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ABSTRACT

We propose a novel offline reinforcement learning (offline RL) approach, intro-
ducing the Diffusion-model-guided Implicit Q-learning with Adaptive Revalua-
tion (DIAR) framework. We address two key challenges in offline RL: out-of-
distribution samples and long-horizon problems. We leverage diffusion models to
learn state-action sequence distributions and incorporate value functions for more
balanced and adaptive decision-making. DIAR introduces an Adaptive Revalua-
tion mechanism that dynamically adjusts decision lengths by comparing current
and future state values, enabling flexible long-term decision-making. Furthermore,
we address Q-value overestimation by combining Q-network learning with a value
function guided by a diffusion model. The diffusion model generates diverse latent
trajectories, enhancing policy robustness and generalization. As demonstrated in
tasks like Maze2D, AntMaze, and Kitchen, DIAR consistently outperforms state-
of-the-art algorithms in long-horizon, sparse-reward environments.

1 INTRODUCTION
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Figure 1: Performance comparison across D4RL environments with long-horizon and sparse-reward
tasks, specifically Maze2D. Our method, DIAR, consistently outperforms other diffusion-based
planning frameworks, including Diffuser and LDCQ.

Offline reinforcement learning (offline RL) is a type of reinforcement learning where an agent learns
a policy using pre-collected datasets instead of gathering data through direct interactions with the en-
vironment (Fujimoto et al., 2019). By avoiding real-world interactions, offline RL eliminates safety
concerns. Furthermore, it makes efficient use of the collected data, which is especially beneficial
when gathering new data is costly or time-consuming. However, offline RL depends on the dataset,
meaning the policy it learns may perform poorly if the data is low quality or biased. Moreover, a
distributional shift can occur during the process of learning from offline data (Levine et al., 2020),
leading to degraded performance in the real environment.

To overcome the limitations of offline RL, existing research have been made to address these is-
sues by leveraging diffusion models, a type of generative model (Janner et al., 2022). Incorporating
diffusion models allows for learning the overall distribution of the state and action spaces, allow-
ing decisions to be made based on this knowledge. Methods such as Diffuser (Janner et al., 2022)
and Decision Diffuser (DD) (Ajay et al., 2023) use diffusion models to predict decisions not au-
toregressively one step at a time, but instead by inferring the entire decision for the length of the
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horizon at once, achieving strong performance in long-horizon tasks. Additionally, methods like
LDCQ (Venkatraman et al., 2024) propose using latent diffusion models to learn the Q-function,
allowing the Q-function to make more appropriate predictions for out-of-distribution state-actions.

Recent studies of diffusion-based offline RL methods, often bypass the use of the Q-function or rely
on other offline Q-learning methods (Janner et al., 2022; Ajay et al., 2023). However, recent research
has proposed a novel approach that does not avoid the Q-function but instead leverages diffusion
models to assist in Q-learning (Wang et al., 2023; Venkatraman et al., 2024). This approach enables
handling a wide range of Q-values for diverse states and actions. We found that using samples
generated by diffusion models can improve the agent’s performance.

Therefore, we propose Diffusion-model-guided Implicit Q-learning with Adaptive Revaluation
(DIAR), which integrates the value function and data sampled from the diffusion model into the
training and decision process. This approach provides more objective assessment of the current
state, enabling the Q-function to achieve a balance between long-horizon decision-making and step-
by-step refinement. In the training process, the Q-function and value function alternates between
learning from the dataset and samples generated by the diffusion model, allowing it to adapt to a
wide variety of scenarios. Additionally, value function also helps to reevaluate the current decision
to explore new action sequences and select a more optimal path.

DIAR consistently outperforms existing offline RL algorithms, especially in environments that in-
volve complex route planning and long-horizon state-action pairs like Figure 2. Additionally, as
shown in Figure 1, DIAR achieves state-of-the-art performance in environments such as Maze2D,
AntMaze, and Kitchen (Fu et al., 2020). This research highlights the potential of diffusion models
to enhance both policy abstraction and adaptability in offline RL, with significant implications for
real-world applications in robotics and autonomous systems.

(a) Maze2D-medium hard cases (b) Maze2D-large hard cases

Figure 2: DIAR-generated trajectories in challenging Maze2D situations. DIAR reliably reaches the
goal even from starting points (blue) that are far from the goal (red). DIAR shows strong perfor-
mance regardless of starting position.

2 RELATED WORK

2.1 OFFLINE REINFORCEMENT LEARNING

Offline reinforcement learning (offline RL), also referred to as batch reinforcement learning, has
gained significant attention in recent years due to its potential in learning effective policies from
pre-collected datasets without further interaction with the environment. This paradigm is particularly
useful in real-world applications where exploration can be costly or dangerous, such as healthcare,
robotics (Kalashnikov et al., 2018), and autonomous driving.

One of the primary challenges in offline RL is the issue of out-of-distribution actions (Kumar et al.,
2019), where a learned policy selects actions not well represented in the offline dataset. To address
this, several works have introduced behavior regularization techniques that constrain the policy to
remain close to the behavior policy seen in the offline data. Among these, Conservative Q-learning
(CQL) introduces a conservative Q-function that underestimates the value of out-of-distribution ac-
tions, reducing the likelihood of the learned policy selecting potentially harmful actions (Kumar
et al., 2020). By minimizing the overestimation of value functions, CQL facilitates more reliable
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policy learning from offline data. Another notable approach is Implicit Q-learning (IQL), which im-
plicitly regularizes the learned Q-function by keeping it close to the empirical value of the actions
observed in the dataset (Kostrikov et al., 2022). This prevents the over-optimization of Q-values
for actions that are rarely or never observed in the offline dataset. Additionally, Batch-Constrained
Q-learning (BCQ) imposes direct limitations on the learned policy to prevent deviations from the
actions observed in the offline dataset (Fujimoto et al., 2019). BCQ introduces a constraint that en-
sures the learned policy selects actions similar to the behavior policy, thus avoiding the exploitation
of inaccurate Q-value estimates for unseen actions.

2.2 DIFFUSION-BASED PLANNING IN OFFLINE RL

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have shown remarkable performance
in fields such as image inpainting (Lugmayr et al., 2022) and image generation (Ramesh et al., 2022;
Saharia et al., 2022). Recent research has extended the application of diffusion models beyond image
domains to address classical trajectory optimization challenges in offline RL. One prominent model,
Diffuser (Janner et al., 2022), directly learns trajectory distributions and generates tailored trajec-
tories based on situational demands. By prioritizing trajectory accuracy over single-step precision,
Diffuser mitigates compounding errors and adapts to novel tasks or goals unseen during training.
Additionally, Decision Diffuser (DD) was introduced, which predicts the next state using a state
diffusion model and leverages inverse dynamics for decision-making (Ajay et al., 2023). Further-
more, a method called Latent Diffusion-Constrained Q-learning (LDCQ) has been proposed, which
combines latent diffusion models with Q-learning to reduce extrapolation errors (Venkatraman et al.,
2024). Emerging methods also focus on learning interpretable skills from visual and language inputs
and applying conditional planning via diffusion models (Liang et al., 2024). Approaches that gener-
ate goal-divergent trajectories using Gaussian noise and facilitate reverse training through denoising
processes have also been explored (Jain & Ravanbakhsh, 2023).

3 PRELIMINARY: LATENT DIFFUSION REINFORCEMENT LEARNING

To train the Q-network, a diffusion model that has trained based on latent representations is required.
The first step is to learn how to represent an action-state sequence of length H as a latent vector using
β-Variational Autoencoder (β-VAE) (Pertsch et al., 2021). The second step is to train the diffusion
model using the latent vectors generated by the encoder of the β-VAE. This allows the diffusion
model to learn the latent space corresponding to the action-state sequence. Subsequently, the Q-
network is trained using the latent vectors generated by the diffusion model.

Latent representation by β-VAE The β-VAE plays three key roles in the initial stage of our
model training. First, the encoder qθE (z|st:t+H ,at:t+H) must effectively represent the action-state
sequence st:t+H ,at:t+H from the dataset D into a latent vector z. Second, the distribution of z
generated by the β-VAE must be conditioned by the state prior pθs(z|st). This is learned by mini-
mizing the KL-divergence between the latent vector generated by the encoder and the one generated
by the state prior. The formation of the latent vector is controlled by adjusting the β value, which
determines the weight of KL-divergence. Lastly, the policy decoder πθD (at|st, z) of the β-VAE
must be able to accurately decode actions when given the current state and latent vector as inputs.
These three objectives are combined to train the β-VAE by maximizing the evidence lower bound
(ELBO) (Kingma & Welling, 2014) as shown in Eq. 1.

L(θ) = ED
[
EqθE

[t+H−1∑
i=t

log πθD (ai|si, z)
]
− βDKL(qθE (z|st:t+H ,at:t+H) ∥ pθs(z|st))

]
(1)

Training latent vector with a diffusion model The latent diffusion model (LDM) effectively
learns latent representations, focusing on the latent space instead of the original data samples (Rom-
bach et al., 2022). The model minimizes a loss function that predict the initial latent zt generated
by the VAE encoder qϕ, rather than noise as in traditional diffusion models. H-length trajectory
segments st:t+H ,at:t+H are sampled from dataset D and paired with initial states and latent vari-
ables (st, zt). The focus lies on modeling the prior p(z|st) to capture the distribution of latent z
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given the state st. A conditional latent diffusion model µψ(z|st) is utilized and refined with a time-
dependent denoising function µψ(zj , st, j) to reconstruct z0 through the denoising step j ∼ [1, T ].
Consequently, the LDM is trained by minimizing the loss function L(ψ) as given in Eq. 2.

L(ψ) = Ej∼[1,T ],(s,a)∼D,zt∼qϕ(z|s,a),zj∼µψ(zj |z0)

(
∥zt − µψ(zj , st, j)∥2

)
(2)

Q-network by latent representation To train the Q-network, Eq. 3 reduces extrapolation errors
by restricting policy updates to the empirical distribution of the offline dataset (Venkatraman et al.,
2024). Prioritizing trajectory accuracy over single-step precision allows the model to mitigate com-
pounding errors and remain adaptable to novel tasks or goals unseen during training. Furthermore,
the integration of temporal abstraction and latent space modeling notably enhances the mechanisms
underlying credit assignment and improves the effectiveness of policy optimization.

Q(st, zt)← Q(st, zt) + α

[
rt:t+H + γ max

z′
t+H∼µψ

Q(st+H , z
′
t+H)−Q(st, zt)

]
(3)

The latent vector z′
t+H generated by the diffusion model is utilized in the training of the Q-function.

The Q-function learns the relation between the Q(st+H , z
′
t+H) and Q(st, zt) like Eq. 3, which are

based on the initial state st and latent vector zt pairs present in the dataset, and the z′
t+H generated

by the diffusion model. rt:t+H denotes the sum of rewards with discount factor γ. This enables the
model to adapt to new tasks or goals that were not observed in the offline data. Furthermore, the
integration of temporal abstraction and latent space modeling significantly enhances the mechanism
of credit assignment, thereby improving the effectiveness of policy optimization. According to Eq. 3,
the trained Q-function is used such that, as shown in Eq. 4, when a state st is given, the decision is
made by selecting the action that has the highest Q-value.

π(st) = πθ(at| argmax
zi∼µψ(z|st)

Q(st, zi)) (4)

4 PROPOSED METHOD

Using diffusion models to address long-horizon tasks typically involves training over the full tra-
jectory length (Janner et al., 2022). This approach differs from autoregressive methods that focus
on selecting the best action at each step, as it learns the entire action sequence over the horizon.
This allows the model to learn long sequences of decisions at once and generate a large number of
actions in a single pass. However, predicting decisions across the entire horizon may not always lead
to optimal outcomes, as the primary goal is to generate a sequence of decisions corresponding to the
sequence length.

Additionally, there is a well-known problem of overestimating the Q-value when training a Q-
network (Hasselt et al., 2016; 2018; Fu et al., 2019; Kumar et al., 2019; Agarwal et al., 2020).
This occurs when certain actions, appearing intermittently, are assigned a high Q(s,a) value. In
these cases, the state may not actually hold high value, but the Q-value becomes “lucky” and in-
flated. Therefore, it is essential to ensure that the Q-network does not overestimate and can correctly
assess the value based on the current state.

To resolve both of these issues, we propose Diffusion-model-guided Implicit Q-learning with Adap-
tive Revaluation (DIAR), introducing a value function to assess the value of each situation. Unlike
the Q-network, which learns the value of both state and action, the state-value function learns only
the value of the state. By introducing constraints from the value function, we can train a more bal-
anced Q-network and, during the decision-making phase, make more optimal predictions with the
help of the value function.

4.1 DIFFUSION-MODEL-GUIDED Q-LEARNING FRAMEWORK

The value-network Vη with parameter η evaluates the value of the current state st, and the Q-network
Qϕ with parameter ϕ evaluates the value of the current state st and action at. Additionally, by
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Figure 3: Three training stages of DIAR. (a) The β-VAE is trained by encoding a state-action se-
quence spanning an H -length horizon into a latent space, followed by a policy decoder that outputs
actions based on the encoded latent z and the state st contained within it. (b) A diffusion model is
trained using the encoded latent and the initial state st. (c) The Q-network is trained on the offline
dataset, while the value network is trained on data generated by the diffusion model. This inter-
play allows the value function and Q-function to guide each other, enabling more balanced learning
across both offline samples and generated data.

combining value-network learning with Q-network learning, constraints can be applied to the Q-
network, resulting in more balanced training. Instead of relying on the dataset to train the value
network and Q-network, we enhance the process by introducing latent vectors generated through a
diffusion model. By doing so, we minimize extrapolation errors for unseen decisions in the dataset,
leading to more accurate value estimation.

The training of the value-network should aim to reduce the difference between the Q-value and the
state-value. Therefore, it is crucial to include the difference between Q(s, z) and V (s) in the loss
function. To achieve this, rather than simply using MSE loss, we apply weights to make the data
distribution more flexible and to respond more sensitively to differences. We use an asymmetric
weighted loss function that multiplies the weights of variables u by an expectile factor τ , as shown
in Eq. 5. In the next step, u is used as the difference between the Q-value and the state-value for loss
calculation.

L2
τ (u) = |τ − I(u < 0)|u2 (5)

By using an asymmetrically weighted loss function, the value-network is trained to reduce the dif-
ference between the Q-value and the state-value. We set τ to a value greater than 0.5 and apply Eq. 6
to assign more weight when the difference between the Q-value and the value is large. Additionally,
instead of using latent vector encoded from the dataset, we use latent vectors z̃t generated by the
diffusion model to guide the learning of a more generalized Q-network.

LV (η) = Est∼D, z̃t∼Dψ

[
L2
τ

(
Qϕ̂(st, z̃t)− Vη(st)

)]
(6)

After the loss for the value-network is calculated, the loss for the Q-network is computed. The
loss in Eq. 7 is not based on the Q-network alone but is learned based on the current value and
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reward, ensuring balance with the value network. The value-network learning, using latent vectors
generated by the diffusion model, allows it to handle diverse trajectories, while the Q-network is
trained on data pairs (st, zt, rt:t+H , st+H) ∼ D from the dataset, learning the Q-value of state-
latent vector pairs based on existing trajectories. Q-network and value-network training processes
form a complementary relationship.

LQ(ϕ) = E(st,zt,rt:t+H ,st+H)∼D

[
(rt:t+H + γVη(st+H)−Qϕ(st, zt))2

]
(7)

To ensure stable Deep Q-network training and prevent Q-value overestimation, we employed the
Clipped Double Q-learning method (Fujimoto et al., 2018). Additionally, we used a prioritized re-
play buffer B, where the Q-network is trained based on the priority of the samples (Schaul et al.,
2016).B stores (st, zt, rt:t+H , st+H), which are generated from the offline dataset. The state, action,
and reward are taken from the offline dataset, and the latent vector zt is encoded by qθE (z|s,a).
The encoded latent vector zt, along with the current state st, is used to guide the MLP model
through the diffusion model to learn the Q-value. The Q-network and value-network are trained
alternately, maintaining a complementary relationship through their respective loss functions. The
value-network’s loss LV (η) is calculated based on the difference between the Q-value and the state-
value, which is adjusted by the expectile factor τ . The Q-network’s loss LQ(ϕ) is computed using
the Bellman equation with the reward and value, where the effect of distant timesteps is controlled
by the discount factor γ. The calculated Q-network loss LQ(ϕ) is updated in the model Qϕ via
backpropagation, and the target Q-network Qϕ̂ is gradually updated based on the update rate ρ. The
detailed process can be found in Algorithm 1.

Algorithm 1: Diffusion-model-guided Implicit Q-learning with Adaptive Revaluation
1 Input: Q-network Qϕ, target Q-network Qϕ̂, value-network Vη , diffusion model µψ(z|s),

prioritized replay buffer B, horizon H, number of sampling latent vectors n, latent vector z,
update rate ρ, max iteration T, learning rate λQ, λV

2 ϕ̂← ϕ
3 t← 0
4 while t < T do
5 (st, zt, rt:t+H , st+H)← B

6 z0
t+H , z

1
t+H , . . . ,z

n−1
t+H ← µψ(z|st+H) # Sampling n latent vectors

7 η ← η − λV∇ηLV (η) # Training value-network

8 ϕ← ϕ− λQ∇ϕLQ(ϕ) # Training Q-network
9 ϕ̂← ρϕ+ (1− ρ)ϕ̂

10 Update priority of B
11 end

4.2 ADAPTIVE REVALUATION IN POLICY EXECUTION

DIAR method reforms a decision if the value of the current state is higher than the value of the state
after making a decision over the horizon lengthH . We refer to this process as Adaptive Revaluation.
Using the value-network Vη , if the current state’s value V (st) is greater than V (st+H), the value
after making a decision for H steps, the method generates a new latent vector zt from the current
state st and continues the decision-making process. When predicting over the horizon length, there
may be cases where taking a different action midway through the horizon would be more optimal.
In such cases, the value-network Vη checks this, and if the condition is met, a new latent vector is
generated.

Adaptive Revaluation uses the difference in value to examine whether the agent’s predicted decision
is optimal. Since the current state st can be obtained directly from the environment, it is easy to
compute the value V (st) of the current state st. Whether the current trajectory is optimal can be
determined using a state decoder fθ(st+H |st, zt). By inputting the current state st and latent vector

6
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Figure 4: Inference step with DIAR. The current state st is put into the diffusion model to extract
candidate latent vectors. Then, the latent vector zt with the highest Q(st, zt) is selected as the best
latent vector. This latent vector zt is subsequently decoded to generate the action at. Additionally,
the future state st+H is also decoded to be used for calculating the future value V (st+H).

st+H
Value


Network
V(st)     V(st+H)

Re-sample Latent
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(a) Non-ideal values for states within a latent in the sparse-reward environment
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Networkst+H Env

Execute Action

latent

(b) Ideal values for states within a latent in the sparse-reward environment

Figure 5: The process of finding a better trajectory using Adaptive Revaluation. The process involves
making a decision and taking action based on the skill latent zt with the highest Q(st, zt). The
current latent vector zt is used to predict the future state st+H , based on which the value V (st+H)
of the future state st+H is calculated. (a) If the value V (st) of the current state st is greater than the
value V (st+H) of the future state st+H , it is considered non-ideal, and re-sampling is performed.
(b) If the value V (st+H) of the future state st+H is greater than or equal to the value V (st) of the
current state st, it is considered ideal, and the action at decoded by the latent vector zt is executed
continuously.

zt into the state decoder, the future state st+H can be predicted. This predicted st+H is passed into
the value-network Vη to estimate its future value V (st+H). By comparing these two values, if the
current value V (st) is higher, the agent generates new latent vectors and selects the one with the
highest Q(st, zt). The detailed Adaptive Revaluation algorithm is shown in Appendix B.

4.3 THEORETICAL ANALYSIS OF DIAR

In this section, we prove that in the case of sparse rewards, when the current timestep t, if the value
V (st) of the current state st is higher than the value V (st+H) of the future state st+H , there is a
more ideal trajectory than the current trajectory. An ideal trajectory is defined as one where, for all
states at timestep k, the discount factor 0 < γ ≤ 1 ensures that V (sk) ≤ V (sk+1). This means
that for an agent performing actions toward a goal, the value of each state in the trajectory increases
monotonically.

Now, consider an assumption about an ideal trajectory: for any timesteps i, j with i < j, we assume
that V (si) > V (sj) for si and sj from the dataset D. Furthermore, since the state sj is not the goal
and we are in a sparse reward setting, ∀r(si,ai) = 0. If we write the Bellman equation for the value
function, it results in Eq. 8.
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V (si) = E(si,ai,si+1)∼D [r(si,a) + γV (si+1)] (8)

Eq. 8 represents the value function V (si) when there is a difference of one timestep. The value
function V (si) can be computed using the reward received from the action taken in the current state
si and the value of the next state si+1. Therefore, by iterating Eq. 8 to express the timesteps from i
to j, we obtain Eq. 9.

V (si) = E(si:j ,ai:j)∼D

[
j−1∑
t=i

γt−ir(st,at) + γj−iV (sj)

]
(9)

Since the current environment is sparse in rewards, no reward is given if the goal is not reached.
Therefore, in Eq. 9, all reward r(st,at) terms are zero. By substituting the reward as zero and
reorganizing Eq. 9, we can derive Eq. 10.

V (si) = E(si:j ,ai:j)∼D
[
γj−iV (sj)

]
(10)

Since the magnitude of γ is 0 < γ ≤ 1, the term γj−iV (sj) is always less than or equal to V (sj).
This contradicts the initial assumption, indicating that the assumption is incorrect. Therefore, for any
ideal trajectory, all value functions V (si) must follow a monotonically increasing function. In other
words, if the trajectory predicted by the agent is an ideal trajectory, the value V (sj) after making
a decision over the horizon H must always be greater than the current value V (si). If the current
value V (si) is greater than the future value V (sj), then this trajectory is not an ideal trajectory.
Consequently, generating a new latent vector zi from the current state si to search for an optimal
decision is a better approach.

5 EXPERIMENTS

We compare the performance of our model with other models under various conditions and environ-
ments. We focus on goal-based tasks in environments with long-horizons and sparse rewards. For
offline RL, we use the Maze2D, AntMaze, and Kitchen datasets to test the strengths of our model
in long-horizon sparse reward settings (Fu et al., 2020). These environments feature very long tra-
jectories in their datasets, and rewards are only given upon reaching the goal, making them highly
suitable for evaluating our model. We also compare the performance improvements achieved when
using Adaptive Revaluation, analyzing whether it allows for reconsideration of decisions when in-
correct ones are made and enables the generation of the correct trajectory. Furthermore, to ensure
more accurate performance measurements, all scores are averaged over 100 runs and repeated 5
times, with the mean and standard deviation reported.

5.1 PERFORMANCE ON OFFLINE RL BENCHMARKS

In this section, we compare the performance of our model in offline RL. To evaluate our model, we
compare it against various state-of-the-art models. These include behavior cloning (BC), which im-
itates the dataset, and offline RL methods based on Q-learning, such as IQL (Kostrikov et al., 2022)
and IDQL (Hansen-Estruch et al., 2023). We also compare our model with DT (Chen et al., 2021),
which uses the transformer architecture employed in LLMs, and methods that use diffusion mod-
els, such as Diffuser (Janner et al., 2022), DD (Ajay et al., 2023), and LDCQ (Venkatraman et al.,
2024). Through these comparisons with various algorithms, we conduct a quantitative performance
evaluation of our model.

Datasets like Maze2D and AntMaze require the agent to learn how to navigate from a random
starting point to a random location. Simply mimicking the dataset is insufficient for achieving
good performance. The agent must learn what constitutes a good decision and how to make the
best judgments throughout the trajectory. Additionally, the ability to stitch together multiple paths
through trajectory combinations is essential. In particular, the AntMaze dataset involves a complex
state space and requires learning and understanding high-dimensional policies. We observed that
our method DIAR, consistently demonstrated strong performance in these challenging tasks, where
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Table 1: Comparison with other methods in long horizon sparse reward D4RL environments.

Dataset BC IQL DT IDQL Diffuser DD LDCQ DIAR
maze2d-umaze-v1 3.8 47.4 27.3 57.9 113.5 - 134.2 141.8±4.3
maze2d-medium-v1 30.3 34.9 32.1 89.5 121.5 - 125.3 139.2±3.5
maze2d-large-v1 5.0 58.6 18.1 90.1 123.0 - 150.1 200.3±3.4
antmaze-umaze-diverse-v2 45.6 62.2 54.0 62.0 - - 81.4 88.8±1.5
antmaze-medium-diverse-v2 0.0 70.0 0.0 83.5 45.5 24.6 68.9 68.2±6.7
antmaze-large-diverse-v2 0.0 47.5 0.0 56.4 22.0 7.5 57.7 60.6±2.4
kitchen-complete-v0 65.0 62.5 - - - - 62.5 68.8±2.1
kitchen-partial-v0 38.0 46.3 42.0 - - 57.0 67.8 63.3±0.9
kitchen-mixed-v0 51.5 51.0 50.7 - - 65.0 62.3 60.8±1.4

high-dimensional abstraction and reasoning are critical. For more demonstrations, please refer to the
Appendix F.

5.2 IMPACT OF ADAPTIVE REVALUATION

In this section, we analyze the impact of Adaptive Revaluation. We directly compare the cases where
Adaptive Revaluation is used and not used in our model. The test is conducted on long-horizon
sparse reward tasks, where rewards are sparse. For overall training, an expectile value of τ = 0.9
was used, with H = 30 for Maze2D and H = 20 for AntMaze and Kitchen. Other training settings
were generally the same, and detailed configurations can be found in the Appendix A.

(a) umaze w/o AR (b) medium w/o AR (c) large w/o AR

(d) umaze w/ AR (e) medium w/ AR (f) large w/ AR

Figure 6: (a)∼(c) Three Maze2D results that only the Q-function is used without Adaptive Reval-
uation. (d)∼(f) Three Maze2D results for improved decision making using Adaptive Revaluation.
Even without Adaptive Revaluation, our model performs well, but we can observe that using Adap-
tive Revaluation enables more efficient decision-making.

When Adaptive Revaluation is used, it checks whether a better decision might exist according to
the value function and discovers a better latent vector to re-create the trajectory. If the value of the
current state is higher than the value of a future state, it indicates that a better trajectory might exist
than the currently selected decision. This enables the agent to choose a more accurate abstraction
and form a more optimal trajectory based on it. The improvement in decision-making with Adaptive
Revaluation can be observed in Table 2, which shows how much the agent’s decisions improve when
using this method.

9
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Table 2: Comparison of performance changes with Adaptive Revaluation (AR) in D4RL tasks.

Dataset DIAR w/o AR DIAR w/ AR
maze2d-umaze-v1 135.6±2.8 141.8±4.3
maze2d-medium-v1 138.2±3.1 139.2±3.5
maze2d-large-v1 193.5±4.7 200.3±3.4
antmaze-umaze-diverse-v2 88.8±1.5 85.4±2.6
antmaze-medium-diverse-v2 68.2±6.7 67.4±3.4
antmaze-large-diverse-v2 56.0±4.6 60.6±2.4
kitchen-complete-v0 68.8±2.1 63.8±3.0
kitchen-partial-v0 63.3±0.9 63.0±2.5
kitchen-mixed-v0 60.0±0.7 60.8±1.4

5.3 COMPARISON WITH SKILL LATENT MODELS

We further compare our model with other reinforcement learning methods that use skill latents. For
the D4RL tasks, we selected methods that use generative models to learn skills and make decisions
based on them. As performance baselines, we chose the VAE-based methods OPAL1 (Ajay et al.,
2021) and PLAS (Zhou et al., 2020), as well as Flow2Control (Yang et al., 2023), which utilizes
normalizing flows. The performance comparison is shown in Table 3.

Table 3: Performance comparison with other skill latent learning methods in D4RL tasks.

Dataset BC PLAS IQL+OPAL Flow2Control DIAR
maze2d-umaze-v1 3.8 57.0 - - 141.8±4.3
maze2d-medium-v1 30.3 36.5 - - 139.2±3.5
maze2d-large-v1 5.0 122.7 - - 200.3±3.4
antmaze-umaze-diverse-v2 45.6 45.3 70.2 81.6 88.8±1.5
antmaze-medium-diverse-v2 0.0 0.7 42.8 83.7 68.2±6.6
antmaze-large-diverse-v2 0.0 0.0 52.4 52.8 60.6±2.4
kitchen-complete-v0 65.0 34.8 11.5 75.0 68.8±2.1
kitchen-partial-v0 38.0 43.9 72.5 74.9 63.3±0.9
kitchen-mixed-v0 51.5 40.8 65.7 69.2 60.8±1.4

6 CONCLUSION

In this study, we proposed Diffusion-model-guided Implicit Q-learning with Adaptive Revaluation
(DIAR), which leverages diffusion models to improve abstraction capabilities and train more adap-
tive agents in offline RL. First, we introduced an Adaptive Revaluation algorithm based on the value
function, which allows for long-horizon predictions while enabling the agent to flexibly revise its
decisions to discover more optimal ones. Second, we propose an Diffusion-model-guided Implicit
Q-learning. Offline RL faces the limitation of difficulty in evaluating out-of-distribution state-action
pairs, as it learns from a fixed dataset. By leveraging the diffusion model, a generative model, we
balance the learning of the value function and Q-function to cover a broader range of cases. By com-
bining these two methods, we achieved state-of-the-art performance in long-horizon sparse reward
tasks such as Maze2D, AntMaze, and Kitchen. Our approach is particularly strong in long-horizon
sparse reward situations, where it is challenging to assess the current value. Additionally, a key ad-
vantage of our method is that it performs well without requiring extensive hyper-parameter tuning
for each task. We believe that the latent diffusion model holds significant strengths in offline RL and
has high potential for applications in various fields such as robotics.

1To compare its effect on implicit learning, we refer to the results from Yang et al. (2023).
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A EXPERIMENTS DETAILS

DIAR consists of three main components: the β-VAE for learning latent skills, the latent diffusion
model for learning distributions through latent vectors, and the Q-function, which learns the value of
state-latent vector pairs and selects the best latent. These three models are trained sequentially, and
when learning the same task, the earlier models can be reused. Detailed model settings and hyperpa-
rameters are discussed in the next section. For more detailed code implementation and process, you
can refer directly to the code on GitHub.

A.1 β-VARIATIONAL AUTOENCODER

The β-VAE consists of an encoder, policy decoder, state prior, and state decoder. The encoder uses
two stacked bidirectional GRUs. The output of the GRU is used to compute the mean and standard
deviation. Each GRU output is passed through an MLP to calculate the mean and standard deviation,
which are then used to compute the latent vector. This latent vector is used by the state prior, state
decoder, and policy decoder. The policy decoder takes the latent vector and the current state as input
to predict the current action. The state decoder takes the latent vector and the current state to predict
the future state. Lastly, the state prior learns the distribution of the latent vector for the current state,
ensuring that the latent vector generated by the encoder is trained similarly through KL divergence.

In Maze2D, H = 30 is used; in AntMaze and Kitchen, H = 20 is used. The diffusion model for the
diffusion prior used in β-VAE training employs a transformer architecture. This model differs from
the latent diffusion model discussed in the next section, and they are trained independently. Training
the β-VAE for too many epochs can lead to overfitting of the latent vector, which can negatively
impact the next stage.

Table 4: Hyperparameters for VAE training

Hyperparameter Value
Learning rate 5e-5
Batch size 128
Epochs 100
Latent dimension 16
β 0.1
Diffusion prior steps 200
Optimizer Adam

A.2 LATENT DIFFUSION MODEL

The generative model plays the role of learning the distribution of the latent vector for the current
state. The current state and latent vector are concatenated and then re-encoded for use. The archi-
tecture of the diffusion model follows a U-Net structure, where the dimensionality decreases and
then increases, with each block consisting of residual blocks. Unlike the traditional approach of pre-
dicting noise ϵ, the diffusion model is trained to directly predict the latent vector z. This process is
constrained by Min-SNR-γ. Overall, the diffusion model operates similarly to the DDPM method.

Table 5: Hyperparameters for Diffusion model training

Hyperparameter Value
Learning rate 1e-4
Batch size 128
Epochs 450
Diffusion steps 500
Drop probability 0.1
Min-SNR (γ) 5
Optimizer Adam
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A.3 Q-LEARNING

In our approach, we utilize both a Q-network and a Value network. The Q-network follows the
DDQN method, employing two networks that learn slowly according to the update ratio. The Value
network uses a single network. Both the Q-network and the Value network are structured with re-
peated MLP layers. The Q-network encodes the state into a 256-dimensional vector and the latent
vector into a 128-dimensional vector. These two vectors are concatenated and passed through ad-
ditional MLP layers to compute the final Q-value. The Value network only encodes the state into a
256-dimensional vector, which is then used to compute the value. Between the linear layers, GELU
activation functions and LayerNorm are applied. In this way, both the Q-network and Value network
are implicitly trained under the guidance of the diffusion model.

Table 6: Hyperparameters for Q-learning

Hyperparameter Value
Learning rate 5e-4
Batch size 128
Discount factor (γ) 0.995
Target network update rate 0.995
PER buffer α 0.7
PER buffer β 0.3→ 1
Number of latent samples 500
Expectile (τ ) 0.9
extra steps 5
Scheduler StepLR
Scheduler step 50
Scheduler γ 0.3
Optimizer Adam
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B DIAR POLICY EXECUTION DETAILS

We provide a detailed explanation of how DIAR performs policy execution. It primarily selects the
latent with the highest Q-value. However, if the current state value V (st+h) is higher than the future
state value V (ss+H), it triggers another search for a new latent. DIAR repeats this process until it
either reaches the goal or the maximum step T is reached.

Algorithm 2: DIAR Policy Execution
1 Input: environment Env, Q-network Q(s,a), value-network V (s), policy decoder
πθD (a|s, z), state decoder fθ(st+H |st, zt), diffusion model µψ(z|s), horizon H, max step T,
number of sampling latent vectors n, latent vector z

2 t← 0
3 done← False
4 while not done do
5 st ← Env
6 z0

t , z
1
t , . . . ,z

n−1
t ← µψ(z|s) # Sampling latents vectors from diffusion model

7 Q(st, z
0
t ), Q(st, z

1
t ), . . . , Q(st, z

n−1
t )← Qη(s, z) # Calculate Q value

8 zit ← argmax
zit

Q(st, z
i
t), z

i ∈ {z0
t , z

1
t , . . . z

n−1
t }

9 st+H ← fθ(st+H |st, zit) # Predict future state
10 V (st+H)← Vϕ(s) # Calculate value of future state
11 h← 0
12 for h < H do
13 st+h ← Env
14 V (st+h)← Vϕ(s) # Calculate value of current state
15 if V (st+H) < V (st+h) then
16 break
17 end
18 else
19 at+h ← πθD (at+h|st+h, zit)
20 Execute action at+h

21 Update done by Env
22 h← h+ 1
23 end
24 end
25 t← t+ h
26 end
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C TRAINING PROCESS FOR β-VAE

This section details the process by which the β-VAE is trained. The β-VAE consists of four models:
the skill latent encoder, policy decoder, state decoder, and state prior. These four components are
trained simultaneously. Additionally, a diffusion prior is trained alongside to guide the β-VAE in
generating appropriate latent vectors. The detailed process can be found in Algorithm 3.

Algorithm 3: Training Beta Variational Autoencoder
1 Input: Dataset D, state st, action at, epoch M , horizon H , diffusion steps T , Min-SNR γ, state

prior pθs(zt|st), latent encoder qθE (zt|st:t+H ,at:t+H), policy decoder πθD (at+i|st+i, zt),
state decoder fθ(st+H |st, zt), β-VAE parameter θ, diffusion prior µψ , KL regularization
coefficient β

2 iter ← 0
3 for iter < M do
4 st:t+H ,at:t+H ← D
5 zt ← qθE (zt|st:t+H ,at:t+H) # Encoding latent vector

6 L1 ← −
∑H−1
i=0 log πθD (at+i|st+i, zt) # Reconstruction loss

7 L2 ← DKL(qθE (zt|st:t+H ,at:t+H) ∥ pθs(zt|st)) # KL divergence with state prior
8 L3 ← − log fθ(st+H |st, zt) # State decoder loss
9 Noise latents zj from Gaussian noise, j ∼ U [1, T ]

10 L4 ← min{SNR(j), γ}(∥zt − µψ(zj , st, j)∥2) # Diffusion prior loss
11 Ltotal ← L1 + βL2 + L3 + L4

12 Update θ to minimize Ltotal
13 iter ← iter + 1
14 end
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D TRAINING PROCESS FOR LATENT DIFFUSION MODEL

This section also provides an in-depth explanation of how the latent diffusion model is trained. The
goal of the latent diffusion model is to learn the distribution of latent vectors generated by the β-
VAE. The latent diffusion model is trained by first converting the offline dataset into latent vectors
using the encoder of the β-VAE, and then learning from these latent vectors. The detailed process
can be found in Algorithm 4.

Algorithm 4: Training Latent Diffusion Model
1 Input: Dataset D, state st, action at, epoch M , horizon H , diffusion steps T , Min-SNR γ,

latent encoder qθE (z|s,a), diffusion model µψ , variance schedule
α1, . . . αT , ᾱ1, . . . ᾱT , β1, . . . βT

2 iter ← 0
3 for iter < M do
4 st:t+H ,at:t+H ← D
5 zt ← qθE (zt|st:t+H ,at:t+H) # Encoding latent vector
6 Sample diffusion time j ∼ U [1, T ]
7 Noise latents from Gaussian noise zj ∼ N (

√
ᾱjzt, (1− ᾱj)I)

8 L ← min{SNR(j), γ}(∥zt − µψ(zj , st, j)∥2) # Diffusion model loss
9 Update ψ to minimize L

10 iter ← iter + 1
11 end
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E DIFFUSION PROBABILISTIC MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) function as latent variable generative
models, formally expressed through the equation pθ(x0) :=

∫
pθ(x0:T ), dx1:T . Here, x1, . . . , xT

denote the sequence of latent variables, integral to the model’s capacity to assimilate and recreate
the intricate distributions characteristic of high-dimensional data types like images and audio. In
these models, the forward process q(xt|xt−1) methodically introduces Gaussian noise into the data,
adhering to a predetermined variance schedule delineated by β1, . . . , βT . This step-by-step addition
of noise outlines the approximate posterior q(x1:T |x0) within a structured mathematical formulation,
which is specified as follows:

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) (11)

The iterative denoising process, also known as the reverse process, enables sample generation from
Gaussian noised data, denoted as p(xT ) = N (xT ; 0, I). This process is modeled using a Markov
chain, where each step involves generating the sample of the subsequent stage from the sample of
the previous stage based on conditional probabilities. The joint distribution of the model, pθ(x0:T ),
can be represented as follows:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (12)

In the Diffusion Probabilistic Model, training is conducted via a reverse process that meticulously re-
constructs the original data from noise. This methodological framework allows the Diffusion model
to exhibit considerable flexibility and potent performance capabilities. Recent studies have further
demonstrated that applying the diffusion process within a latent space created by an autoencoder
enhances fidelity and diversity in tasks such as image inpainting and class-conditional image syn-
thesis. This advancement underscores the effectiveness of latent space methodologies in refining the
capabilities of diffusion models for complex generative tasks (Rombach et al., 2022). In light of this,
the application of conditions and guidance to the latent space enable diffusion models to function
effectively and to exhibit strong generalization capabilities.
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F QUALITATIVE DEMONSTRATION THROUGH MAZE2D RESULTS

Following the main section, we report more results in the Maze2D environments. We qualitatively
demonstrate that DIAR consistently generates favorable trajectories.

(a) Maze2D-umaze

(b) Maze2D-medium

(c) Maze2D-large

Figure 7: DIAR-generated trajectories in diverse Maze2D demonstration. DIAR reliably reaches the
goal even from starting points (blue) that are far from the goal (red). It even exhibits significant
advantages in cases where decisions involve longer horizons.
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