_1 (RJ’_QE)H—l
_ R(R+2-R) X — 9eR 2 .
7W] O(R+2€) R 2= <W;(R+25) 2§2€(TL*1)
(A;pin —1}) M(B;q{n —1}) P Pn q-qn
Then BD < R(A) ’ R(B) > = ‘Rn—l(A) ~ R"1(B) <

2e(vn+n(n—1)++vnn—1)) =2ey/n(l+vn(n—1)+n—1) < 2ey/n(v/n(n —1) +n) =
2en(n + /n — 1) < 3en? because v/n — 1 < g For n = 4, the upper bound above is 3¢(4)?
6¢ > doo. Hence the final upper bound is PRM(PR(A; p{n —1}), PR(B;¢{n—1})) < 3en®. O

Lemma E.4 (Lipschitz continuity of BMD). Let I" be a complete bipartite graph with a vertex
matching E such that any e € E has a weight w(e) < e. Then BMD(T") < ¢

Proof of Lemma|E-4] By Definition the vertex matching FE has the weight W(E) =
max w(e) < e. Since BMD(T') = mbin W (E) is minimized for all matchings, BMD(I') <e. O

ec

The Lipschitz continuity of NDP in Theorem extends Theorem [5.1]to any n > 2 by using
Proposition [E.3]and Lemma [E.4]

Theorem E.5 (Lipschitz continuity of NBM). Let a cloud B C R™ be obtained from a cloud A C
R™ by perturbing every point of A within its Euclidean e-neighborhood. Then NBM(A, B) < \,¢,
where the Lipschitz constants are Ay = 6, \3 = 16, \,, = 3n? for n > 3 as in Proposition

Proof of Theorem|E.5] Order all vertices of the given clouds A, B so that every point p; € A has
the same index as its e-perturbation ¢; € B.

In Definition for any ordered points pi,...,p,—1 € A, there are points
qi,---,qn—1 € B, which are e-perturbations of pp,...,p,—1, respectively, such that
PRM(PR(A;p1,...,Pn-1),PR(B;q1,...,qn_1)) < Ane by Proposition These PRMs
are weights of edges in the index-preserving vertex matching E of the complete bipartite graph
I'(4;p1,...ypn—1;B;q1,...,qn—1) for any pi,...,p,—1 and their e-perturbations ¢1,...,Gn—1.
Then BMD(I'(A;p1, ..., pn_1;B;q1, .-, qn-1)) < Ane by Lemma Since this conclu-
sion holds for all (choices of) pi,...,pn—1 € C, we iteratively apply this argument for the
bipartite graphs T'(A4;p1,...,pk; B;q1,...,qr) for 1 < k < n — 2 and finally conclude that
NBM(A, B) < A\e. O
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The upper bounds are higher than the real ratios NBM/BD in practical examples, see Fig.

Lemma E.6 (time of PR). For any cloud A C R" of m unordered points, any point-based repre-
sentation PR(A; p{n — 1}) in Deﬁnitionneeds O(n3 + mn) time.

Proof of Lemma|E.6] We find the center O(A) and translate the cloud A of m points so that O(A)
becomes the origin 0 € R™ in time O(m). We compute the n x n matrix SD(p1,...,pn—1) Of
squared distances between pg = 0, p1,...,p,_1 in time O(n?). The vector p; from Lemmah
needs the n x n determinant computable in time O(n?). For any point g € A — {p1,...,pn_1}, the
column of scalar products ¢-p1, . . ., ¢-p, needs O(n) time. The nx (m—n-+1) matrix M (A; p{n—
1}) needs O(mn) time. The point-based representation PR(A; p1,...,pn—1) in Definition
needs O(n® + mn) time. O

Lemma E.7 (time of PRM). For any clouds A, B C R™ of m unordered points with base sequences
p{n — 1} and ¢{n — 1}, respectively, the point-based representation Metric on the equivalences
classes of PR(A; p{n — 1}) and PR(B; ¢{n — 1}) is found in time O(n? + m!->log" m).

Proof of Lemma|E.7] The centers of masses O(A), O(B) and radii R(A), R(B) are computed in
time O(m).

The max metric wp between the n X n matrices in needs O(n?) time. For the bottleneck
distance wys (o), the n X (m — n + 1) matrices of unordered columns are interpreted as fixed
(not under isometry) clouds of (m — n + 1) points in R™. Then wys can be computed in time
O(m!-?log"™ m) by Theorem 6.5 in [Efrat et al.[(2001). O

Assuming that n? < O(m!*® log" m), the time of PRM in Lemma [E.7|becomes O(m!-® log" m).

Theorems [E.8] [E.9]extend Theorems [5.2] [5.3]for n > 2.

Theorem E.8 (time of NDP). For any cloud A C R™ of m unordered points, the Nested Distributed
Projection NDP(A) in Definition @,is computable in time O(n?m™).

Proof of Theorem[E.8} The given cloud A has @(m™ 1) base sequences of n — 1 ordered points
PlyersPn1 € A Lemma computes each PR(4;p1,...,p,_1) in time O(n® + mn). By
Definition the invariant NDP(A) consisting of O(m™~!) point-based representations can be
computed in time O(n?m™) because n < m. O

Theorem E.9 (time of NBM). For any clouds A, B C R™ of m unordered points, the Nested
Bottleneck Metric NBM(A, B) in Definition can be computed in time O(m**=°51og" m). If
n = 2, the time is O(m>° logm).

Proof of Theorem|[E.9, In Definition for any fixed 1 < k < n — 1 and ordered points
P1...,Pk—1 € Aand ¢1...,qk—1 € B, the bipartite graph I'(A;p1,...,pk—1; B;q1,- -, qk—-1)
has V = 2(m — k + 1) = O(m) vertices and E = (m — k + 1) = O(m?) edges.

For k = n — 1, the weight w(e) of each edge e equals PRM, which needs time O(m! log" m)
by Lemma For all O(m?) edges of T'(A;p1,...,pn_2;B;q1,.-,qn_2), the time is
O(m?>® log™ m). The bottleneck matching distance BMD for such a graph is computed by Hopcroft
& Karp| (1973) in time O(E+V/V) = O(m??®), which is dominated by the time O(m??°log™ m)
preparing the weights.

For all O(m"~2) choices of ordered points pi,...,p,—2 € A and all O(m"2)
choices of ¢,...,qn—2 € B, the Bottleneck Matching Distances for all graphs
T(A;p1,. . Pn_2:B;q1,...,qn_2) are computed in time O(m>"Im3%log"m) =
O(m?27=951log™ m).

For any next iteration k = n — 2,...,1 in Definition the parameter k& goes down by 1 and the

exponent of m drops by 2 each time. The sum over ¥k = n — 1,...,1 is dominated by the time
O(m?m=951og™ m) of the first iteration.
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For n = 2, the bottleneck distance between fixed m-point clouds in R? can be computed in time
O(m*® log m) without an extra logarithm by Theorem 6.5 from Efrat et al.|(2001), which simplifies
the time to O(m3-°logm). O

Theorem improves the time O(m3(™~1) logm) of another metric on rigid classes of unordered
point clouds from Theorem 4.7(b) in[Widdowson & Kurlin| (2023)).

Proof of Theorem As usual, we shift both centers of mass O(A), O(B) to the origin 0 €
R2. By Definition 4.4 the distance d = NBM(A4, B) is the Bottleneck Matching Distance
BMD(I'(A, B)) computed in time O(m3-®log m) by Theorem [5.3] Here I'(A, B) is the complete
bipartite graph on m + m vertices represented by PR(A; p) and PR(B; ¢) for all points p € A and
q € B.

By Definition4.3] BMD(I'(A, B)) equals the maximum weight w(e) of an edge e in a vertex match-
ing E of I'(A, B), which can be considered a bijection between the m-point clouds A — B. For
any pair e = (p,p’) of matched points, the weight w(e) is PRM(PR(A; p), PR(B;p’)).

The distance NBM(A, B) = § > w(e) is an upper bound for |R(A) — R(B)|, where R(A) =
max |p| and R(B) = max |p’|. Choose a point p € A with |p| = R(A) and the positive z-axis in R?
Pe p'E

through p’ € B matched with p via E. Let f be the rotation of R? around 0 such that f(p) is also
in the positive z-axis. By Definition f(p),p’ in the z-axis have lengths satisfying |p| = |f(p)],
|lp| — |P'|| < d and hence are d-close: |f(p) — p'| < d.

It suffices to show that the image f(g) of any other point ¢ € A — {p} is 3v/2d-close to a unique
point ¢’ € B that we will find below. Since all distances and scalar products are preserved under
f, we use the matrix M (f(A); f(p)) instead of M(A;p) in computing PRM. Each column of

M(f(A); f(p) . fl@)-fp) flg) - flpF) _ _
W consists of R(A)| R(A) where f(p) = (|pl,0), f(PL) = (0,[pl),
R(A) = |pl.

f(A); f(p)) M(B;q)
R(A) " R(B)
qg-p q-p
|R(B)|" |R(B)|

BD above. For the first scalar products involving p, p’, we have

M
The distance BD ( ( ) < d guarantees that the above column is d-close to

the column of

for a point ¢’ € B determined by computing the bottleneck distance

fla)-flp) d-p

<
ROA) RB)| = 0, where

the first fraction is the xz-coordinate of f(q).
!

|p']
‘f(Q) fp) ¢-p

To get the z-coordinate g of the point ¢’ € B, where |p/| is d-close to R(A) = |p|, use the

triangle inequality:

R(A)
q¢-p q-p
R(B) v/

+

< ‘f(q)-f(p) N
=17 R(A)  RB)

<a+ 1P Ry ) <
R(B)D|
lq'| - [P/ lq
R(B)p| R(B)
a4+ [R(B) ~ || < d+ |R(B) — Ipl | + o] - '] | <
24+ | R(B) — |p|| = 2d + | R(B) — R(A)| < 3d.

Then the x-coordinates of f(q) € f(A) and ¢ € B differ by at most 3d. Applying the same
arguments to the scalar products involving the orthogonal vectors p*,p’+, which have the same
lengths as p, p’, respectively, conclude that the y-coordinates of f(q), ¢’ also differ by at most 3d.

So|f(q) = d'| < V/(3d)? + (3d)? = 3v2d, set B(q) = ¢ O

i

d+ | R(B) = |p'|| = d+ | R(B) - |p'|| <
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Corollary E.10 (continuous morphing). Any clouds A, B C R™ of m unordered points can be
‘morphed’ into each other in time O(m?"~%1og™ m) by inverting a continuous path between the
complete invariants NDP(A),NDP(B) in the space NDP(CRS(R™; m)) of realizable invariants.
|

Proof of Corollary The ‘morphing’ is realized for rigid classes, so we will first rigidly move
A, B to convenient positions and only after that deform one cloud into another along a straight-line
path inverted from the moduli space NDP(CRS(R"™;m)). As usual, we translate A, B so that their
centers of mass are at the origin 0 € R".

Theorem in time O(m?"~%°1og" m) computes the Nested Bottleneck Metric NBM(A, B)
giving a bijection between all point-based representations PR(A;p1,...,pn—1) R
PR(B;pi, .- Pr1)-

Choose any ordered points p1, . .., pn—1, which define their matched points p},...,p!,_; € B. For
example, we could choose p; € A as the most distant point from the origin 0, then py as the most
distant point to the line through 0, p1, and so on. Now we rotate A so that p; lies in the positive 1st
coordinate axis of R™, then rotate A again so that p, lies in the positive half-plane of the first two
coordinates axis of R™, and so on until p, ..., p,_1 are fixed.

We similarly rotate B to fix the positions of pj, ..., p!,_;, which intuitively should become close to
the already fixed positions of p1, ..., p,—1. Theorem[5.4] proves an explicit bound of the closeness
forn = 2.

M(A;p1,...,pno1) M(B;py,...,p. _
The computation of the bottleneck distance BD( (Aip1, o pn) M(Bipy B) Pn 1))

R(A) ’ R(
within the same time of NBM(A, B) provides a bijection between the remaining points: A —
{p17 e 7p7l—1} < B — {pl17 s 7p'/n—1}‘

According to this bijection, we index the corresponding points and columns of M (A;p1,...,pn—1)
and M (B;p},...,p,,_1) by n,...,m. We connect all matched points p; <> ¢;, i = 1,...,m, by
the straight-line segment p;(t) = (1 — t)p; + tg; in R™, where ¢ € [0,1] is a time parameter. So
A ‘morphs’ into B via the continuous family of intermediate clouds A(t) = {p1(t),...,pm(t)},
te[0,1].

By Theorem the images NDP(A(t)) for ¢t € [0, 1] form a continuous path whose every point
(invariant value) is reconstructable back to the cloud A(t). O

Thank you for reading all the proofs!

38



	Motivations for new complete and bi-continuous invariants
	Past work on cloud classifications related to Problem 1.1
	Complete invariants of unordered clouds under rigid motion
	The nested bottleneck metric (NBM) on complete invariants
	Lipschitz-bi continuity and polynomial time algorithms
	A hierarchical experiment on 130K+ molecules in QM9
	Discussion: conclusions, limitations, and significance
	Extra details of experiments in section 6
	Maps of cloud spaces and explicit computations of invariants
	Generalization of section 3 and all proofs in dimensions n2
	Generalization of section 4 and all proofs in dimensions n2
	Generalization of section 5 and all proofs

