
Under review as a conference paper at ICLR 2021

UNCERTAINTY WEIGHTED OFFLINE REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline Reinforcement Learning promises to learn effective policies from
previously-collected, static datasets without the need for exploration. However,
existing Q-learning and actor-critic based off-policy RL algorithms fail when
bootstrapping from out-of-distribution (OOD) actions or states. We hypothesize
that a key missing ingredient from the existing methods is a proper treatment of
uncertainty in the offline setting. We propose Uncertainty Weighted Actor-Critic
(UWAC), an algorithm that models the epistemic uncertainty to detect OOD state-
action pairs and down-weights their contribution in the training objectives accord-
ingly. Implementation-wise, we adopt a practical and effective dropout-based un-
certainty estimation method that introduces very little overhead over existing RL
algorithms. Empirically, we observe that UWAC substantially improves model
stability during training. In addition, UWAC out-performs existing offline RL
methods on a variety of competitive tasks, and achieves significant performance
gains over the state-of-the-art baseline on datasets with sparse demonstrations col-
lected from human experts.

1 INTRODUCTION

Deep reinforcement learning (RL) has seen a surge of interest over the recent years. It has achieved
remarkable success in simulated tasks (Silver et al., 2017; Schulman et al., 2017; Haarnoja et al.,
2018), where the cost of data collection is low. However, one of the drawbacks of RL is its difficulty
of learning from prior experiences. Therefore, the application of RL to unstructured real-world tasks
is still in its primal stages, due to the high cost of active data collection. It is thus crucial to make
full use of previously collected datasets whenever large scale online RL is infeasible.

Offline batch RL algorithms offer a promising direction to leveraging prior experience (Lange et al.,
2012). However, most prior off-policy RL algorithms (Haarnoja et al., 2018; Munos et al., 2016;
Kalashnikov et al., 2018; Espeholt et al., 2018; Peng et al., 2019) fail on offline datasets, even
on expert demonstrations (Fu et al., 2020). The sensitivity to the training data distribution is a well
known issue in practical offline RL algorithms (Fujimoto et al., 2019; Kumar et al., 2019; 2020; Peng
et al., 2019; Yu et al., 2020). A large portion of this problem is attributed to actions or states not being
covered within the training set distribution. Since the value estimate on out-of-distribution (OOD)
actions or states can be arbitrary, OOD value or reward estimates can incur destructive estimation
errors that propagates through the Bellman loss and destabilizes training. Prior attempts try to avoid
OOD actions or states by imposing strong constraints or penalties that force the actor distribution to
stay within the training data (Kumar et al., 2019; 2020; Fujimoto et al., 2019; Laroche et al., 2019).
While such approaches achieve some degree of experimental success, they suffer from the loss of
generalization ability of the Q function. For example, a state-action pair that does not appear in the
training set can still lie within the training set distribution, but policies trained with strong penalties
will avoid the unseen states regardless of whether the Q function can produce an accurate estimate
of the state-action value. Therefore, strong penalty based solutions often promote a pessimistic and
sub-optimal policy. In the extreme case, e.g., in certain benchmarking environments with human
demonstrations, the best performing offline algorithms only achieve the same performance as a
random agent (Fu et al., 2020), which demonstrates the need of robust offline RL algorithms.

In this paper, we hypothesize that a key aspect of a robust offline RL algorithm is a proper estimation
and usage of uncertainty. On the one hand, one should be able to reliably assign an uncertainty score

1

Under review as a conference paper at ICLR 2021

to any state-action pair; on the other hand, there should be a mechanism that utilizes the estimated
uncertainty to prevent the model from learning from data points that induce high uncertainty scores.

0 200 400 600
Training Epochs

0

1000

2000

3000

4000

re
lo

ca
te

-e
xp

er
t-v

0

Average Return

ours
BEAR

0 200 400 600
Training Epochs

0.0

0.5

1.0

1.5

2.0 1e12 Q Target

Figure 1: Left. Plot of average return v.s. training epochs of
our proposed method (red) v.s. baseline (brown) (Kumar et al.,
2019) on the relocate-expert offline dataset. Right. Correspond-
ing plot of Q-Target values v.s. training epochs. Our proposed
method achieves much higher average return, with better train-
ing stability, and more controlled Q-values.

The first problem relates closely to
OOD sample detection, which has been
extensively studied in the Bayesian
deep learning community. (Gal &
Ghahramani, 2016a; Gal, 2016; Osawa
et al., 2019), often measured by the
epistemic uncertainty of the model. We
adopt the dropout based approach Gal
& Ghahramani (2016a), due to its sim-
plicity and empirical success in prac-
tice. For the second problem, we pro-
vide an intuitive modification to the
Bellman updates in actor-critic based
algorithms. Our proposed Uncertainty
Weighted Actor Critic (UWAC) is to
simply down weigh the contribution of
target state and action pairs with high
uncertainty. By doing so, we pre-
vent the Q function from learning from
overly optimistic targets that lie far away from training data distribution (high uncertainty).

Empirically, we first verified the effectiveness of dropout uncertainty estimation at detecting OOD
samples. We show that the uncertainty estimation makes intuitive sense in a simple environment.
With the uncertainty based down weighting scheme, our method significantly improves the training
stability over our chosen baseline (Kumar et al., 2019), and achieves state-of-the-art performance in
a variety of standard benchmarking tasks for offline RL.

Overall, our contribution can be summarized as follows: 1) We propose a simple and efficient tech-
nique (UWAC) to counter the effect of OOD samples with no additional loss terms or models. 2) We
experimentally demonstrate the effectiveness of dropout uncertainty estimation for RL. 3) UWAC
offers a novel way for stabilizing offline RL. 4) UWAC achieves SOTA performance on common
offline RL benchmarks, and obtains significant performance gain on narrow human demonstrations.

2 RELATED WORK

In this work, we consider offline batch reinforcement learning (RL) under static datasets. Offline RL
algorithms are especially prone to errors from inadequate coverage of the training set distribution,
distributional shifts during actor critic training, and the variance induced by deep neural networks.
Such error have been extensively studied as ”error propagation” in approximate dynamic program-
ming (ADP) (Bertsekas & Tsitsiklis, 1996; Farahmand et al., 2010; Munos, 2003; Scherrer et al.,
2015). Scherrer et al. (2015) obtains a bound on the point-wise Bellman error of approximate mod-
ified policy iteration (AMPI) with respect to the supremum of the error in function approximation
for an arbitrary iteration. We adopt the theoretical tools from (Kumar et al., 2019) and study the
accumulation and propagation of Bellman errors under the offline setting.

One of the most significant problems associated with off-policy and offline RL is the bootstrapping
error (Kumar et al., 2019): When training encounters an action or state unseen within the training
set, the critic value estimate on out-of-distribution (OOD) samples can be arbitrary and incur an error
that destabilizes convergence on all other states (Kumar et al., 2019; Fujimoto et al., 2019) through
the Bellman backup. Yu et al. (2020) trains a model of the environment that captures the epistemic
uncertainty. The uncertainty estimate is used to penalize reward estimation for uncertain states and
actions, promoting a pessimistic policy against OOD actions and states. The main drawback of
such a model based approach is the unnecessary introduction of a model of the environment – it
is often very hard to train a good model. On the other hand, model-free approaches either train
an agent pessimistic to OOD states and actions (Wu et al., 2019; Kumar et al., 2020) or constrain
the actor distribution to the training set action distribution (Fujimoto et al., 2019; Kumar et al.,
2019; Wu et al., 2019; Jaques et al., 2019; Fox et al., 2015; Laroche et al., 2019). However, the
pessimistic assumption that all unseen states or actions are bad may lead to a sub-optimal agent and

2

Under review as a conference paper at ICLR 2021

greatly reduce generalization to online fine-tuning (Nair et al., 2020). Distributional constraints, in
addition, rely on approximations since the actor distribution is often implicit. Such approximations
cause practical training instability that we will study in detail in section 5.4.

We propose a model-free actor-critic method that down-weighs the Bellman loss term by inverse
uncertainty of the critic target. Uncertainty estimation has been implemented in model-free RL for
safety and risk estimation (Clements et al., 2019; Hoel et al., 2020) or exploration (Gal & Ghahra-
mani, 2016a; Lines & Van Der Wilk), through ensembling (Hoel et al., 2020) or distributional RL
(Dabney et al., 2018; Clements et al., 2019). However, distributional RL works best on discrete
action spaces (Dabney et al., 2018) and require additional distributional assumptions when extended
to continuous action spaces (Clements et al., 2019). Our approach estimates uncertainty through
Monte Carlo dropout (MC-dropout) (Srivastava et al., 2014). MC-dropout uncertainty estimation is
a simple method with minimal overhead and has been thoroughly studied in many traditional super-
vised learning tasks in deep learning (Gal & Ghahramani, 2016a; Hron et al., 2018; Kingma et al.,
2015; Gal & Ghahramani, 2016b). Moreover, we observe experimentally that MC-dropout uncer-
tainty estimation behaves similarly to explicit ensemble models where the prediction is the mean of
the ensembles, while being much simpler (Lakshminarayanan et al., 2017; Srivastava et al., 2014).

The most relevant to our work are MOPO (Yu et al., 2020), BEAR (Kumar et al., 2019), and CQL
(Kumar et al., 2020). MOPO approaches offline RL from a different model-based paradigm, and ob-
tains competitive results on some tasks with wide data distribution. However, due to the model-based
nature, MOPO achieves limited performance on most other benchmarks due to the performance of
the model being limited by the data distribution. On the other hand, BEAR and CQL both use actor-
critic and do not suffer from the above problem. We use BEAR (discussed in section 3.2) as our
baseline algorithm and achieve significant performance gain through dropout uncertainty weighted
backups. CQL avoids OOD states/actions through direct Q value penalty on actions that leads to
OOD unseen states within the training set. However the penalty proposed by CQL 1) risks hurting
Q estimates for (action, state) pairs that are not OOD, since samples not seen within the dataset can
still lie within the true dataset distribution; 2) limits the policy to be pessimistic, which may be hard
to fine-tune once on-policy data becomes available. Additionally our method is not limited to BEAR
and can apply to other actor-critic methods like CQL. We leave such exploration to future works.

3 PRELIMINARIES

3.1 NOTATIONS

Following Kumar et al. (2019), we represent the environment as a Markov decision process (MDP)
comprising of a 6-tuple (S,A, P,R, ρ0, γ), where S is the state space, A is the action space,
P (s′|s, a) is the transition probability distribution, ρ0 is the initial state distribution,R : S×A → R
is the reward function, and γ ∈ (0, 1] is the discount factor. Our goal is to find a policy π(s|a) from
the set of policy functions Π to maximize the expected cumulative discounted reward.

Standard Q-learning learns an optimal state-action value function Q∗(s, a), representing the ex-
pected cumulative discounted reward starting from s with action a and then acting optimally there-
after. Q-learning is trained on the Bellman equation defined as follows with the Bellman optimal
operator T defined by:

T Q(s, a) := R(s, a) + γEP (s′|s,a)

[
max
a′

Q(s′, a′)
]

(1)

In practice, the critic (Q function) is updated through dynamic programming, by projecting the
target Q estimate (T Q) into Q (i.e. minimizing Bellman Squared Error E

[
(Q− T Q)2

]
). Since

maxa′ Q(s′, a′) in generally intractable in continuous action spaces, an actor (πθ) function is learned
to maximize the critic function (πθ(s) := arg maxaQ(s, a)) (Haarnoja et al., 2018; Fujimoto et al.,
2018; Sutton & Barto, 2018).

In the context of offline reinforcement learning, naively performing maxa′ Q(s′, a′) in equation 1
may result in an a′ unseen within the training dataset (OOD), and resulting in aQ estimate with very
large error that can propagate through the Bellman bootstrapping and destabilize training on other
states (Kumar et al., 2019).

3

Under review as a conference paper at ICLR 2021

3.2 BASELINE ALGORITHM

We use BEAR (Kumar et al., 2019) as our baseline algorithm. BEAR restricts the set of policy
functions (Πε) to output actions that lies in the support of the training distribution:

π(·|s) := arg max
π′∈Πε

Ea∼π′(·|s) [Q(s, a)] (2)

Since the true support of π ∈ Πε is intractable. Kumar et al. (2019) instead relies on an approximate
support constraint through optimizing sampled maximum mean discrepancy (MMD) (Gretton et al.,
2012) between the training action distribution and the policy distribution.

However, this constraint eliminates the possibility of the Q function to learn to generalize to state-
action pairs beyond the training dataset and therefore limits the agent’s performance and general-
ization. Moreover, the justification behind the sampled MMD approximation as support constraints
is largely based on empirical evidence, and we observe numeric instability caused by discrepan-
cies between Q estimates and average returns on some narrower offline datasets (Figure 1). Such
observations also correspond to Kumar et al. (2019)’s description in section 7.

4 UNCERTAINTY WEIGHTED OFFLINE RL

Our approach (UWAC) is motivated by connecting offline RL with the well-established Bayesian
uncertainty estimation methods. This connection enables UWAC to “identify” and “ignore” OOD
training samples, with no additional models or constraints.

4.1 UNCERTAINTY ESTIMATION THROUGH DROPOUT

Let X capture all the state-action pairs in the training set: X = (s, a), and Y capture the true Q
value of the states. We follow a Bayesian formulation for the Q function in RL parameterized by
θ, and maximize p(θ|X,Y) = p(Y |X, θ)p(θ)/p(Y |X) as our objective. Since p(Y |X) is gener-
ally intractable, we approximate the inference process through dropout variational inference (Gal
& Ghahramani, 2016a), by training with dropout before every weight layer, and also performing
dropout at test time (referred to as Monte Carlo dropout). The epistemic uncertainty is captured by
the approximate predictive variance with respect to the estimated Q̂ for T stochastic forward passes

V ar[Q(s, a)] ≈ σ2 +
1

T

T∑
t=1

Q̂t(s, a)>Q̂t(s, a)− E[Q̂(s, a)]>E[Q̂(s, a)]

with σ2 corresponding to the inherent noise in the data, the second term corresponding to how much
the model is uncertain about its predictions, and E[Q̂(s, a)] the predictive mean. We therefore use
the second−third term to capture model uncertainty for OOD sample detection.

Overall, instead of training a Q function on the policy π, we define an uncertainty-weighted policy
distribution π′ with respect to the original policy distribution π(·|s) and normalization factor Z(s)

π′(a|s) =
β

V ar [Q(s, a)]
π(a|s)/Z(s); Z(s) =

∫
a

β

V ar [Q(s, a)]
π(a|s)da (3)

We show in the appendix A.1 that optimizing π′ results in theoretically better convergence properties
against OOD training samples.

4.2 UNCERTAINTY WEIGHTED ACTOR-CRITIC

Instead of training the Q function on Equation 1, we train Qθ on π′. For clarity, we denote the TD
Q-target as in (Mnih et al., 2013; Kumar et al., 2019) by Qθ′ .

L(Qθ) =E(s′|s,a)∼DEa′∼π′(·|s′)

[
(Qθ(s, a)− (R(s, a) + γQθ′(s

′, a′)))
2
]

=E(s′|s,a)∼DEa′∼π(·|s′)

[
β

V ar [Qθ′(s′, a′)]
(Qθ(s, a)− (R(s, a) + γQθ′(s

′, a′)))
2
] (4)

4

Under review as a conference paper at ICLR 2021

We absorb the normalization factor Z into β. The resulting training loss down-weighs the Bell-
man loss for the Q function by inverse the uncertainty of the Q-target (Qθ′(s′, a′)) that does track
gradient. This directly reduces the effect that OOD backups has on the overall training process.

Similarly, we optimize the actor π using samples from π′. Substituting π(·|s) by π′(·|s) in equation
2, we arrive at the following actor loss

L(π) = −Ea∼π′(·|s) [Qθ(s, a)] = −Ea∼π(·|s)

[
β

V ar [Qθ(s, a)]
Qθ(s, a)

]
(5)

The resulting actor loss intuitively decreases the probability of maximizing the Q function on OOD
samples, further discouraging the vicious cycle of Q function explosion. Such loss further stabilizes
Q function estimations without constraints on the actor function distribution.

Algorithm 1 summarizes the proposed training curriculum, mostly the same as in the baseline (Ku-
mar et al., 2019). Note that we do not propagate gradient through the uncertainty (V ar(y(s, a)))

Algorithm 1 Pseudo code for UWAC, differences from (Kumar et al., 2019) are colored

Input: Dataset D, target network update rate τ , mini-batch size N , sampled actions for MMD
(n = 10), sample numbers stochastic forward passes (T = 100), hyper-parameters: λ, α, β

1: Initialize Q networks {Qθ1 , Qθ2} with MC Dropout. Initialize actor πφ, target networks
{Qθ′1 , Qθ′2} and a target actor πφ′ , with φ′ ← φ, θ′1,2 ← θ1,2

2: for t← 1 to N do
3: Sample mini-batch of transitions (s, a, r, s′) ∼ D
4: Q-update:
5: Sample p action samples, {ai ∼ πφ′(·|s′)}pi=1

6: y(s, a) := maxai
[
λmin(Qθ′1(s′, ai), Qθ′2(s′, ai)) + (1− λ) max(Qθ′1(s′, ai), Qθ′2(s′, ai))

]
7: Calculate variance of the y(s, a) through variance of T stochastic samples from Qθ′1 , Qθ′2
8: Perform one step of SGD to minimize L(Qθ1,2) = β

V ar[y(s,a)] (Qθ1,2(s, a)− (r+ γy(s, a)))2

9: Policy-update:
10: Sample actions {ai ∼ πφ′(·|s′)}mi=1 and {aj ∼ D}ni=1
11: Update φ, a according to equation 5 with MMD penalty with weight α as in section 3.2
12: Update Target Networks: θ′1,2 ← τθ1,2;φ′i ← τφi
13: end for

5 EXPERIMENTAL RESULTS

Our experiments are structured as follows: In section 5.1, we validate and visualize the effectiveness
of dropout uncertainty estimation in RL. In section 5.2 we present competitive benchmarking results
on the widely-used D4RL MuJoCo walkers dataset. We then experiment with the more complex
Adroit hand manipulation environment in section 5.3, and analyze the training stability and the
effectiveness against OOD samples by examining the Q target functions in section 5.4. We report
the implementation details1 and ablation studies in appendix A.2.

5.1 DROPOUT UNCERTAINTY ESTIMATION FOR REINFORCEMENT LEARNING

For the ease of 2D-visualization, we investigate our dropout uncertainty framework on the OpenAI
gym LunarLander-v2 environment. The LunarLander-v2 environment features a lunar lander agent
trying to land at a goal location in a 2D world (between two yellow flags) with 4 actions {do nothing,
fire left engine, fire downward engine, fire right engine}.
We generate the expert offline dataset from the final replay buffer (size 100,000) of a fully trained
expert AWR (Peng et al., 2019) agent with average reward 270. Note that the state-action distribution
has a relatively complete coverage over the observation space (Fig. 2).

To simulate the scenario in most offline datasets, where the agent encounters lots of out-of-
distribution states and actions, we create two skewed datasets by removing all observations from the

1We will release our code at github.com/anonymous

5

https://github.com/anonymous

Under review as a conference paper at ICLR 2021

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 0: do nothing

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 1: fire left engine

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 2: fire main engine

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 3: fire right engine

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 0: do nothing

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 1: fire left engine

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 2: fire main engine

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 3: fire right engine

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

Figure 2: Expert Trajectory Visualization. 2D heat maps of the expert’s action distribution with respect to
horizontal/vertical displacement from the goal location. Warmer locations represent more observations.

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 0: do nothing

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 1: fire left engine

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 2: fire main engine

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 3: fire right engine

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0.4 0.2 0.0 0.2
horizontal displacement

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ve
rti

ca
l d

isp
la

ce
m

en
t

action 0: do nothing

0.4 0.2 0.0 0.2
horizontal displacement

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ve
rti

ca
l d

isp
la

ce
m

en
t

action 1: fire left engine

0.4 0.2 0.0 0.2
horizontal displacement

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ve
rti

ca
l d

isp
la

ce
m

en
t

action 2: fire main engine

0.4 0.2 0.0 0.2
horizontal displacement

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ve
rti

ca
l d

isp
la

ce
m

en
t

action 3: fire right engine

0.4

0.5

0.6

0.7

0.8

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.7

Figure 3: Left. The training set with horizontal displacements (< 0.1) removed. This makes all states on
the left OOD. Right. Our model estimates higher uncertainty (brighter color) on the left and lower uncertainty
(colder color) on the right.

upper-half or the leftmost-half according to displacement from objective. We visualize the clipped
datasets distribution together with the estimated Q function uncertainty in Figure 3,6. Our proposed
framework reports higher uncertainty estimates at locations where the observations are sparse, espe-
cially where the observations are removed (OOD states). The results demonstrate the effectiveness
of our proposed method at estimating the epistemic uncertainty of the Q function.

5.2 PERFORMANCE ON STANDARD BENCHMARKING DATASETS FOR OFFLINE RL

We evaluate our method on the MuJoCo datasets in the D4RL benchmarks (Fu et al., 2020), includ-
ing three environments (halfcheetah, hopper, and walker2d) and five dataset types (random, medium,
medium-replay, medium-expert, expert), yielding a total of 15 problem settings. The datasets in this
benchmark have been generated as follows: random: roll out a randomly initialized policy for 1M
steps. expert: 1M samples from a policy trained to completion with SAC. medium: 1M samples
from a policy trained to approximately 1/3 the performance of the expert. medium-replay: replay
buffer of a policy trained up to the performance of the medium agent. medium-expert: 50-50 split
of medium and expert data.

Results are shown in Table 1. Our method is the strongest by a significant margin on all the medium-
expert datasets and most of the medium-expert datasets, and also achieves good performance on all
of the random and medium datasets, where the datasets lack state/action diversity. Our approach per-
forms less well on the medium-replay datasets compared to model based method (MOPO) because
model-based methods typically perform well on datasets with diverse state/action.

5.3 PERFORMANCE ON ADROIT HAND DATASET WITH HUMAN DEMONSTRATIONS

We then experiment with a more complex robotic hand manipulation dataset. The Adroit dataset in
the D4RL benchmarks (Rajeswaran et al., 2017) involves controlling a 24-DoF simulated hand to
perform 4 tasks including hammering a nail, opening a door, twirling a pen, and picking/moving a
ball. This dataset is particularly hard for previous state-of-the-art works in that it contains of narrow
human demonstrations on a high-dimensional robotic manipulation task.

The dataset contains three types of datasets for each task. human: a small amount of demonstration
data from a human; expert: a large amount of expert data from a fine-tuned RL policy; cloned: the
third dataset is generated by imitating the human data, running the policy, and mixing data at a 50-
50 ratio with the demonstrations. It is worth noting that mixing (for cloned) is performed because
the cloned policies themselves do not successfully complete the task, making the dataset otherwise
difficult to learn from (Fu et al., 2020).

6

Under review as a conference paper at ICLR 2021

Table 1: Normalized Average Returns on the D4RL MuJoCo Gym dataset according to (Fu et al.,
2020). We report the average over 5 random seeds (± standard deviation). Fu et al. (2020); Kumar
et al. (2020) do not report standard deviation. We omit cREM, BRAC-p, aDICE, and SAC-off
because they do not obtain performance meaningful for comparison. We bold the highest mean.

Task Name UWAC (OURS) MOPO BEAR BRACv AWR BCQ BC CQL

halfcheetah-random 14.5 ± 3.3 31.9 ± 3.9 25.1 31.2 2.5 2.2 2.1 35.4
walker2d-random 15.5 ± 11.7 13.3 ± 6.0 7.3 1.9 1.5 4.9 1.6 7
hopper-random 22.4 ± 12.1 13.0 ± 8.1 11.4 12.2 10.2 10.6 9.8 10.8
halfcheetah-medium 46.5 ± 2.5 40.2 ± 22.7 41.7 46.3 37.4 40.7 36.1 44.4
walker2d-medium 57.5 ± 7.8 26.5 ± 3.3 59.1 81.1 17.4 53.1 6.6 79.2
hopper-medium 88.9 ± 12.2 14.0 ± 7.6 52.1 31.1 35.9 54.5 29.0 58
halfcheetah-med-replay 46.8 ± 3.0 54.0 ± 12.6 38.6 47.7 40.3 38.2 38.4 46.2
walker2d-med-replay 27.0 ± 6.3 92.5 ± 30.4 19.2 0.9 15.5 15.0 11.3 26.7
hopper-med-replay 39.4 ± 6.1 42.7 ± 12.7 33.7 0.6 28.4 33.1 11.8 48.6
halfcheetah-med-expert 127.4 ± 3.7 57.9 ± 9.5 53.4 41.9 52.7 64.7 35.8 62.4
walker2d-med-expert 99.7 ± 12.2 51.7 ± 34.5 40.1 81.6 53.8 57.5 6.4 98.7
hopper-med-expert 134.7 ± 21.2 55.0 ± 3.7 96.3 0.8 27.1 110.9 111.9 111
halfcheetah-expert 128.6 ± 2.9 - 108.2 -1.1 - - 107 104.8
walker2d-expert 121.1 ± 22.4 - 106.1 0 - - 125.7 153.9
hopper-expert 135.0 ± 14.1 - 110.3 3.7 - - 109 109.9

Figure 4: Our learned policies successfully accomplishes manipulation tasks, such as opening a door as shown.

Results are shown in Table 2. UWAC achieves significant improvement on the baseline (BEAR)
(Kumar et al., 2019) on all the “human” demonstration datasets, where the datasets lacks state/action
diversity and the agent will encounter lots of OOD backups during training. We also obtain state-of-
the art performance all other datasets in Adroit.

5.4 ANALYSIS OF TRAINING DYNAMICS

Although the baseline method BEAR (Kumar et al., 2019) already improves offline RL training
stability on most of the MuJoCo Walkers dataset, we encounter significantly worse training stability
when training it on the more complex Adroit hand dataset, especially on demonstrations collected
from a narrow policy (i.e. human demonstrations). We show some selected results in Figure 5.

Note that on 5 of the 6 panels shown, the performance of BEAR drops after obtaining peak very
early on into training, and sometimes even falls back to initial performance. We also observe similar
behavior in all other environments, see full adroit results in Figure 7 in the Appendix. Additionally,
we observe strong correlation between the training instability and the explosion ofQ values. All per-
formance drops begin at within 5 epochs when Q target estimate greatly exceeds the average return.
We attribute the problem of Q function over-estimation and explosion to performing backups from
OOD states and actions: As performance improves initially, the OODQ estimates increases together
with the average Q estimates. Since the agent is unable to explore on the OOD actions/states, any
over-estimation on the OOD samples can further increase average Q estimates through the Bellman
backups, causing a vicious cycle leading to Q value explosion.

In the initial stages of training, the performance of UWAC increases together with the baseline. By
down-weighting the OOD backups, UWAC breaks the vicious cycle, and maintains meaningful Q
estimates throughout training. This allows UWAC to further train on the offline dataset and surpass
BEAR after the performance drop and maintain positive performance.

7

Under review as a conference paper at ICLR 2021

Table 2: Normalized Average Returns on the D4RL Adroit dataset in the same format as Table
1, over 5 random seeds (± standard deviation). We omit BRAC-p, BRAC-v, cREM, and aDICE
because they do not obtain performance meaningful for comparison. We bold the highest mean.

Task Name UWAC (OURS) BEAR BC SAC-off CQL(H) CQL(ρ) AWR BCQ SAC-on

pen-human 65.0 ± 3.0 -1.0 34.4 6.3 37.5 55.8 12.3 68.9 21.6
hammer-human 8.3 ± 7.9 0.3 1.5 0.5 4.4 2.1 1.2 0.5 0.2
door-human 10.7 ± 5.5 -0.3 0.5 3.9 9.9 9.1 0.4 0.0 -0.2
relocate-human 0.5 ± 0.6 -0.3 0.0 0.0 0.2 0.4 0.0 -0.1 -0.2
pen-cloned 45.1 ± 5.8 26.5 56.9 23.5 39.2 40.3 28.0 44.0 21.6
hammer-cloned 1.2 ± 3.4 0.3 0.8 0.2 2.1 5.7 0.4 0.4 0.2
door-cloned 1.2 ± 3.6 -0.1 -0.1 0.0 0.4 3.5 0.0 0.0 -0.2
relocate-cloned 0.0 ± 0.2 -0.3 -0.1 -0.2 -0.1 -0.1 -0.2 -0.3 -0.2
pen-expert 119.8 ± 4.1 105.9 85.1 6.1 - - 111.0 114.9 21.6
hammer-expert 128.8 ± 4.8 127.3 125.6 25.2 - - 39.0 107.2 0.2
door-expert 105.4 ± 2.1 103.4 34.9 7.5 - - 102.9 99.0 -0.2
relocate-expert 108.7 ± 1.7 98.6 101.3 -0.3 - - 91.5 41.6 -0.2

0 200 400
Training Epochs

0

500

1000

1500

2000

pe
n-

hu
m

an
-v

0

Average Return
ours
BEAR

0 200 400
Training Epochs

0

1

2

3

1e12 Q Target

0 200 400
Training Epochs

0

250

500

750

1000

1250

pe
n-

clo
ne

d-
v0

ours
BEAR

0 200 400
Training Epochs

0

1

2

3
1e12

0 200 400
Training Epochs

0

1000

2000

3000

4000

pe
n-

ex
pe

rt-
v0

ours
BEAR

0 200 400
Training Epochs

0

1000

2000

3000

4000

0 200 400
Training Epochs

200

0

200

400

ha
m

m
er

-h
um

an
-v

0

Average Return
ours
BEAR

0 200 400
Training Epochs

0

1

2

3
1e12 Targe Q value

0 200 400
Training Epochs

50

0

50

100

do
or

-h
um

an
-v

0

ours
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0
1e12

0 200 400
Training Epochs

20

10

0

10

20

re
lo

ca
te

-h
um

an
-v

0

ours
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0

1e12

Figure 5: Plot of average return v.s. training epochs, together with the corresponding average Q Target over
training epochs. Results are averaged across 5 random seeds. Left: Results of different types (human, cloned,
expert) on the Adroit pen task. Right: Results on human demos on the 3 remaining tasks. The performance of
baseline (BEAR) degrades over time (also noted in (Kumar et al., 2019)), and the Target Q value explodes.

6 CONCLUSION AND FUTURE WORK

In this work, we have leveraged uncertainty estimation to detect and down-weight OOD backups in
the Bellman squared loss for offline RL. We show our proposed technique, UWAC, achieves superior
performance and improved training stability, without introducing any additional model or losses.
Furthermore, we experimentally demonstrate the effectiveness of dropout uncertainty estimation
at detecting OOD samples in offline RL. UWAC also can be applied to stabilize other actor-critic
methods, and we leave the investigation to future works.

In addition, our work demonstrates a valuable application of Bayesian uncertainty estimation in RL.
Future works can combine model-based and model-free methods for offline or off-policy RL and use
uncertainty estimation to decide when to use the model to train the actor. Additionally, uncertainty
estimation may be used to guide curiosity based RL agents for on-policy curiosity-based learning.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

William R Clements, Benoı̂t-Marie Robaglia, Bastien Van Delft, Reda Bahi Slaoui, and Sébastien
Toth. Estimating risk and uncertainty in deep reinforcement learning. arXiv preprint
arXiv:1905.09638, 2019.

Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In AAAI, 2018.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In ICML, 2018.

Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate
policy and value iteration. In Advances in Neural Information Processing Systems, pp. 568–576,
2010.

Roy Fox, Ari Pakman, and Naftali Tishby. Taming the noise in reinforcement learning via soft
updates. arXiv preprint arXiv:1512.08562, 2015.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

S Fujimoto, H van Hoof, D Meger, et al. Addressing function approximation error in actor-critic
methods. Proceedings of Machine Learning Research, 80, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Yarin Gal. Uncertainty in deep learning. University of Cambridge, 1(3), 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059,
2016a.

Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent
neural networks. In Advances in neural information processing systems, pp. 1019–1027, 2016b.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861–1870, 2018.

Carl-Johan Hoel, Tommy Tram, and Jonas Sjöberg. Reinforcement learning with uncertainty esti-
mation for tactical decision-making in intersections. arXiv preprint arXiv:2006.09786, 2020.

Jiri Hron, Alex Matthews, and Zoubin Ghahramani. Variational bayesian dropout: pitfalls and fixes.
In International Conference on Machine Learning, pp. 2019–2028, 2018.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–
673, 2018.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameteri-
zation trick. In Advances in neural information processing systems, pp. 2575–2583, 2015.

9

Under review as a conference paper at ICLR 2021

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, pp. 11784–11794, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In Advances in neural information processing
systems, pp. 6402–6413, 2017.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In International Conference on Machine Learning, pp. 3652–3661.
PMLR, 2019.

David Lines and M Van Der Wilk. Disentangling sources of uncertainty for active exploration.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pp. 560–567,
2003.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 1054–1062,
2016.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz E Khan, Anirudh Jain, Runa Eschenhagen,
Richard E Turner, and Rio Yokota. Practical deep learning with bayesian principles. In Advances
in neural information processing systems, pp. 4287–4299, 2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, and Matthieu Geist.
Approximate modified policy iteration and its application to the game of tetris. J. Mach. Learn.
Res., 16:1629–1676, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

10

Under review as a conference paper at ICLR 2021

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

11

Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 ANALYSIS FOR CONVERGENCE PROPERTIES

We firstly state Theorem B.1 in (Kumar et al., 2019) as Theorem A.1 for the sake of completeness.

Theorem A.1. Suppose we run approximate distribution-constrained value iteration with a set
constrained backup T Π on a set of policies Π. Let δ(s, a) be the upper-bound for the Bell-
man approximation error for a given state-action pair (s, a) over k training steps: δ(s, a) =
supk

∣∣Qk(s, a)− T ΠQk−1(s, a)
∣∣. Then,

lim
k→∞

Eρ0 [|Vk(s)− V ∗(s)|] ≤ γ

(1− γ)2

[
C(Π)Eµ

[
max
π∈Π

Eπ[δ(s, a)]

]
+

1− γ
γ

α(Π)

]
with the suboptimality constant (α(Π)) and the concentrability coefficient defined as:

α(Π) = max
s.a

∣∣T ΠQ∗(s, a)− T Q∗(s, a)
∣∣ ;C(Π)

def
= (1− γ)2

∞∑
k=1

kγk−1c(k)

The proof of the theorem is a direct modification of the contraction proof in Theorem 3 of (Farah-
mand et al., 2010) or Theorem 1 of (Munos, 2003).

The suboptimality constant (α(Π)) captures how far π∗ is from Π, namely the suboptimality of
the actor. The concentrability coefficient quantifies how far the visitation distribution generated by
policies from Π is from the training data distribution, namely the degree to which the training may
encounter OOD actions and states. Kumar et al. (2019) note a trade-off between α(Π) and C(Π),
and propose to bound both terms by constraining Π to the set of policies with support the same as
the training set policy with MMD loss.

However, the most important Bellman approximation error term which is the root cause of
the bootstrapping problem is still left unbounded. We proceed to show that for π′(a|s) =

β

supk
√
V ar[Qk(s,a)]

π(a|s)/Z. Assuming that Z ≥ 1, and that Q is bounded, we can bound the

Bellman error term maxπ′ Eπ′ [δ(s, a)] by any constant C with arbitrarily high probability by opti-
mizing on π′.

Note that Theorem A.2 considers down-weighting by inverse the square-root of the variance (stan-
dard deviation), which is different from the inverse variance in Equation 3,4,5 and Algorithm 1.
Down-weighing by the variance has the same practical effect since we clip the ratio for numeri-
cal stability. We adopt variance for practical implementation for the ease of tracing after multiple
max,min,summation operations in Algorithm 1.

Theorem A.2. Let π′(a|s) = β

supk
√
V ar[Qk(s,a)]

π(a|s)/Z(s), with the normalization factor

Z(s) =
∫
a

β
V ar[Q(s,a)]π(a|s) as in equation 3. Assume that 1) ∀s : Z(s) ≥ 1 and 2) Q is bounded

(∀s, a : |Q(s, a)| ≤ Qm).

Then for any C ∈ R, there exists β,K such that

P
(

max
π′

Eπ′ [δ(s, a)] ≥ C
)
≤ 1

K2

Proof. We firstly apply triangle inequality to unwrap the original formulation into a sum of two
differences, and bound the two terms respectively.

max
π′

Eπ′ [δ(s, a)] = max
π′

Eπ′

[
sup
k

∣∣Qk(s, a)− T ΠQk−1(s, a)
∣∣]

= max
π′

Eπ′

[
sup
k

∣∣Qk(s, a) + E[Qk(s, a)]− E[Qk(s, a)]− T ΠQk−1(s, a)
∣∣]

≤ max
π′

Eπ′

[
sup
k
|Qk(s, a)− E[Qk(s, a)]|

]
+ max

π′
Eπ′

[
sup
k

∣∣E[Qk(s, a)]− T ΠQk−1(s, a)
∣∣]

12

Under review as a conference paper at ICLR 2021

Starting with the red term, we firstly obtain a probabilistic bound on the distance term inside the
expectation with the Chebyshev’s inequality

P (|X − E[X]| ≥ σK) ≤ 1

K2

P
(
|Qk(s, a)− E[Qk(s, a)]| ≥ K

√
V ar[Qk(s, a)]

)
≤ 1

K2

P

(
β

supk
√
V ar[Qk(s, a)]

|Qk(s, a)− E[Qk(s, a)]| ≥ βK

)
≤ 1

K2

Secondly, note that by assumption |Q| is bounded by Qm. This provides us an upper-bound on the
difference |Q(s, a) − E[Q(s, a)]| ≤ 2Qm. Making use of both the general upper-bound and the
tight probabilistic bound, by setting π′(a|s) = β

supk
√
V ar[Qk(s,a)]

π(a|s)/Z(s), we have

max
π′

Eπ′

[
sup
k
|Qk(s, a)− E[Qk(s, a)]|

]
= max

π′
Eπ

[
β

supk
√
V ar[Qk(s, a)]

sup
k
|Qk(s, a)− E[Qk(s, a)]| /Z(s)

]

≤
(

1− 1

K2

)
βK +

2

K2
Qm ≤ B

By assumption Z(s) ≥ 1 and can be safely ignored. By picking the appropriate K and β, we
can bound the red term by any constant B ∈ R. The same bound holds for the blue term since
E[T ΠQk−1(s, a)] = E[Qk(s, a)]. We therefore arrive at a constant bound for the Bellman error
term maxπ′ Eπ′ [δ(s, a)].

Note that in Theorem A.2 Assumption 1) does not change the optimization problem in equation 4,
5 and Assumption 2) can be easily satisfied by imposing Spectral Norm on the Q function.

Now according to the constant bound on δ(s, a) from Theorem A.2, the convergence of our proposed
framework follows directly from Theorem A.1 (Kumar et al., 2019; Farahmand et al., 2010; Munos,

2003), with the set of policies Π′ =

{
π′ | π′(a|s) = β

supk
√
V ar[Qk(s,a)]

π(a|s)/Z(s), π ∈ Π

}
.

A.2 IMPLEMENTATION DETAILS

LunarLander: We set our expert to be a simple 3-layer actor-critic agent trained to completion with
(Peng et al., 2019). We take the final replay buffer (size 100,000) with average reward of 269.7. The
vertically clipped dataset in Figure 6 contains 76,112 samples, and the horizontally clipped dataset
in Figure 3 contains 21,038 samples.

We then train a simple 3-layer actor-critic off-policy agent on the clipped datasets according to
Algorithm 1 (we do not take the MMD loss in line 11 to enlarge the effect of OOD samples).

Baseline (BEAR): We ran benchmarks on the official GitHub code2 of BEAR and the updated
version3 provided by the authors. We ran parameter search on all the recommended parameters
kernel type∈{gaussian, laplacian}, mmd sigma∈{10,20}, 100 actions sampled for evaluation, and
0.07 being the mmd target threshold. We are able to reproduce the results reported in (Fu et al.,
2020) with both the official GitHub and the updated version.

Our method (UWAC): We apply our weighted loss to Algorithm 1 to the updated BEAR code
provided by Kumar et al. (2019). We keep the hyper-parameters and the network architecture exactly
the same as in BEAR. For experiments on the Adroit hand environment, we further enforce Spectral
Norm on the Q function for better stability similar to (Yu et al., 2020) and theoretical guarantee as

2github.com/aviralkumar2907/BEAR
3github.com/rail-berkeley/d4rl evaluations

13

https://github.com/aviralkumar2907/BEAR
https://github.com/rail-berkeley/d4rl_evaluations

Under review as a conference paper at ICLR 2021

shown in Appendix A.1. We clip the inverse variance to within the range of (0.0, 1.5) for numerical
stability. For the choice of β in Algorithm 1. We swept over 3 beta values from the set {0.8, 1.6, 2.5},
determined by matching the average uncertainty output during training time. We found that the
model is quite robust against betas: 0.8, 1.6 gave similarly good performance across all tasks in our
experiments. We also note that β can be absorbed into the learning rate since it acts both on the
actor loss and critic loss. However, since the MMD loss from BEAR is not β-weighted, we make
the design choice to tune β in stead of the MMD weight α.

Ablations:

Our first study isolates the effect of Spectral Norm on agent performance. Although BEAR + Spec-
tral Norm enforces a bounded Q function and maintains good training stability, Spectral Norm does
not handle OOD backups on the narrow Adroit datasets. We discover experimentally that BEAR+SN
performs much worse than BEAR only, we plot the complete results of BEAR+SN v.s. BEAR in
Figure 9.

Our second study isolates the effect of Dropout on agent performance as a regularizer, since dropout
alone does not handle OOD backups on the narrow Adroit datasets. We observe experimentally
that UWAC without uncertainty weighing (BEAR+Dropout+Spectral Norm) does not change the
behavior of BEAR under Spectral Norm (Figure 10) and performs worse than UWAC (Figure 11)
and the original BEAR (Figure 12).

14

Under review as a conference paper at ICLR 2021

B FIGURES

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 0: do nothing

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 1: fire left engine

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 2: fire main engine

0.4 0.2 0.0 0.2 0.4
horizontal displacement

0.0

0.5

1.0

1.5

ve
rti

ca
l d

isp
la

ce
m

en
t

action 3: fire right engine

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0.4 0.2 0.0 0.2
horizontal displacement

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ve
rti

ca
l d

isp
la

ce
m

en
t

action 0: do nothing

0.4 0.2 0.0 0.2
horizontal displacement

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ve
rti

ca
l d

isp
la

ce
m

en
t

action 1: fire left engine

0.4 0.2 0.0 0.2
horizontal displacement

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ve
rti

ca
l d

isp
la

ce
m

en
t

action 2: fire main engine

0.4 0.2 0.0 0.2
horizontal displacement

0.00

0.25

0.50

0.75

1.00

1.25

1.50

ve
rti

ca
l d

isp
la

ce
m

en
t

action 3: fire right engine

0.010

0.015

0.020

0.025

0.010

0.015

0.020

0.025

0.030

0.035

0.02

0.03

0.04

0.05

0.06

0.07

0.010

0.015

0.020

0.025

0.030

Figure 6: Left. The training dataset has observations with vertical displacements > 0.8 removed. This makes
all states on the top OOD states. Right. Our model estimates higher uncertainty (brighter color) on the top and
lower uncertainty (colder color) on the bottom.

15

Under review as a conference paper at ICLR 2021

0 200 400
Training Epochs

65

60

55

50

45

do
or

-c
lo

ne
d-

v0

Average Return
ours
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0 1e12 Q Target

0 200 400
Training Epochs

0

250

500

750

1000

1250

pe
n-

clo
ne

d-
v0

ours
BEAR

0 200 400
Training Epochs

0

1

2

3
1e12

0 200 400
Training Epochs

0

1000

2000

3000

do
or

-e
xp

er
t-v

0

ours
BEAR

0 200 400
Training Epochs

0

1

2

1e12

0 200 400
Training Epochs

0

1000

2000

3000

4000

pe
n-

ex
pe

rt-
v0

ours
BEAR

0 200 400
Training Epochs

0

1000

2000

3000

4000

0 200 400
Training Epochs

50

0

50

100

do
or

-h
um

an
-v

0

ours
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0
1e12

0 200 400
Training Epochs

0

500

1000

1500

2000

pe
n-

hu
m

an
-v

0

ours
BEAR

0 200 400
Training Epochs

0

1

2

3

1e12

0 200 400
Training Epochs

20

15

10

re
lo

ca
te

-c
lo

ne
d-

v0

Average Return
ours
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0

2.5
1e12 Q Target

0 200 400
Training Epochs

0

1000

2000

3000

do
or

-e
xp

er
t-v

0

ours
BEAR

0 200 400
Training Epochs

0

1

2

1e12

0 200 400
Training Epochs

65

60

55

50

45
do

or
-c

lo
ne

d-
v0

ours
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0 1e12

0 200 400
Training Epochs

20

10

0

10

20

re
lo

ca
te

-h
um

an
-v

0

ours
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0

1e12

0 200 400
Training Epochs

200

0

200

400

ha
m

m
er

-h
um

an
-v

0

ours
BEAR

0 200 400
Training Epochs

0

1

2

3
1e12

0 200 400
Training Epochs

0

1000

2000

3000

4000

re
lo

ca
te

-e
xp

er
t-v

0

ours
BEAR

0 200 400
Training Epochs

0

1

2

1e12

Figure 7: Plot of average return v.s. training epochs, together with the corresponding average Q Target over
training epochs on the D4RL Adroit hand offline data set. Results are averaged across 5 random seeds. Note
that the performance of baseline (BEAR) degrades over time (also noted in original paper Kumar et al. (2019)),
and the Target Q value explodes. Our method, UWAC, achieves significantly better overall performance and
training stability.

16

Under review as a conference paper at ICLR 2021

0 200 400
Training Epochs

65

60

55

50

45

do
or

-c
lo

ne
d-

v0

Average Return
ours
BEAR

0 200 400
Training Epochs

0

10

20

30

Q Target

0 200 400
Training Epochs

0

250

500

750

1000

1250

pe
n-

clo
ne

d-
v0

ours
BEAR

0 200 400
Training Epochs

0

20

40

60

80

0 200 400
Training Epochs

0

1000

2000

3000

do
or

-e
xp

er
t-v

0

ours
BEAR

0 200 400
Training Epochs

0

20

40

60

80

100

0 200 400
Training Epochs

0

1000

2000

3000

4000

pe
n-

ex
pe

rt-
v0

ours
BEAR

0 200 400
Training Epochs

0

1000

2000

3000

4000

0 200 400
Training Epochs

50

0

50

100

do
or

-h
um

an
-v

0

ours
BEAR

0 200 400
Training Epochs

0

50

100

150

200

250

0 200 400
Training Epochs

0

500

1000

1500

2000

pe
n-

hu
m

an
-v

0

ours
BEAR

0 200 400
Training Epochs

0

1000

2000

3000

0 200 400
Training Epochs

20

15

10

re
lo

ca
te

-c
lo

ne
d-

v0

Average Return
ours
BEAR

0 200 400
Training Epochs

0

100

200

300

400

500
Q Target

0 200 400
Training Epochs

0

1000

2000

3000

do
or

-e
xp

er
t-v

0

ours
BEAR

0 200 400
Training Epochs

0

20

40

60

80

100

0 200 400
Training Epochs

65

60

55

50

45
do

or
-c

lo
ne

d-
v0

ours
BEAR

0 200 400
Training Epochs

0

10

20

30

0 200 400
Training Epochs

20

10

0

10

20

re
lo

ca
te

-h
um

an
-v

0

ours
BEAR

0 200 400
Training Epochs

0

25

50

75

100

125

0 200 400
Training Epochs

200

0

200

400

ha
m

m
er

-h
um

an
-v

0

ours
BEAR

0 200 400
Training Epochs

0

200

400

600

0 200 400
Training Epochs

0

1000

2000

3000

4000

re
lo

ca
te

-e
xp

er
t-v

0

ours
BEAR

0 200 400
Training Epochs

0

50

100

150

Figure 8: Plot of average return v.s. training epochs (zoomed-in). The figure is the same as 7, except that the
second column is zoomed-in on the Q values of the UWAC critic.

17

Under review as a conference paper at ICLR 2021

0 200 400
Training Epochs

0

250

500

750

1000

1250

pe
n-

clo
ne

d-
v0

Average Return
SN
BEAR

0 200 400
Training Epochs

0

1

2

3
1e12 Q Target

0 200 400
Training Epochs

65

60

55

do
or

-c
lo

ne
d-

v0

SN
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0 1e12

0 200 400
Training Epochs

0

1000

2000

do
or

-e
xp

er
t-v

0

SN
BEAR

0 200 400
Training Epochs

0

1

2

1e12

0 200 400
Training Epochs

20

15

10

5

re
lo

ca
te

-h
um

an
-v

0

SN
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0

1e12

0 200 400
Training Epochs

270

260

250

240

230

ha
m

m
er

-c
lo

ne
d-

v0

SN
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0
1e12

0 200 400
Training Epochs

20

15

10

5

re
lo

ca
te

-c
lo

ne
d-

v0

SN
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0

2.5
1e12

0 200 400
Training Epochs

0

1000

2000

3000

4000

pe
n-

ex
pe

rt-
v0

Average Return

SN
BEAR

0 200 400
Training Epochs

0

1000

2000

3000

Q Target

0 200 400
Training Epochs

200

100

0

ha
m

m
er

-h
um

an
-v

0

SN
BEAR

0 200 400
Training Epochs

0

1

2

3
1e12

0 200 400
Training Epochs

60

40

20

0
do

or
-h

um
an

-v
0

SN
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0
1e12

0 200 400
Training Epochs

0

500

1000

1500

pe
n-

hu
m

an
-v

0

SN
BEAR

0 200 400
Training Epochs

0

1

2

3

1e12

0 200 400
Training Epochs

0

500

1000

1500

2000

2500

re
lo

ca
te

-e
xp

er
t-v

0

SN
BEAR

0 200 400
Training Epochs

0

1

2

1e12

0 200 400
Training Epochs

0

2500

5000

7500

10000

12500

ha
m

m
er

-e
xp

er
t-v

0

SN
BEAR

0 200 400
Training Epochs

0

1

2

1e12

Figure 9: Ablation: Plot of average return v.s. training epochs for BEAR v.s. BEAR+Spectral Norm, together
with the corresponding average Q Target over training epochs on the D4RL Adroit hand offline data set. Results
are averaged across 5 random seeds. Although BEAR with Spectral NormalizedQ function maintains stableQ
estimate during training, BEAR with SN achieves significantly worse training performance in terms of average
return.

18

Under review as a conference paper at ICLR 2021

0 200 400
Training Epochs

62.5

60.0

57.5

55.0

52.5

do
or

-c
lo

ne
d-

v0

Average Return

SN+Dropout
SN

0 200 400
Training Epochs

0

50

100

150
Q Target

0 200 400
Training Epochs

25

50

75

100

125

150

pe
n-

clo
ne

d-
v0

SN+Dropout
SN

0 200 400
Training Epochs

0

500

1000

1500

2000

2500

0 200 400
Training Epochs

65

60

55

50

do
or

-e
xp

er
t-v

0

SN+Dropout
SN

0 200 400
Training Epochs

0

500

1000

1500

2000

0 200 400
Training Epochs

200

400

600

800

pe
n-

ex
pe

rt-
v0

SN+Dropout
SN

0 200 400
Training Epochs

0

1000

2000

3000

4000

0 200 400
Training Epochs

65.0

62.5

60.0

57.5

55.0

52.5

do
or

-h
um

an
-v

0

SN+Dropout
SN

0 200 400
Training Epochs

0

100

200

0 200 400
Training Epochs

50

100

150

200

250

pe
n-

hu
m

an
-v

0

SN+Dropout
SN

0 200 400
Training Epochs

0

1000

2000

3000

4000

0 200 400
Training Epochs

270

260

250

240

ha
m

m
er

-c
lo

ne
d-

v0

Average Return

SN+Dropout
SN

0 200 400
Training Epochs

0

100

200

300

400

500

Q Target

0 200 400
Training Epochs

10

8

6

4

re
lo

ca
te

-c
lo

ne
d-

v0

SN+Dropout
SN

0 200 400
Training Epochs

0

200

400

600

0 200 400
Training Epochs

280

270

260

250

240
ha

m
m

er
-e

xp
er

t-v
0

SN+Dropout
SN

0 200 400
Training Epochs

0

1000

2000

3000

4000

5000

0 200 400
Training Epochs

12

10

8

6

re
lo

ca
te

-e
xp

er
t-v

0

SN+Dropout
SN

0 200 400
Training Epochs

0

1000

2000

0 200 400
Training Epochs

270

260

250

240

ha
m

m
er

-h
um

an
-v

0

SN+Dropout
SN

0 200 400
Training Epochs

0

200

400

600

0 200 400
Training Epochs

12

10

8

6

4

re
lo

ca
te

-h
um

an
-v

0

SN+Dropout
SN

0 200 400
Training Epochs

0

200

400

600

800

1000

Figure 10: Ablation: Plot of average return v.s. training epochs for BEAR+Spectral Norm v.s.
BEAR+Dropout+Spectral Norm, together with the corresponding average Q Target over training epochs on
the D4RL Adroit hand offline data set. The results are averaged across 5 random seeds. Without the UWAC
reweighing loss, performing dropout on the Q function does not lead to improved performance.

19

Under review as a conference paper at ICLR 2021

0 200 400
Training Epochs

60

55

50

45

do
or

-c
lo

ne
d-

v0

Average Return
ours
w/o uncertainty

0 200 400
Training Epochs

0

50

100

150
Q Target

0 200 400
Training Epochs

0

250

500

750

1000

1250

pe
n-

clo
ne

d-
v0

ours
w/o uncertainty

0 200 400
Training Epochs

0

500

1000

1500

2000

2500

0 200 400
Training Epochs

0

1000

2000

3000

do
or

-e
xp

er
t-v

0

ours
w/o uncertainty

0 200 400
Training Epochs

0

500

1000

1500

2000

0 200 400
Training Epochs

0

1000

2000

3000

pe
n-

ex
pe

rt-
v0

ours
w/o uncertainty

0 200 400
Training Epochs

0

1000

2000

3000

4000

0 200 400
Training Epochs

50

0

50

100

do
or

-h
um

an
-v

0

ours
w/o uncertainty

0 200 400
Training Epochs

0

100

200

0 200 400
Training Epochs

0

500

1000

1500

2000

pe
n-

hu
m

an
-v

0

ours
w/o uncertainty

0 200 400
Training Epochs

0

1000

2000

3000

4000

0 200 400
Training Epochs

280

260

240

220

200

180

ha
m

m
er

-c
lo

ne
d-

v0

Average Return
ours
w/o uncertainty

0 200 400
Training Epochs

0

200

400

Q Target

0 200 400
Training Epochs

17.5

15.0

12.5

10.0

7.5

5.0

re
lo

ca
te

-c
lo

ne
d-

v0

ours
w/o uncertainty

0 200 400
Training Epochs

0

200

400

600

0 200 400
Training Epochs

0

5000

10000

15000
ha

m
m

er
-e

xp
er

t-v
0

ours
w/o uncertainty

0 200 400
Training Epochs

0

1000

2000

3000

4000

5000

0 200 400
Training Epochs

0

1000

2000

3000

4000

re
lo

ca
te

-e
xp

er
t-v

0

ours
w/o uncertainty

0 200 400
Training Epochs

0

1000

2000

0 200 400
Training Epochs

200

0

200

400

ha
m

m
er

-h
um

an
-v

0

ours
w/o uncertainty

0 200 400
Training Epochs

0

200

400

600

0 200 400
Training Epochs

10

0

10

re
lo

ca
te

-h
um

an
-v

0

ours
w/o uncertainty

0 200 400
Training Epochs

0

200

400

600

800

1000

Figure 11: Ablation: Plot of average return v.s. training epochs for UWAC (ours) v.s. ours without uncertainty
weighing but with dropout in the Q function, together with the corresponding average Q Target over training
epochs on the D4RL Adroit hand offline data set. The results are averaged across 5 random seeds. Without
the weighing loss, performance of the agent drops drastically. Note that low performance on hammer-cloned,
door-cloned, and relocated-cloned may be attributed to the bad quality of the datasets caused by data collection
(explained in section 5.3)

20

Under review as a conference paper at ICLR 2021

0 200 400
Training Epochs

65

60

55

50

45

do
or

-c
lo

ne
d-

v0

Average Return

ours
SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0 1e12 Q Target

0 200 400
Training Epochs

0

250

500

750

1000

1250

pe
n-

clo
ne

d-
v0 ours

SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0

1

2

3
1e12

0 200 400
Training Epochs

0

1000

2000

3000

do
or

-e
xp

er
t-v

0

ours
SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0

1

2

1e12

0 200 400
Training Epochs

0

1000

2000

3000

4000

pe
n-

ex
pe

rt-
v0 ours

SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0

1000

2000

3000

4000

0 200 400
Training Epochs

50

0

50

100

do
or

-h
um

an
-v

0

ours
SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0
1e12

0 200 400
Training Epochs

0

500

1000

1500

2000

pe
n-

hu
m

an
-v

0

ours
SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0

1

2

3

1e12

0 200 400
Training Epochs

280

260

240

220

200

180

ha
m

m
er

-c
lo

ne
d-

v0

Average Return
ours
SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0
1e12 Q Target

0 200 400
Training Epochs

20

15

10

5

re
lo

ca
te

-c
lo

ne
d-

v0

ours
SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0

2.5
1e12

0 200 400
Training Epochs

0

5000

10000

15000

ha
m

m
er

-e
xp

er
t-v

0

ours
SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0

1

2

1e12

0 200 400
Training Epochs

0

1000

2000

3000

4000

re
lo

ca
te

-e
xp

er
t-v

0

ours
SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0

1

2

1e12

0 200 400
Training Epochs

200

0

200

400

ha
m

m
er

-h
um

an
-v

0

ours
SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0

1

2

3
1e12

0 200 400
Training Epochs

20

10

0

10

20

re
lo

ca
te

-h
um

an
-v

0

ours
SN+Dropout
SN
BEAR

0 200 400
Training Epochs

0.0

0.5

1.0

1.5

2.0

1e12

Figure 12: Ablation: Figure 9, 10, 11 plotted together. Note that SN+Dropout (purple) is also denoted as
ours-w/o-uncertainty in Figure 11.

21

Under review as a conference paper at ICLR 2021

Figure 13: Sequences of our offline agent trained from expert demonstrations executing learned poli-
cies performing on the halfcheetah, walker2d, and hopper tasks in the MuJuCo Gym environment.
See the videos attached in the supplementary.

Figure 14: Sequences of the agent trained from human demonstrations executing learned policies
performing the Adroit tasks of hammering a nail, twirling a pen and picking/moving a ball. The task
of opening a door is shown in Figure 4. See the videos attached in the supplementary.

22

	Introduction
	Related Work
	Preliminaries
	Notations
	Baseline Algorithm

	Uncertainty weighted offline RL
	Uncertainty estimation through dropout
	Uncertainty Weighted Actor-Critic

	Experimental Results
	Dropout Uncertainty Estimation for Reinforcement Learning
	Performance on standard benchmarking datasets for offline RL
	Performance on Adroit hand dataset with human demonstrations
	Analysis of Training Dynamics

	Conclusion and Future Work
	Appendix
	Analysis for Convergence Properties
	Implementation Details

	Figures

