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ABSTRACT

Representations encode rich semantic information, implying that editing them
could serve as a effective tool (i.e., DAS, REFT) for parameter-efficient finetuning
(PEFT). However, existing approaches typically focus on general categories of
representations or selecting an appropriate number of continuous representations
for each datasets, which limits their adaptability and performance. In contrast, our
method dynamically selects representations requiring intervention at the instance
level, referred to as misaligned representations, which are characterized by
a lack of semantic information or appropriate attention. Identifying these
misaligned representations poses challenging, as they serve different roles in
varying contexts. It is evident that crucial representations, which are those that
primarily receive information flow from themselves or significantly influence
other representations, are likely to encompass misaligned representations.
Consequently, we simplify the task by pivot our focus to crucial representations
and aim to accurately locate them. We adaptively update crucial representation
amidst uncertainty, freezing the base model while learning an updated direction
for each layer. Involving both identification and updating of representations, we
present a PEFT method, termed Dynamic Alignment of Representations (DAR).
We validate the effectiveness of our method on eight diverse datasets across two
scenarios, arithmetic and commonsense, and three base models: LLaMA-2-7B,
LLaMA-2-13B, and LLaMA-3-8B. Notably, our method yields improvements
of 17.47% and 3.11% over LLaMA-2-7B and ReFT on the GSM8K dataset,
respectively. Additionally, it requires only 51 times fewer parameters than LoRA,
demonstrating significant parameter efficiency. Furthermore, our method can be
easily extended to few-shot learning.

1 INTRODUCTION

Large Language models (LLMs) have made significant advancements in addressing complex
reasoning tasks [Zhou et al.| (2022)); [Yao et al.| (2024)); Besta et al.| (2024), which demand intricate
logical reasoning and detailed rationales, contrasting with simpler in-context tasks that primarily
involve direct information retrieval or classification. A key component of this progress is the
Chain-of-Thought (CoT) Wei et al.|(2022)), which enhances the capabilities of LLMs, particularly in
arithmetic|Ye et al.|(2024); Lu et al.| (2022)); Imani et al.|(2023) and commonsense reasoning Trinh &
Le|(2018);|Ling et al.| (2017); Patel et al.[(2021b)) tasks. CoT breaks down the reasoning process into
multiple intermediary steps, and ultimately leads to a final answer. Many existing studies Madaan
& Yazdanbakhsh| (2022)); Tang et al.| (2023); Wang et al.| (2022a); Jin et al.| (2024); Yu et al.
(2024) primarily investigate the critical elements in CoT and editing representations [Wu et al.
(2024a); [Turner et al.| (2023); |[Zou et al.| (2023) to improve the accuracy. For example, |Zhang et al.
(2023) enhance the representations based on user attention; Yang et al.| (2024) generates improved
representations of prompt through optimization; and |Li et al.|(2024) address informational deficits
in representations through Residual decoding and serial-position swap. While they offer valuable
experimental insights, these studies only focus on general categories of representations [Zhang
et al.| (2023); Madaan & Yazdanbakhsh| (2022) or selecting an appropriate number of continuous
representations for each dataset|Wu et al.|(2024b), which limits their adaptability and performance.
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Input

A local gas station is selling gas for $3.00 a gallon.
An app company is offering $.20 cashback per gallon
if you fill up at this station. If someone buys 10
gallons of gas, how much with their gas be, after the

Output

Step 1: Calculate the cost of the gas without the cashback.\nStep 2: Calculate the cashback
reward.\nStep 3: Calculate the total cost of the gas after the cashback reward.\nLet's start with
Step 1.\nWhat is the cost of the gas without the cashback?\nPlease provide your answer in

cashback rewards? dollars. 3
Change
a token
Alocal gas station is selling gas for $3.00 a gallon. If the local gas station is selling gas for $3.00 per gallon, and the app company is offering $0.20
An app company is offering $.20 cashback a gallon if cashback per gallon, then the total cost of 10 gallons of gas would be:\n\n10 gallons x $3.00 per
you fill up at this station. If someone buys 10 gallons gallon = $30.00\n\nA fter the cashback reward, the cost would be:\n\n$30.00 - $0.20 per gallon
of gas, how much with their gas be, after the x 10 gallons = $30.00 - $2.00 = $28.00\n\nSo, the cost of 10 gallons of gas, after the cashback
cashback rewards? reward, would be $28:00.
(a) Change “per” to “a” results in a correct correct.
Let's start with step 1.\nl.\nHow many eggs does Janet have left after eating three for
Janettu2019s ducks lay 16 c8gs per day. She eats breakfast?\nWe know that Janet eats three eggs for breakfast, so she has 16 - 3 = 13 eggs
three for breakfast every morning and bakes muffins Ny ;
. . left.\nNext, let's move on to step 2.\n2.\nHow many eggs does she have left after baking
for her friends every day with four. She sells the . 5 .
X N . o muffins with four?\nJanet bakes muffins with four eggs, so she has 13 - 4 = 9 eggs left.\nFinally,
remainder at the farmers' market daily for $2 per , it
N . let's calculate how much money she makes at the farmers' market.\n3.\nHow much money does
fresh duck egg. How much in dollars does she make . L N . o .
day at the farmers' market? she make selling the remaining eggs at the tarmers\ market?\nSince each egg sells for $2, and
Change every day ° : she has 9 eggs left, she makes $2 x 9 = $]18 at the farmers' market every day.
a token

Janet\u2019s ducks lay 16 eggs a day. She eats three
for breakfast every morning and bakes muffins for
her friends every day with four. She sells the
remainder at the farmers' market daily for $2 per
fresh duck egg. How much in dollars does she make

If Janet's ducks lay 16 eggs per day, and she eats 3 for breakfast, that leaves her with 16 - 3 =
13 eggs per day to sell at the farmers' market.\n\nIf she sells each egg for $2, then she makes 13
x $2 = $26 per day at the farmers' market.

every day at the farmers' market?

”»

(b) Change “per” to “a” results in an incorrect answer.

Figure 1: Two examples of modifying a input representation (token). This experiment is con-
ducted on LLaMA-2-13B. The impact on result correctness are different, demonstrating that identi-
cal modifications can yield varied outcomes despite semantic similarity.

In contrast, our method dynamically selects representations that requiring intervention for each in-
stance, referred to as misaligned representations, which are characterized by a lack of semantic
information or appropriate attention. As illustrated by the representations of “per” in Figure[Ta]and
“a” in Figure [Ib] these serve as examples of misaligned representations. Such inaccuracies lead to
the model misunderstanding the context of the sentences or missing some information. However,
it is challenge to identify misaligned representations. As shown in Figure |lal and we find that
even identical transformations for the same representation may have different results. Representa-
tions fulfill different roles in various contexts, thereby complicating the accurate identification of
misaligned representations. Consequently, we simplify the task by focusing on crucial represen-
tations, which contains significant information within the information flow. It is evident that these
representations are likely to encompass misaligned representations. We employ an adaptive update
approach in the training phase, allowing the misaligned representations within the crucial represen-
tations set to learn the appropriate direction for adjustment. The crucial representations have two
classic scenarios. One is consistently receiving information flow from themselves, as these represen-
tations has effectively gathered information. The other is that disseminating information to multiple
other representations, including the rationale representations, as they signify a significant influence
on others. We utilize attention score and saliency score |Simonyan| (2013)) as explicit indicators of
information to accurately locate these crucial representations. While this two metrics are typically
used in toy tasks, such as sentiment analysis, where the output is limited to a single token, we extend
their use in PEFT by observing the entire steps.

To address the challenge of modification for representations, we employ adaptive learning with
extra a few additional parameters. Our training approach draws on ReFT [Wu et al.| (2024b)), which
modifies the representations of both the first and last consecutive representations. We freeze the base
model while learning an updated direction for each layer of crucial representations. Involving both
identification and updating of misaligned representations, we present our PEFT method, referred to
as Dynamic Alignment of Representation (DAR).

We conduct comprehensive experiments on eight diverse datasets, across two scenarios, arithmetic
and commonsense Talmor et al.|(2018)), and three base models: LLaMA-2-7B, LLaMA-2-13B [Tou-
vron et al.| (2023), and LLaMA-3-8B |Al@Metal (2024). The experimental results demonstrate the
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Figure 2: The pipeline of our method Dynamic Alignment of Representations (DAR), which
consists of identifying and updating misaligned representations. Figure 2a|illustrates two ways
for identifying misaligned representations. The darker the color, the more information it contains.
The upper section demonstrates one identification way by focusing on the diagonal elements from
the previous layer; the lower section presents an alternative way by examining the sum of the
columns in the current layer, but considering rationale representations. Figure[2b|depicts the process
of updating misaligned representations, where the base model is frozen while learning an updated
direction for each layer.

effectiveness of our intervention. Specifically, our method achieves improvements of 17.47% and
3.11% over LLaMA-2-7B and ReFT on GSM8K dataset, respectively, while utilizing 51 times fewer
parameters compared to LoRA. Furthermore, visual analytics reveal that our method makes infor-
mation more interactive and increases the number of representations that receive attention. Addi-
tionally, our method can be easily extended to few-shot learning. As many extraneous information in
demonstrations, we learn the updating directions for the demonstrations and the question separately.

2 METHOD

Our method consists of identifying and updating misaligned representations, as illustrated in
Figure[2] We begin by introducing the problem formulation in Section [2.I] Next, we analyze the
information flow and propose two ways for identifying misaligned representations, as presented in
Section[2.2] Finally, we describe the method for updating misaligned representations in Section[2.3]

2.1 PROBLEM FORMULATION

Given a sequence of n input tokens © = (z1,...,z,), the language model commences by em-

bedding these tokens into a list of representations h(?) = (hgo), cee hSP)). Subsequently, L layers
successively compute the I-th list of hidden representations h(") as a function of the previous list
of hidden representations h(!~1). Each hidden representation is represented as a vector h € R%.
Finally, the model leverages the last set of hidden representations k(%) to produce its predictions.
Specifically, as a reasoning task, the model incrementally produce % tokens following the probability
expression p(Tp+k|T1, -, Tny Tty - vy Tngh—1) = softmax(WhElekfl). Our method aims to
enhance output accuracy by identifying and updating misaligned representations M (h).

2.2 IDENTIFY MISALIGNED REPRESENTATIONS

While ReFT also involves modification of representations, it requires initial training and testing on
other datasets with various values f and [ to determine the number of continuous representations
to select. This selection process is not only cumbersome but also lacks of interpretability. So, it
is necessary to identify misaligned representations. As illustrated in Figure |l1a|and even when
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representations appear identical, it remains unclear whether they are misaligned. To address this un-
certainty, we simplify the task by concentrating on crucial representations, which inherently include
those that are misaligned. We employ an adaptive update approach in the training phase, allowing
the misaligned representations within the crucial representations set to learn the appropriate direc-
tion for adjustment. The crucial representations can be categorized into two main scenarios. The
first scenario involves representations that consistently receive information flow from themselves,
indicating effective information accumulation. The second scenario encompasses representations
that disseminate information to multiple others, including rationale representations.

2.2.1 SELF-REFERENTIAL FILTERING

If the information from representation ¢ primarily flows back to itself in the subsequent layer, it
signifies that this representation contains important information or has effectively accumulated sig-
nificant information. Consequently, we use Info(4, %) as a critical metric for assessing this retention.
When Info(i, i) is large, it follows that Info(4,5),7 # ¢ will be small, as the values across a row
are normalized through the softmax function. This situation suggests that the information flow from
representation ¢ is predominantly directed towards itself, confirming that representation ¢ is indeed
crucial. We term them as Self-Referential Filtering, as described in Equation|[T]

l
M d(ia)g

={i| m}?x(lnfo(lfl)(h,i,i)) > a} (D
where h represents head, « is a hyperparameter. To quantify this information, we employ attention
scores and saliency scores, thereby proposing two distinct strategies: Self-Referential Attention
Filtering (SAF) and Self-Referential Saliency Filtering (SSF), separately.

Self-Referential Attention Filtering (SAF). Inspired by StreamLLM Xiao et al.| (2023) and
ACT [Yu et al.| (2024)), we utilize attention scores to propose a strategy: Self-Referential Attention
Filtering (SAF). Attention scores, as described in[2} quantify the relevance and degree of emphasis
assigned to various representations within a sequence. This mechanism enables the model dynami-
cally concentrate on interactions and enhancing its understanding capabilities.

AY = softmax (b (" T /Vd),i € {1,...,n} )

Self-Referential Saliency Filtering (SSF). We leverage saliency scores to propose a strategy: Self-
Referential Saliency Filtering (SSF). Saliency score, as a widely accepted interpretation tool, com-
prehensively considers attention scores and gradient values, highlighting interactions from crucial
representations to the model output, as shown in Equation

c
1§l>:A§”®ZA($>)» ied{l,...,n} ®

i
where © denotes the element-wise multiplication, and £(-) represents the loss function.

2.2.2 MULTI-REFERENTIAL FILTERING

If the information from representation ¢ significantly affects multiple other representations, espe-

cially rationale representations, it indicates that this representation is crucial. Accordingly, we use
column-wise information as a critical metric for assessing this influence, as shown in Equation [4]

ke (O i
" Info\ (h, 7,1
MY = {z ' 2= GHD > a} @)

col n+k—i

where k is the number of output tokens. When the average of Info(j,4) in a column is large, it
suggests that representation ¢ has a substantial influence on others, and plays a crucial role.

Multi-Referential Attention Filtering (MAF). We utilize the attention score, as A(j,?) quanti-
fies the influence of representation ¢ on representation j, and propose a strategy: Multi-Referential
Attention Filtering (MAF).
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2.3 UPDATE MISALIGNED REPRESENTATIONS

Upon identifying misaligned representations, it becomes imperative to update them to ensure their
influence on reasoning tasks is accurately aligned. However, the direction of this modification re-
mains uncertain and may not be unique. Consequently, we model the adjustment as a learnable
vector Ah, which is learned during the training process to adaptively rectify the misaligned repre-
sentations. We freeze the base model and implements interventions on the misaligned representa-
tions. Following|Wu et al.|(2024b); Huang et al.|(2024)), we restrict our updates to a linear space, and
learn a projected source Rs = W h + b. The overall update mechanism is illustrated in Equation[5]

T _ .
q)(h):{h+R (Wh+b— Rh),ifhe M

h, else.
where R € R"*? denotes a low-rank projection matrix with orthonormal rows, d represents the
dimensionality of representations, and r indicates the dimensionality of the subspace we are in-
tervening on. We utilize Distributed Alignment Search (DAS) |Geiger et al.| (2024)) to identify the
subspace R that maximises the probability of the expected counterfactual output after intervention.

&)

The objective of reasoning tasks is to predict the output sequence y = (y1, .. ., yx) with k tokens.
To achieve this, we minimize the cross-entropy loss with teacher forcing across all output positions.

k
min {— > log pa (s [; y<i])} (6)

i=1
3 EXPERIMENTS

To validate the effectiveness of our method DAR, we conduct experiments across two scenarios
covering eight datasets: GSMS8K |Cobbe et al.| (2021), AQuA [Ling et al.| (2017), MAWPS [Koncel-
Kedziorski et al.| (2016), SVAMP |Patel et al.| (2021a), BoolQ (Clark et al.| (2019), SIQA [Sap
et al.[ (2019), WinoGrande [Sakaguchi et al.| (2021), and OBQA |Mihaylov et al.[ (2018)). For all
tasks, model outputs are generated with greedy search. Our evaluation focused exclusively on the
correctness of the final numeric or multiple-choice answers. Moreover, generation examples are
reported in appendix

3.1 QUANTITATIVE RESULTS

Table [T] summarizes the comparison of our method DAR with other parameter-efficient finetuning
(PEFT) methods on the GSM8k dataset. Most prior PEFT methods have been evaluated on the
LLaMA-1; however, the LLaMA family has progressed to LLaMA-3. And ReFT can be compared
on LLaMA-1. Consequently, our evaluation only focuses on LLaMA-2-7B, LLaMA-2-13B, and
LLaMA-3-8B. Our comparisons emphasizes both performance and parameter efficiency. Without
bells and whistles, our method outperforms other methods in the same setting. For instance, one of
our strategy MAF outperforms LLaMA-2-7B and ReFT by 17.47% and 3.11%, respectively, while
demonstrating significant parameter efficiency, requiring only 1/51 of the parameters used by LoRA
on LLaMA-2-7B. Furthermore, our method DAR consistently exhibits better performance across all
evaluated scenarios. We also present experimental results on arithmetic and commonsense reasoning
datasets using two base models: LLaMA-2-7B and LLaMA-3-8B, as shown in Tables[2and Table[3]
respectively. The consistent improvements observed across both reasoning tasks underscore the
robustness and versatility of our approach.

3.2 EFFECTIVENESS ANALYSIS

3.2.1 VISUAL ANALYTICS

We visualize the attention score of the first and last three heads in the final layer (Layer 32) for both
LLaMA-2-7B and our proposed method DAR, as illustrated in Figure 3] and Figure ] respectively.
Additional comparisons are provided in the appendix Our observations are as follows:

* In column 0, the absence of prominent color indicates a diminished influence of representa-
tion hg on other representations. It means that we have effectively addressed the attention
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Table 1: Quantitative comparison on GSMS8K with three base models: LLaMA-2-7B, LLaMA-
2-13B, and LLaMA-3-8B. Performance is reported based on the seed of 42. The percentage of
trainable parameters (Param.) follows ReFT |Wu et al.| (2024b)), calculated by dividing the number
of trainable parameters by the total number of parameters in the base model. The v means that the
misaligned representations is identified from the misaligned representations in the previous layer.
The best performance is highlighted in bold, while the second-best is underlined. Performance
metrics and parameters of other methods are sourced from RoSA [Nikdan et al.|(2024) and ReFT.

Model PEFT Param (%) Identify Continue Accuracy (1)
None - - - 14.60
LoRA (r=64) 0.826% . . 27.4
ROSA (r=48, d=0.6%)  0.819% - - 30.5
ROSA (r=32, d=0.6%)  0.816% § § 322
ROSA (r=16, d=0.6%)  0.812% - . 32.8
SpA (d=2.4%) 0.809% - - 29.6
LLaMA-2-TB  ReFT (1=8) 0.031% ; ; 28.96
v 30.40
SAF :
X 29.64
our 0.016%
SSF v 31.39
X 30.40
v 31.99
MAF 2122
X 32.07
None - - - 30.86
ReFT 0.025% - . 37.91
v 38.74
LLaMA-2-13B SAF X 958
our 0.013%
SSF v 36.69
X 37.23
v 38.29
MAF :
X 37.98
None - - - 64.52
ReFT 0.026% § - 64.67
v 70.81
LLaMA-3-8B SAF X 7058
our 0.013%
SSF v 64.44
X 64.52
MAF v 62.40
X 62.24

sink problem highlighted in previous works Xiao et al.| (2023)); [Yu et al.| (2024) to some
extent.

* The increase in the number of vertical lines signifies a heightened interaction among rep-
resentations, suggesting enhanced interactions.

* The presence of high attention scores along the diagonal has shifted from a few isolated
peaks to multiple points characterized by lower attention scores. This denotes a broader
information flow from various representations.
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Table 2: Quantitative comparison on arithmetic reasoning datasets with two base models:
LLaMA-2-7B and LLaMA-3-8B. We train on Math10k and report results on AQuA, MAWPS,
and SVAMP. Performance metrics are reported based on the seed of 42. The best performance is

highlighted in bold, while the second-best is underlined.

Model PEFT Param (%)

Identify Continue

Accuracy (1)

AQuA MAWPS SVAMP Avg.
ReFT 0.031% - - 2165  80.67 5220 5151
v 2559  78.57 5340 52.52
SAF
X 2598  84.45 5260 5435
our 0.016%
LLaMA2.7B SSF v 2598  80.67 5250  53.05
X 26.77 79.83 5330 53.30
MAF v 27.56 81.09 5240  53.68
X 2480  80.67 5340 52.96
ReFT 0.026% - - 4685 8697 7420  69.34
v 47.24 89.92 7550  70.89
SAF £2.22
X 4409  86.97 7840  69.82
LLaMA-3-8B  our 0.013% v 5000 8655 7800 7152
SSF . . . .
X 49.21 86.55 78.10  71.29
MAF v 4843 90.76 7710 72.09
X 5039  90.76 77.90  73.02

Table 3: Quantitative comparison on commonsense reasoning datasets with two base models:
LLaMA-2-7B and LLaMA-3-8B. We train on our combined commonsense datasets Common-
sense60k and report results on four datasets: BoolQ, SIQA, WinoG., and OBQA. Performance
metrics are reported based on the seed of 42. The best performance is highlighted in bold, while the

second-best is underlined.

Model PEFT Param (%) Identify Continue Accuracy (1)
BoolQ SIQA WinoG. OBQA Avg.
ReFT  0.031% ] - 5073 6121 5170 5860 5556
SAF v 60.00 6249  60.62  57.00 60.03
LLaMA-2-7B X 5373 6735 5525 6220 59.63
our 0.016% SSE v 6202 67.09 6022 5840 61.93
X 5431 6438  60.14 5860 59.36
ReFT  0.026% B B 6214 6024 5604 6600 6110
SAF v 63.00 6817 6259  71.00  66.60
LLaMA-3-8B X 65.14 5855 61.88  62.60 61.92
our 0.013% SSF v 64.04 7472 6030 7560 68.68
X 66.57 7421 6204  77.00 7033

3.2.2 NECESSITY ANALYSIS

Furthermore, we investigated the necessity of identifying misaligned representations, as illustrated
in Table ] If we update randomly selected representations during training, the performance can
surpass LLaMA-2-7B, as the update direction is learnable. But it remains inferior to the outcomes
achieved through our carefully selected retraining process, or even worse than the results of ReFT,
which only intervenes the first and last consecutive representations.
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Head 0 Head 1 Head 2

Head 29 : Head 30 h Head 31

Figure 3: The attention score of the first and last three heads on LLaMA-2-7B in layer 31.

Head 0 Head | h Head 2

Head 29 Head 30 h Head 31

Figure 4: The attention score of the first and last three heads on our DAR in layer 31.

3.3 HYPERPARAMETER CONFIGURATION

We conduct extensive ablation studies on the GSM8K dataset to systematically investigate hyper-
parameters, including intervention length, threshold «, and selection criteria. The selection criteria
refer to the method of choosing representations to intervene when the number of misaligned rep-
resentations exceeds the intervention length. As shown in Table [5] we observe that setting the
intervention length to 20, using “order” as selection criteria, and establishing the threshold at 0.01
yields optimal results. This indicates that the performance of our method can be further enhanced
through careful hyperparameter selection.
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Table 4: The necessity of identify misaligned representations. We presents the results from up-
dating representations using random representations with LLaMA-2-7B on GSM8K dataset. We
test the seed values ranging from 37 to 47, to determine the location of intervention representations.
Except *, each setting uses the same locations across all layers. For *, locations were generated for
each layer using a seed of 42. ReFT |Wu et al.|(2024b)) intervenes in the first seven tokens and the
last seven representations (f7+17) in GSMS8K. The best way of identify misaligned representations
is highlighted in bold, while the second-best is underlined.

Location of intervention representations | seed Accuracy (1)
None - 14.60
ReFT(f7+17) - 28.96
37 26.61
38 26.61
39 28.13
40 27.29
41 2547
Identical Positions for All Layers with Seed 42 24.49
43 27.82
44 27.52
45 28.05
46 26.16
47 26.38
Random Positions for Each Layer with Seed x | 42 23.58
SAF (continue) - 30.40
SAF (not continue) - 29.64
SSF (continue) - 31.39
SSF (not continue) - 30.40
MATF (continue) - 31.99
MAF (not continue) - 32.07

Table 5: Ablation study of Hyperparameters. We use the strategy of SAF to identify crucial rep-
resentations with LLaMA-2-7B on GSMS8K dataset. We investigate three key aspects: Intervention
Length, Threshold, and Selection Criteria.

Length Threshold Selection Criteria Accuracy (1)

0 0 - 14.60
order 33.06

0.1 max 28.73

random 22.59

14 order 29.64
0.05 max 28.73

random 23.12

order 33.21

0.01 max 28.96

random 23.50

20 0.05 order 30.33
30 0.05 order 27.67

3.4 EXPAND FEW-SHOT

Our method can be readily extended to few-shot learning. Intuitively, while the demonstrations
should not directly influence the output, the tokens within the questions can indeed have a significant
impact, such as the numbers. Furthermore, information from the demonstrations can contribute
to higher-level semantic understanding and then directly affects the output. Therefore, we learn
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Table 6: Expand our method DAR to few-shot learning. We employ the SAF strategy to identify
crucial representations using LLaMA-2-7B on GSMS8K dataset.

Accuracy (1)
PEFT zero-shot 1-shot 2-shot
None 14.6 16.15  20.47
SAF 29.64 32.60 30.33
Improvement | +15.04  +16.45 +9.86

separate update vectors for both the demonstration and the question with distinct updating vectors
at each layer. The results of our method DAR, in the realm of few-shot learning are presented in
Table[6] demonstrating the effectiveness of our method. Due to the limitation of memory, we only
experimented with 1-shot and 2-shot.

4 RELATED WORK

Reasoning in LLMs. Reasoning is a fundamental cognitive process that involves making logical
inferences and drawing conclusions from available information. One effective approach to enhanc-
ing reasoning tasks is the Chain-of-Thought (CoT) method [Wang et al.| (2022b); |Chu et al.| (2023));
Ye et al.| (2022); |[Fu et al.[(2022)), which enables models to generate a systematic reasoning path by
breaking down complex reasoning challenges into a series of simpler, manageable steps.

Intervention in LLLMs. Intervention strategies encompass various techniques designed to influence
the behavior of large-scale models during the inference phrase. Common strategies include activa-
tion editing |L1 et al.| (2024), weight editing |Dai et al.| (2022)), and the use of guidance vectors [Zou
et al.[(2023)), as well as altering the output distribution through comparative analysis|Li et al.|(2022));
Chuang et al.| (2023)). DAS |Geiger et al.|(2021)) is the first to introduce representation interventions,
followed by ReFT [Wu et al.|(2024b)), which finetunes the model. Although representation interven-
tions can serve as powerful tools for model control, ReFT only intervene the first and last continuous
representations and relies on additional datasets to determine the optimal number of representations,
making the process time-consuming and potentially impractical. In contrast, our method come up
the concept of misaligned representations and proposes two ways for precise identification.

Information Flow Analysis. Recent studies have utilized attention mechanisms to analyze their
impact on model performance. For instance, StreamLLM [Xiao et al.| (2023) discovered that the
initial token of an input text often receives an inordinate amount of attention, despite frequently
lacking semantic significance. It suggests that we should preserve these tokens when processing
long input sequences to prevent forgetting. Additionally, ACT |Yu et al.[(2024) found that attention
sinks can occur not only at the initial token but also throughout the entire sequence. Moreover,
it discoverd that these attention sinks are not always beneficial for model performance. ACT op-
timizes attention distributions during inference, but not all heads can benefit from the calibration.
Similarly, PASTA |Zhang et al.|(2023)) demonstrates that increasing the attention score of defined to-
kens at specific heads can improve the ability of LLMs to follow instructions. However, the tokens
need manually defined. Our method addresses these challenges by adaptively learning the update
direction of representations during training, leading to better overall performance.

5 CONCLUSION

We introduce a concept of misaligned representations, characterized by a lack of semantic informa-
tion or appropriate attention. Recognizing the complex roles of representations, we shift our focus
to crucial representations, which are those that primarily receive information flow from themselves
or have a significantly impact on other representations. We employ an adaptive updating mechanism
for these crucial representation through Parameter-Efficient Fine-Tuning (PEFT). Our approach en-
compasses both the identification and updating of misaligned representations, leading to the devel-
opment of a novel PEFT method termed Dynamic Alignment of Representations (DAR). Extensive
experiments across various reasoning benchmarks demonstrate the efficacy of DAR. Furthermore,
our method DAR can be easily extended to few-shot learning.
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A APPENDIX

A.1 IMPLEMENT DETAILS

A.1.1 DATASETS

The datasets we use across two scenarios covering eight dataset: GSMS8K |Cobbe et al.| (2021)),
AQuA |Ling et al.| (2017), MAWPS |Koncel-Kedziorski et al.| (2016), SVAMP |Patel et al.| (2021a)),
BoolQ [Clark et al.| (2019), SIQA Sap et al| (2019), WinoGrande |Sakaguchi et al.| (2021), and
OBQA [Mihaylov et al.|(2018). GSMS8K dataset, which comprises grade-school math word prob-
lems requiring multi-step reasoning, usually takes between 2 and 8 steps to solve problems by us-
ing basic arithmetic operations +, —, X, +. Following the experimental setup established in [Hu
et al.| (2023, we finetune on a combined dataset of seven arithmetic reasoning tasks, referred to as
Math10K, utilizing LM-generated chain-of-thought steps. We report performance metrics on three
test sets: AQuA, MAWPS, SVAMP. For the commonsense reasoning scenarios, we opted not to use
Commonsensel70K from |Hu et al.| (2023), as it does not incorporate COT steps. So, we create a
suitable training set Commonsense60k, combining six commonsense reasoning tasks: Common-
senseQA |Talmor et al.| (2018), CoS-e Rajani et al.| (2019), OpenBookQA Mihaylov et al.| (2018)),
SociallQA |Sap et al.[(2019), StrategyQA |Geva et al.| (2021), WorldTree Jansen et al.| (2018). We
report performance metrics on four test sets: BoolQ, SIQA, WinoGrande, and OBQA.

A.1.2 MODELS

We finetune our models on LLaMA-2-7B, LLaMA-2-13B and LLaMA-3-8B. We use the “chat”
version of LLaMA-2, and “instruct” version of LLaMA-3.

A.1.3 HYPERPARAMETERS

For fair comparison, we selected 14 crucial representations and maintained a rank of 8, consistent
with the parameters used in ReFT. We set the hyperparameters of « to 0.05. And we use order selec-
tion criteria in default. We excluded the first representation as it is a system token that consistently
receives a disproportionately large attention score, despite often lacking semantic significance Xiao
et al.[(2023). In terms of training duration, the commonsense scenarios were run for 6 epochs, while
the arithmetic tasks were run for 12 epochs.

A.1.4 MACHINE

All experiments were conducted using a single GPU: either an NVIDIA A100 (80G) or an L20
(40G). To optimize memory usage, we loaded our base language models in “torch.bfloat16” format.

A.1.5 PROMPT

We use a prompt for each task in zero-shot learning.

GSMEK

[question]
Answer the above question. First think step by step and then answer the final number.

Other Arithmetic Scenario

Below is an instruction that describes a task. Write a response that appropriately completes
the request.

### Instruction:

[Question]

### Response:
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Commonsense Scenario

[Question]
the correct answer is

A.2 ATTENTION ANALYSIS

Head 0 Head 1 Head 2 Head 3
Head 4 Head 5 Head 6 Head 7
Head 8 Head 9 Head 10 Head 11
Head 12 Head 13 Head 14 Head 15

Figure 5: The attention score of LLaMA-2-7B in layer 31. (part 1 of 2)

15



Under review as a conference paper at ICLR 2025

Head 16 ) Head 17 , Head 18 Head 19
| Head 20 Head 21 Head 22 Head 23
Head 24 Head 25 Head 26 Head 27
Head 28 Head 29 Head 30 Head 31

Figure 6: The attention score of LLaMA-2-7B in layer 31. (part 2 of 2)
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Head 0 ) Head 1 , Head 2 | Head 3
Head 4 Head 5 Head 6 Head 7
Head 8 Head 9 Head 10 Head 11
Head 12 Head 13 Head 14 Head 15

Figure 7: The attention score of our DAR in layer 31. (part 1 of 2)
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Head 16 ) Head 17 , Head 18 Head 19
Head 20 Head 21 Head 22 Head 23
Head 24 Head 25 Head 26 Head 27
Head 28 Head 29 Head 30 Head 31

Figure 8: The attention score of our DAR in layer 31. (part 2 of 2)
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Layer 0 ) l Layer 1 , Layer 2 Layer 3
I
|
Layer 4 Layer 5 | l Layer 6 Layer 7
Layer 8 Layer 9 | Layer 10 Layer 11
Layer 12 Layer 13 Layer 14 Layer 15

Figure 9: The attention score of our DAR on head 31 in all layer. (part 1 of 2)
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Layer 16 ) Layer 17 , | Layer 18 Layer 19
Layer 20 Layer 21 | Layer 22 Layer 23
Layer 24 Layer 25 Layer 26 Layer 27
Layer 28 Layer 29 Layer 30 Layer 31

Figure 10: The attention score of our DAR on head 31 in all layer. (part 2 of 2)
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A.3 GENERATION EXAMPLES

Instruction (GSMS8K)

Model
LLaMA-2-7B

ReFT

DAR-MAF

.

Marie ordered one chicken meal that costs $12, 5 packs of milk that costs $3 each, 4 apples that cost $1.50 each, and some
boxes of pizza. Marie paid a total of $50. How many boxes of pizza did Marie order if cach box costs $8.50?

Response

Great, let's break it down step by step to find out how many boxes of pizza Marie ordered:

1. First, let's calculate the total cost of Marie's meal:

$12 (chicken meal) + $15 (5 packs of milk) = $27

2. Next, let's calculate the total cost of Marie's fruits:

$1.50 (4 apples) = $6

3. Now, let's add the total cost of Marie's meal and fruits:

$27+$6 =833

4. Finally, let's subtract the total cost of Marie's meal and fruits from the total amount she paid:
$50 - $33 =$17

So, Marie ordered $17 worth of pizza boxes, which is equal to 4 boxes (since each box costs $8.50).
Therefore, the answer is 4 boxes of pizza.

Marie paid a total of $12 + $3 x 5 = $<<12+3*5=25>>25 for the milk.

She paid a total of $15 + $1.50 x 4 = $<<15+1.5%4=19>>19 for the apples.

So, Marie paid a total of $50 - $25 - $19 = $<<50-25-19=16>>16 for the pizza.
Therefore, Marie ordered $16/8.50 = <<16/8.5=1.90>>1.90 boxes of pizza.
The final answer is: 1.9

The cost of 5 packs of milk is $3 x 5 = $<<3*5=15>>15.

The cost of 4 apples is $1.50 x 4 = $<<1.5%4=6>>6.

The total cost of the chicken meal, milk, and apples is $12 + $15 + $6 = $<<12+15+6=33>>33.

So, Marie ordered $50 - $33 = §<<50-33=17>>17 worth of pizza.

Therefore, Marie ordered $17/8.5 = <<17/8.5=2>>2 boxes of pizza.

The final answer is: 2 /

Instruction (AQuA)

15 (E) 20

Model
LLaMA-2-7B

ReFT

DAR-MAF

Two ants are standing side-by-side. One ant, which is 4 inches tall, casts a shadow that is 10 inches long. The other ant is 6
inches tall. Compute, in inches, the length of the shadow that the taller ant casts. Answer Choices: (A) 36 (B) 28 (C) 42 (D)

Response

Great, I'd be happy to help you with that!

According to the instruction, the length of the ribbon was originally 30 cm and it was reduced in the
ratio 5 : 3. To find the length of the ribbon now, we can use the ratio to find the new length.

The ratio of the original length to the new length is 5 : 3, which means that for every 5 cm of the
original length, there are 3 cm of the new length.

So, if the original length of the ribbon was 30 cm, the new length would be:

30 cmx 3/5=20cm

Therefore, the length of the ribbon now is 20 cm.

The correct answer is (B) 30 cm.

Let's call the length of the shadow cast by the taller ant \"x\".

We know that the shadow of the shorter ant is 10 inches long, so we can set up the equation:
x+4=10

To solve for \"x\", we can subtract 4 from both sides:

x=10-4

xX=6

Therefore, the length of the shadow cast by the taller ant is 6 inches.

The answer is (C) 42.

To solve this problem, we need to use the formula for the length of a shadow:

Shadow Length = (Shadow Distance) x (Shadow Ratio)

where Shadow Distance is the distance between the light source and the object casting the shadow,
and Shadow Ratio is the ratio of the shadow distance to the height of the object casting the shadow.
In this problem, the light source is the sun, and the distance between the light source and the first
ant is 10 inches. The height of the first ant is 4 inches, so the Shadow Ratio is:

Shadow Ratio = Shadow Distance / Height of Object

Shadow Ratio =10 /4

Shadow Ratio = 2.5

To find the length of the shadow that the taller ant casts, we need to multiply the Shadow Ratio by
the height of the taller ant:

Shadow Length=2.5x6

Shadow Length = 15 inches /

Therefore, the answer is (D) 15.
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Instruction (MAWPS)

The distance measured on a map varies directly with the actual distance . If 1 cm represents 25 kilometers , how many
kilometers are represented by 7 cm ?

Model
LLaMA-2-7B

ReFT

DAR-SAF

-

Response

Great, I'm happy to help! Based on the instruction you provided, if 1 cm on a map represents 25
kilometers, then we can conclude that the ratio of the distance represented on the map to the actual
distance is 1:25.

So, if we want to find out how many kilometers are represented by 7 cm on the map, we can simply
multiply the ratio by the number of cm given:

7 cm x 1 km/25 km = 0.28 km

Therefore, 7 cm on the map represents approximately 0.28 kilometers.

‘We can set up a proportion to solve this problem:
lem/25km=7cm/x km

To solve for x, we can cross-multiply:

1 cm*25km=7cm * x km

Multiplying the two sides gives us:\n\n25000 cm = 7x km
Dividing both sides by 7 gives us:

x km = 3500 cm

Therefore, 7 cm represents 3500 kilometers.

Answer: 3500

‘We can use the concept of direct variation to solve this problem.
Let x be the actual distance represented by 7 cm on the map.
‘We know that:

1 cm on the map represents 25 km

So, 7 cm on the map represents:

7x1=7x25=175km

Therefore, 7 cm on the map represents 175 kilometers.

Answer: 175 j

Instruction (SVAMP)

A mailman has to give 38 pieces of junk mail to each of the 78 blocks. If there are 19 houses on a block. How many pieces
of junk mail should he give each house?
Model Response
LLaMA-2-7B Great, I'm happy to help! Based on the instruction you provided, here's the calculation:
To determine how many pieces of junk mail the mailman should give each house, we need to
divide the total number of pieces of junk mail (38) by the number of houses on each block (19).
So, the mailman should give:
38 pieces of junk mail / 19 houses per block = 2 pieces of junk mail per house
Therefore, the mailman should give 2 pieces of junk mail to each of the 78 blocks, for a total of
156 pieces of junk mail.
ReFT To solve this problem, we need to divide the total number of junk mail by the number of
houses per block:
38 junk mail pieces per block x 19 houses per block = 724 junk mail pieces
Therefore, the mailman should give 724 junk mail pieces to each house.
Answer: 724
DAR-SAF To solve this problem, we need to divide the total number of junk mail by the number of houses
per block:
38 \u00f7 19 =2
Therefore, the mailman should give 2 pieces of junk mail to each house.
\ The answer in Arabic numerals is: 2. j

Instruction (BoolQ)

Please answer the following question with true or false, question: have scotland ever been in the world cup final?
Answer format: true/false

Model
LLaMA-2-7B

ReFT

DAR-SSF
-

Response

True. Northern Ireland is part of the United Kingdom, which includes England, Scotland, and
Wales, as well as Northern Ireland. The term \"Great"

northern ireland is part of great britain. Therefore, the answer is: true/false true

scotland has never been in the world cup final Therefore, the answer is false. /
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Instruction (SIQA)

Please choose the correct answer to the question: Riley had twisted their leg and began to hurt so bad that they could not
walk. What does Riley need to do before this?

Answerl: lie down Answer2: run Answer3: Sit and relax

Answer format: answerl/answer2/answer3

Model Response

LLaMA-2-7B Based on the information provided in the question, the correct answer is:
Answer3: Sit and relax.
Before Riley can't

ReFT the answer is: answerl

QAR—SAF The answer is: answer2: run j

Instruc WinoGrande)

Please choose the correct answer to fill in the blank to complete the given sentence: I had to read an entire story for class
tomorrow. Luckily, the _ was canceled.
Optionl: story Option2: class Answer format: optionl/option2

Model Response

LLaMA-2-7B Great, I'm happy to help! The correct answer is:
Optionl: story
So, you had to read an entire story

ReFT the toaster oven is too small to hold the eggplant. Therefore, the answer is: Option2: toaster

\DAR-SAF class is the only option that can be canceled. Therefore, the answer is: class /

Instruction (OBQA)

Please choose the correct answer to the question: An example of conservation is avoiding the use of
Answerl: gasoline Answer2: air Answer3: snow Answer4: clothes
Answer format: answerl/answer2/answer3/answer4

Model Response

LLaMA-2-7B Great, I'm happy to help! An example of conservation is avoiding the use of:
Answer4: clothes.
Conserv

ReFT Great, I'm happy to help! An example of conservation is avoiding the use of:
Answer4: clothes
Conservation

QAR-SAF The answer is: answerl /
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