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Abstract

Trust between team members is an essential requirement for
any successful cooperation. Thus, engendering and maintain-
ing the fellow team members’ trust becomes a central respon-
sibility for any member trying to not only successfully partic-
ipate in the task but to ensure the team achieves its goals.
The problem of trust management is particularly challenging
in mixed human-robot teams where the human and the robot
may have different models about the task at hand and thus
may have different expectations regarding the current course
of action and forcing the robot to focus on the costly expli-
cable behavior. We propose a computational model for cap-
turing and modulating trust in such longitudinal human-robot
interaction, where the human adopts a supervisory role. In
our model, the robot integrates human’s trust and their expec-
tations from the robot into its planning process to build and
maintain trust over the interaction horizon. By establishing
the required level of trust, the robot can focus on maximizing
the team goal by eschewing explicit explanatory or explica-
ble behavior without worrying about the human supervisor
monitoring and intervening to stop behaviors they may not
necessarily understand. We model this reasoning about trust
levels as a meta reasoning process over individual planning
tasks. We additionally validate our model through a human
subject experiment.

Introduction
Building and maintaining trust between team members form
an essential part of any human teaming endeavor. We ex-
pect this characteristic to carry over to human-robot teams
and the ability of an autonomous agent to successfully form
teams with humans directly depends on their ability to model
and work with human’s trust. Unlike homogenous human
teams, where the members generally have a well-developed
sense of their team member’s capabilities and roles, teaming
between humans and autonomous agents may suffer because
of the user’s misunderstanding about the robot’s capabilities.
Thus the understanding and (as required) correction of the
human’s expectations about the robot can be a core require-
ment for engendering lasting trust from the human team-
mate. Recent works in human-aware planning, particularly
those related to explicable planning (Zhang et al. 2017) and
generating model reconciliation (Chakraborti et al. 2017),
can provide us with valuable tools that can empower au-
tonomous agents to shape the user’s expectation correctly

and by extension, their trust.
In this paper, we will consider one of the most basic

human-robot teaming scenarios, one where the autonomous
agent is performing the task and the human is following
a supervisory role. For this setting, we propose a meta-
computational framework that can model and work with the
user’s trust in the robot to correctly perform its task. We
will show how this framework allows the agent to reason
about the fundamental trade-off between (1) the more ex-
pensive but trust engendering behavior, including explicable
plans and providing explanations, and (2) the more efficient
but possibly surprising behavior the robot is capable of per-
forming. Thus our framework is able to allow the agent to
take a long term view of the teaming scenario, wherein at
earlier points of teaming or at points with lower trust, the
agent is able to focus on trust-building behavior so that later
on, it can use this engendered trust to follow more optimal
behavior. We will validate this framework by demonstrating
the utility of this framework on a modified rover domain and
also perform a user study to evaluate the ability of our frame-
work to engendering trust and result in higher team utility.

Related Work
There exists a number of works that have studied trust in the
context of human-robot interaction. The works in this area
can be broadly categorized into two groups (1) Trust infer-
ence based on observing human behavior or (2) Utilizing
estimated trust to guide robot behavior.

For Trust inference, Online Probabilistic Trust Inference
Model (OPTIMo) is one of the pioneers in this area in which
they capture trust as a latent variable represented with a dy-
namic Bayesian network. OPTIMo uses a technique for es-
timating trust in real-time that depends on the robot’s task
performance, human intervention, and trust feedback (Xu
and Dudek 2015). Trust inference model based on Bayesian
inference with Beta-distribution to capture both positive and
negative attitude on robot’s performance (Guo, Zhang, and
Yang 2020) contributes an important extension to OPTIMo.
Also, this Bayesian reasoning for trust inference has been
considered non-parametrically with Gaussian processes, Re-
current Neural Network (RNN), and a hybrid approach in
which trust is a task-dependent latent function (Soh et al.
2020).

With regards to trust utilization, some works try to esti-



mate trust, given human intervention and robot command,
using reputation function (Xu and Dudek 2012), or OP-
TIMO (Xu and Dudek 2016) to make an adaptive mecha-
nism that dynamically adjusts the robot’s behaviors, to im-
prove the efficiency of the collaborative team. Also, an ex-
tension of OPTIMo with time series trust model (Wang et al.
2015) has been used to estimate trust in multi-robot scenar-
ios. The estimated trust is utilized to decide between manual
or autonomous control mode of robots (Wang et al. 2018).
In (Chen et al. 2018, 2020), a POMDP planning model has
been proposed that allows the robot to obtain a policy by
reasoning about human’s trust as a latent variable. In swarm
robots, they leveraged trust to update the communication
graph that will reduce the misleading information from less
trusted swarm robots (Liu et al. 2019).

This paper is situated in the trust utilization area since the
robot is trying to use trust to make a meta planning decision.
Although most of the mentioned work tried to utilize trust
for better team performance, they all used trust in the action
level and didn’t consider how the trust will affect robot per-
formance at the problem level. As they consider trust as a
tool to improve performance in cooperation, the importance
of considering trust that comes with more interpretable be-
havior has been neglected in those works.

Background
In this section we will introduce some of the basic concepts
related to planning that we will be using to describe our
framework.

A Classical Planning problem isM = 〈D, I,G〉 where
D = 〈F,A〉 is a domain with F as a set of fluents that
define a state s ⊆ F , also initial I and goal G states are
subset of fluent I,G ⊆ F , and each action in a ∈ A is
defined as follows a = 〈ca, pre(a), eff±(a)〉 ∈ A, where
A is a set of actions, ca is the cost, and pre(a) and eff± are
precondition and add or delete effects. i.e. ρM(s, a) |= ⊥
if s 6|= pre(a); else ρM(s, a) |= s ∪ eff+(a) \ eff−(a),
and ρM(.) is the transition function.
So, when we talk about model M, it consists of action
model as well as initial state and goal state. The solution
to the model M is a plan which is a sequence of actions
π = {a1, a2, . . . , an} which satisfies ρM(I, π) |= G. Also,
C(π,M) is the cost of plan π where

C(π,M) =

{∑
a∈π ca if ρM(I, π) |= G

∞ o.w
.

Human-Aware planning (HAP) in its simplest form con-
sists of scenarios, where a robot is performing a task prob-
lem and human is observing and evaluating the task. So it
can be defined by a tuple of the form 〈MR,MR

h 〉, where
MR is the planning problem being used by the robot and
MR

h is the human’s understanding of the task (which may
differ from the robot’s original model). They are defined as
MR = 〈DR, IR,GR〉 andMR

h = 〈DRh , IRh ,GRh 〉.
So, in general, the robot is expected to solve the task while
meeting the user’s expectations. As such, for any given plan,
the degree to which the plan meets the user expectation is
measured by the explicability score of the plan, which is de-

fined to be the distance (δ) between the current plan and the
plan expected by the user (πE).

E(π) = −1 ∗ δ(πE , π)
We will refer to the plan as being perfectly explicable when
the distance is zero. A common choice for the distance is
the cost difference in the human’s model for the expected
plan and the optimal plan in the human model (Kulkarni
et al. 2019). Here the robot has two options, (1) it can
choose from the possible plans it can execute the one with
the highest explicability score (referred to as the explicable
plan), or (2) it could try to explain, wherein it updates
the human model through communication, to a model
wherein the plan is chosen by the robot is either optimal
or close to optimal and thus have a higher explicability
score (Sreedharan et al. 2020a; Chakraborti, Sreedharan,
and Kambhampati 2017). A form of explanation that is
of particular interest, is what’s usually referred to as a
minimally complete explanation or MCE (Chakraborti et al.
2017), which is the minimum amount of model information
that needs to be communicated to the human to make
sure that the human thinks the current plan is optimal.
In the rest of the paper, when we refer to explanation or
explanatory messages, we will be referring to a set of model
information (usually denoted by ε), where each element of
this set corresponds to some information about a specific
part of the model. We will use + operator to capture the
updated model that the human would possess after receiving
the explanation. That is, the updated human model after
receiving an explanation ε will be given byMR

h + ε.

A Markov Decision Process (MDP) is 〈S,A,C, P, γ〉
where S denote the finite set of states, A denotes the fi-
nite set of actions, C : S × A → R is a cost function,
P : S × S × A → [0 1] is the state transition function
and γ is the discount factor where γ ∈ [0 1]. An action a
at state sn at time n incurs a cost (sn, a) and a transition
P (sn, sn+1, a) where sn+1 is the resulting state which sat-
isfies Markov property. So, the next state only depends on
the current state and the action chosen at the current state.
A policy π(s) denotes as action chosen at state s. The prob-
lem in an MDP is to find an optimal policy π : S → A that
maximizes the cumulative cost function (please note that the
cost function here is defined as a negative of costs). Over a
potentially infinite time horizon, we need to maximize the
expected discounted costs

∑∞
n=0 γ

kC(S,R).

Problem Definition
We will focus on a human-robot dyad, where the human (H)
adopts a supervisory role and the robot is assigned to per-
form tasks. We will assume that the human’s current level of
trust is an approximate discretization of a continuous value
between 0 to 1, and it can be mapped to one of the sets of
ordered discrete trust levels. We will assume that the exact
problem to be solved at any step by the robot is defined as
a function of the current trust the human has in the robot,
thereby allowing us to capture scenarios where the human
may choose to set up a trust-based curriculum for the robot
to follow. In particular, we will assume that each trust level



is associated with a specific problem, which is known to the
robot a priori, thereby allowing for precomputation of pos-
sible solutions. In general, we expect the human’s actions to
be completely determined by their trust in the robot, and we
will model the robot’s decision-making level as two levels
decision-making process. Before describing the formulation
in more detail, let us take a quick look at some of the as-
sumptions we are making regarding the problem setting and
clarify our operational definition of trust.

Assumptions
Robot (R), is responsible for executing the task.

1. Each task is captured in the robot model by a determin-
istic, goal-directed model MR (which is assumed to be
correct). The robot is also aware of the human’s expected
model of the taskMR

h (which could include the human’s
expectation about the robot). As assumed in most HAP
settings, these models could differ over any of the dimen-
sions (including action definitions, goals, current state,
etc.).

2. For simplicity, we will assume that each task assigned is
independent of each other, in so far that no information
from earlier tasks is carried over to solve the later ones.

3. The robot has a way of accessing or identifying the cur-
rent state of the human supervisor’s trust in the robot.
Such trust levels may be directly provided by the supervi-
sor or could be assessed by the robot by asking the human
supervisor specific questions.

Human (H), is the robot’s supervisor and responsible for
making sure the robot will perform the assigned tasks and
will achieve the goal.

1. For each problem, the human supervisor can either choose
to monitor (ob) or not monitor (¬ob) the robot.

2. Upon monitoring the execution of the plan by R, if H
sees an unexpected plan, they can intervene and stop R.

3. The human’s monitoring strategy and intervention will
be completely determined by the trust level. With respect
to the monitoring strategy, we will assume it can be
captured as a stochastic policy, such that for a trust level
i the human would monitor with a probability of ω(i).
Moreover, the probability of monitoring is inversely
proportional to the level of trust. In terms of intervention,
we will assume that the lower the trust and the more
unexpected the plan, the earlier the human would end the
plan execution. We will assume the robot has access to a
mapping from the current trust level and plan to when the
human would stop the plan execution.

Human Trust and Monitoring strategy
Before going further, let us examine the exact definition of
the trust we will rely on. According to a widely accepted
trust definition, trust is a psychological state comprising
the intention to accept vulnerability based upon the posi-
tive expectations of the intentions or behavior of another
(Rousseau et al. 1998). So, according to this definition, when
we have human-robot interaction, the human can choose to
be vulnerable by 1) Not intervening in the robot’s actions

while it is doing something unexpected and 2) Not to moni-
tor the robot while the robot might do inexplicable behavior
(Sengupta, Zahedi, and Kambhampati 2019). Thus, a human
with a high level of trust in the robot would expect the robot
to achieve their goal and as such, might choose not to mon-
itor the robot, or even if they monitor and the robot may
be performing something unexpected, they are less likely to
stop the robot (they may trust the robot’s judgment and may
believe the robot may have a more accurate model of the
task). Thus, when the trust increases, it is expected that the
human’s monitoring and intervention rate decreases. We can
say monitoring rate, as well as intervention rate being a func-
tion of the current trust (even being inversely proportional).
So, given the trust level human has on the robot, the robot
can reason about the monitoring and intervention rate of the
human supervisor.

Base Decision-Making Problem
As mentioned earlier, here, each individual task assigned to
the robot can be modeled as a human-aware planning prob-
lem of the form 〈MR,MR

h 〉. Now given such a human-
aware planning problem, the robot has the following options.

1. In the simplest case, the robot could choose to execute ei-
ther its explicable plan (πexp) or its optimal plan (πopt).
Such that the cost of executing the explicable plan is guar-
anteed to be greater than or equal to the cost of the optimal
plan , Ce(πexp) ≥ Ce(πopt), where Ce(π) = C(π,MR)
is the cost of executing the plan inMR.

2. Now, if the robot chooses to follow its optimal plan, then
it could augment that plan with an explanation (which
is expected to be provided upfront before the plan gets
executed). Now the robot could choose to provide ei-
ther an MCE εMCE , or an explanation that merely in-
creases the explicability of a trace and doesn’t guaran-
tee that the plan would be optimal in the updated hu-
man model. We will denote such explanations as ε̃. The
cost of following such a strategy for a robot is given as
Ce(〈ε, π〉) = C(ε) + C(π,MR), where C(ε) is the cost
of communicating the explanation.

To simplify the discussion, we will assume that for each trust
level, the robot has to perform a fixed task. So if there are k-
levels of trust, then the robot would be expected to solve k
different tasks. Moreover, if the robot is aware of these tasks
in advance, then it would be possible for it to precompute
solutions for all these tasks in advance and make the choice
of following one of the specific strategies mentioned above
depending on the human’s trust and the specifics costs of
following each strategy.

Meta-MDP Problem
Next, we will talk about the decision-making model we will
use to capture the longitudinal reasoning process the robot
will be following to decide what strategy to use for each
task. The decision epochs for this problem correspond to the
robot getting assigned a new problem. The cost structure of
this meta-level problem includes not only the cost incurred
by the robot in carrying out the task but team level costs



related to the potential failure of the robot to achieve the
goal, how the human supervisor is following a specific
monitoring strategy, etc. Specifically, we will model this
problem as an infinite horizon discounted MDP of the form
M = 〈S,A,P,C, γ〉, defined over a state space consisting
of k states, where each state corresponds to the specific
trust level of the robot. Given the assumption that each
of the planning tasks is independent, the reasoning at the
meta-level can be separated from the object-level planning
problem. In this section, we will define this framework
in detail, and in the next section, we will see how such
framework could give rise to behavior designed to engender
trust.

Meta-Actions A: Here the robot has access to four
different actions, corresponding to four different strategies
they can follow, namely, use the optimal plan πopt, the
explicable plan πexp, follow πopt while providing an expla-
nation that improves the explicability score 〈ε̃, πopt〉 and
finally providing MCE for the optimal plan 〈εMCE , πopt〉.

Transition Function P: The transition function captures
the evolution of the human’s trust level based on the robot’s
action. In addition to the choice made by the robot, the tran-
sition of the human trust also depends on the user’s mon-
itoring strategies, which we take to be stochastic but com-
pletely dependent on the human’s current level of trust and
thus allowing us to define a markovian transition function.
In this model, for any state, the system exhibits two broad
behavioral patterns, the ones for which the plan is perfectly
explicable in the (potentially updated) human model and for
those in which the plan may not be perfectly explicable.

• Perfectly explicable plan: The first case corresponds to
one where the robot chooses to follow a strategy the hu-
man accepts to be optimal. Here we expect the human
trust to increase to the next level in all but the maximum
trust level (where it is expected to remain the same). The
most common case where this may happen is when the
robot chooses to provide an MCE explanation. Though
there may also be cases where the explicable plan also
perfectly matches up with the human’s expected plan.

• Other Cases: In this case, the robot chooses to follow a
plan with a non-perfect explicability score E(π). Now for
any level that is not the maximum trust level, this action
could cause a transition to one of three levels, the next
trust level si+1, stay at the current level si, or the human
could lose trust on the robot and move to level si−1. Here
the probabilities for these three cases for a meta-level ac-
tion associated with a plan π are as given below

P (si, a
π, si+1) = (1− ω(i))

where ω(i) is the probability that the human would choose
to observe the robot at a trust level i. Thus for a non-
explicable plan, the human could still build more trust in
the robot if they notice the robot had completed its goal
and had never bothered monitoring it.

P (si, a, si) = ω(i) ∗ P(E(π))

That is, the human’s trust in the robot may stay at the
same level even if the human chooses to observe the robot.
Note the probability of transition here is also dependent
on a function of the explicability score of the current plan,
which is expected to form a well-formed probability dis-
tribution (P(·)). Here we assume this is a monotonic func-
tion over the plan explicability score; a common function
one could adopt here is a Boltzmann distribution over the
score (Sreedharan et al. 2020b). For the maximum trust
level, we would expect the probability of staying at the
same level to be the sum of these two terms. With the re-
maining probability, the human would move to a lower
level of trust.

P (si, a, si−1) = ω(i) ∗ (1− P(E(π)))

Cost function C: For any action performed in the meta-
model, the cost function (C : S × A → R) depends on
whether the human is observing the robot or not. Since
we are not explicitly maintaining state variables capturing
whether the human is monitoring, we will capture the cost
for a given state action pair as an expected cost over this
choice. Note that the use of this simplified cost model does
not change the optimal policy structure as we are simply
moving the expected value calculation over the possible out-
come states into the cost function. Thus the cost function
becomes

C(si, aπ) = (1− ω(i)) ∗ (Ce(π)) + ω(i) ∗ C〈MR,MR
h 〉

Where Ce(π) is the full execution cost of the plan (which
could include explanation costs) and the C〈MR,MR

h 〉
represents the cost of executing the selected strategy under
monitoring. For any less than perfectly explicable plan,
we expect the human observer to stop the execution at
some point, and as such, we expect C〈MR,MR

h 〉
to further

consist of two cost components. The cost of executing the
plan prefix till the point of intervention by the user and the
additional penalty of not completing the goal.

Discounting γ: Since in this setting, higher trust levels
are generally associated with higher expected values, one
could adjust discounting as a way to control how aggres-
sively the robot would drive the team to higher levels of
trust. With lower values of discounting favoring more rapid
gains in trust.

Remark: One central assumption we have made through-
out this paper is that the robot is operating using the correct
model of the task (in so far as it is correctly representing
the true and possibly unknown task modelM∗). As such, it
is completely acceptable to work towards engendering com-
plete trust in the supervisor, and the human not monitoring
the robot shouldn’t lead to any catastrophic outcome. Obvi-
ously, this need not always be true. In some cases, the robot
may have explicit uncertainty over how correct its model is
(for example, if it learned this model via Bayesian meth-
ods), or the designer could explicitly introduce some un-
certainty into the robot’s beliefs about the task (this is in
some ways parallel to the recommendations made by the



off-switch game paper (Hadfield-Menell et al. 2016) in the
context of safety). In such cases, the robot would need to
consider the possibility that when the human isn’t observ-
ing, there is a small probability that it will fail to achieve its
task. One could attach a high negative reward to such scenar-
ios, in addition to a rapid loss of trust from the human. De-
pending on the exact probabilities and the penalty, this could
ensure that the robot doesn’t engender complete trust when
such trust may not be warranted (thereby avoiding problems
like automation bias (Cummings 2004)).

Evaluation and Implementation
This section will describe a demonstration of our framework
in a modified rover domain instance and describe a user
study we performed to validate our framework. Throughout
this section, we will use the following instantiation for the
framework. We considered 4 states. For each of these trust
states, we associate a numerical value T (i) ∈ [0 1], that
we will use to define the rest of the model. Specifically,
the T (i) values we used per state were 0, 0.3, 0.6 and 1
respectively. For monitoring strategy, we used ω(i) as a
Bernoulli distribution with probability of (1 − T (i)), as
explicability score E(π) we used the negative of the cost
difference between the current plan and the optimal plan in
the robot model. For P(·), we have 1 for the explicable plan
and 0 for the optimal plan. For execution cost, we assumed
all actions are unit cost. We will ignore explanations in the
experiments and focus on cases where the choice of the
robot is limited between explicable and optimal plans.

Implementation We implemented our framework using
Python which was run on an Ubuntu workstation with an In-
tel Xeon CPU (clock speed 3.4 GHz) and 128GB RAM. We
used Fast Downward with A* search and the lmcut heuris-
tic (Helmert 2006) to solve the planning problems and find
the plans in all 4 problems, then we used the python MDP-
toolbox (Cordwell 2012) to solve the meta-MDP problem
for the robot’s meta decision. The total time for solving the
base problem was 0.0125s when applicable and 0.194s for
solving the meta-MDP problem.

Rover Domain Demonstration
Here, we used the updated version of IPC1 Mars Rover (The
Rover (Meets a Martian) Domain) in (Chakraborti, Sreed-
haran, and Kambhampati 2017) and changed it a little by
adding metal sampling to the domain as well. In the Rover
(Meets a Martian) Domain, it is assumed that the robot can
carry soil, rock, and metal at the same time and doesn’t need
to empty the store before collecting new samples and the
Martian (the supervisor in this scenario) isn’t aware of this
new feature. Also, the Martian believes that for the rover to
perform take image action; it needs to also send the soil and
metal data collected from the waypoint from where it is tak-
ing the image. So the Martian’s model of the rover has an
additional precondition (empty ?s) for actions sample soil,

1From the International Planning Competition (IPC) 2011: http:
//www.plg.inf.uc3m.es/ipc2011-learning/Domains.html

sample rock, and sample metal, and extra preconditions for
the action take image.

Now for each problem, the rover is expected to commu-
nicate soil, rock, metal, and images from a set of waypoints.
Given the additional preconditions in the Martian model,
the expected plan in the Martian model would be longer
than what is required for the rover. For example, in the first
problem, the rover goal consists of communicate metal data
waypoint0 and communicate metal data waypoint3. For this
problem, the explicable and optimal plan would be as fol-
lows
π1
exp =

( s a m p l e m e t a l r o v e r 0 r o v e r 0 s t o r e waypo in t3 )
( c o m m u n i c a t e m e t a l d a t a r o v e r 0 g e n e r a l waypo in t3 waypo in t3 waypo in t0 )
( n a v i g a t e r o v e r 0 waypo in t3 waypo in t0 )
( drop r o v e r 0 r o v e r 0 s t o r e )
( s a m p l e m e t a l r o v e r 0 r o v e r 0 s t o r e waypo in t0 )
( n a v i g a t e r o v e r 0 waypo in t0 waypo in t3 )
( c o m m u n i c a t e m e t a l d a t a r o v e r 0 g e n e r a l waypo in t0 waypo in t3 waypo in t0 )

π1
opt =

( s a m p l e m e t a l r o v e r 0 r o v e r 0 s t o r e waypo in t3 )
( c o m m u n i c a t e m e t a l d a t a r o v e r 0 g e n e r a l waypo in t3 waypo in t3 waypo in t0 )
( n a v i g a t e r o v e r 0 waypo in t3 waypo in t0 )
( s a m p l e m e t a l r o v e r 0 r o v e r 0 s t o r e waypo in t0 )
( n a v i g a t e r o v e r 0 waypo in t0 waypo in t3 )
( c o m m u n i c a t e m e t a l d a t a r o v e r 0 g e n e r a l waypo in t0 waypo in t3 waypo in t0 )

For a set of four sample tasks from this domain, the meta-
policy calculated by our system is as follows {π1

exp, π2
exp,

π3
exp, π4

opt}. Note how the policy prescribes the use of the
explicable plan for all but the highest level of trust, this is
expected given the fact that the optimal plans here are inex-
ecutable in the human model, and if the supervisor observes
the robot following such a plan, it is guaranteed to lead to a
loss of trust. The rover chooses to follow the optimal plan at
the highest level since the supervisor’s monitoring strategy
at these levels is never to observe the rover. The expected
value of this policy for the lowest level of trust is −179.34,
while if the robot were to always execute the explicable plan,
the value would be −415.89. Thus, we see that our trust-
adaptive policy does lead to an improvement in the rover’s
total cost.

Human Subject Experiment
To evaluate the performance of our system, we compared
our method (Trust-Aware condition) against two baseline
cases,
(1) Always Explicable: Under this condition, the robot al-
ways executes the plan, which is explicable to humans.
(2) Random Policy: Under this condition, the robot ran-
domly executes the explicable or inexplicable plan.
In particular, we aim to evaluate the following hypotheses

H1- The team performance, i.e., the total cost of plan ex-
ecution and human’s monitoring cost in the trust-aware
condition, will be better than the team performance in the
always explicable condition.

H2- The level of trust engendered by the trust-aware con-
dition will be higher than that achieved by the random
policy.

Experiment Setup We designed a user interface that gam-
ifies the human’s decisions to monitor the robot or not. The



participants thus play the role of the supervisor and are re-
sponsible for making sure the robot is performing its as-
signed tasks and is achieving its goals. Each participant has
10 rounds of the robot doing tasks. Depending on the choices
made by the participants, they either gain or lose points.
They are told that they will be awarded 100 points if the
robot does the task right and achieves the assigned goal. At
the beginning of each round, they can either choose to mon-
itor the robot to make sure it does its job2 or they can choose
to perform another task (thereby forgoing monitoring of the
robot) to make extra points. In this case, the extra task was
labeling images for which they will receive 100 points (in
addition to the points they receive from the robot doing its
tasks successfully). However, if they choose to label images,
and the robot fails to achieve its goal, they lose 200 points
(−200 points). Also, if they choose to monitor the robot, and
they see the robot is doing something invalid or wrong, they
can choose to stop the robot. If this happens, they only re-
ceive 50 points. But if they let the robot finish a potentially
invalid plan, and if the robot couldn’t achieve the goal at the
end, then they again lose points (−200 points).
In this study, we again considered a curriculum of 4 trust lev-
els and 4 different tasks for the robot. Each task consists of
the robot operating on a grid map with different goals such
as moving to a certain location and bringing coffee from a
place to another place.3 For each problem; the map is shown
to the participants are different from the robot’s map. As
a result, the plan the human expects is different from the
robot’s optimal plan. Thus, in each task, the robot can ei-
ther execute a costly but explicable plan or an optimal but
inexplicable plan.

Robot Tasks Figure 1(a) presents the robot and human
map corresponding to each of the tasks used in the study. For
each map, we also highlight the explicable and optimal plan
(π1 and π2 respectively) in the figure. As part of the study,
each participant is presented with the human map and is told
to expect the robot to follow the shortest possible path. Ad-
ditionally, we also provide a key describing the semantics
of each of the visual elements that are part of the map (as
shown in Figure 1(b)). The tasks are as follows.

Task 1. The robot task is to reach the red point on the map

Task 2. The robot task is to bring coffee to the room

Task 3. The robot task is to bring coffee to the room4

Task 4. The robot task is to take coffee from room 1 and
bring it to room 2

For each round, if the participant chooses to monitor, a
step-by-step plan execution is shown to them and with an
option to stop the robot at any step. At the end of each
round, a four-item trust scale of Muir questionnaire (Muir
1994) is given to them, which measures their trust in that

2Their primary responsibility is to ensure the robot completes
its task

3All the details of user experiment setup, including the tasks are
provided in the supplementary materials

4Tasks 2 and 3 are different because the maps (and conditions)
are different.

round based on the robot’s predictability, dependability,
faith, and trust. Then, based on the measure of trust, a
new robot’s task is shown to them. In the user study to
localize user trust, we will associate each level with a
specific discretization of this range. Specifically, we will
consider the following intervals for each of the levels,
{[0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1]}. Depending on
the condition the participant belonged to, they are either
shown an action selected by a policy calculated from
our method (for Trust-aware condition), or an explicable
plan (for Always explicable condition) or is randomly
shown either the optimal or explicable plan with an equal
probability (for Random Policy condition).

Human Subjects We recruited a total of 62 participants,
of whom 38% were undergraduate, and 62% were graduate
students in Computer Science, Engineering, and Industrial
Engineering at our university. We paid them a base of $10
for the study and a bonus of 1¢ per point, given the total
points they will get in ten rounds. From the participants, 24
were assigned to the trust-aware condition, 18 to always ex-
plicable condition, and finally 20 to the random policy con-
dition. Then, we filtered out any participants who monitored
the robot in less than four rounds because they wouldn’t have
monitored the robot long enough to have a correct expecta-
tion in regards to the robot behavior.

Results Across all the three conditions, we collected
(a) participants’ trust measures in each round, (b) robot’s
total plan execution cost, and (c) participants’ monitoring
cost. For the monitoring cost, we consider the minutes
participants spent on monitoring the robot in each round,
which was approximately 3 minutes for each round of
monitoring. As shown in Figure 2, we can see that the total
cost (the robot’s plan execution cost and the participant’s
monitoring cost) when the robot executes trust-aware
behavior is significantly lower than the other two cases
which means that following trust-aware policy allows the
robot to successfully optimize the team performance. From
Figure 3, we also observe that the trust (as measured by
the Muir questionnaire) improves much more rapidly when
the robot executes trust-aware policy as compared to the
random policy. Though the rate for the trust-aware policy
is less than the always explicable case, we believe this
is an acceptable trade-off since following the trust-aware
policy does result in higher performance. Also, we expect
trust levels for trust-aware policies to catch up with the
always-explicable conditions over longer time horizons.

Statistical Significance–We tested the two hypotheses
by performing a one-tailed p-value test via t-test for inde-
pendent means with results being significant at p < 0.05
and find that results are significant for both hypotheses. 1)
For the first hypothesis H1, we tested the mean cost with
the null hypothesis of team performance cost has a mean
of 3170.199 (using data from the ”always explicable” sce-
nario), we find that p-value is less than 0.00001. 2) For the
second hypothesis H2, we tested the mean trust value for the
last round and mean value over last two rounds with the null
hypothesis being the trust value has a mean of 0.5458 and



(a) (b)

Figure 1: (a) The human and the robot model of the map for the four different tasks, (b) The map description

0.5416 in the last round and and last two rounds respectively
(using the data from ”Random” scenario), we find that the p-
values are 0.03174 and 0.03847 respectively. So, the results
are statistically significant and show the validity of our hy-
potheses.
Also, we ran Mixed ANOVA test to determine validity of
second hypothesis H2, and we found that there was a signifi-
cant time (round)5 by condition interaction F (1, 27) = 4.72,
p = 0.039, η2p = 0.15. Planned comparison with paired
sample t-test revealed that in participant in Trust-Aware con-
dition, trust increases significantly in round 10 compare to
round 1, t = 3.55, p = 0.002, d = 0.84. There was however
no difference in trust increase between round 1 and round
10 in the Random Policy condition t = −0.15, p = 0.883,
d = −0.046. Both of these results follow our expectation
about the method. Moreover, we ran Mixed ANOVA test on
Trust-Aware vs. Always Explicable condition to check trust
evolution over time, and we found that there was no signifi-
cant time (round) by condition interaction F (1, 26) = 2.21,
p = 0.149, η2p = 0.08. Planned comparison with paired
sample t-test revealed that in participant in Trust-Aware con-
dition, trust increases significantly in round 10 compare to
round 1, t = 3.55, p = 0.002, d = 0.84. There was also
significant difference in trust increase between round 1 and
round 10 in the Always Explicable condition t = 5.04,
p = 0.001, d = 1.59. This seems to imply that there isn’t
a significant difference between our Trust-aware method
(which is a lot more cost efficient) and Always Explicable
case with regards to engendering trust.

5We considered the change over first and last rounds

Figure 2: Team performance as cumulative plan execution cost and
participants’ monitoring cost (Mean ± std of all participants).

Conclusion and Discussion
In this paper, we presented a computational model that the
robot can use to capture the evolution of human trust in lon-
gitudinal human-robot interactions. This framework allows
the robot to incorporate human trust into its planning pro-
cess, thereby allowing it to be a more effective teammate.
Thus our framework would allow an agent to model, foster,
and maintain the trust of their fellow teammates. Thereby
causing the agent to engage in trust engendering behavior
earlier in the teaming lifecycle and be able to leverage trust
built over these earlier interactions to perform more efficient
but potentially inexplicable behavior later on. As our ex-
perimental studies show, such an approach could result in a



Figure 3: Trust evolution (as measured by the Muir questionnaire)
through robot interactions with participants (Mean ± std of all par-
ticipants).

much more efficient system than one that always engages in
explicable behavior. We see this framework as the first step
in building such a longitudinal trust reasoning framework.
Thus a natural next step would be to consider POMDP ver-
sions of the framework, where the human’s trust level is a
hidden variable. We also plan to investigate methods to ef-
fectively learn the various parameter of our Meta-MDP or
perform direct RL over this MDP.
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