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Abstract

We believe current benchmarks for policy learning lack two important properties:1

scalability and configurability. The growing literature on modeling policies as2

graph neural networks calls for an object-based benchmark where the number3

of objects can be arbitrarily scaled and the mechanics can be freely configured.4

We introduce the Arena benchmark1, a scalable and configurable benchmark for5

policy learning. Arena provides an object-based game-like environment where the6

number of objects can be arbitrarily scaled and the mechanics can be configured7

with a large degree of freedom. In this way, arena is designed to be an all-in-one8

environment that uses scaling and configuration to smoothly interpolates multiple9

dimensions of decision making that require different degrees of inductive bias.10

1 Introduction11

Policy learning refers to the process of using machine learning techniques such as reinforcement12

learning (RL) and imitation learning (IL) to obtain a policy for sequential decision making. The past13

decade has witnessed a rapid growth of benchmarks for policy learning (Bellemare et al., 2013; Duan14

et al., 2016; Brockman et al., 2016; Beattie et al., 2016; Vinyals et al., 2017; Juliani et al., 2018; 2019;15

Yu et al., 2019; Guss et al., 2019; Cobbe et al., 2020; Tassa et al., 2020; Toyer et al., 2020). However,16

these benchmarks lack two important properties: scalability and configurability. For example, Atari17

2600 games (Bellemare et al., 2013; Brockman et al., 2016; Machado et al., 2018) are among the18

most used benchmarks for RL and IL (Jaderberg et al., 2016; Horgan et al., 2018; Kapturowski et al.,19

2018; Hessel et al., 2018; Espeholt et al., 2018; Schmitt et al., 2020; Schrittwieser et al., 2020);20

however, these games are essentially black boxes where there is no way to change the size of the map,21

the number of objects, or the game dynamics. This is problematic, since on these games learning22

may degenerate to memorizing the specific positions and properties of the objects. More recent23

benchmarks address this problem by model a game as an instance drawn from a population of similar24

games and perform training on this population (Justesen et al., 2018; Cobbe et al., 2020; Toyer et al.,25

2020). Although the training population does introduce some variances in map sizes, quantities of26

objects, and game dynamics, the distribution of these variances are dictated by the benchmarks and27

are constrained within a small range.28

Why do we need a scalable and configurable benchmark for policy learning? In the past few years,29

there has been a growing interest in learning scalable functions (Gilmer et al., 2017; Selsam et al.,30

2019; Tang et al., 2020; Yehudai et al., 2021) and scalable policies (Dai et al., 2017; Yolcu and Póczos,31

2019; Mu et al., 2020; Tang et al., 2020) using graph neural networks (GNNs) (Scarselli et al., 2008).32

However, the benchmarks used in these papers are either not particularly suitable for policy learning33

(e.g. pure combinatorial problems), or not fully scalable. Furthermore, many of the current policy34

1Benchmark website: https://github.com/Sirui-Xu/Arena
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(a) A state in a small-scale Arena envi-
ronment rendered as an image.

(b) A graphical illustration of the state representation of
(a) for policy learning (for details see Section 3.1).

(c) A state in a large-scale Arena environment rendered as an image.

Figure 1: Visualizing states of the Arena environments. An instance of the Arena benchmark starts
with an arbitrarily sized region (i.e., the arena) containing a controllable agent as well as an arbitrary
number of destructable obstacles, enemies, and collectable coins. The agent can move in four
directions, fire projectiles, as well as place bombs. The goal is to control the agent to collect as many
coins as possible in the shortest amount of time, potentially kill enemies and destroy obstacles using
the projectiles and bombs along the way.

learning methods are deeply coupled with machine perception to utilize the well-known prowess35

of convolutions neural networks (CNNs). Such coupling could be problematic since it becomes36

very difficult to tell whether a good policy learning algorithm is better at policy learning or simply37

at object detection. Since CNNs only have fixed receptive field and depth, a scalable benchmark38

may potentially force the policy learning to be decoupled from machine perception by introducing39

long-range relations. Configurablity is also crucial, for policy learning is a broad concept that can be40

as low-level as robot-arm manipulation, or as high-level as causal inference. Ideally, a benchmark or41

a suite of benchmarks should have the granularity to selectively target different levels of decision42

making.43

We introduce Arena, a scalable and configurable benchmark for policy learning (Figure 1). It is an44

object-based game-like environment. The game logic is reminiscent of many classic games such45

as Pac-Man and Bomberman. An instance of the Arena benchmark starts with an arbitrarily sized46

region (i.e., the arena) containing a controllable agent as well as an arbitrary number of destructable47

obstacles, enemies, and collectable coins. The agent can move in four directions, fire projectiles,48

as well as place bombs. The goal is to control the agent to collect as many coins as possible in the49

shortest amount of time, potentially kill enemies and destroy obstacles using the projectiles and50

bombs along the way.51

The Arena benchmark achieves scalability by using object-based state representations. For example,52

the obstacles in the arena are represented by a set of tuples (x, y, s) where (x, y) is the coordinate53

of an obstacle and s is its size. Similar representations are used for enemies, coins, bombs, and54

projectiles. Object-based state representations can contain an arbitrary number of objects, thus an55

environment can be “scaled up" by adding more objects to it.56
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The Arena benchmark achieves configurability by allowing a much larger degree of freedom in57

altering different aspects of the environment compared to existing benchmarks. For example, the58

default procedure for determining the initial coordinates of the agent, the enemies, the obstacles,59

and the coins can be modified through parameters, or be entirely overridden by the user; the default60

movement logic of enemies can be controlled by parameters or entirely overridden by the user; the61

number of obstacles can be set to 0 to put less emphasis on the routing capacity of the learned policy;62

the movement speed of the enemies can be set to 0 to reduce the difficulty so that the learned policy63

only have to know how to avoid instead of how to evade.64

We will give a brief overview of the existing benchmarks for policy learning in Section 2, formally65

describe the Arena benchmark in Section 3, examine the difficulty of the benchmark in different66

configurations in Section 4, and discuss some preliminary experiments in Section 5.67

2 Related Work68

The most widely-used benchmarks for policy learning are perhaps the the Arcade Learning Envi-69

ronment (ALE) (Bellemare et al., 2013; Brockman et al., 2016; Machado et al., 2018) and MuJoCo70

environments (Duan et al., 2016; Brockman et al., 2016). ALE is an object-oriented framework that71

allows researchers and hobbyists to develop AI agents for Atari 2600 games. It is built on top of72

the Atari 2600 emulator Stella (Mott et al., 1995) and separates the details of emulation from agent73

design. Our Arena can be seen as a scalable and configurable version of ALE, although the sheer74

amount of games included in ALE covers a broader spectrum of game logic. MuJoCo environments75

refer to various tasks built upon the MuJoCo physics engine (Todorov et al., 2012), which is itself76

tailored to model-based control.77

Other widely used benchmarks include: DeepMind Lab (Beattie et al., 2016), which is a 3D learning78

environment based on id Software’s Quake III Arena via ioquake3 and other open source software.79

The StarCraft II Learning Environment (Vinyals et al., 2017), which is built upon a StarCraft II API80

that provides full external control of the video game StarCraft II. The Unity learning platform (Juliani81

et al., 2018), which is built upon the Unity engine. The Obstacle Tower (Juliani et al., 2019), which is82

a procedurally generated environment consisting of multiple floors to be solved by a learning agent.83

Meta-World (Yu et al., 2019), which is a simulated benchmark for meta-reinforcement learning and84

multi-task learning consisting of distinct robotic manipulation tasks. MineRL (Guss et al., 2019),85

which is built upon the video game Minecraft. The Procgen Benchmark (Cobbe et al., 2020), which86

is a suite of procedurally-generated environments which provide a direct measure of how quickly a87

reinforcement learning agent learns generalizable skills. DM_Control (Tassa et al., 2020), which is a88

software stack for physics-based simulation and reinforcement learning environments using MuJoCo89

physics. The Magical benchmark (Toyer et al., 2020), which is a benchmark suite for robust imitation90

learning.91

3 The Arena Environment92

The Arena environment has a python interface similar to the one provided in OpenAI Gym (Brockman93

et al., 2016). However, unlike in usual Gym-like environments where the observation/state space is94

either image-based or vector-based, the state space in Arena is object-based. The state transitions95

are markovian and the goal is to maximize the cumulated score from collecting coins, whose values96

decay at a certain rate over time.97

3.1 State Representation98

Each state in Arena is represented by a JSON-like structured data with no fixed size. Specifically,99

each state is a pair (GLOBAL, LOCAL) where GLOBAL is a python dictionary containing variables100

that does not change after a state transition, and LOCAL is a python dictionary containing variables101

that may change after a state transition. The details of the two dictionaries are described in Table 1102

and Table 2, respectively.103
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Table 1: Specification of the GLOBAL dictionary in the state representation.

Variable Type Range Meaning
H float (0,∞) height of the map
W float (0,∞) width of the map
S float (0,∞) size of non-obstacle objects

Nbomb int N maximum number of bombs that can exist in the map
Nprojectile int N maximum number of projectiles that can exist in the map
Dbomb int N number of steps a bomb remains in the map before it explodes
r float (0,∞) explosion radius of the bombs

vagent float (0,∞) travel speed of the agent
vprojectile float (0,∞) travel speed of the projectiles
venemy float [0,∞) travel speed of the enemies
δ float [0, 1] probability each enemy changes direction in each step
γ float [0, 1) rate at which the value of each coin decays

Table 2: Specification of the LOCAL dictionary in the state representation.

Variable Type Range Meaning

A tuple (x ∈ R, y ∈ R, d ∈ {L, R, U, D}) (x, y) is the coordinate of the agent and d is
the direction it is facing

B multiset {(x ∈ R, y ∈ R, n ∈ N} (x, y) is the coordinate of a bomb and n is the
number of steps before it explodes

P multiset {(x ∈ R, y ∈ R, d ∈ {L, R, U, D}} (x, y) is the coordinate of a projectile and d
is the direction it is facing

E multiset {(x ∈ R, y ∈ R, d ∈ {L, R, U, D}} (x, y) is the coordinate of an enemy and d is
the direction it is facing

C multiset {(x ∈ R, y ∈ R), v ∈ [0,∞)} (x, y) is the coordinate of a coin and v is its
value

O set {(x ∈ R, y ∈ R, s ∈ (0,∞)} (x, y) is the coordinate of an obstacle and s is
its size

3.2 Dynamics104

The agent, the bombs, the projectiles, the enemies, the obstacles, the rewards are all counted as objects.105

Each object with coordinate (x, y) and a size s occupies the area (x−s/2, x+s/2)×(y−s/2, y+s/2).106

We say an object is inside the map if the region it occupies is contained in [0,W ]× [0, H], and outside107

the map otherwise. We say one object collides with another object if their occupied areas have a108

non-empty intersection.109

In each state, the player can take an action a ∈ {L, R, U, D, SHOOT, BOMB, NONE} and transitions to110

either a regular state (as described in Section 3.1) or a terminal state, in which case the game ends.111

We now describe how the next state is derived from the current state if it is not a terminal state, and in112

which cases it is a terminal state. The following descriptions are meant to be interpreted procedurally113

— they behave like a program, later descriptions are based on previous descriptions.114

Notations. For any d ∈ {L, R, U, D}, and type ∈ {agent, projectile, enemy} if d = L, let ∆x,d,type =115

−vtype, ∆y,d,type = 0; if d = R, let ∆x,d,type = vtype, ∆y,d,type = 0; if d = U, let ∆x,d,type = 0,116

∆y,d,type = vtype; if d = D, let ∆x,d,type = 0, ∆y,d,type = −vtype.117

The agent. Suppose currentlyA = (x, y, d). If a ∈ {L, R, U, D}, thenA becomes (x+∆x,a,agent, y+118

∆y,a,agent, a). If at the new coordinate the agent would collide with any obstacle or be outside the map,119

the action is invalidated and overridden to NONE. If at the new coordinate the agent would collide120

with any coin (x, y, v) in C, remove the coin from C and a score of v is accumulated. If a = SHOOT121

and |P| < Nprojectile, then (x + ∆x,a,projectile, y + ∆y,a,projectile, a) is added to P . If a = BOMB and122

|B| < Nbomb, then (x, y,Dbomb) is added to B.123

The enemies. The default behavior of the enemies can be overridden by the user. The default124

behavior is as follows: for each enemy (x, y, d) in E , for any d′ ∈ {L, R, U, D}, we say d′ is plausible125

if (x + ∆x,d′,enemy, y + ∆y,d′,enemy) would not collide any obstacle or be outside the map. Let D126

be the set containing all the plausible d′. If D is not empty, let d′ be drawn uniformly at random127
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from D and ι be drawn uniformly at random from [0, 1], if ι < δ or d 6∈ D, (x, y, d) becomes128

(x+ ∆x,d′,enemy, y+ ∆y,d′,enemy, d
′), otherwise (x, y, d) becomes (x+ ∆x,d,enemy, y+ ∆y,d,enemy, d).129

If the new coordinate of any enemy would collide with the new coordinate of the agent, the next state130

is the terminal state.131

The bombs. For each bomb (x, y, n) ∈ B, if n < Dbomb, n becomes n+ 1, otherwise, the bomb is132

removed from B and any object except coins with coordinate (x′, y′) such that |x−x′|+ |y− y′| ≤ r133

is removed. If the agent is removed, the next state is the terminal state; if any other object is removed,134

it is removed from the (multi)set it was in.135

The projectiles. For each projectile (x, y, d) ∈ P , it becomes (x+ ∆x,d,projectile, y+ ∆y,d,projectile, d).136

If at the new coordinate the projectile is outside the map, the projectile is removed from P ; otherwise:137

if the at the new coordinate the projectile would collide with any object except coins, that object is138

removed. If the agent is removed, the next state is the terminal state; if any other object is removed, it139

is removed from the (multi)set it was in.140

The coins. After each step, for each coin (x, y, v) that was not removed from C, its v becomes γ · v.141

3.3 Default Object Generation142

We will describe how the objects in the initial state are generated by default given the number of143

obstacles Nobstacle, obstacle size Sobstacle, the number of enemies Nenemy, and the number of coins144

Ncoin. Of course, this procedure can be overriden by the user, as long as the following requirements145

are satisfied: In the initial state: |B| = |P| = 0; all objects are inside the map; the agent shall not146

collide with any other object except bombs; no obstacle shall collide with any other object. Starting147

with a blank arena [0,W ]× [0, H], all the objects are generated sequentially as described below:148

Generating obstacles O. If Nobstacle ≥ 1, then the first obstacle is sampled uniformly at random149

so that it is inside the arena. Then the following procedure is repeated until a total of Nobstacle150

obstacles have been generated: Suppose the last generated obstacle’s coordinate is (x, y), let151

D = {(x− 2Sobstacle, y), (x+ 2Sobstacle, y), (x, y − 2Sobstacle), (x, y + 2Sobstacle)}. Let D′ contain152

all elements (x, y) of D such that an obstacle at placed at (x, y) is not outside the arena. Choose153

(x′, y′) randomly from D′. If no obstacle has been generated at (x′, y′), generated one at (x′, y′)154

with size Sobstacle. If no obstacle has been generated at ((x + x′)/2, (y + y′)/2), generated one at155

((x+ x′)/2, (y + y′)/2) with size Sobstacle.156

Generating enemies E . The following procedure is repeated Nenemy times: an enemy is generated at157

a coordinate uniformly at random so that it is inside the arena and does not collide with any obstacles,158

its direction is chosen uniformly at random.159

Generating coins C. The following procedure is repeated Ncoin times: a coin is generated at a160

coordinate uniformly at random so that it is inside the arena and does not collide with any obstacles,161

its value is 1.162

Generating the agent A. The coordinate of the agent is chosen uniformly at random so that the163

agent is inside the arena and it does not collide with any obstacle, enemy, or coin. The direction of164

the agent is chosen uniformly at random.165

3.4 Simulation and Rendering166

The speed of simulation and rendering largely depends on the number of object in the arena. We167

provide some crude statistics: On a hexa-core Intel(R) Core(TM) i7-6850K CPU with 3.60GHz, the168

number of steps per second is 1.8× 104 when simulating 10 objects, and 2.3× 103 when simulating169

100 objects; the number of steps per second is 1.2× 104 when simulating 10 objects and redering170

with the DRAW module in PyGame, and 2.0× 103 when simulating and rendering 100 objects.171

4 Configuring Arena172

Arena can be configured to test different dimensions of decision making. Configuration refers to173

the process of specifying the generation process of the initial state (i.e. everything in Table 1 and174

Table 2) as well as the movement logic of the enemies. Therefore, each configuration corresponds to175

a distribution of Markov Decision Processes (MDPs).176
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In this section, we will discuss the following configurable elements: Nbomb, Nprojectile, venemy, Nobstacle177

— the size of O in the initial state, Nenemy — the size of E in the initial state, Ncoin — the size of178

C in the initial state, and the movement protocol of the enemies. We believe these elements have179

significant impact on the level of inductive bias required to learn a good policy.180

We introduce some representative configurations, listed below. The naming convention is as follows:181

Configurations without X in the name has only one coin, those with X in the name has more182

than one coin. As the the number of coins increases, the problem starts to involve a variant of183

the traveling salesman problem (TSP) and theoretically calculating the optimal policy becomes184

intractable. Configurations starting with A does not have moving enemies and does not involve185

bombs and projectiles; configurations starting with B adds moving enemies but still does not involve186

bombs and projectiles; configurations starting with C have moving enemies and also involve bombs187

and projectiles. Configurations ending with 0 does not have obstacles or enemies; configurations188

ending with 1 add obstacles but still do not have enemies; configurations ending with 2 have both189

obstacles and non-movable enemies.190

A0. Let us start from the simplest case: Nenemy = 0, Nobstacle = 0, Ncoin = 1. In this case, the optimal191

policy is a greedy policy that simply moves the agent towards the only coin following the Manhattan192

distance between them. The policy can be calculated in time O(1).193

A1. A slightly more complicated case is Nenemy = 0, Nobstacle > 0, Ncoin = 1, Nbomb = 0,194

Nprojectile = 0. A good policy for this scenario needs to have basic routing capacities. In fact,195

the optimal policy corresponds to a shortest path problem where the underlying graph has size196

O(Nobstacle). Therefore, the optimal policy requires time O(Nobstacle · log(Nobstacle)) to calculate.197

A2. A even more complicated, but still manageable case is Nenemy > 0, venemy = 0, Nobstacle > 0,198

Ncoin = 1, Nbomb = 0, Nprojectile = 0. A good policy for this scenario needs to have basic routing199

capacities, and also need to be aware of avoiding enemies. In fact, the optimal policy corresponds to200

a shortest path problem where the underlying graph has size O(Nobstacle +Nenemy). Therefore, the201

optimal policy requires time O((Nobstacle +Nenemy) · log(Nobstacle +Nenemy)) to calculate.202

AX0. This is the same as A0 except that Ncoin > 1. This becomes reminiscent of the traveling203

salesman problem (TSP). To simplify the discussion, let us assume that the agent moves continuously204

with speed vagent instead of discretely with step size vagent, and assume that the each coin’s value205

decreases to a factor of γt at time t. Let us label the agent as 0 and label the coins from 1 through206

Ncoin, with corresponding values v1, v2, · · · , vNcoin . Let the Manhattan distance between object i207

and j be di,j . Let c0 = 0. Then the optimal policy corresponds to determining a permutation of208

{1, 2, · · · , Ncoin}, denoted by (c1, c2, · · · , cNcoin), to minimize209

Ncoin∑
i=1

vci ∗ γ
∑i

k=1 dck−1,ck . (1)

We believe this is an NP-hard problem in terms of Ncoin due to its resemblance to TSP. Therefore, it210

is very likely that the optimal policy can only be calculated in time O(Ncoin!).211

AX1. This is the same as A1 except that Ncoin > 1. By similar arguments used for A1 and AX0,212

it is very likely that the optimal policy can only be calculated in time O(Ncoin! + Ncoin ·Nobstacle ·213

log(Nobstacle)).214

AX2. This is the same as A2 except that Ncoin > 1. By similar arguments used for A2 and AX0, it215

is very likely that the optimal policy can only be calculated in time O(Ncoin! + Ncoin · (Nobstacle +216

Nenemy) · log(Nobstacle +Nenemy)).217

B0, B1, B2. These corresponds to variants of A0, A1, A2 where Nenemy > 0, venemy > 0, and the218

enemies follow the default movement protocol. These variants should be harder and more complex219

than their original version since now the shortest path keeps changing due to the movements of the220

enemies. When Nenemy is relatively small, a path finding algorithm with simple heuristics to avoid221

the enemies should be a good candidate for good policies; however, as Nenemy becomes larger, the222

task becomes overwhelmingly difficult, and even impossible if Nenemy is too large (because in these223

cases the agent does not have means to eliminate the enemies).224

BX0, BX1, BX2. These corresponds to variants of B0, B1, B2 where Ncoin > 1. These variants225

should be harder and more complex than their original version since now the challenge also involves226

certain aspect of minimizing (1) as discussed in AX0, the distance between any two objects could be227
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Figure 2: Configurations of different decision complexities. Arrow points from lower decision
complexity to higher decision complexity.

ever changing as discussed in B0, B1, B2. The same conclusion we had for B0, B1, B2 also applies228

here.229

C0, C1, C2. These corresponds to variants of B0, B1, B2 where Nbomb > 0 and Nprojectile > 0.230

These variants should be more complex than their original version in terms of decision making since231

now the agent can use offensive tools (bombs and projectiles) to eliminate both the enemies and the232

obstacles. However, in terms of the difficulty of the game (i.e., not dying and achieving high scores),233

these variants are not necessarily harder. The obstacles now can be destructed to open shorter paths to234

coins, and the enemies can be eliminated so that the agent is less likely to die due to being cornered235

by enemies as in B0, B1, B2.236

CX0, CX1, CX2. These corresponds to variants of C0, C1, C2 where Ncoin > 1. These variants237

should be harder and more complex than their original version since now the challenge also involves238

certain aspect of minimizing (1) as discussed in AX0, the distance between any two objects could be239

ever changing due to both enemy movements and the elimination of enemies and obstacles. The same240

conclusion we had for C0, C1, C2 also applies here. We summarize the configurations discussed241

above in Figure 2. As we have seen so far, the presence of moving enemies, projectiles, and bombs242

distinguishes Arena from pure combinatorial optimization problems, and opens the possibilities243

for learning-based approaches to obtain good policies. Of course, there are many other cases; for244

example, we could set Nenemy to 0 and set Nobstacle, Nbomb, Nprojectile to all be greater than 0. This way245

a good policy needs to be able to “terraform" the map to create short-cuts to coins, but does not need246

to have any capacity to avoid or eliminate enemies. In the most extreme case, all features of the247

Arena are enabled and the enemies are equipped with adversarial protocols, which can easily be a248

huge challenge for any existing policy learning algorithms.249

5 Experiments250

We perform imitation learning experiments under configurations BX2, CX2 and reinforcement251

learning experiments under configuration AX0 to demonstrate how policy learning can be performed252

on the Arena benchmark.253

5.1 Methodology254

We consider two types of policies: heuristic policies and learning based policies. Heuristic policies are255

essentially hand-designed (algorithmic) rules. These policies can give intuitive understanding about256

the difficulty of an environment and are important baselines for learning-based policies. Learning-257

based polices are policies obtained through machine learning, e.g., reinforcement learning and258

imitation learning. We will use heuristic policies to generate demonstrations for imitation learning259

and perform reinforcement learning from scratch.260

5.1.1 Heuristic Policies261

BX2. Under this configuration, the agent is not able to place bombs or fire projectiles. Therefore, the262

agent has to avoid enemies and detour around obstacles. In any state, let sp(i, j) be the length of the263

shortest path between object i and j (avoiding current enemy locations and obstacles), let u be any264

potential coordinate of the agent in the next step if it chooses to move, the decision of the agent relies265
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on the following heuristic function266

h(u, E , C,O) = min
c∈C

sp(u, c) +
∑
e∈E

1

sp(u, e)
.

Let u be a minimizer of h and d the corresponding direction of the movement. The agent chooses267

movement d as its action. Intuitively, the agent simply follows the shortest path and avoid obstacles268

and enemies to collect the closest coin. We also make sure that its behavior is slightly conservative269

by making it deliberately keep away from the enemies.270

CX2. This configuration is different from BX2 considered above, in that the agent now has the271

choice to eliminate enemies and obstacles using either bombs or projectiles. Let Manhattan(i, j) be272

the Manhattan distance between object i and j, and let u be any potential coordinate of the agent in273

the next step if it chooses to move. The decision of the agent relies on the following two heuristic274

functions275

h1(u, E , C,O) = min
c∈C

Manhattan(u, c) +
∑
e∈E

1

Manhattan(u, e)
,

h2(u, E ,O) =
1

{number of steps to hit an enemy or a obstacle if firing a projectile}
.

Let u be a minimizer of h1 and d the corresponding direction of the movement. If d is the same276

direction as the direction the agent is facing, it fires a projectile with probability h2(u, E ,O). If the277

agent does not fire a projectile, it chooses movement d as its action. Intuitively, the agent always278

moves towards the closest coin (while slightly avoids enemies) in terms of the Manhattan distance279

and destroys enemies and obstacles along the way.280

5.1.2 Learning-based Policy281

We perform imitation learning on all the configurations and reinforcement learning on configuration282

AX0. In configurations other than AX0, our DQN is not able to learn a policy of reasonable283

performance within 10 hours. Due to space limitation, for imitation learning, we only present results284

on configurations BX2, CX2 here (the rest results are on project webpage). We use the average score285

from 100 runs to measure the performance of a policy.286

Imitation Learning. We first describe the training configurations. For both BX2 and CX2, we287

choose H = W = 128, S = 8, Ncoin ∼ uniform({1, 2, · · · , 5}), Nenemy ∼ uniform({0, 1, · · · , 5}),288

Nobstacle ∼ uniform({0, 1, · · · , 10}), vagent = venemy = 2, δ = 0.01, γ = 0.99, and the size of289

all obstacles are set to 16. For CX2, we additionally set Nprojectile = Nbomb = 3, Dbomb = 100,290

rbomb = 32, vprojectile = 8. The heuristic policy is used to collect 300,000 states through the interaction291

with the environment, and label them with the taken actions. To perform imitation learning, we292

convert the state representation given by Arena into either a complete graph, in which each vertex293

(an object or the agent) is connected to the rest vertices, or a star graph, in which only the vertex294

corresponding to the agent is connected to other vertices (objects). Each vertex is associated with a295

vector attribute containing the corresponding object’s type, coordinate, velocity, and bounding box296

(the region it occupies). With the graph representation of the states, a graph neural network whose297

architecture is described in (Wang et al., 2019) is trained on the collected demonstrations. We train298

the network for 200 epochs with batch size 32 and weighted cross-entropy loss, where the weight is299

inversely proportional to the frequency each label appears in the demonstration.300

Reinforcement Learning. We perform reinforcement learning on the configuration AX0. Training301

an RL agent from scratch is considerably harder than performing imitation learning due to (1) the lack302

of demonstrations generated by the heuristics policy (2) the use of a sparse reward signal. We choose303

H = W = 64, S = 8, Ncoin ∼ uniform({1, 2, · · · , 5}), vagent = venemy = 2, δ = 0.01, γ = 0.99,304

and no enemies or obstacles. The agent will receive a +1 reward when it reaches a coin. We utilize a305

DQN agent (Mnih et al., 2013) built on top of a graph neural network similar to the one used in the306

imitation learning experiment. We use the complete graph setup, train the agent for 5,000 episodes307

with batch size 64 and a learning rate of 1e− 4. We exponentially decay the exploration rate ε from308

0.9 to 0.05 with a rate of 0.995. We use a replay buffer of size 1e5.309
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5.2 Results310

Imitation Learning on BX2. As shown in Table 3, the result shows that our GNN model can311

approximate the heuristic algorithm and possess certain compositional generalizability. However,312

there is still a gap between our model and the teacher policy.313

Imitation Learning on CX2. As illustrated in Table 4, GNN using state representation of both314

complete graph and star graph can achieve comparable result to heuristic policy on training scenarios315

(Ncoin = 1, 3, 5). In terms of unseen scenarios (Ncoin = 7, 9), there is a performance gap between316

heuristic policy and GNN with complete graph, but surprisingly GNN with star graph performs317

better than its heuristic teacher.318

Table 3: Imitation learning on BX2. We use the same demonstration dataset generated by
rolling out the heuristic policy on training scenarios (Ncoin ∼ uniform({1, 2, · · · , 5}), Nenemy ∼
uniform({0, 1, · · · , 5}), Nobstacle ∼ uniform({0, 1, · · · , 10})) for behavior cloning. All the GNN
results are obtained from the same cloned GNN policy.

Ncoin Nenemy Nobstacle Heuristic policy Star graph (GNN)

1 1 2 0.683± 0.161 0.669± 0.170
3 3 6 1.686± 0.391 1.420± 0.452
5 5 10 2.299± 0.518 1.873± 0.852
7 7 14 2.515± 0.924 1.917± 1.243
9 9 18 2.167± 0.769 1.683± 1.640

Table 4: Imitation learning on CX2. We use the same demonstration dataset generated by rolling
out the heuristic policy with the same training setup as Table 3 for behavior cloning. All the GNN
results are obtained from the same cloned GNN policy.

Ncoin Nenemy Nobstacle Heuristic policy Complete graph (GNN) Star graph (GNN)

1 1 2 0.677± 0.161 0.663± 0.186 0.671± 0.170
3 3 6 1.637± 0.559 1.630± 0.559 1.666± 0.452
5 5 10 2.295± 0.853 2.334± 0.838 2.335± 0.852
7 7 14 2.869± 1.213 2.683± 1.327 2.861± 1.243
9 9 18 2.650± 1.608 2.153± 1.640 3.052± 1.546

Reinforcement Learning on AX0. The results are shown in Table 5. The DQN agent is trained with319

Ncoin uniformly sampled from 1 to 5. The learned policy is evaluated on environments with Ncoin in320

a larger range. We run evaluation for each Ncoin for 100 times and report the average score as well321

as the standard deviation.322

Table 5: Reinforcement learning (DQN) on AX0
Ncoin 1 3 5 7 9 11

Score 0.9± 0.3 2.87± 0.439 4.93± 0.515 6.58± 1.408 4.15± 4.405 2.17± 4.171

6 Future Work323

As one of the first policy learning benchmarks that focus on scalability and configurability, we have324

kept the mechanics of the environments to be relatively simple. However, the Arena benchmark can325

be easily extended to cover a much broader spectrum of game logic, such as causal inference, cargo326

transportation, resource harvesting. It can also be extended to have a multi-player support for testing327

collaborative or competitive multi-agent decision making.328

While we have performed some preliminary experiments, we expect more experiments, especially329

reinforcement learning experiments, to be done on the Arena benchmark. It would also be very inter-330

esting to explore different model choices such as models that are hybreds of GNNs and algorithms.331
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