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ABSTRACT

Generalized Additive Models (GAMs) are widely recognized for their ability to
create fully interpretable machine learning models for tabular data. Traditionally,
training GAMs involves iterative learning algorithms, such as splines, boosted trees,
or neural networks, which refine the additive components through repeated error
reduction. In this paper, we introduce GAMformer, the first method to leverage
in-context learning to estimate shape functions of a GAM in a single forward pass,
representing a significant departure from the conventional iterative approaches to
GAM fitting. Building on previous research applying in-context learning to tabular
data, we exclusively use complex, synthetic data to train GAMformer, yet find
it extrapolates well to real-world data. Our experiments show that GAMformer
performs on par with other leading GAMs across various classification benchmarks
while generating highly interpretable shape functions.

1 INTRODUCTION

The growing importance of interpretability in machine learning is evident, especially in areas where
transparency, fairness, and accountability are critical (Barocas and Selbst, 2016; Rudin et al., 2022).
Interpretable models are essential for building trust between humans and AI systems by allowing
users to understand the reasoning behind the model’s predictions and decisions (Ribeiro et al., 2016).
This is crucial in safety-critical fields like healthcare, where incorrect or biased decisions can have
severe consequences (Caruana et al., 2015). Additionally, interpretability is vital for regulatory
compliance in sectors like finance and hiring, where explaining and justifying model outcomes is
necessary (Arun et al., 2016; Dattner et al., 2019). Interpretable models also help detect and mitigate
bias by revealing the factors influencing predictions, ensuring fair and unbiased decisions across
different population groups (Mehrabi et al., 2021).

Generalized Additive Models (GAMs) have proven a popular choice for interpretable modeling due
to their high accuracy and interpretability. In GAMs, the target variable is expressed as a sum of
non-linearly transformed features. This approach strikes a balance between the interpretability of
linear models and the flexibility of capturing non-linear relationships between features and the target
variable (Hastie and Tibshirani, 1987). A wide variety of GAMs exist, differing in the non-linear
functions used to transform features and the methods employed to fit these functions to training data.
Traditionally, GAMs have used splines in conjunction with the backfitting algorithm (Hastie and
Tibshirani, 1987), while Explainable Boosting Machines (EBMs) utilize decision trees and cyclic
gradient boosting (Lou et al., 2012; 2013; Caruana et al., 2015). More recently, Neural Additive
Models (NAMs) have employed multilayer perceptrons (MLPs) optimized via gradient descent
(Agarwal et al., 2021). All existing GAM variants share the need for an iterative optimization
algorithm to fit the shape functions, which introduces additional hyperparameters for optimization
and regularization that require tuning (Siems et al., 2023; Kovács, 2022).

Recently, in-context learning (ICL) has emerged as a powerful paradigm for eliminating explicit
optimization in models. This breakthrough was first observed in large language models (Brown et al.,
2020a), where a model trained in an unsupervised manner on vast amounts of unlabeled data can learn
to execute a new task when presented with examples, without any further optimization or updates
to its parameters. Since then, ICL has been applied to various domains, including multi-modal
foundation models (Li et al., 2023) and time-series forecasting (Dooley et al., 2024). Of particular
relevance to our work is TabPFN (Hollmann et al., 2023; Müller et al., 2022), a transformer model

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

?Tr aining 
Data Points

Binning

MLP

Shape 
Functions

x1

x2

x3

x1

x2

x3

Embedding

Test  
Data Point

MLP

MLP

f(x1, x2, x3) = 
f1 (x1) + f2 (x2) + f3 (x3)  

y

Loss(y, f(x1, x2, x3))

f3

x3

f2

x2

f1 

x1

x1 x2 x3 y

 Prediction

Attention
across Features

Attention 
across Data Points

Shape Funct ion Est im at ion GAM Infer ence

Figure 1: GAMformer’s forward pass on a new dataset with three features (x1, x2, x3) and label y
and two data points: (1) For each data point, we bin all features, one-hot encode them, embed the
resulting vectors and add the label of the data point. (2) We alternate between applying attention
across the features and the data points, allowing us to handle varying numbers of each. (3) We decode
per-feature shape functions using a shared MLP decoder. (4) We infer the prediction for test data
points by looking up and adding each feature’s shape function value (red bins) forming the GAM
prediction. (5) Finally, we compute the loss based on the prediction allowing the end-to-end training
of the shape function estimation based on (in our case, synthetic) training datasets.

pretrained on complex, synthetic tabular data. This pretraining enables TabPFN to generalize to
real-world data when presented with a dataset in the form of in-context examples, demonstrating the
potential of ICL.

We introduce GAMformer (see Figure 1), the first GAM method to estimate shape functions using
ICL in a single forward pass. GAMformer distinguishes itself from existing GAM methods by
employing a non-parametric, binned representation of shape functions, thus eliminating the need
to impose a specific model class. Similar to TabPFN, our model is trained exclusively on large-
scale synthetic datasets, yet demonstrates robust performance on real-world data. During training,
GAMformer estimates shape functions for each feature based on the training data’s features and labels.
These estimated functions are then utilized to generate predictions for test data points by summing
the shape function values across features. The model is trained end-to-end based on the GAM’s
predictions, ensuring that it learns to accurately construct shape functions for reliable predictions.

Our main contributions can be summarized as follows:

• We introduce GAMformer, the first method to utilize in-context learning with sequence-to-
sequence models to form shape functions in a single forward pass, eliminating the need for
iterative learning and hyperparameter tuning.

• Our experimental results demonstrate GAMformer’s capacity to match the accuracy of
leading GAMs on various classification benchmarks.

• Our case study on MIMIC-II demonstrates how GAMformer can be applied to real-world
data to generate interpretable models and insights of that data.

To facilitate reproducibility, we make our code available under the following anonymous link.

2 BACKGROUND AND RELATED WORK

In this section, we provide some background and related work on generalized additive models and
in-context learning.
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2.1 GENERALIZED ADDITIVE MODELS.

Generalized Additive Models (GAMs) (Hastie and Tibshirani, 1987) emerged as a generalization of
Generalized Linear Models (Nelder and Wedderburn, 1972) which include non-linear transformations
of the input features. The structure of a GAM is given by:

g(E[y|x]) = β +
∑p

i=1
fi(xi), (1)

where x = (x1, . . . xp) ∈ X ⊆ Rp is the input with p features, y ∈ Y ⊆ Rm is the response
variable , and fi : R → R are univariate functions termed shape functions that capture the individual
contributions of each feature. The intercept β ∈ R is a learnable bias term, and g : R → R is the
link function that connects the expected outcome to the linear predictor, examples of which include
the logit or softmax function for binary or multiclass classification or the identity function for linear
regression. The shape functions fi in GAMs, also sometimes called partial dependence plots, allow
for an interpretable representation of each feature’s effect, akin to the role of coefficients in linear
regression, thus enabling practitioners to inspect the learned potentially non-linear relationships.

Traditional GAMs often use splines and backfitting (Hastie and Tibshirani, 1987), enhanced by
penalized regression splines (Wood, 2003) and fast fitting algorithms (Wood, 2001). Spline-based
GAMs use the backfitting algorithm, iteratively updating each shape function to fit the residuals of
others until convergence. More recent advances include Explainable Boosting Machines (EBMs) (Lou
et al., 2012; 2013; Caruana et al., 2015), which use decision trees to model shape functions via
cyclic gradient boosting. This approach learns each feature’s contribution iteratively in a round-robin
manner, mitigating collinearity effects and accurately modeling steps in the data, which is crucial for
capturing discontinuities like treatment effects in medical data. On the other hand, Neural Additive
Models (NAMs) (Agarwal et al., 2021) and follow up works (Chang et al., 2021; Dubey et al., 2022;
Radenovic et al., 2022; Xu et al., 2022; Enouen and Liu, 2022; Bouchiat et al., 2024) use multilayer
perceptrons (MLPs) as non-linear transformations to model the shape functions fi. As a result,
NAMs can be optimized using variants of gradient descent by leveraging automatic differentiation
frameworks. Finally, GAMs have also found applications in time-series forecasting, with models
such as Prophet (Taylor and Letham, 2018) and NeuralProphet (Triebe et al., 2021). For a more
comprehensive related work refer to Appendix A.

2.2 IN-CONTEXT LEARNING & PRIOR-DATA FITTED NETWORKS

In-Context Learning (ICL) was first demonstrated alongside the introduction of GPT-3 (Brown
et al., 2020b), where the authors showed that Transformer models (Vaswani et al., 2017) could
learn to perform tasks solely from input examples, without explicit training or fine-tuning, after
self-supervised pre-training. This capability marks a significant paradigm shift from the traditional
machine learning paradigm of in-weights learning, where the parameters of a model are adjusted
in order to learn a new task. The discovery of ICL has led to numerous investigations into the
mechanisms used by trained transformers that enable ICL. Olsson et al. (2022) found that a two-layer
attention-only network can develop “induction heads”, a mechanism that outputs the token succeeding
a previous instance of the current token, precisely when its ICL performance increases. Chan et al.
(2022) investigated the properties of the data distribution that contribute to the emergence of ICL
abilities, while Reddy (2024) identified factors responsible for the abrupt emergence of induction
heads.

Of particular relevance to this paper are Prior-Data-Fitted Networks (PFNs) (Müller et al., 2022;
Hollmann et al., 2023), which showed that a transformer trained on complex synthetic data generated
using random causal graphs can be used for tabular classification. From a Bayesian perspective,
such causal graphs ϕ sampled from a hypothesis space Φ (the prior), define a mechanism that
describes the relationship between the input and output variables. In TabPFNs (Hollmann et al.,
2023), a synthetic dataset D ∼ p(D) = Eϕ∼p(ϕ)[p(D|ϕ)] is repeatedly constructed by propagating
samples x ∼ p(X ) from the input space through a randomly sampled structural causal model (SCM),
ϕ ∼ p(ϕ), to obtain the corresponding y values. We denote the dataset containing N such examples
as the set D := {(x(n), y(n))}Nn=1. To simulate practical inference scenarios, the dataset D is
split into Dtrain and the context dataset Dtest = D \Dtrain. The transformer model parses the pairs
(xtrain, ytrain) ∈ Dtrain, as well as xtest, as single input tokens and its parameters θ are updated to
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minimize the negative log likelihood on the test held-out examples:

E(Dtrain∪(xtest,ytest))∼p(D)[− log qθ(ytest|xtest, Dtrain)]. (2)

Müller et al. (2022) showed that by minimizing this loss, TabPFN approximates the true posterior
predictive distribution

p(ytest|xtest, Dtrain) =

∫
Φ

p(ytest|xtest, ϕ)p(ϕ|Dtrain)dϕ ∝
∫
Φ

p(ytest|xtest, ϕ)p(Dtrain|ϕ)p(ϕ)dϕ (3)

on a new input point from the test set xtest up to an additive constant. This paradigm has since
been extended to time-series forecasting (Dooley et al., 2024), hyperparameter optimization (Müller
et al., 2023a; Adriaensen et al., 2024; Rakotoarison et al., 2024) and the prediction of neural network
weights (Müller et al., 2023b). Similarly, Conditional Neural Processes (Garnelo et al., 2018) also
perform a form of ICL, using a neural architecture with weights meta-learned on real data. (Nguyen
and Grover, 2022) extended Neural Processes to a transformer architecture, leading to an architecture
similar to PFNs. GAMformer builds on top of TabPFN by training a transformer on synthetically
generated datasets to estimate the shape function per feature and computing predictions by adding
the individual shape function values.

3 GAMFORMER

We first provide a high-level overview of how GAMformer works before delving into the details of
each of its components. GAMformer follows a two-step approach that first fits a GAM on training
data Dtrain and then predicts on test data xtest, as illustrated in Figure 1. Initially, a transformer
estimates shape functions using ICL on the training dataset Dtrain. Next, predictions are computed by
aggregating the shape function values for each test data point xtest. This methodology replaces the
traditional data fitting process of GAM variants with a single forward pass of a pre-trained transformer
model, eliminating the need for optimization and regularization hyperparameters. We now describe
each model component in more detail.

3.1 SHAPE ESTIMATION AND PREDICTIONS

We obtain the shape functions with ICL by applying a transformer on the training input points and
labels:

f̃ = Tθ(xtrain, ytrain) ∈ Rp×nbins×m, (4)
where p,m and nbins are respectively the numbers of features, classes and bins. To get predictions on
a new point of the test set xtest, we first bin each feature value and then apply the estimated shape
function:

g (ỹtest) =

p∑
i=1

f̃ijxi
∈ Rm, (5)

where jxi
∈ [nbins] denotes the bin index corresponding to the i−th feature of xtest. We now give more

details on the binning and the architecture used for Tθ in Eq. 4 before discussing our pre-training
approach.

3.2 MODEL ARCHITECTURE

Feature Preprocessing. Prior to being passed through the transformer, all features of each data
point are binned, one-hot encoded, and finally embedded using an MLP. We use nbins = 64 bins for
each feature, allocating bins based on the quantiles of the feature in the training dataset. Similarly
to TabPFN, we embed the label of each datapoint and add it to the embedding of each feature.
Categorical features are equally distributed across the 64 bins according to their ratios.

Representation of the shape functions. To accurately represent the shape functions, we chose
to predict a discrete representation for each feature by discretizing it into 64 bins. An alternative
approach would have been to predict the weights of a Neural Additive Model (NAM), similar to the
method employed by Mothernet (Müller et al., 2023b). However, we decided against this approach to
more naturally represent sudden discontinuities in the shape functions1.

1We refer to our case study on MIMIC-II for an illustration of this effect.
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Transformer. The preprocessed training datapoints are processed by a transformer architecture
consisting of 12 layers, each with a dual-module design that sequentially applies self-attention—first
over the features and then over the data points. This design, inspired by (Lorch et al., 2022), ensures
that our model is agnostic to the number of features and data points, and is equivariant with respect to
the order of both. As a result, unlike TabPFN (Hollmann et al., 2023), our approach does not require
padding to a fixed maximum number of features.

After the transformer layers, we compute the average embeddings for each class based on training
labels enabling multi-class classification (limited to 10 classes in our experiments). This averaging
yields one embedding per class per feature which we denote h ∈ Rp×d×m where d denotes the
embedding dimension of the transformer2. Each embedding is then passed through a shared decoder
MLP to produce the binned shape functions f̃ ∈ Rp×nbins×m. This architecture is parameter-efficient
as it allows sharing of parameters across features and classes. The model comprises 40k parameters
in the encoder layer, 50.5M parameters in the transformer layers, and 0.3M parameters in the decoder,
resulting in a total of 50.8M parameters. Note that while the shape function estimation scales
quadratically in the number of features and datapoints, the inference only scales linearly in both.

3.3 TRAINING PROCEDURE

We train with SGD on synthetic data priors, a method introduced in Prior-Data Fitted Networks (PFNs)
(Müller et al., 2022; Hollmann et al., 2023). These priors are designed to be diverse, facilitating the
generation of realistic tabular datasets and enabling extrapolation to real-world data. We utilize two
types of priors for training: (1) Structural Causal Models, which involve sampling random causal
graphs and generating data from them, and (2) Gaussian Processes, where random Gaussian Processes
are sampled and used to generate data. For more details on the synthetic data generation process, we
refer to Appendix D. During training, the synthetic data is randomly split into train and test datasets.
To obtain the parameters θ of Eq. 4 we minimize a cross-entropy loss between the estimated GAM
prediction and ground truth labels on the test dataset Dtest:

θ∗ ∈ argminθE(Dtrain∪(xtest,ytest))∼p(D) [L(ỹtest, ytest)] (6)

Additional details on the training are given in Appendix E.

GAMformer’s core contribution is the substitution of the data fitting process of traditional GAM
variants with a single forward pass of a pre-trained transformer model, which is presented with
data through in-context examples. Consequently, GAMformer replaces the manually crafted fitting
procedures used in methods like EBMs (Caruana et al., 2015), where the boosting procedure is
restricted to one feature at a time in a round-robin manner, or the joint optimization of all shape
functions in NAMs (Agarwal et al., 2021) using SGD. Note that in both traditional GAM fitting and
GAMformer, the output of the processes remains the same; a main effects GAM fitted to a given
dataset represented by its shape functions.

3.4 HIGHER-ORDER EFFECTS

We now describe how GAMformer can be extended to handle higher-orders effects. We extend
GAMformer to model higher-order effects, specifically pairwise interactions, by incorporating
feature products, resulting in up to O(p2) potential features. GAMformer can accommodate this by
performing ICL on concatenated original data and higher-order effects, represented as feature vectors
in Rp+P , where P denotes the number of pair interactions. However, increasing feature dimensions
beyond the 10 used in pretraining is problematic and adds complexity to shape function estimation.
To mitigate this, we rank the most informative pairs via the FAST method (Lou et al., 2013) and the
optimal number of pairs is determined as a hyperparameter through cross-validation during inference.

4 EXPERIMENTS

After pretraining GAMformer on the synthetic datasets, we evaluate it on both illustrative and real-
world tasks in 4.1 and 4.2, respectively. Moreover, in 4.3, we highlight its potential to assist in

2This embedding is equivariant with respect to input features but not invariant to class ordering due to distinct
class encodings in the input layer.
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decision-making in a clinical setting by predicting the mortality rate of patients in the intensive care
unit (ICU). We compare to Explainable Boosting Machines (EBMs) (Lou et al., 2012; 2013; Caruana
et al., 2015) in terms of estimated shape function quality, as well as to other state-of-the-art tabular
classification models such as XGBoost (Chen and Guestrin, 2016) and TabPFN (Hollmann et al.,
2023) in terms of predictive performance. On the downstream datasets, differently from EBM and the
other baselines, GAMformer requires only a single forward pass of the transformer model to estimate
the shape functions and construct prediction on the entire test set, without any parameter updates.

4.1 ILLUSTRATIVE EXAMPLES

Before demonstrating GAMformer on real-world tabular data, we first investigate its behavior on
synthetic data where the data-generation process is known. This allows us to validate the effectiveness
of GAMformer in capturing the underlying relationships between features and the target variable. All
considered examples are binary classification and hence we only show one shape function per class
per feature. In the context of GAMs with a logit link function (used for binary classification), log-odds
is the unit of the predictors. Therefore, the shape functions’ output values are on the log-odds scale,
which are then transformed to overall prediction probabilities after summing via the logistic function.
For all metrics reported in the paper, we use ROC-AUC (Receiver Operating Characteristic - Area
Under the Curve).
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Figure 3: Robustness analysis (linear, binary clas-
sification): GAMformer consistently outperforms
or matches EBM across various sample sizes and
feature counts, showcasing its efficiency

Linear, binary classification. We begin by eval-
uating GAMformer and, for comparison, EBMs
on data generated by the linear, binary classifica-
tion problem f(x1, x2, x3) = I((−1)x1+0x2+
x3 > 0), where I is the indicator function. We
sample 2000 data points uniformly and indepen-
dently from the interval [-2, 2] and split the data
into 1500 training points and 500 test points.
The results, shown in Figure 2, demonstrate that
both GAMformer and EBMs accurately estimate
the slopes for each feature and achieve an ROC
AUC of 1.0 on the test dataset. However, the
shape functions learned by GAMformer are no-
ticeably smoother, suggesting that it may have
captured some bias towards smoother models
during pretraining. Additionally, we compared the effect of varying the number of datapoints or fea-
tures in this example on EBMs and GAMformer in Figure 3. Our findings indicate that GAMformer
consistently outperforms EBMs across various sample sizes and feature counts.

Polynomial, binary classification. To further validate the robustness of GAMformer, we evaluate
it on data generated by a more complex function f(x1, x2) = I(x1 + x2

2 > 0). The experimental
setup remains the same as for the logistic regression case. The results, presented in Figure 4,
show that both GAMformer and EBMs successfully capture the quadratic relationship in x2 and
the linear contribution of x1 up to x1 ≤ 0. For x1 > 0, f always predicts true, resulting in a
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Figure 2: Shape functions derived from GAMformer and EBMs applied to the linear, binary classifi-
cation problem f(x1, x2, x3) = I((−1)x1 + 0x2 + x3 > 0). We use a twin y axis with GAMformer
and EBM on left and right, respectively. All models shown result from a 30-fold cross-validation
over 1500 data points.
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Figure 4: (a) Shape functions derived from GAMformer and EBMs applied to the polynomial, binary
classification problem f(x1, x2) = I(x1+x2

2 > 0). All models result from a 30-fold cross-validation
over 1500 data points are shown.
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Figure 5: Visualization of classification boundaries for various baseline classifiers and GAMformer
on scikit-learn dataset examples (Pedregosa et al., 2011), in the lower right corner we show the
ROC-AUC on a validation split. Due to the absence of higher-order feature interaction terms in both
GAMformer and EBM (main effects), the ’XOR’ dataset (bottom row) is not accurately modeled by
them. Incorporating second-order effects solves the problem (EBM∗ and GAMformer∗).

constant contribution. Consistent with the previous experiment, GAMformer produces smoother
shape functions. Again both models achieve an ROC AUC of 1.0 on the test dataset

Classification Boundaries. We visualize the classification boundaries of GAMformer compared
to TabPFN and EBM on the scikit-learn (Pedregosa et al., 2011) test datasets in Figure 5. We
find that GAMformer performs similarly to TabPFN and EBMs on most of the example datasets.
LA-NAM (Bouchiat et al., 2024) (main effects only), a Bayesian version of NAMs (Agarwal et al.,
2021), provides good uncertainty estimates despite exhibiting slightly worse predictive performance.
It is worth noting that GAMformer, EBM and LA-NAM struggle with accurately modeling the ‘XOR’
dataset (bottom row) due to the absence of higher-order feature interaction terms in these models.
This is resolved by incorporating second-order effects (EBM∗ and GAMformer∗; see Section 3.4 for
details), allowing them to effectively learn the non-linear decision boundary of the ‘XOR’ function.

4.2 MULTI-CLASS CLASSIFICATION ON OPENML TABULAR DATASETS

To assess the transferability of pretraining on synthetic data to real-world tabular data, we evaluate
GAMformer’s performance on the test datasets from TabPFN (Hollmann et al., 2023), which include
up to 2000 datapoints (see Appendix B.1 for dataset details). Figure 6 reports Critical Diagrams (CD)
from Demšar (2006) showing the average rank across datasets for each method, with statistically
tied methods grouped by horizontal bars. Our method outperforms EBM when using only main
effects. With pair effects, both GAMformer* and EBM* show slight improvements, matching
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Figure 6: Critical Difference diagram demonstrating GAMformer’s competitive performance against
state-of-the-art baselines across diverse datasets. Lower ranks indicate superior performance; con-
nected algorithms are not statistically significantly different (p = 0.05).

XGBoost’s performance. We also compare against GAMs from the mgcv R 3 library. mgcv
GAM models the relationships between features and output variables by combining parametric and
non-parametric terms. The non-parametric components are represented by splines, thus capturing
nonlinear relationships. In mgcv GAM the degree of smoothness in every spline is automatically
selected using Restricted Maximum Likelihood (REML) (Wood, 2010).

We note that the small difference in performance between XGBoost and GAMformer suggests that the
trade-offs in model capacity when choosing a main effects only GAM are often less significant than
expected. As a result, the substantial interpretability benefits offered by the GAM model class become
even more appealing, making it a viable choice for many applications. We present additional results
on five binary classification datasets used by Chang et al. (2021) in Appendix B.2. Despite these
datasets falling outside the recommended range of 2000 datapoints, GAMformer still demonstrates
comparable performance to more complex models.

4.3 CASE STUDY: INTENSIVE CARE UNIT MORTALITY RISK

In this case study, we examine shape functions derived from GAMformer and EBMs (main effects
only) using the MIMIC-II dataset (Lee et al., 2011a), a publicly available critical care dataset for
predicting mortality risk based on various demographic and biophysical indicators. Our analysis
focuses on four key clinical variables: Age, Heart Rate (HR), PFratio (PaO2/FiO2 ratio), and Glasgow
Coma Scale (GCS), as shown in Figure 7 (remaining variables in Appendix G.1). Further results on
the MIMIC-III dataset are available in Appendix G.2.

For Age, the GAMformer shape function shows a steady increase in the log-odds of adverse outcomes
with advancing age, stabilizing at older ages. The data density plot reveals a higher concentration
of data points in middle age, with fewer at the extremes. The shape function exhibits less variance
where data is denser, indicating the model’s reliability in these regions. Overall, the shape function
highlights increased risk in elderly patients due to declining physiological reserves and multiple
chronic conditions. Heart Rate (HR) exhibits a complex relationship with adverse outcomes. Both
GAMformer and EBMs capture a U-shaped risk profile, indicating increased risk at very high and
very low heart rates, underscoring the importance of maintaining HR within a normal range. PFratio,

3https://www.rdocumentation.org/packages/mgcv/versions/1.9-1/topics/gam
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Figure 7: Shape functions derived from GAMformer and EBMs applied to the MIMIC-II dataset for
critical clinical variables. The data density plot is shown above each figure. The results are based on
30 models for both GAMformer and EBMs, each fitted on 10,000 randomly selected data points.
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a lung function and oxygenation efficiency measure, shows a steep risk increase as values decrease.
Lower PFratio values, critical in diagnosing and managing conditions like Acute Respiratory Distress
Syndrome (ARDS), indicate worse lung function. Notably, both models display a sharp drop in
risk at a PFratio of approximately 325, likely an artifact from data preprocessing where missing
values were imputed at the mean, previously pointed out by Chen et al. (2023) for MIMIC-2. In
healthcare, missing values often suggest healthier patients, as data collection was deemed unnecessary
by professionals. Here, patients with missing PFratio values, representing the majority, have lower risk
than those with collected values. GAMformer more precisely isolates these missing value patients,
demonstrating its potential to detect data processing artifacts better than prior GAM algorithms.
For the Glasgow Coma Scale (GCS), which measures the level consciousness, there is a strong
negative correlation with adverse outcomes. Lower GCS scores, indicating reduced consciousness,
are associated with significantly higher mortality risk. Our findings show that GAMformer effectively
handles categorical data, identifying patterns similar to those detected by EBMs.

5 LIMITATIONS & BROADER IMPACT

Limitations. While GAMformer introduces a novel approach to estimating Generalized Additive
Models (GAMs), it is important to acknowledge its current limitations. This work primarily focuses
on main and second-order effect GAMs and does not account for higher-order interactions, which
are addressed in other GAM implementations, such as EBMs (Lou et al., 2013; Nori et al., 2019;
Chang et al., 2021). Future research could explore incorporating these interactions to enhance the
model’s expressiveness and predictive capabilities. Another limitation of the current GAMformer
model is its difficulty in improving predictions when presented with datasets that exceed twice the
size of the data it saw during training (c.f. Figure 8). This issue is related to the well-known challenge
of length extrapolation in sequence-to-sequence models, including transformers (Grazzi et al., 2024;
Zhou et al., 2024). Addressing this limitation may require exposing the model to a larger variety of
number of examples during training. However, due to computational constraints, the experiments in
this work were limited to a maximum of 500 datapoints during training. Future studies with increased
computational resources could investigate the model’s performance on larger datasets and develop
strategies to mitigate the length extrapolation problem. The GAMformer model’s transformer-based
architecture scales quadratically with both the number of training data points and features, posing
a similar challenge to handling large datasets as faced by TabPFN (Hollmann et al., 2023). Novel,
scalable transformer alternatives, such as the recently proposed Mamba (Gu and Dao, 2023) or Gated
Linear Attention (Yang et al., 2024), may prove useful in overcoming this issue.

Broader Impact. As a versatile machine learning model for tabular data, GAMformer offers both
positive and negative societal impacts. Positively, it can generate novel insights in fields like medicine,
enhancing disease diagnosis and treatment. However, it can also be misused to not mitigate but
exploit biases, such as adjusting insurance premiums based on ethnicity, leading to discrimination.

6 CONCLUSION

In this paper, we introduce GAMformer, a novel approach to creating GAMs using in-context learning
with transformer models. By leveraging a single forward pass to form shape functions, GAMformer
overcomes the limitations of traditional GAM algorithms that require iterative learning processes
and hence hyperparameter tuning. Our approach uses non-parametric, binned representations of
shape functions, resulting in significant improvements in efficiency and accuracy across various
classification benchmarks. Extensive experiments demonstrate that GAMformer approaches the
accuracy of leading GAM variants while exhibiting robustness to label noise and class imbalance.
The model’s ability to generalize beyond the number of examples seen during training highlights its
adaptability and potential for practical applications.

GAMformer is fundamentally different from the iterative optimization methods traditionally used,
and offers a new research direction for interpretable models on tabular data. Further, our case study on
the MIMIC-II dataset showcases that interpreting GAMformer’s shape functions can yield qualitative
insights and uncover flaws in datasets similar to state of the art GAM methods. This work contributes
to the development of more transparent and explainable AI systems, with potential applications in
various domains where interpretability is crucial. Future research can expand on this initial new
paradigm, and explore scalable alternatives to transformers to handle larger datasets.
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A GENERALIZED ADDITIVE MODELS: EXTENDED RELATED WORK

As with many families of machine learning algorithms, the differences among GAM algorithms lie in
(a) the functional form of the shape functions fi, (b) the learning algorithm used for their estimation
and (c) regularity assumptions and regularization. Two important properties that all GAMs share are
(1) the ability to learn non-linear transformations for each feature and (2) additively combining these
shape functions (prior to applying the link function) to create modularity that aids interpretability by
allowing users to examine shape functions one-at-a-time.

Typically, GAMs have relied on splines and backfitting algorithms for estimation (Hastie and Tibshi-
rani, 1987), with subsequent works focusing on improving efficiency and stability through penalized
regression splines (Wood, 2003) and fast, stable fitting algorithms (Wood, 2001). Spline-based
GAMs are typically fitted using the backfitting algorithm, an iterative procedure that starts with
initial estimates of the smooth functions for each predictor variable. The algorithm then repeatedly
updates each function by fitting a weighted additive model to the residuals of the other functions until
convergence is achieved. The weights are determined by the current estimates of the other functions
and the link function in the case of generalized additive models.

Modern approaches leverage machine learning advances. Explainable Boosting Machines (EBMs)
(Lou et al., 2012; 2013; Caruana et al., 2015) model the shape functions using decision trees, which
are fitted using a variant of gradient boosting called cyclic gradient boosting. The model iteratively
learns the contribution of each feature and interaction term in a round-robin fashion, using a low
learning rate to ensure that the order of features does not affect the final model. This cyclic training
procedure helps mitigate the effects of colinearity among predictors by providing opportunity for
data-driven credit attribution among the features while preventing multiple counting of evidence.
EBMs are also popular because they can accurately capture steps in the shape functions, which is
important for modeling discontinuities in data, such as treatment effects in medical data.

More recently, Neural Additive Models (NAMs) (Agarwal et al., 2021) and follow up works (Chang
et al., 2021; Dubey et al., 2022; Radenovic et al., 2022; Xu et al., 2022; Enouen and Liu, 2022;
Bouchiat et al., 2024) use multilayer perceptrons (MLPs), as non-linear transformations, to model
the shape functions fi. As a result, NAMs can be optimized using variants of gradient descent by
leveraging automatic differentiation frameworks.

Finally, GAMs have also found applications in time-series forecasting, with models such as
Prophet (Taylor and Letham, 2018) and NeuralProphet (Triebe et al., 2021). Interestingly, the
1-layer versions of the recently proposed Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024)
may be viewed as GAMs with spline based shape functions.

B DATASET DETAILS

In this section, we provide details on the datasets used in our empirical evaluations of GAMformer
and other baselines in Section 4 of the main paper.

B.1 TABPFN TEST DATASETS

As test dataset, we used the 30 datasets used in Hollmann et al. (2023) which were obtained from
OpenML (Vanschoren et al., 2014). These were chosen because they contain up to 2000 samples,
100 features and 10 classes, show in Table 1.

B.2 BINARY CLASSIFICATION

Churn dataset. The Telco Customer Churn Dataset is a binary classification dataset for predicting
potential subscription churners in a telecom company, containing customer information and churn-
related features.

Adult dataset. The Adult dataset Dua and Graff (2017), also known as the “Census Income”
dataset, is a widely-used benchmark for binary classification, predicting whether an individual’s
annual income exceeds $50,000 based on 14 attributes from the 1994 United States Census Bureau
data.
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Table 1: Test dataset names and properties, taken from Hollmann et al. (2023). Here did is the
OpenML Dataset ID, d the number of features, n the number of instances, and k the number of classes
in each dataset.

did name d n k

11 balance-scale 5 625 3
14 mfeat-fourier 77 2000 10
15 breast-w 10 699 2
16 mfeat-karhunen 65 2000 10
18 mfeat-morphological 7 2000 10
22 mfeat-zernike 48 2000 10
23 cmc 10 1473 3
29 credit-approval 16 690 2
31 credit-g 21 1000 2
37 diabetes 9 768 2
50 tic-tac-toe 10 958 2
54 vehicle 19 846 4

188 eucalyptus 20 736 5
458 analcatdata_authorship 71 841 4
469 analcatdata_dmft 5 797 6

did name d n k

1049 pc4 38 1458 2
1050 pc3 38 1563 2
1063 kc2 22 522 2
1068 pc1 22 1109 2
1462 banknote-authentication 5 1372 2
1464 blood-transfusion-. . . 5 748 2
1480 ilpd 11 583 2
1494 qsar-biodeg 42 1055 2
1510 wdbc 31 569 2
6332 cylinder-bands 40 540 2

23381 dresses-sales 13 500 2
40966 MiceProtein 82 1080 8
40975 car 7 1728 4
40982 steel-plates-fault 28 1941 7
40994 climate-model-. . . 21 540 2

Table 2: Comparison of GAMformer with other GAM variants and full complexity models on
various datasets. We report ROC-AUC (%) (higher is better) and the standard error over 10 fold
cross-validation. We also report results by pyGAM (Servén and Brummitt, 2018).

GAMs Full Complexity

GAMformer (ours) EBM (Main effects) Logistic Regression pyGAM (Main effects) EBM XGBoost Random Forest

Churn 81.69 ± 0.1 83.59 ± 0.1 81.66 ± 0.1 82.03 ± 0.0 83.68 ± 0.1 83.53 ± 0.0 82.07 ± 0.0

Support2 80.84 ± 0.1 82.36 ± 0.0 81.1 ± 0.0 81.74 ± 0.2 83.51 ± 0.0 84.03 ± 0.0 83.93 ± 0.0

Adult 90.05 ± 0.0 93.05 ± 0.0 90.73 ± 0.0 91.55 ± 0.0 93.07 ± 0.0 93.16 ± 0.0 91.8 ± 0.0

MIMIC-2 82.22 ± 0.0 85.15 ± 0.0 81.62 ± 0.0 83.89 ± 0.1 86.36 ± 0.1 87.29 ± 0.0 87.31 ± 0.0

MIMIC-3 74.41 ± 0.1 81.14 ± 0.0 78.05 ± 0.0 79.95 ± 0.1 82.52 ± 0.1 83.32 ± 0.0 81.28 ± 0.1

MIMIC-II dataset. The MIMIC-II dataset Lee et al. (2011b) is a publicly-available database of
clinical data from diverse ICU patients, integrating demographics, vital signs, lab results, medications,
procedures, notes, and imaging reports, along with mortality outcomes.

MIMIC-III dataset. The MIMIC-III dataset Johnson et al. (2016) expands on MIMIC-II, with a
larger patient cohort, more recent records, enhanced data granularity, and the inclusion of free-text
imaging report interpretations.

SUPPORT2 dataset. The SUPPORT2 dataset Connors Jr et al. (1996) contains medical infor-
mation from critically ill hospitalized adults, compiled to study the relationships between medical
decision-making, patient preferences, and treatment outcomes, with variables spanning demographics,
physiology, diagnostics, treatments, and survival/quality of life outcomes.

C PROPERTIES OF GAMFORMER

C.1 DATA SCALING

To assess GAMformer’s ability to generalize to datasets containing more datapoints than it saw during
training, i.e. larger context sizes, we conducted an experiment that varied the number of training
data points and evaluated the impact on ROC-AUC performance using a consistent validation split.
To ensure the robustness of our findings, we sampled training datasets three times with replacement
for each training size. The results in Figure 8 demonstrate that GAMformer’s ROC-AUC improves
across datasets when the number of training examples is up to twice the number of training examples
seen during training. For comparison, we also evaluated the performance of EBMs under the same
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Figure 8: Demonstration of the ability of GAMformer to scale beyond the datapoints seen during
training while leveraging the additional data points to increase its performance. The dashed vertical
line denotes the number of in-context examples seen during training (500).
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Figure 9: Comparison of GAMformer and EBMs in terms of (a) performance on class imbalanced
data and (b) robustness to noisy labels. The shaded areas represent the 5% and 95% confidence
intervals estimated using 1000 bootstrap samples.

conditions. While EBMs also exhibited improvements in ROC-AUC with increased training data,
they achieved higher accuracy when provided with a larger number of examples. This observation
highlights a limitation of GAMformer in its ability to fully leverage additional training samples.

C.2 CLASS IMBALANCE

To compare GAMformer’s sensitivity to class imbalance with that of EBMs, we conduct the following
analysis. First, we sample 300 data points from two centroids in a 20-dimensional feature space,
creating a binary classification problem. We then vary the ratio of the two classes to introduce
increasing levels of imbalance in the sampled data. Next, we split the data into train and test sets
using a 75% to 25% split and evaluate the performance using the AUC-ROC metric. We repeat the
experiment 10 times for each data ratio. Our results are shown in Figure 9a, the shaded area are the
5%, 95% confidence intervals estimated using 1000 bootstrap samples. We see that GAMformer
performs on average better than EBMs in this setting and shows no inherent sensitivity to class
imbalance.

C.3 NOISE ROBUSTNESS

To gain a deeper understanding of GAMformers’ sensitivity to noisy or incorrect labels, we conducted
an experiment similar to the one described in Appendix C.2. We generated 300 data points and
randomly perturbed the labels in the train split with increasing probability (75%, 25% train/test split),
repeating each experiment 10 times. Figure 9b illustrates our findings. Once again, we observed that
GAMformer exhibits a sensitivity to noisy labels comparable to that of EBMs.

D SYNTHETIC DATA PRIORS

We use the same synthetic data generation process proposed in Prior-Data-Fitted Networks
(PFNs) (Hollmann et al., 2023; Müller et al., 2022) and provide a brief summary of the process.

TabPFN is trained on two synthetic data priors, which are mixed during training.TabPFN introduced
a synthetic data prior based on Structural Causal Models (SCMs). SCMs are particularly suitable for
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modeling tabular data as they capture causal relationships between columns, a strong prior in human
reasoning. An SCM comprises a set of structural assignments (mechanisms) where each mechanism
is defined by a deterministic function and a noise variable, structured within a Directed Acyclic Graph
(DAG). The causal relationships are represented by directed edges from causes to effects, facilitating
the modeling of complex dependencies within the data. To instantiate a PFN prior based on SCMs,
one defines a sampling procedure to create supervised learning tasks. Each dataset is generated from
a randomly sampled SCM, including its DAG structure and deterministic functions. Nodes in the
causal graph are selected to represent features and targets, and samples are generated by propagating
noise variables through the graph. This process results in features and targets that are conditionally
dependent through the DAG structure, capturing both forward and backward causation (Hollmann
et al., 2023). This allows for the generation of diverse datasets.

The second prior samples of synthetic data using Gaussian Processes (GPs) (Rasmussen and Williams,
2006) with a constant mean function and a radial basis function (RBF) kernel to define the covariance
structure. Hyperparameters such as noise level, output scale, and length scale are sampled from
predefined distributions to introduce variability. Depending on the configuration, input data points
can be sampled uniformly, normally, or as equidistant points and the target column is generated
by passing the input data through the GP. This prior gives the model the ability to learn smoother
functions.

For multi-class prediction, scalar labels are transformed into discrete class labels by partitioning the
scalar values into intervals corresponding to different classes, ensuring the synthetic data is suitable
for imbalanced multi-class classification tasks.

Finally, both priors are combined by sampling batches of data from each prior with different prob-
abilities during training. In all of our experiments we sampled from the SCM and GP prior with
probability 0.96 and 0.04, respectively.

E TRAINING DETAILS

In GAMformer, we used a transformer model with 12 hidden layers, 512 embedding size and 4 heads
per attention. To bin the shape functions and all features we used 64 bins. For training, we use the
AdamW (Loshchilov and Hutter, 2019) optimizer (β1 = 0.9) and cosine learning rate schedule with
initial learning rate of 3e-5, 20 warm up epochs and minimum learning rate of 1e-8 for 25 days on
a A100 GPU with 80Gb of memory. We used mixed precision training. Each epoch (arbitrarily)
consists of 65536 synthetic datasets; the model trained for 1800 epochs, meaning it saw over 100M
synthetic datasets. We used a batch size of 8, that we doubled at epoch 20, 50, 200 and 1000. Each
synthetic dataset consisted of 500 samples that were split into training and test portions using using a
uniform sampling of the training fraction, and used a number of features drawn uniformly between 1
and 10.

F HIGHER-ORDER EFFECTS

To handle higher-order effects, we compute the best pairs with the FAST algorithm (Lou et al., 2013)
and evaluate GAMformer on the top pairs using the following ratios of features:

P = [0.01p, 0.05p, 0.1p, 0.2p, 0.4p, 0.8p, 0.9p]

where we recall that p denotes the number of features. We round off each ratio to determine the
number of target pair features, evaluate performance on hold-out validation data from the training set,
and select the number of pairs with the best validation performance. The model is then fitted on the
entire training dataset. This involves doing |P|+ 1 forward passes, which is unproblematic as doing
one forward pass is very fast, even on a CPU. One could also vectorialize all computations which we
do not do given the low fitting time.
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G SHAPE FUNCTIONS

In this section, we show complementary results on the shape functions estimates from GAMformer
and EBM (main effects only) on the MIMIC-II (Lee et al., 2011a) (complementary to the plots in
Figure 7) and on the MIMIC-III datasets.

G.1 MIMIC-II DATASET

0 2

AdmissionType

−0.10

−0.05

0.00

0.05

L
og

-O
d
d
s

(G
A

M
F
or

m
er

)

−0.05

0.00

0.05

L
og

-O
d
d
s

(E
B

M
)

GAMformer

EBM

0 1

AIDS

−0.050

−0.025

0.000

0.025

0.050

L
o
g-

O
d
d
s

(G
A

M
F
o
rm

er
)

−0.50

−0.25

0.00

0.25

0.50

L
o
g-

O
d
d
s

(E
B

M
)

GAMformer

EBM

0 50

Bilirubin

−0.2

0.0

0.2

0.4

L
og

-O
d
d
s

(G
A

M
F
or

m
er

)

−1

0

1

L
og

-O
d
d
s

(E
B

M
)

GAMformer

EBM

20 40

CO2

−0.2

0.0

0.2

0.4

L
o
g-

O
d
d
s

(G
A

M
F
or

m
er

)

−1.0

−0.5

0.0

0.5

1.0

L
o
g-

O
d
d
s

(E
B

M
)

GAMformer

EBM

5 10 15

K

−0.1

0.0

0.1

0.2

0.3

L
og

-O
d
d
s

(G
A

M
F
o
rm

er
)

−1.0

−0.5

0.0

0.5

L
og

-O
d
d
s

(E
B

M
)

GAMformer

EBM

0 1

Lymphoma

−0.2

−0.1

0.0

0.1

0.2

L
og

-O
d
d
s

(G
A

M
F
or

m
er

)

−0.50

−0.25

0.00

0.25

0.50

L
og

-O
d
d
s

(E
B

M
)

GAMformer

EBM

0 1

MetastaticCancer

−0.05

0.00

0.05
L
og

-O
d
d
s

(G
A

M
F
or

m
er

)

−0.50

−0.25

0.00

0.25

0.50

L
og

-O
d
d
s

(E
B

M
)

GAMformer

EBM

100 150

Na

0.0

0.2

L
o
g-

O
d
d
s

(G
A

M
F
o
rm

er
)

−1

0

1

L
o
g-

O
d
d
s

(E
B

M
)

GAMformer

EBM

0 2 4

Renal

−0.4

−0.2

0.0

0.2

L
og

-O
d
d
s

(G
A

M
F
or

m
er

)

−0.5

0.0

0.5

L
og

-O
d
d
s

(E
B

M
)

GAMformer

EBM

0 200

SBP

0.0

0.2

0.4

L
og

-O
d
d
s

(G
A

M
F
or

m
er

)

0

1

2

L
og

-O
d
d
s

(E
B

M
)

GAMformer

EBM

2.5 5.0 7.5

Temperature

−0.2

0.0

0.2

L
og

-O
d
d
s

(G
A

M
F
or

m
er

)

−0.5

0.0

0.5

1.0

L
og

-O
d
d
s

(E
B

M
)

GAMformer

EBM

0 200

Urea

−0.5

0.0

0.5
L
og

-O
d
d
s

(G
A

M
F
or

m
er

)

−1.0

−0.5

0.0

L
og

-O
d
d
s

(E
B

M
)

GAMformer

EBM

0 250 500

WBC

0.0

0.2

L
og

-O
d
d
s

(G
A

M
F
or

m
er

)

0

1

2

L
og

-O
d
d
s

(E
B

M
)

GAMformer

EBM

Figure 10: The remaining shape functions derived from GAMformer and EBMs on the MIMIC-II
dataset for critical clinical variables. The plot above each figure shows the data density. There are
interesting differences between the EBM and GAMformer shape plots for several of the categorical
variables. Although different GAM algorithms do not usually learn identical functions, we are
investigating to better understand these differences.

G.2 MIMIC-III DATASET
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Figure 11: The shape functions derived from GAMformer and EBMs on the MIMIC-III dataset for
critical clinical variables. The plot above each figure shows the data density. The results are based
on 30 models for both GAMformer and EBMs, each fitted on 10,000 randomly selected data points.
There are interesting differences between the EBM and GAMformer shape plots for several of the
categorical variables. Although different GAM algorithms do not usually learn identical functions,
we are investigating to better understand these differences.
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Figure 12: The remaining shape functions derived from GAMformer and EBMs applied to the
MIMIC-III dataset for critical clinical variables. The plot above each figure shows the data density
in the training set. The results are based on 30 models for both GAMformer and EBMs, each fitted
on 10,000 randomly selected data points.
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