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ABSTRACT

Aligning large language models (LLMs) through fine-tuning is essential for tai-
loring them to specific applications. Therefore, understanding what LLMs learn
during the alignment process is crucial. Recent studies suggest that alignment pri-
marily adjusts a model’s presentation style rather than its foundational knowledge,
indicating that only certain components of the model are significantly impacted.
To delve deeper into LLM alignment, we propose to identify which layers within
LLMs are most critical to the alignment process, thereby uncovering how align-
ment influences model behavior at a granular level. We propose a novel approach
to identify the important layers for LLM alignment (ILA). It involves learning a
binary mask for each incremental weight matrix in the LoRA algorithm, indicating
the significance of each layer. ILA consistently identifies important layers across
various alignment datasets, with nearly 90% overlap even with substantial dataset
differences, highlighting fundamental patterns in LLM alignment. Experimental
results indicate that freezing non-essential layers improves overall model perfor-
mance, while selectively tuning the most critical layers significantly enhances
fine-tuning efficiency with minimal performance loss.

1 INTRODUCTION

Aligning large language models (LLMs) with specific requirements is essential for enhancing their
utility across diverse applications (Luo et al., 2023a; Yu et al., 2023; Luo et al., 2023b; Li et al.,
2023). Fine-tuning LLMs during the alignment process can significantly improve the models’
capabilities to meet targeted needs (Bubeck et al., 2023). Typically, alignment involves fine-tuning
the model on diverse datasets, which may include both human-curated (Rajani et al., 2023) and LLM-
generated (Taori et al., 2023) data. Such fine-tuning approaches encompass instruction tuning (Wei
et al., 2021) and preference learning (Bai et al., 2022; Rafailov et al., 2024). Given the significant
cost associated with full parameter fine-tuning, parameter-efficient fine-tuning (PEFT) (Hu et al.,
2021; Chen et al., 2022; Pan et al., 2024) algorithms have emerged as a popular alternative, offering a
balance between performance and resource efficiency.

Understanding what LLMs actually learn during the alignment process remains a critical question.
LIMA (Zhou et al., 2023) posits that the majority of knowledge and capabilities are developed during
the pretraining phase, with alignment primarily serving to refine the model’s conversational style
and formatting. Using a well-selected set of 1,000 training examples for supervised fine-tuning
(SFT), LIMA successfully produced a high-quality aligned model. Similarly, URIAL (Lin et al.,
2023) investigated the token distribution of LLMs before and after alignment and found that most
changes were related to “stylistic tokens”, such as discourse markers and transition words, while the
knowledge-intensive content largely remained untouched, coming from the base pre-trained model.
These findings imply that the alignment process mainly adjusts the model’s presentation style rather
than altering its foundational knowledge.

To gain a deeper understanding of LLM alignment, we adopt a distinct approach by examining it at the
model parameter level. In our pilot study, we investigate the impact of different model components
on alignment performance, we conducted a simple analysis by fine-tuning only specific layers and
evaluating the resulting performance, as presented in Table 1. The results clearly indicate that fine-
tuning different components of the LLM leads to considerable performance differences. For instance,
fine-tuning the feed-forward network (FFN) layers achieves performance similar to fine-tuning all
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Table 1: Impact of fine-tuning different regions of LLAMA 2-7B (Touvron et al., 2023) on alignment
performance using LIMA dataset. Evaluated using MMLU (5-shot) (Hendrycks et al., 2021), GPT-4
scores on Vicuna prompts (Chiang et al., 2023), and MT-Bench prompts (Zheng et al., 2023). Fine-
tuning components include query/key/value projection layers (Wq , Wk, Wv), output projection layer
(Wo) in self-attention, and feed-forward networks (Wup, Wdown, Wgate)

ATT (Wq , Wk, Wv , Wo) ATT2 (Wq , Wk, Wv) FFN (Wup, Wdown, Wgate) ALL (LoRA)
MMLU ↑ 42.03 42.65 43.06 43.18
Vicuna ↑ 5.63 5.54 5.69 5.78
MT-Bench ↑ 3.82 3.80 3.92 3.98

Alpaca-GPT4 LIMA No Robots

Llama 2-7B Llama 2-7B Llama 2-7B

Mistral-7B Mistral-7B Mistral-7B

Figure 1: Layer importance ranking of LLAMA 2-7B (Touvron et al., 2023) and Mistral-7B-v0.1 (Jiang
et al., 2023) by ILA across the Alpaca-GPT4 (Peng et al., 2023), LIMA Zhou et al. (2023), and No
Robots (Rajani et al., 2023) datasets. Layers ranked in the top 75% by scores (si) are considered
important. The x-axis represents the transformer block index, and the y-axis shows the names of
linear layers within each block. The figure illustrates two key findings: (1) There is a significant
overlap (up to 90%) in the important layers identified by ILA across different alignment datasets, as
supported by the Jaccard similarity values in Table 2. This high consistency indicates that similar
capabilities are needed for alignment, regardless of substantial differences in dataset content. (2) The
important layers vary between different network architectures, suggesting that each model’s structure
and dynamics uniquely affect which layers are most crucial for alignment.

linear layers (i.e., with LoRA), whereas focusing solely on the attention layers causes a notable drop
in performance. This observation underscores the complexity of layer-specific contributions to LLM
alignment, highlighting the need for a more detailed approach to understanding their individual roles.

To this end, we propose to identify the layers that are most critical to alignment performance during
the fine-tuning process. We develop a novel approach for identifying the important layers for LLM
alignment, called ILA. Specifically, we learn a binary mask for each incremental weight matrix in the
LoRA algorithm, which serves as an indicator of layer significance. A value of zero in the binary
mask indicates that the corresponding layer has negligible influence during the fine-tuning phase,
while a value of one denotes that the layer is crucial for the process. We employ gradient descent to
learn the binary mask effectively and offer a theoretical analysis of the optimization process. The
main findings of this work are summarized as follows:

• Consistent Layer Importance Ranking Across Different Alignment Datasets. Despite the
differences in dataset, we find similar rankings of important layers during alignment for the same
pre-trained model (see Fig. 1). This suggests that the alignment process equips the model with
similar capabilities, even when the training data varies significantly in both content and size. This
evidence corroborates previous research findings and offers new insights into LLM alignment.

• Enhancing Performance by Freezing Unimportant Layers. We show that freezing approximately
25% of unimportant layers can improve model performance and that a single search for layer-wise
importance ranking is sufficient for different alignment tasks within the same architecture.

• Improving Alignment Efficiency Through Selective Fine-Tuning. Our findings show that fine-
tuning only 10-30% of the most important layers achieves performance comparable to fine-tuning
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all linear layers. Additionally, integrating this approach with QLoRA allows tuning only 30-75%
of key layers to maintain or enhance performance while significantly reducing resource costs.

2 QUANTIFYING LAYER SIGNIFICANCE IN LLM ALIGNMENT

To better understand layer significance in the alignment process of an LLM, we propose a method to
identify the important layers during alignment, abbreviated as ILA. This approach involves learning a
binary mask that serves as an significance indicator for each layer.

Consider a pre-trained LLM model with parameters θ0 composed of N layers, i.e., θ0 = {θi
0}Ni=1.

The model is fine-tuned on an alignment dataset D = {zi}ni=1 with a loss function L(θ). After t
training iterations, the model parameters are updated to θt = θ0 +∆θt, where ∆θt represents the
change in parameters till iteration t. Define a binary mask γt = {γi

t |γi
t ∈ {0, 1}}Ni=1 that encodes

layer-wise importance information. We apply γt to ∆θt and define

θmask
t = θ0 + γt ⊙∆θt, (1)

where ⊙ is component-wise multiplication. The binary mask is applied to retain the changes in
crucial layers while eliminating the rest. Below we provide a formal definition of the conditions
under which training attains stability after an adequate number of iterations.
Definition 1 (ϵ-stable). ∀ϵ > 0, the model is said to be ϵ-stable at iteration T if, for any t > T , the
loss function satisfies the condition

|Ez[L(θt+1, z)]− Ez[L(θt, z)]| < ϵ, (2)

where Ez[·] denotes the expectation with respect to the alignment dataset D.

Once training becomes stable, we can identify the layers that are crucial for the alignment task.
Definition 2 (Layer Importance). The binary mask γt is defined as the solution to the following
optimization problem:

γt = argmin
γt

L(θmask
t ), s.t. ∥γt∥ < H, (3)

where H is a hyper-parameter that serves as a constraint to limit the number of important layers.

Efficiently Identifying the Importance Layers. Due to the high cost of fine-tuning large models, to
address the optimization problem in Eq. (3), we employ the LoRA (Hu et al., 2021) algorithm, which
utilizes low-rank decomposition matrices to represent the change in model parameters till iteration t
(∆θt). Specifically, LoRA utilizes two trainable low-rank matrices, Bi

t ∈ Rdi×ri and Ai
t ∈ Rri×ki ,

to estimate the change of the ith layer:

∆θi
t = β ·Bi

tA
i
t, (4)

where β is the scalar hyperparameter of LoRA. With the binary mask γt, the ith layer is updated by

θi
t = θi

0 + β · γi
t ·Bi

tA
i
t. (5)

To ease the optimization of γt, we re-parametrize each of its each components γi
t as the output of a

Sigmoid function, i.e., γi
t = σ(sit). Then, the update of the ith layer becomes

θi
t = θi

0 + β · σ(sit) ·Bi
tA

i
t. (6)

Let st = {sit}Ni=1, θM
t = {θi

t}Ni=1. The optimization problem in Eq. (3) becomes

st = argmin
st

L(θM
t ). (7)

We use gradient descent to optimize st. The found sit is considered an importance score of the ith

layer. A larger value of sit indicates γi
t is closer to one, signifying higher importance of the ith layer.

Assumption 2.1 (Lipschitz-continuous). The loss function L(θ) : Rd → R is continuously differen-
tiable and L-smooth with constant L1 > 0 such that

∥L∞(θ)− L(θ′)∥2 ≤ L1∥θ − θ′|. (8)

In addition, L(θ) has an L-Lipschitz continuous gradient with constant L2 > 0 such that

∥∇R(θ)−∇R(θ′)∥2 ≤ L2∥θ − θ′|. (9)
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Algorithm 1: Identify the Important Layers for Alignment (ILA)
Input: Pre-trained model parameters θ0, learning rate α, the initial importance score vector

s0 = {si0}Ni=1, the number of insignificant layers K, the low-rank matrices A0, B0 for
the LoRA algorithm.

for iteration i = 1, 2, . . . do
Update At = At−1 − α∇At−1

L(θt) ;
Update Bt = Bt−1 − α∇Bt−1

L(θt) ;
if Training has become stable then

Solve the optimization problem in Eq. (7) by gradient descent to find st = {sit}Ni=1;
Stop training;

end
end

25% training milestones 50% training milestones

75% training milestones 100% training milestones

1% training milestones

Figure 2: Layer importance ranking of LLAMA 2-7B identified by our method ILA on LIMA datasets
in different training milestones (i.e., 1%, 25%, 50%, 75%, and 100%). The x-axis represents the
transformer block index, and the y-axis shows the names of linear layers within each block. Detailed
numbers of the Jaccard similarity are presented in Table 4.

Assumption 2.2. For any t > T , θt is ϵ-stable. We assume there is a constant R such that
∥θt − θt+1∥2 ≤ Rϵ, (10)

and there is a constant Q such that ∥θt∥2 ≤ Q for any t > T .
Theorem 2.1. For a sufficiently small ϵ, θT is ϵ-stable, thus Assumption 2.1 and Assumption 2.2 are
satisfied. For any t > T , we assume that ∀i, γi

t ∈ [0, 1]. Let γ′
t denote the result of γt after one step

of gradient descent, i.e., γ′
t = γt − β∇γt

L(θmask
t ). Then we have

∥γ′
t − γ′

t+1∥2 ≤ β(QL2 + L1)Rϵ. (11)

This theorem demonstrates that when θT is ϵ-stable, solving the optimization problem in Eq. (3) for
any t > T yields similar results. This is because, after one step of gradient descent, the difference
between γt and γt+1 is smaller than a sufficiently small number. The proof is provided in Appendix A,
and empirical results supporting this are shown in Fig. 2.

3 EXPERIMENTAL SETUP

Datasets. We train LLMs on three different alignment datasets, namely Alpaca-GPT4 (Peng et al.,
2023), LIMA (Zhou et al., 2023), and No Robots (Rajani et al., 2023). The characteristics of each
dataset are described as follows: (1) Alpaca-GPT4 contains 52K instruction-following data generated
by GPT-4, utilizing prompts from Alpaca (Taori et al., 2023). (2) LIMA contains only 1K carefully
curated prompts and responses. (3) No Robots contains 10K instructions and demonstrations created
by skilled human annotators.
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Table 2: Jaccard similarities of important layers identified during fine-tuning of LLAMA 2-7B and
Mistral-7B on various datasets. Top 75% highest-scoring layers are determined as important layers.

Datasets LLAMA 2-7B Mistral-7B

LIMA No Robots Alpaca-GPT4 LIMA No Robots Alpaca-GPT4

LIMA - - - - - -
No Robots 0.91 - - 0.90 - -

Alpaca-GPT4 0.90 0.90 - 0.89 0.93 -

Figure 3: Jaccard similarities of impor-
tant layers identified during fine-tuning
of LLAMA 2-7B on the LIMA dataset
with varying random seeds. The top 75%
highest-scoring layers are designated as
important layers.

Random Seed seed1 seed2 seed3

seed1 - - -
seed2 0.92 - -
seed3 0.91 0.91 -

Figure 4: Jaccard similarities between sets of impor-
tant layers identified at different milestones during
the fine-tuning of LLAMA 2-7B on the LIMA dataset.
The top 75% highest-scoring layers are designated
as important layers for this analysis.

Training
Milestones 1% 25% 50% 75% 100%

1% - - - - -
25% 0.69 - - - -
50% 0.70 0.91 - - -
75% 0.69 0.90 0.92 - -

100% 0.69 0.91 0.92 0.93 -

Models and Baselines. We use four different models as the base for our experiments: LLAMA 2-
7B (Touvron et al., 2023), LLAMA 2-13B (Touvron et al., 2023), Llama 3.1-8B (Dubey et al.,
2024), and Mistral-7B-v0.1 (Jiang et al., 2023). The baselines include (1) LoRA (Hu et al., 2021):
We add trainable pairs of rank decomposition matrices in parallel to existing weight matrices,
including query/key/value projection (Wq, Wk, Wv), output projection (Wo) in the self-attention,
feed-forward networks (Wup, Wdown, Wgate), and the output layer on top of the transformer (Whead).
(2) AdaLoRA (Zhang et al., 2023a): It dynamically adjusts the rank of incremental matrices to
control the parameter budget. Similar to LoRA, we add AdaLoRA modules to all linear layers of
the base model. (3) QLoRA (Dettmers et al., 2023): It is a fine-tuning method that significantly
reduces memory usage by quantizing the weights of pre-trained language models while maintaining
competitive performance. (4) Full Finetune: The model is initialized to the pre-trained weights and
biases, and all model parameters undergo gradient updates.

Evaluation and Training Setup. Our evaluation of language model alignment encompasses
two main dimensions: (1) Language Understanding Ability: We utilized three distinct datasets
(i.e., MMLU (Massively Multitask Language Understanding) (Hendrycks et al., 2021) and Hel-
laswag (Zellers et al., 2019) to evaluate this aspect. MMLU evaluates models across diverse subjects
requiring specialized knowledge, while Hellaswag tests commonsense reasoning by asking the model
to predict the most plausible continuation of a given context. (2) Conversational Ability: We use
two different datasets: MT-Bench (Zheng et al., 2023), which involves multi-turn conversations, and
Vicuna (Chiang et al., 2023), which involves single-turn conversations. We use GPT-4 to score the
responses. We asks GPT-4 to grade and give a score to model’s answer directly without pairwise
comparison, using the implementation version of MT-Bench (Zheng et al., 2023). For a fair compari-
son, we conduct a small range of training hyperparameter searches for LoRA and full fine-tuning to
ensure that we get strong baselines. More details are provided in Appendix B.

Targeted Performance. (1) Language Understanding Ability: Recent research (Du et al., 2020;
Sun et al., 2021; Dubey et al., 2024) suggests that the learning of language understanding tasks
essentially occurs during the pre-training phase of the base model. Therefore, significant performance
improvements in language understanding tasks (i.e., MMLU, Hellaswag) after alignment are not
expected. However, it is crucial to ensure the model retains the learned knowledge during alignment.
(2) Conversational Ability: Without alignment, the pre-train model’s conversational ability is poor.
For example, LLAMA 2-7B often produces incorrect or irrelevant responses on the Vicuna dataset.
However, its conversational ability can be significantly improved through the alignment process.
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Table 3: Comparative evaluation of LLAMA 2-7B and Mistral-7B-v0.1 models finetuned on the No
Robots Dataset. This table presents the 5-shot test accuracy for the MMLU benchmark, alongside
the 0-shot test accuracy for the Hellaswag dataset. Cells highlighted in grey indicate that ILA has
enhanced the performance of the base model. The best result is marked in bold.

Models Methods Language Understanding Conversational Ability
MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

LLAMA 2-7B

AdaLoRA 45.23 57.30 5.70 4.05
Full Finetune 45.72 57.69 6.00 3.93
Full Finetune w/ ILA 45.98 57.87 5.90 4.21
LoRA 44.58 59.46 6.23 4.70
LoRA w/ ILA 45.78 59.65 6.30 4.93

Mistral-7B-v0.1

AdaLoRA 62.13 61.68 6.10 5.03
Full Finetune 61.05 64.26 6.70 5.56
Full Finetune w/ IFILA 61.75 64.21 6.73 5.70
LoRA 61.95 62.90 6.77 5.35
LoRA w/ IFILA 62.14 62.80 6.82 5.42

4 EMPIRICAL FINDINGS

4.1 LAYER SIGNIFICANCE IN LLM ALIGNMENT

In this subsection, we applied our ILA algorithm to identify the ranking of important layers during
alignment across three different datasets: No Robots, LIMA, and Alpaca-GPT4, as shown in Fig. 1.
Additionally, we analyzed the importance ranking of layers identified at different training milestones,
as depicted in Fig. 2. To further validate the similarity of these important layers, we used the Jaccard
similarity coefficient to quantify the relationship between two sets. Specifically, we defined the top
75% highest-scoring layers as the important layers, denoted as set S. The similarity between two
distinct sets, S1 and S2, is calculated as: J(S1,S2) =

|S1∩S2|
|S1∪S2| . A value of J = 1 indicates identical

sets, while J = 0 indicates no overlap. Below, we highlight our main observations.

Consistency in Layer Importance Ranking Across Various Alignment Datasets. Our findings
demonstrate a remarkable consistency in layer importance ranking, as evidenced by: (1) the
retrieval of highly similar important layers across different alignment datasets, as shown in Fig. 1
and Table 2; (2) the consistent identification of important layers despite the optimization of γ
with varying random seeds, as illustrated in Table 3; (3) the ability to identify similar important
layers at different or early (25%) training stages, as depicted in Fig. 2 and Table 4.

The experimental results corroborate the robustness of our algorithm, which consistently identifies
stable and similar layers across different alignment datasets. This is particularly noteworthy in light of
recent work that suggests alignment fundamentally involves shifts in stylistic tokens (Lin et al., 2023).
Thus, the essence of alignment is the pursuit of similar capabilities, which aligns with our discovery
that the important layers corresponding to different datasets exhibit similarity. This convergence of
findings underscores the intrinsic alignment of our algorithm’s performance with the fundamental
objectives of dataset alignment.

Given the established importance ranking of the model layers, which proves stable for the alignment
task, we must consider how to leverage this ranking. We will address this from both performance
and efficiency perspectives. First, to maximize the performance of the fine-tuned model, we should
avoid fine-tuning layers that could negatively impact the model, focusing instead on those deemed
less significant. Second, to enhance the efficiency of fine-tuning and minimize resource consumption,
we should concentrate our efforts on layers that are particularly vital to the model’s success. Detailed
experiments and analyses of these two cases will be presented in the following section.

4.2 ENHANCING ALIGNMENT PERFORMANCE THROUGH FREEZING UNIMPORTANT LAYERS

To achieve optimal model performance, we excluded the unimportant layers, specifically those whose
modifications would negatively impact fine-tuning. Approximately 25% of the unimportant layers
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Table 4: Comparative evaluation of LLAMA 2-7B and Mistral-7B-v0.1 models finetuned on the LIMA
Dataset. This table presents the 5-shot test accuracy for the MMLU benchmark, alongside the 0-shot
test accuracy for the Hellaswag dataset. Cells highlighted in grey indicate that ILA has enhanced the
performance of the base model. The best result is marked in bold.

Models Methods Language Understanding Conversational Ability
MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

LLAMA 2-7B

AdaLoRA 44.21 59.85 5.66 3.82
Full Finetune 46.36 62.06 5.85 3.91
Full Finetune w/ ILA 46.32 62.18 5.96 4.02
LoRA 43.18 54.52 5.78 3.98
LoRA w/ ILA 44.13 54.55 5.88 4.10

Mistral-7B-v0.1

AdaLoRA 62.40 61.52 6.58 4.46
Full Finetune 60.11 63.76 6.99 5.39
Full Finetune w/ ILA 61.01 64.01 6.94 5.47
LoRA 60.83 65.42 6.82 4.88
LoRA w/ ILA 61.52 65.51 6.92 5.34

Table 5: Results of fine-tuning Mistral-7B-v0.1 on the No Robots dataset. This table presents the
5-shot test accuracy for the MMLU benchmark, along with the 0-shot test accuracy for the Hellaswag
dataset. The percentages in parentheses indicate the proportion of important linear layers fine-tuned
relative to all linear layers. The best results are highlighted in bold.

Models Methods Language Understanding Conversational Ability

MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

Mistral-7B-v0.1

LoRA 61.95 62.90 6.77 5.35

LoRA w/ ILA (10%) 62.09 61.94 6.49 5.08
LoRA w/ ILA (20%) 61.83 62.16 6.60 5.23
LoRA w/ ILA (30%) 61.89 62.79 6.71 5.37

were removed. The main results on No Robots and LIMA are presented in Table 3 and Table 4
respectively. For additional results of LLAMA 2-13B and main results on Alpaca-GPT4 dataset,
please refer to Appendix C. Based on the results, we highlight two key observations:

(1) Freezing Unimportant Layers May Enhance Performance. Compared to LoRA and
full fine-tuning, ILA consistently outperformed in most evaluation metrics while matching
performance in others. Freezing approximately 25% of unimportant layers yielded better results
than tuning all layers. (2) Only a Single Search for Layer-wise Importance Ranking is
Required for a Given Network Architecture. The importance ranking was remarkably stable
across alignment tasks for a given architecture, allowing us to compute the ranking on the No
Robots dataset and apply it effectively to other datasets.

The results indicate that ILA provides robust and efficient fine-tuning by focusing only on significant
layers while excluding those that negatively impact the model. When compared to AdaLoRA, even
though we explored a narrow range of the hyperparameter tr (target average rank of incremental
matrices), our method performed better. This outcome highlights that simply adjusting LoRA’s
matrix rank does not necessarily yield superior results in alignment tasks, as confirmed by other
studies (Dettmers et al., 2023).

Furthermore, as discussed in Section 4.1, the stability of the layer importance ranking across various
alignment datasets suggests that it is often sufficient to conduct a single importance ranking search
for a given network architecture. In our experiments, we computed the layer importance ranking
using full training iterations on the No Robots dataset, and then directly applied this ranking to other
datasets. Although dataset-specific importance rankings can yield further improvements (see Table. 9
in Section 5), the consistent cross-dataset performance achieved using a single ranking highlights the
robustness and generalizability of our approach.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 6: Comparison of fine-tuning results using QLoRA on LLAMA 2-7B and Llama 3.1-8B versus
QLoRA applied to selected important layers identified by ILA. This table shows the 5-shot test
accuracy for the MMLU benchmark and the 0-shot test accuracy for the Hellaswag dataset. Cells
highlighted in grey indicate performance improvements achieved by ILA over the base model.

Datasets Methods Language Understanding Conversational Ability
MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

LIMA
LoRA 53.85 63.08 6.40 4.43
LoRA w/ ILA (75%) 54.33 62.04 6.54 4.55
LoRA w/ ILA (30%) 54.27 62.88 6.31 4.54

NoRobots LoRA 54.08 61.73 6.69 4.94
LoRA w/ ILA 54.45 61.13 6.77 5.05

Table 7: GPU memory usage for LoRA, QLoRA, and LoRA/QLoRA with only 30% of important
layers fine-tuned. Batch size is set to 2, and the maximum token length is 1024. Percentages in
parentheses indicate the proportion of linear layers fine-tuned.

LoRA (100%) LoRA w/ ILA (30%) QLoRA (100%) QLoRA w/ ILA (30%)

GPU Memory Usage (MiB) 32988 25614 26032 18142

4.3 ENHANCING ALIGNMENT EFFICIENCY BY ONLY FINE-TUNING THE CRITICAL LAYERS

To investigate this issue, we fine-tuned only 10%, 20%, and 30% of the important layers of Mistral-
7B-v0.1, as identified by ILA, on the No Robots dataset, and compared the results with the LoRA
algorithm. The results demonstrate clear benefits in focusing on a subset of important layers:

(1) Fine-Tuning a Small Subset of Important Layers Achieves Competitive Performance
and Enhances Efficiency. Fine-tuning the top 10% or 20% of important layers results in only a
slight performance drop compared to full fine-tuning, while fine-tuning 30% of the parameters
nearly matches the performance of full fine-tuning (see Table 5). This demonstrates that focusing
on a small, carefully selected subset of important layers is sufficient for efficient fine-tuning
without significant performance loss.(2) Our Method Can be Applied to Enhance QLoRA,
Further Reducing Cost. By integrating our method with QLoRA, we fine-tuned only about
30-75% of the key layers while maintaining or improving model performance (see Table 6).
This highlights the efficiency of our approach, achieving comparable or superior results with
significantly fewer layers involved.

These findings underline the robustness of our layer selection strategy, allowing efficient use of
resources with minimal trade-offs in performance. Additionally, our integration with QLoRA
confirms that fine-tuning only a targeted subset of important layers enhances both the performance
and efficiency of state-of-the-art methods in reducing memory usage during fine-tuning.

To provide a more intuitive understanding of how our method reduces GPU memory usage, we
measured the memory consumption of QLoRA, LoRA, and the versions that fine-tune only a subset
of important layers identified by ILA in Table 7. The results show that our method reduces GPU
memory requirements while maintaining competitive performance, making it an effective strategy for
resource-constrained environments.

4.4 ABLATION STUDY

Observation 1: Randomly or manually selecting layers for fine-tuning does not work.

To substantiate the accuracy and efficacy of the ranking and importance layers identified by our
algorithm, we contrast the baseline that optimizes all linear layers without any freezing with three
alternative scenarios: (1) RL 1 and RL 2, where the top-K layers to be frozen are randomly selected
using two different random seeds; (2) FL, which involves freezing the first K linear layers; and (3)
LL, which entails freezing the last K linear layers. The experimental results indicate that neither
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Table 8: Performance comparison of ILA, random layer selection, and position-based layer selection
for fine-tuning LLAMA 2-7B on the No Robots Dataset. The abbreviations RL 1 and RL 2 refer
to the approach of randomly selecting K layers to freeze during the fine-tuning process, with each
employing a distinct random seed. FL denotes the strategy of freezing the first K layers, while LL
indicates the freezing of the last K layers. Performance reductions compared with our ILA algorithm
are highlighted in blue.

Methods Language Understanding Conversational Ability
MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

LoRA 44.58 59.46 6.23 4.70
LoRA w/ RL 1 44.23 59.71 6.08 4.60
LoRA w/ RL 2 43.98 59.11 6.10 4.68
LoRA w/ FL 44.02 59.32 6.13 4.59
LoRA w/ LL 44.61 59.21 6.20 4.63
LoRA w/ ILA 45.78 59.65 6.30 4.93

Table 9: Results of fine-tuning Mistral-7B-v0.1 on the LIMA dataset using ILA to identify important
layers from various datasets. Dataset (Imp. Layers) indicates the datasets utilized to search for the
important layers. Intersection represents freezing the layers that are the intersection of the top-K
least important layers found from the LIMA, No Robots, and Alpaca GPT4 datasets.

Dataset
(Imp. Layers)

Dataset
(Finetune)

Language Understanding Conversational Ability

MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

LIMA LIMA 61.82 65.48 6.99 5.38
No Robots LIMA 61.52 65.51 6.92 5.34

Alpaca-GPT4 LIMA 61.23 65.20 7.03 5.21
Intersection LIMA 61.49 65.62 7.06 5.44

the random freezing of K layers nor the selective freezing of either the first or last K linear layers
could outperform the baseline of tuning all layers on most evaluation metrics. In contrast, our ILA
can accurately identifies the layers of importance and freeze the top-K least important layers, thereby
achieving substantial improvements. This demonstrates that ILA effectively pinpoints the non-critical
layers for freezing, optimizing the fine-tuning process and enhancing model performance without the
need to adjust every layer.

Observation 2: Cross-dataset evaluation of layer importance can lead to the best results.

As indicated in Table 2, subtle differences are observed in the important layers identified across
various datasets. This observation leads to an intuitive hypothesis that layers consistently deemed
unimportant across all datasets may truly be non-essential. To this end, we intersect the top-K least
important layers from three distinct datasets (i.e., LIMA, No Robots, and Alpaca-GPT4) to determine
the ultimately non-critical layers. These layers are subsequently frozen during fine-tuning, with the
specific outcomes presented in Table 9.

Our analysis reveal that a holistic consideration of layer importance across multiple datasets yields
superior results compared to dataset-specific approaches. For instance, identifying important layers
within the LIMA dataset and fine-tuning on the No Robots dataset is less effective than an integrated
approach. Similarly, finding important layers and fine-tuning exclusively on the No Robots dataset
do not perform as well as the comprehensive method. This suggests that a cross-dataset evaluation of
layer importance can lead to more robust and effective fine-tuning strategies.

Observation 3: The computation cost of ILA is low.

Our ILA algorithm consists of two stages. Stage 1: We use LoRA to train the model until it is
sufficiently stable, i.e., ϵ-stable. Stage 2: We fix the backbone network and the LoRA modules to
learn the importance weights (γt). For LLAMA 2-7B and Mistral-7B-v0.1, |γt| = 225. To quantify
computation cost, we measured the training time per iteration for LLAMA 2-7B in stages 1 and 2
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with a batch size of 32. For stage 1, the training time is 6671 ms. For stage 2, the training time is
5343 ms. In Stage 2, we train for 128 batches on each dataset. Therefore, we only tune the model
for about 5.34× 128÷ 60 ≈ 11 miniutes. The main training cost is in Stage 1. However, as shown
in Table 4, it is not necessary to complete the entire training process; reaching 25% ∼ 50% of the
training milestones is sufficient.

5 RELATED WORKS

Large Language Models (LLMs) Alignment. Language models are initially pretrained to learn
general-purpose representations, enabling their transfer to a wide range of language understanding
and generation tasks (Qiu et al., 2024; Jiang et al., 2024; Nijkamp et al., 2022). To align these models
with specific user needs and improve their performance on targeted applications, techniques such as
Instruction Tuning (Zhang et al., 2023c; Sun et al., 2023; Muennighoff et al., 2023) and Preference
Learning (Hejna et al., 2023; Guan et al., 2022; Rafailov et al., 2024; Song et al., 2024; Li et al.,
2024) are commonly employed. Tuning-based alignment can introduce issues such as forgetting in
LLMs (Wang et al., 2022a;b) and underfitting (Zhang et al., 2023c; Sun et al., 2023).

To explore the nature of model alignment through various studies. LIMA (Zhou et al., 2023) achieved
a well-aligned model by fine-tuning nearly 1,000 samples using SFT, and hypothesized that the
alignment process essentially teaches the model how to conduct conversations in specific formats or
meet certain requirements without acquiring new knowledge. Similar findings have been reported in
recent studies (Chen et al., 2023; Lee et al., 2023; Gudibande et al., 2023). Duan et al. (2023) analyzed
the hidden states of LLMs, exploring the similarities between in-context learning (ICL) and instruction
tuning (IT) regarding their impact on downstream tasks. URIAL (Lin et al., 2023) investigated the
token distribution before and after alignment, suggesting that alignment primarily shifts “stylistic
tokens” like discourse markers and transition words, while the distribution of knowledge-intensive
terms remains largely unchanged. Based on prior research, we hypothesize that the abilities learned
during alignment are relatively narrow in scope. To better understand this process, we propose an
approach to identify which layers are genuinely important during alignment.

Parameter Efficient Fine-Tuning (PEFT). To tackle the high computational costs of full-model
fine-tuning, especially with Pre-trained Language Models (PLMs) ranging from billions to trillions
of parameters (Brown et al., 2020; Fedus et al., 2022), PEFT methods have been developed to reduce
parameter usage while maintaining the effectiveness and stability of knowledge transfer (Tang et al.,
2024; Peng et al., 2024). These approaches include partial fine-tuning, which selectively targets
specific model components (Zaken et al., 2021; Zhao et al., 2020; Ansell et al., 2021; Guo et al.,
2020), and soft prompt-based fine-tuning (Lester et al., 2021; Li & Liang, 2021; Asai et al., 2022).
Notable methods include BitFit (Zaken et al., 2021), Adapter (Houlsby et al., 2019), LoRA (Hu
et al., 2021) and its variants (Zhang et al., 2023b; Meng et al., 2024). Recent studies (Pan et al.,
2024; Xu & Zhang, 2024; Panda et al., 2024) have shown that fine-tuning only a small portion of
a model while masking most components can still achieve promising results in LLMs. However,
these masking strategies are often applied randomly, akin to dropout, which is suboptimal and lacks
consistency. While effective for efficient fine-tuning, these methods provide limited insight into
understanding the alignment task. To overcome these limitations, our approach leverages the concept
of skill localization (Panigrahi et al., 2023) by dynamically identifying and fine-tuning the critical
components for each task. By focusing solely on the most important regions, this method significantly
improves the efficiency of model fine-tuning while ensuring strong performance.

6 CONCLUSIONS

In conclusion, our proposed method, ILA, focuses on identifying critical layers in the alignment
process by learning binary masks for LoRA weight matrices. ILA demonstrates consistent iden-
tification of important layers across different datasets, regardless of significant content variations,
suggesting that the alignment process imparts similar capabilities to the model irrespective of the
training data. This finding provides valuable insights into the specific roles of layers during alignment.
By strategically tuning only the most vital layers, ILA effectively reduces computational overhead,
and by freezing less important layers, it further enhances model responsiveness and accuracy, leading
to more efficient resource utilization.
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A PROOF OF THEOREM 2.1

Theorem A.1. For a sufficiently small ϵ, θT is ϵ-stable, thus Assumption 2.1 and Assumption 2.2 are
satisfied. For any t > T , we assume that ∀i, γi

t ∈ [0, 1]. Let γ′
t denote the result of γt after one step

of gradient descent, i.e., γ′
t = γt − β∇γt

L(θmask
t ). Then we have

∥γ′
t − γ′

t+1∥2 ≤ β(QL2 + L1)Rϵ. (12)

Proof. Let γ̂ be the initial values of γt and γt+1. Then we have

γ′
t = γ̂ − β∇γtL(θ

mask
t ) (13)

γ′
t+1 = γ̂ − β∇γt+1L(θ

mask
t+1 ) (14)

The difference of γ′
t and γ′

t+1 is

∥γ′
t − γ′

t+1∥2 =∥(γ̂ − β∇γtL(θ
mask
t ))− (γ̂ − β∇γt+1

L(θmask
t+1 ))∥2 (15)

=β∥∇γtL(θ
mask
t )−∇γt+1L(θ

mask
t+1 )∥2 (16)

=β∥θt ⊙∇θmask
t

(θmask
t )− θt+1 ⊙∇θmask

t+1
(θmask

t+1 )∥2 (17)

≤β∥θt ⊙
(
∇θmask

t
(θmask

t )−∇θmask
t+1

(θmask
t+1 )

)
∥2 (18)

+ β∥(θt − θt+1)⊙∇θmask
t+1

(θmask
t+1 )∥2. (19)

Because L(θ) has an L-Lipschitz continuous gradient with constant L2 > 0, and ∥θt∥ ≤ Q,

∥θt ⊙∇θmask
t

(θmask
t )− θt+1 ⊙∇θmask

t+1
(θmask

t+1 )∥2 ≤QL2∥θmask
t − θmask

t+1 ∥2 (20)

=QL2∥∆θt+1 −∆θt∥2 (21)
=QL2∥θt+1 − θt∥2 (22)

Because L(θ) is L-smooth with constant L1,

∥(θt − θt+1)⊙∇θmask
t+1

(θmask
t+1 )∥2 ≤L1∥θt − θt+1∥. (23)

Therefore,
∥γ′

t − γ′
t+1∥2 ≤ β(QL2 + L1)∥θt − θt+1∥2. (24)

According to the Assumption 2.2, we have ∥θt − θt+1∥2 ≤ Rϵ, hence,
∥γ′

t − γ′
t+1∥2 ≤ β(QL2 + L1)Rϵ. (25)

B EXPERIMENTAL SETUP

For all experiments, we follow fine-tuning hyperparameters: we use AdamW with β1 = 0.9, β2 =
0.99 and weight decay of 0.1. The scheduler employed is a cosine scheduler with a warmup ratio of
0.01. For LoRA baselines, we set the hyperparameter rank r as 32.

B.1 NO ROBOTS DATASET

We do a hyperparameter search for LoRA over the following variables: learning rate
{0.001, 0.002, 0.0005, 0.0002, 0.0001}, training epochs {2, 3, 4, 5}. We do hyperparameter search
for full fine-tuning over the following variables: learning rate {1e− 4, 2e− 5, 1e− 5, 5e− 6, 2e− 6},
training epochs {2, 3, 4, 5}.

LLAMA 2-7B. Both LoRA and AdaLoRA use a dropout rate of 0.1 and a learning rate of 0.001.
The number of training epochs is 3. For full fine-tuning, the learning rate is set to 0.00001, with the
number of training epochs also being 3. The training parameters for IFILA are consistent with those
of the baselines.

Mistral-7B. For LoRA and AdaLorA, we set the dropout rate as 0.1. The learning is 0.0002. The
number of training epochs is 2. For full fine-tuning, the learning rate is set as 0.000002 and the
number of training epochs is 2. The training parameters of IFILA are the same as the baselines.
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Table 10: Fine-tuning results of LLAMA 2-13B on the LIMA and No Robots datasets. This table
shows the 5-shot test accuracy for the MMLU benchmark along with the 0-shot test accuracy for the
Hellaswag dataset. Cells highlighted in grey indicate that ILA has improved the performance of the
base model.

Datasets Methods Language Understanding Conversational Ability
MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

LIMA LoRA 53.85 63.08 6.40 4.43
LoRA w/ ILA 54.33 62.04 6.54 4.55

No Robots LoRA 54.08 61.73 6.69 4.94
LoRA w/ ILA 54.45 61.13 6.77 5.05

B.2 LIMA DATASET

We do a hyperparameter search for LoRA over the following variables: learning rate
{0.001, 0.002, 0.0005, 0.0002, 0.0001}, training epochs {5, 10, 15, 20}. We do hyperparameter
search for full fine-tuning over the following variables: learning rate {1e− 4, 2e− 5, 1e− 5, 5e−
6, 2e− 6}, training epochs {5, 10, 15, 20}.

LLAMA 2-7B . For LoRA and AdaLorA, we set the dropout rate as 0.1. The learning is 0.001.
The number of training epochs is 20. For full fine-tuning, the learning rate is set as 0.00001 and the
number of training epochs is 5. The training parameters of IFILA are the same as the baselines.

Mistral-7B. For LoRA and AdaLorA, we set the dropout rate as 0.1. The learning is 0.0002. The
number of training epochs is 5. For full fine-tuning, the learning rate is set as 0.000005 and the
number of training epochs is 5. The training parameters of IFILA are the same as the baselines.

B.3 ALPACA-GPT DATASET.

We do a hyperparameter search for LoRA over the following variables: learning rate
{0.001, 0.002, 0.0005, 0.0002, 0.0001}, training epochs {0.5, 1, 1.5, 2, 3}. We do hyperparameter
search for full fine-tuning over the following variables: learning rate {1e− 4, 2e− 5, 1e− 5, 5e−
6, 2e− 6}, training epochs {0.5, 1, 1.5, 2, 3}.

LLAMA 2-7B . For LoRA and AdaLorA, we set the dropout rate as 0.1. The learning is 0.0002.
The number of training epochs is 1.5. For full fine-tuning, the learning rate is set as 0.000002 and the
number of training epochs is 0.5. The training parameters of IFILA are the same as the baselines.

Mistral-7B. For LoRA and AdaLorA, we set the dropout rate as 0.1. The learning is 0.0002. The
number of training epochs is 5. For full fine-tuning, the learning rate is set as 0.000002 and the
number of training epochs is 0.5. The training parameters of IFILA are the same as the baselines.

C ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL EXPERIMENTS ON MODEL SCALABILITY

To assess whether freezing unimportant layers continues to enhance model performance at a larger
scale, we conducted additional experiments on LLAMA 2-13B. Specifically, we fine-tuned LLAMA 2-
13B using the No Robots and LIMA datasets, with results compared against LoRA presented in the
table below. The experimental outcomes demonstrate that our method maintains strong performance
on LLAMA 2-13B. Despite the increased model size, the underlying architectural similarities suggest
that our approach remains effective and scalable, likely extending its benefits to even larger models.
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Table 11: Comparative Evaluation of LLAMA 2-7B and Mistral-7B-v0.1 Models finetuned on the
Alpaca-GPT4 Dataset. This table presents the 5-shot test accuracy for the MMLU benchmark,
alongside the 0-shot test accuracy for the Hellaswag dataset. Cells highlighted in grey indicate that
ILA has enhanced the performance of the base model. The best result is marked in bold.

Models Methods Language Understanding Conversational Ability
MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

LLAMA 2-7B

AdaLoRA 46.13 57.85 7.06 3.90

Full Finetune 45.91 57.73 4.62 3.56
Full Finetune w/ ILA 46.23 57.67 5.03 4.01

LoRA 43.66 58.49 6.91 4.21
LoRA w/ ILA 44.69 58.22 7.01 4.58

Mistral-7B-v0.1

AdaLoRA 62.48 62.08 7.43 5.51

Full Finetune 60.56 62.80 4.55 3.82
Full Finetune w/ ILA 60.88 62.91 5.22 4.11

LoRA 61.82 62.70 7.31 6.15
LoRA w/ ILA 62.14 62.80 7.45 6.19

We also carried out further experiments on Alpaca-GPT4 using LLAMA 2-7B and Mistral-7B-v0.1
to evaluate the adaptability of our approach across different model architectures. Consistently, our
method outperformed LoRA while requiring fewer layers to be fine-tuned. These findings further
validate the robustness and scalability of our approach, showing its capability to effectively enhance
performance across various model sizes and architectural variations.
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