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Multi-Label Zero-Shot Product Attribute-Value Extraction
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ABSTRACT
E-commerce platforms should provide detailed product descriptions
(attribute values) for effective product search and recommendation.
However, attribute value information is typically not available for
new products. To predict unseen attribute values, large quantities
of labeled training data are needed to train a traditional supervised
learning model. Typically, it is difficult, time-consuming, and costly
to manually label large quantities of new product profiles. In this pa-
per, we propose a novel method to efficiently and effectively extract
unseen attribute values from new products in the absence of la-
beled data (zero-shot setting).We propose HyperPAVE, amulti-label
zero-shot attribute value extraction model that leverages inductive
inference in heterogeneous hypergraphs. In particular, our pro-
posed technique constructs heterogeneous hypergraphs to capture
complex higher-order relations (i.e. user behavior information) to
learn more accurate feature representations for graph nodes. Fur-
thermore, our proposed HyperPAVE model uses an inductive link
prediction mechanism to infer future connections between unseen
nodes. This enables HyperPAVE to identify new attribute values
without the need for labeled training data. We conduct extensive
experiments with ablation studies on different categories of the
MAVE dataset. The results demonstrate that our proposed Hyper-
PAVE model significantly outperforms existing classification-based,
generation-based large language models for attribute value extrac-
tion in the zero-shot setting. Code will be released after acceptance.

1 INTRODUCTION
Product attribute value extraction (AVE) aims to extract attribute-
value pairs (i.e. <color: red>) from e-Commerce product descrip-
tions, which provides a better search and recommendation expe-
rience for customers. Existing studies on AVE mainly focus on
supervised-learning models such as sequence labeling [31, 76], ex-
tractive question answering [60, 64] and multi-modal learning [22,
43, 63, 65] models. These supervised learning models are trained
to only predict seen attribute value pairs. However, new products
with unseen attribute-value pairs enter the market every day in
real-world e-Commerce platforms. It is time-consuming and costly
to manually label large quantities of new products for training.

Some recent works focus on open mining models [73, 81] to
directly extract attribute values from product titles or description.
But these approaches can not discover attribute values that are not
explicitly mentioned in the text. In other words, these open mining
models can not extract values that never appear in the product pro-
file. To extract unseen attribute values, these open mining models
use self-supervised learning, but they still need a high-quality seed
attribute set bootstrapped from existing resources. Besides these
open mining models, some generative large language models (LLM)
are fine-tuned to autoregressively decode unseen attribute values
from the input text. However, fine-tuning such LLM (i.e. T5 [53])
requires a large amount of time and computing resources.

Figure 1: An example of zero-shot product attribute-value
extraction by semi-inductive link predictions.

To address above challenges, we propose HyperPAVE, a multi-
label zero-shot attribute value extraction model that leverages in-
ductive inference in heterogeneous hypergraphs to recognize un-
seen (new) attribute-value pairs (aspects) for which there is no
available labeled training data. Motivated by the inductive graph
learning, which shows the superiority of GNN to inductively adapt
to infer unseen nodes [16, 71], we build inductive heterogeneous
hypergraphs employing inductive link prediction mechanisms to
infer missing or future connections (e.g., from new ‘product’ node
to unseen ‘aspect’ node). The top part of Figure 1 shows an ex-
ample comparison between supervised (Figure 1a) and zero-shot
(Figure 1b) attribute value extraction. Existing works formulate re-
lation propagation as a transductive link prediction task (Figure 1a),
where links can only be predicted between seen nodes (products
and aspects) [4, 45]. To recognize unseen (new) aspects for new
products, negative links are added in the original graph and the
model is trained to predict whether an edge exists between two
nodes based on the node features. HyperPAVE aims to learn the
connections between both the nodes’ features that are obtained
from the fine-tuned LLM-based encoder and the complex graph
structure. Motivated by the success of combining inductive GNNs
and pretrained BERT models [30], HyperPAVE is designed to en-
hance the inductive hypergraph-based model with fine-tuned BERT
contextual embeddings for each node. Then, HyperPAVE is updated
with zero-shot products and aspects with fine-tuned contextual
embeddings, where message-passing is conducted directly on the
updated graph, ensuring the inductive inference ability.

In addition, given the complexity of product data, it is important
to design a model that can capture the heterogeneous, intercon-
nected, and higher-order representation of both product data and
user behavior data. Therefore, our proposed model HyperPAVE
consists of various types of nodes including ‘category’, ‘product’,
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and ‘aspect’. The product node records information including both
product titles and descriptions. To fully express the semantic infor-
mation for attribute-value pairs, the aspect nodes record detailed
attribute value description generated by a generator. The proposed
hypergraph representation uses higher-order relations to capture
complex and interconnected user behavior information (e.g., ‘also
buy’, ‘also view’) and product inventory information (e.g., ‘product
has aspects’, ‘category includes products’). The bottom part of Fig-
ure 1 shows an example comparison between graph-based (Figure
1c) and hypergraph-based (Figure 1d) attribute value extraction.
To capture complex interconnected user behavior information, in-
stead of using multiple graphs (one for each behavior e.g., “also
buy” and “also view”), we construct hypergraphs using hyperedges
to represent user behavior information as higher-order relations.
Compared to using several different graphs to capture complex re-
lations, using a hypergraph (1) can include more (i.e. user behavior)
information for the final node representation, (2) does not need to
include user nodes in the graph, and (3) relations are not limited to
binary connections. The contributions are summarized as:

• We propose a multi-label zero-shot model HyperPAVE to
extract unseen attribute values for new products without
labeled training data. HyperPAVE leverages an inductive
link prediction mechanism combined with fine-tuned BERT
encoder to obtain unseen contextual node features.

• We build heterogeneous hypergraphs with higher-order
relations to capture the complex and interconnected user
behavior and structured product inventory information.

• Extensive experiments on the public dataset MAVE demon-
strate that HyperPAVE significantly outperforms the classi-
fication model, generative LLMs and graph-based models
in zero-shot learning. Besides, HyperPAVE also shows the
effectiveness and efficiency for training.

2 RELATEDWORKS
2.1 Attribute Value Extraction
Attribute value extraction (AVE) aims at extracting attribute-value
pairs (aspects) based on the product information. Early works use
rule-based methods with domain-specific dictionaries to match tar-
get attribute value pairs [21, 50, 69].With the development of neural
networks, some studies view AVE as a sequence labeling prob-
lem [31, 55, 76, 84]. Then, question-answering-based models are
built to treat attributes as questions and values as answers [60, 64,
72]. Multimodal fusion utilizing product images as visual features
are learned to integrate visual semantics for products [11, 22, 38, 43,
44, 63, 65, 85]. Some studies formulate AVE as a multi-label classifi-
cation task to extract multiple aspects for the products [6, 12, 23].
To handle unseen attribute values, open mining models [73, 81] ex-
tract aspects directly from the text with limited/weak supervision,
and generation models [61] decode aspects as target sequences.
However, all of these approaches (1) require large quantities of
labeled data for training and (2) miss higher-order relation between
products, such as ‘also buy’ or ‘also view’ products.

2.2 Zero-shot Learning
Zero-shot learning has been widely applied in the field of computer
vision (CV) [49] and natural language processing (NLP) [2, 3]. Exist-
ing works for zero-shot learning in information extraction can be
roughly divided into three categories: (1) Embedding-based models,
where representations of both seen and unseen classes are learned
based on the auxiliary information such as class information [1, 58]
and other external information [24, 39]. However, high-quality ex-
ternal knowledge is required for training the model, resulting in
an increase in training time and resources. (2) Generative-based
models, where augmented samples are generated for unseen classes
by generation models (i.e. GAN [47], VAEs [33], and GPT-2 [52])
based on the samples of seen classes. Then, the zero-shot learning
problem is converted into a conventional supervised learning prob-
lem [10, 25, 51, 83]. However, these models suffer from the noise of
augmented samples and performance highly depends on genera-
tive models. (3) Graph-based models, where GNNs [59] are directly
used to predict unseen classes by inductive link prediction [2]. Most
studies view this problem as zero-shot knowledge graph comple-
tion [20] or zero-shot item recommendation [16]. Attentive GCN is
used to transfer features from seen classes to unseen classes [26].
Ontologies or topologies are utilized to augment ZSL by capturing
relationships between classes [8, 19]. Motivated by this, we build a
product heterogeneous hypergraph to identify unseen aspects with
inductive inference ability while capturing higher-order relations.

2.3 Heterogeneous Hypergraph
Hypergraphs are generalizations and extensions of ordinary graphs,
where hyperedges can accommodate an arbitrary number of nodes
to capture the higher-order relations [80]. To handle different types
of nodes and edges, heterogeneous hypergraphs are learned by
attention mechanisms [14, 32, 35, 42], wavelets [62], and variational
auto-encoder [15, 41]. Though, all of these works are widely applied
for social networks [36, 67, 77], academic citations [68, 70, 79],
biological networks [17, 27, 46] or product recommendation in e-
commerce [5, 9, 40, 74], heterogeneous hypergraphs are NEVER
applied to attribute value extraction in e-commerce. Different with
the above hypergraphs that building hyperedges by close neighbors
or meta-paths [? ], we construct e-commerce related hyperedges by
using user behavior and product inventory data to capture higher-
order relations among categories, products, and aspects, in order
to recognize unseen attribute values for new products.

3 METHODOLOGY
3.1 Problem Definition
In this section, we introduct the problem statement and some nec-
essary definitions and notations for heterogeneous hypergraphs
and multi-label zero-shot learning.

Problem Statement. Let 𝐷 = {𝑐𝑖 , 𝑝𝑖 , 𝑎𝑖 } denotes a corpus of e-
commerce product records, where 𝑐𝑖 , 𝑝𝑖 , 𝑎𝑖 represent sub-category,
product and attribute value pair (aspect), respectively. We use 𝐶 ,
𝑃 , 𝐴 to denote the sets of sub-categories, products, and aspects.
Hence, the task of attribute value extraction can be formulated as
follows: Input: The product records 𝐷 . Output: A model to estimate
the probability that a new product 𝑝 in sub-category 𝑐 will have the
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Figure 2: Overall framework of our proposedmodelHyperPAVE. The framework includes three key components: (a) Hypergraph
Construction (b) Heterogeneous Hypergraph Relation Learning and (c) Inductive Link Prediction.

unseen attribute value 𝑎. The goal of attribute value extraction is to
learn a modelM(𝑝𝑖 , 𝑎 𝑗 ) → 𝑦 [0, 1] to score the probability that a
product 𝑝𝑖 has the attribute value 𝑎 𝑗 based on G, which includes all
the relations from user behavior and product inventory information.
Given several different graphs (i.e. user behavior graphs, product
inventory graphs, etc.), we first build a heterogeneous hypergraph
G to capture the higher-order and non-binary relations contained
in G. Then, we aim at learning the representations for nodes on a
heterogeneous hypergraph G for inductive link prediction task.

DEFINITION 1 (Heterogeneous Hypergraph): A heterogeneous
hypergraph could be defined as G = {V, E,T𝑣,T𝑒 ,𝑊 }, where
V = {𝑣1, 𝑣2, · · · , 𝑣𝑁 } is the node set, andT𝑣 is the node type set. E =

{𝑒1, 𝑒2, · · · , 𝑒𝑀 } is the hyperedge set, and T𝑒 is the hyperedge type
set, where |T𝑣 | + |T𝑒 | > 2. 𝑁 and𝑀 represent the maximum num-
bers of hyperedge nodes and edges.𝑊 = 𝑑𝑖𝑎𝑔(𝑤𝑒1 ,𝑤𝑒2 , · · · ,𝑤𝑒𝑀 )
denotes the diagonal matrix representing the hyperedge weight.
We use incidence matrix 𝐻 ∈ R |V |× | E | to represent relationships
between nodes and hyperedges, with entries defined as:

𝐻 (𝑣, 𝑒) =
{
1 if 𝑣 ∈ 𝑒

0 if 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(1)

𝐷𝑣 ∈ R |V |× |V | and 𝐷𝑒 ∈ R | E |× | E | are the diagonal matrices
representing the degree matrix of nodes and hyperedges, where

𝐷𝑣 (𝑖, 𝑖) =
∑
𝑒∈E𝑊 (𝑒)𝐻 (𝑖, 𝑒) and 𝐷𝑒 (𝑖, 𝑖) =

∑
𝑣∈V 𝐻 (𝑣, 𝑖). The nor-

malized hypergraph adjacency matrix 𝐴 ∈ RV×V , representing
the connection relationship between nodes, is defined as:

𝐴 = 𝐷
−1/2
𝑣 𝐻𝑊𝐷−1

𝑒 𝐻𝑇𝐷
−1/2
𝑣 (2)

DEFINITION 2 (Zero-Shot Learning in Graph): For multi-label
zero-shot attribute-value (aspect) prediction, let𝐴𝑠 =

{
𝑎𝑠1, · · · , 𝑎

𝑠
𝑚

}
and 𝐴𝑢 =

{
𝑎𝑢1 , · · · , 𝑎

𝑢
𝑚

}
denote the node sets of seen and unseen

aspects, where 𝐴𝑠 ∩ 𝐴𝑢 = ∅. Only 𝐴𝑠 is included in the training
graph G𝑡𝑟 and only 𝐴𝑢 is included in the testing graph G𝑡 . Product
𝑝𝑖 with any 𝑎𝑢

𝑖
will be removed from G𝑡𝑟 to G𝑡 , in order to ensure

all unseen aspect nodes are not in the training graph G𝑡𝑟 . Details
for multi-label zero-shot sampling is introduced in Algorithm 1.

3.2 Multi-Label Zero-Shot Data Sampling
Multi-label zero-shot data sampling includes (1) data splitting to
ensure that there is no overlap of aspect and product nodes in
training and validation/testing sets, and (2) negative sampling to
balance the dataset. For data splitting, We first randomly generate
𝑁 aspect nodes 𝐴𝑁 as unseen attribute values. Then, we remove
both the nodes𝐴𝑁 and their corresponding products 𝑃𝑀 as unseen
products, and all edges on 𝐴𝑁 and 𝑃𝑀 from the original graph G,
where 𝑁 ≠ 𝑀 . This step ensures that the zero-shot products and
attribute values are never shown in the training graph. We update
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the validation and testing graphs with the zero-shot nodes and
links separately so that there’s no overlap of zero-shot nodes and
links between the validation and testing sets. To balance the dataset,
we do negative sampling and add negative links for all training,
validation, and testing graphs. Details for multi-label zero-shot data
sampling are shown in Algorithm 1.

Algorithm 1:Multi-label Zero-shot Data Sampling
Input :Graph G with categories nodes 𝐶 , product nodes 𝑃

and aspect nodes 𝐴, unseen aspect number 𝑁
Output :Train graph G𝑡𝑟 , val graph G𝑣 , test graph G𝑡

Initialize G𝑡𝑟 , G𝑣 , G𝑡

for 𝑖 in 𝑅𝑎𝑛𝑑𝑜𝑚(𝑁 ) do
𝑃𝑖 = 𝑔𝑒𝑡_𝑛𝑜𝑑𝑒 (G, 𝐴𝑖 )
𝑙𝑖𝑛𝑘𝑝𝑜𝑠 = 𝑔𝑒𝑡_𝑒𝑑𝑔𝑒 (G, 𝑃𝑖 , 𝐴𝑖 )
𝑙𝑖𝑛𝑘𝑛𝑒𝑔 = 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑔𝑒𝑡_𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 (𝑙𝑖𝑛𝑘𝑝𝑜𝑠 ))
G.remove(𝐴𝑖 , 𝑃𝑖 , 𝑙𝑖𝑛𝑘𝑝𝑜𝑠 )
if 𝑖//2=0 then

G𝑣 .update(𝐴𝑖 , 𝑃𝑖 , 𝑙𝑖𝑛𝑘𝑝𝑜𝑠 , 𝑙𝑖𝑛𝑘𝑛𝑒𝑔)
else

G𝑡 .update(𝐴𝑖 , 𝑃𝑖 , 𝑙𝑖𝑛𝑘𝑝𝑜𝑠 , 𝑙𝑖𝑛𝑘𝑛𝑒𝑔)
G𝑡𝑟 = G.𝑎𝑑𝑑_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 ()

return G𝑡𝑟 , G𝑣 , G𝑡

3.3 Overall Framework
Figure 2 shows our proposed framework HyperPAVE with three
main components: a) hypergraph construction, b) heterogeneous
hypergraph relation learning, and c) inductive link prediction. We
introduce each component in detail below.
3.3.1 Heterogeneous Hypergraph Construction. As shown in Fig-
ure 2(a), there are three types of nodes: categories, products and
attribute values (aspects), and four types of hyperedges: ‘also view’,
‘also buy’, ‘product with all aspects’ and ‘category with all products
and aspects’, which are constructed from two main data sources:
user behavior information and product inventory information as:

1) User Behavior Data. User behaviors have multiple types relates
to item-to-item relationships: people who bought X also bought Y
(‘also buy’) and people who viewed X also viewed Y (‘also view’).
To well handle different user behaviors, we construct two types of
hyperedges T𝑢

𝑒 =
{
E𝑉 , E𝐵

}
, where E𝑉 represents ‘also view’ and

E𝐵 represents ‘also buy’. For example, given the record of user1 in
‘also view’ graph shown in Figure 2(a), we construct a hyperedge
E𝑉
𝑖

= {𝑝1, 𝑝2, · · · , 𝑝𝑛} ∈ E𝑉 to model the interactions between
users and products. That is, each hyperedge in E𝑉 corresponds to
one user. These hyperedges are homogeneous hyperedges because
all nodes represent products.

2) Product Inventory Data. Product inventory data refers to the
existing product information records, including category, product,
attribute values, etc. We construct hyperedges E𝑃 to connect all
attribute values to one product (P-A) and hyperedges E𝐶 to con-
nect all products information to one sub-category (C-P-A). For
example, given a product 𝑝𝑖 , we construct a hyperedge E𝑃

𝑖
=

{𝑝𝑖 , 𝑎1, 𝑎2, · · · , 𝑎𝑛} ∈ E𝑃 to indicate the relationships between
product and its attribute values. These heterogeneous hyperedges

records the non-binary relations among categories, products and
attribute values. To summarize it, we obtain hyperedge sets as:

T𝑒 =

{
E𝑉 , E𝐵, E𝑃 , E𝐶

}
(3)

3.3.2 Heterogeneous Hypergraph Relation Learning.

Embedding Module. As shown in Figure 2(b), a heterogeneous
hypergraph encoder first initialize the node embeddings. Since the
attribute values (aspects) may lose contextual information due to
the simple format, GPT-2 [52] is adopted as the text generator to
generate more detailed descriptions for attribute values. For exam-
ple, attribute value: ‘connectivity: wireless’ can be elaborated to a
more detailed explanation: ‘connectivity is wireless communica-
tion between the user’s device, which has an independent, physical
signal to the user’. We then adopt a pre-trained language model
BERT [13] as all nodes’ input encoder to generate the initial con-
textual representation. For the product node, we construct a string
[CLS;𝑡 ;SEP;𝑑] by concatenating product title and description as the
input, where CLS and SEP are special tokens. The initial output
representation for the category node 𝑐𝑖 , product node 𝑝𝑖 and aspect
node 𝑎𝑖 can be formulated as follows:

ℎ𝑣𝑐𝑖 = 𝑡𝑎𝑛ℎ(𝑊 · 𝑓∅ (𝑐𝑖 ) + 𝑏) (4)

ℎ𝑣𝑝𝑖 = 𝑡𝑎𝑛ℎ(𝑊 · 𝑓∅ (𝑡𝑖 , 𝑑𝑖 ) + 𝑏) (5)

ℎ𝑣𝑎𝑖 = 𝑡𝑎𝑛ℎ(𝑊 · 𝑓∅ (𝑔∅ (𝑎𝑖 )) + 𝑏) (6)

where 𝑓∅ is BERT encoder, 𝑔∅ is GPT-2 generator, 𝑐 is category, 𝑡 is
product title, 𝑑 is product description, 𝑎 is ‘attribute value’,𝑊 and
𝑏 are trainable weights and bias. To simplify the notations, we use
ℎ𝑣𝑖 to denote the initial feature embeddings of all different nodes.

Message Passing Module. To support representation learning on
the constructed heterogeneous hypergraphs in the previous step,
we design a heterogeneous hypergraph relation learning module
(shown in Figure 2(b) in HyperPAVE to explore the complex higher-
order relationships based on many-to-many node message passing
in the product graph by taking full advantage of the structure
information in Figure 2(a). HyperPAVE learns node representations
with two different aggregation functions:

ℎ𝑙𝑣𝑖 = 𝐴𝐺𝐺𝑅𝑙
𝑒𝑑𝑔𝑒

(
ℎ𝑙−1𝑣𝑖

,

{
ℎ𝑙𝑒 𝑗 |∀𝑒 𝑗 ∈ E𝑖

})
(7)

ℎ𝑙𝑒 𝑗 = 𝐴𝐺𝐺𝑅𝑙
𝑛𝑜𝑑𝑒

({
ℎ𝑙−1𝑣𝑘

|∀𝑣𝑘 ∈ 𝑒 𝑗

})
(8)

where 𝐴𝐺𝐺𝑅 is the aggregation function, E𝑖 is the hyperedge sets
connected to node 𝑣𝑖 andℎ𝑙𝑒 𝑗 is the representation of hyperedge 𝑒 𝑗 in
layer 𝑙 . Since not all the nodes in a hyperedgewill contribute equally,
the message passing is calculated from nodes to hyperedges:

𝛼
𝑒𝑖
𝑣𝑖 =

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑤𝑇
1 · ℎ𝑙−1𝑣𝑖

))∑
𝑣∈𝑉𝑒𝑖

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑤𝑇
1 · ℎ𝑙−1𝑣 ))

(9)

ℎ𝑙𝑒𝑖 = | |𝑁𝑛=1𝜎 (
∑︁
𝑣∈𝑉𝑒𝑖

𝛼
𝑒𝑖
𝑣 · ℎ𝑙−1𝑣 ) (10)

where 𝛼𝑒𝑖𝑣𝑖 is the weight factor of node 𝑣𝑖 to hyperedge 𝑒𝑖 , 𝑉𝑒𝑖 is the
node set of hyperedges 𝑒𝑖 ,𝑤𝑇

1 is a trainable attention parameter, | |
4
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Table 1: Dataset statistics over ten categories. Number of hyperedges are reported in the format of: #nodes / #hyperedges.

Category Number of Nodes Number of Edges Number of Hyperedges
#C #P #A #CP #PA Density P-Palso view P-Palso buy P-A C-P-A

Arts 980 11,625 2,184 50,652 28,932 7.2×10−4 970/624 1,448/1,248 13,809/11,643 14,789/979
Books 410 16,220 255 48.271 23,438 5.03×10−4 1,247/1,433 2,432/2,550 16,475/16,222 16,885/409
Cellphones 145 8,499 1,484 27,620 20,329 9.35×10−4 366/362 171/160 9,983/8,507 10,128/144
Giftcards 5 131 11 378 311 0.06 17/20 19/32 142/130 147/1
Grocery 742 18,315 4,686 75,362 47,745 4.37×10−4 3,162/2,431 3,392/3,314 23,001/4,686 23,743/741
Industrial 433 3002 1573 12,429 8,453 1.67×10−3 152/106 210/205 4,539/3,063 5,008/432
Pet 508 14,299 2,575 64,947 46,370 7.34×10−4 1,614/1,670 820/600 16,874/14,675 17,382/507
Software 303 254 98 1,182 607 8.35×10−3 19/20 2/1 352/287 655/302
Tools 975 34,076 7,538 143,683 101,475 2.7×10−4 3,176/2,648 1,998/1,704 41,614/34,705 42,589/974
Videogames 910 731 353 4,446 2,152 3.32 ×10−3 113/139 14/9 1,084/752 1,994/909

denotes concatenation with 𝑁 heads, and 𝜎 is a non-linear func-
tion. ℎ𝑙𝑒𝑖 is the 𝑙

𝑡ℎ layer of hyperedge representation. Similarly, the
message passing from hyperedges to nodes is calculated as:

𝛼
𝑣𝑖
𝑒𝑖 =

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑤𝑇
2 · (ℎ𝑙−1𝑣𝑖

| |ℎ𝑙−1𝑒𝑖
)))∑

𝑒∈E𝑣𝑖

𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑤𝑇
1 · (ℎ𝑙−1𝑣𝑖 | |ℎ𝑙−1𝑒 )))

(11)

ℎ𝑙𝑣𝑖 = | |𝑁𝑛=1𝜎 (
∑︁

𝑒∈E𝑣𝑖

𝛼
𝑣𝑖
𝑒 · ℎ𝑙−1𝑒 ) (12)

where 𝛼𝑣𝑖𝑒𝑖 is the weight factor of hyperedge 𝑒𝑖 to node 𝑣𝑖 , E𝑣𝑖 is
the connected hyperedge set of node 𝑣𝑖 .𝑤𝑇

2 is a trainable attention
parameter and ℎ𝑙𝑣𝑖 is the 𝑙

𝑡ℎ layer of node representation, which
includes the information from the hyperedge E.

Fusion Module. Instead of directly adding a readout layer and a
linear prediction layer after the obtaining the 𝐿 layers node repre-
sentations [74], we argue that different types of hyperedges from T𝑒
have different importance to the final node representations. Thus,
we propose fusion modules to fuse node representations learnt from
different hypergraphs constructed in Sec. 3.3.1. The updated node
representations for product node ˆℎ𝑣𝑝𝑖 and aspect node ˆℎ𝑣𝑎𝑖 are:

ˆℎ𝑣𝑝𝑖 = 𝛼 ·ℎE
P

𝑣𝑝𝑖
+ 𝛽 ·ℎE

C
𝑣𝑝𝑖

+ (1−𝛼 − 𝛽) (𝛾 ·ℎE
V

𝑣𝑝𝑖
+ (1−𝛾) ·ℎE

B
𝑣𝑝𝑖

) (13)

ˆℎ𝑣𝑎𝑖 = 𝛿 · ℎE
P

𝑣𝑎𝑖
+ (1 − 𝛿) · ℎE

C
𝑣𝑎𝑖

(14)

where ℎE
P

𝑣𝑝𝑖
, ·ℎEC

𝑣𝑝𝑖
, ℎE

V
𝑣𝑝𝑖

, ℎE
B

𝑣𝑝𝑖
are product node representations and

ℎE
P

𝑣𝑎𝑖
, ℎE

C
𝑣𝑎𝑖

are aspect node representations from different hyper-
edges in Equ. 3, respectively. 𝛼 , 𝛽 , 𝛾 , and 𝛿 are weights learnt from
the validation sets. They are different for different categories of the
dataset. These weights are also explored and studied in Sec. 4.2.4.
After the above fusion steps, the node embeddings contain the fea-
tures from neighbors defined by different hyperedges T𝑒 , which
can well capture the high-order relations communicated among
different types of nodes and hyperedges.

3.3.3 Inductive Link Prediction. After heterogeneous hypergraph
relation learning, each node includes the higher-order features
related to user behavior and product inventory information. Then,
all the nodes go through 𝐿 GNN layers to compute the final node
representations. After generating the final embeddings of ˜ℎ𝑣𝑝 and
˜ℎ𝑣𝑎 , the likelihood of the link between product 𝑝 and aspect 𝑎 is

measured by the cosine similarity to decide the possibility 𝑅𝑖 𝑗 of
whether product 𝑝𝑖 will have the aspect 𝑎 𝑗 :

𝑓𝑠𝑐𝑜𝑟𝑒 (( ˜ℎ𝑣𝑝 )𝑖 , ( ˜ℎ𝑣𝑎 ) 𝑗 ) =
( ˜ℎ𝑣𝑝 )𝑖 · ( ˜ℎ𝑣𝑎 ) 𝑗


( ˜ℎ𝑣𝑝 )𝑖




 


( ˜ℎ𝑣𝑎 ) 𝑗



 (15)

We use the negative sampling strategy introduced in Sec. 3.2
to train HyperPAVE and employ a binary cross entropy loss to
optimize our model:

L =
∑︁

𝑝𝑖 ∈𝑃,𝑎𝑖 ∈𝐴
𝑅𝑖 𝑗 𝑙𝑜𝑔𝑅𝑖 𝑗 + (1 − 𝑅𝑖 𝑗 ) (1 − 𝑙𝑜𝑔𝑅𝑖 𝑗 ) (16)

Note that HyperPAVE follows the mutli-label zero-shot settings
in Sec. 3.2 to eliminate themandatory access of testing node features
during training, making the model access the inductive inference
ability. For unseen attribute values (aspects) and products, we can
directly feed their corresponding contextual node embeddings by
fine-tuned BERT encoder to HyperPAVE instead of representing
product and aspect nodes with one-hot vectors. Then, we only con-
duct message-passing and compute the probability of connections
between the product node and the aspect node. Hence, we can han-
dle the newly added products and attribute values in an inductive
way instead of retraining the model.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Dataset. We evaluate our model over ten different categories
(Arts, Books, Cellphones, Grocery, etc) of a public datasetMAVE [78],
which is a large e-Commerce dataset derived from Amazon Review
Dataset [48]. To simulate the zero-shot situation, we reconstruct
the dataset into multi-label zero-shot learning settings followed by
Sec. 3.2, where there is no overlap of products and attribute values
between the training set and validation/testing set. Note that each
time we train the model, the dataset will be randomly re-splitted for
zero-shot setting, so we report the whole data statistics in Table 1.
A sample of data statistics for training, validation, and testing sets
for each cateogry is shown in Appendix 6.1.

4.1.2 Evaluation Metrics. Following other AVE tasks in the multi-
label zero-shot setting [61], we choose to report macro-F1 and
mAP (mean Average Precision) compared with classification and
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Table 2: Experimental Results F1 / mAP (%) of multi-label zero-shot learning over ten categories on MAVE. The results are
reported as mean±standard deviation over ten times of experiments. The best results are in bold.

Arts Books Cellphones Giftcards Grocery
BERT-MLC [7] 24.11±0.09 / 10.31±0.16 36.72±0.08 / 27.17±0.37 22.92±0.25 / 28.67±0.37 36.54±0.07 / 41.15±0.08 19.74±0.24 / 12.07±0.09
Bart [34] 27.88±0.36 / 23.16±0.46 38.82±0.44 / 44.90±0.20 32.71±0.35 / 24.54±0.37 15.73±0.19 / 8.75±0.36 10.80±0.18 / 6.95±0.12
T5small [53] 30.85±0.31 / 23.16±0.17 36.17±0.45 / 42.60±0.13 30.95±0.31 / 24.27±0.30 10.14±0.26 / 8.08±0.23 23.53±0.27 / 17.32±0.25
HGCN [54] 16.87±0.10 / 25.30±0.33 39.39±0.18 / 37.40±0.12 17.23±.24 / 14.67±0.31 30.92±0.07 / 45.42±0.06 25.60±0.13 / 39.77± 0.18
HAN [66] 14.26±0.10 / 26.42±0.25 43.73±0.16 / 49.48±0.16 22.49±0.20 / 33.69±0.17 42.47±0.31 / 54.05±0.13 17.23±0.20 / 34.67±0.24
HGT [29] 30.81±0.13 / 38.53±0.16 48.06±0.11 / 41.67±0.17 14.53±0.16 / 23.73±0.20 42.30±0.40 / 42.39±0.19 27.30±0.11 / 40.76±0.24
HGNN+ [18] 27.90±0.28 / 36.91±0.13 46.79±0.20 / 58.33±0.15 32.10±0.17 / 36.40±0.26 37.18±0.07 / 57.20±0.04 32.40±0.14 / 38.60±0.15
HyperGCN [75] 20.20±0.17 / 38.45±0.21 48.97±0.13 / 45.18±0.16 20.90±0.25 / 26.00±0.40 52.74±0.19 / 45.97±0.09 35.90±0.22 / 42.20±0.21
HyperPAVE 43.33±0.22 / 40.99±0.18 49.75±0.18 / 56.45±0.11 39.01±0.16 / 35.81±0.18 52.34±0.22 / 65.03±0.13 33.43±0.28 / 42.71±0.30

Industrial Pet Software Tools Videogames
BERT-MLC [7] 10.94±0.19 / 6.69±0.16 18.14±0.55 / 12.08±0.16 27.76±0.09 / 25.37±0.09 20.43±0.26 / 18.41±0.17 11.86±0.31 / 9.66±0.35
BART [34] 10.78±0.32 / 7.84±0.32 12.50±0.25 / 10.42±0.67 22.50±0.03 / 20.00±0.02 11.11±0.16 / 6.25±0.09 23.57±0.32 / 20.02±0.25
T5small [53] 15.81±0.47 / 15.35±0.16 25.28±0.20 / 25.72±0.26 26.19±0.42 / 24.60±0.31 37.78±0.26 / 22.46±0.52 14.41±0.15 / 9.90±0.27
HGCN [54] 10.67±0.24 / 14.60±0.14 17.62±0.15 / 24.63±0.24 19.29±0.22 / 30.97±0.15 18.07±0.20 / 39.32±0.18 8.78±0.40 / 13.61±0.25
HAN [66] 15.35±0.20 / 30.45±0.50 16.82±0.13 / 23.33±0.25 28.24±0.31 / 29.03±0.14 19.78±0.03 / 41.40±0.14 9.68±0.16 / 16.29±0.21
HGT [29] 21.09±0.13 / 23.20±0.16 18.02±0.13 / 23.66±0.20 30.15±0.20 / 27.16±0.08 13.61±0.18 / 35.23±0.22 14.75±0.05 / 19.97±0.11
HGNN+ [18] 25.90±0.26 / 28.60±0.12 27.60±0.14 / 35.58±.16 39.90±0.26 / 28.76±.16 31.00±0.15 / 42.20±0.23 10.35±0.11 / 17.21±0.08
HyperGCN [75] 29.20±0.13 / 33.20±.11 22.20±0.12 / 31.37±0.14 42.10±0.31 / 38.70±0.13 31.10±0.18 / 44.05±0.19 10.90±0.13 / 15.30±0.10
HyperPAVE 27.70±0.10 / 33.29±0.17 28.45±0.13 / 38.46±0.20 47.62±0.21 / 51.64±0.10 34.00±0.28 / 47.83±0.29 25.31±0.19 / 21.19±0.17

generation-based models in the main results as F1 score is the bal-
ance of both precision and recall. In Sec. 4.2.2 ablation study, we
also report AUC (Acrea Under Curve), Hits@K, NDCG@K (Nor-
malized Discounted Cumulative Gain), and MRR (Mean Reciprocal
Ran), which are widely used metrics in graph-based recommenda-
tion tasks [16, 28, 37]. We also report training time to evaluate the
efficiency in Sec. 4.2.3 efficiency study.

4.1.3 Baselines. We compare our proposed model HyeprPAVE
with the following baselines in the zero-shot setting:

• Classification-based Models: Original classification-based
models do not have any zero-shot abilities. We follow the
baseline BERT-MLC in [61], then we add synthetic data for
unseen classes (attribute values) following [10]. In this way,
the zero-shot learning problem is translated into supervised
learning problem.

• Generation-based Models: Following generative models
in zero-shot AVE task [61], we implement and fine-tune
two text-to-text transformer-based encoder decoder archi-
tecture models: BART [34] and T5small [53], to generate
unseen attribute values directly.

• Graph-based Models 1: As inductive graph can predict
unseen nodes (zero-shot learning), we compare Hyper-
PAVE with three heterogeneous graph neural networks:
HGCN [54], HAN [66], HGT [29], and two representative
hypergraph networks: hyperGCN [75], HGNN+ [18].

4.1.4 Parameter Settings. We randomly select unseen attribute
value pairs with unseen products following the sampling rule in
Sec. 3.2. For hyperparameter and configuration of HyperPAVE, we
implement HyperPAVE in PyTorch and optimize it with AdamW
optimizer. We train HyperPAVE and all baselines on the training
set and use validation set to select the optimal hyper-parameter

1Implemented on DHG: https://deephypergraph.com/

settings, and finally report the performance on the test set. We
follow the early stopping strategy when selecting the model for
testing. For all methods, we run 10 times with different random
seeds and report the average results with standard deviation. Details
for the parameters are provided in Appendix 6.2.

4.2 Results and Discussions
4.2.1 Main Results. The experiment results of multi-label zero-
shot learning across ten different categories on the MAVE dataset
are shown in Table 2. From the results shown in Table 2 and data
statistics shown in Table 1, we observe that:

(1) In general, classification-based model has the worst perfor-
mance among all models. BERT-MLC, which uses synthetic data
for zero-shot prediction, only have competitive performance to
generation-based models when the class number (#A) is small, such
as the performance shown in the books, giftcards, and software
category. We conjecture that as the number of classes grows, BERT-
MLC needs to make distinctions among more classes, making it
harder to find clearer decision boundaries. The average micro F1
of BART and T5 small across all ten categories is 20.64 and 25.11,
respectively, which is worse than T5 base in [61] on MAVE. This is
because T5 base is pre-trained over 220 million paramters wheras
T5 small has only 60 million parameters. Generation-based models
perform much better than classification-based model in most cases.
BART and T5 small show different performances over different cat-
egories. They can achieve similar performance with HyperPAVE
when the dataset size is large enough (i.e. Tools).

(2) Combining inductive graph-based models with LLM encoders
(i.e. HGCN, HAN, HGT) can definitely perform zero-shot prediction
and achieve competitive performance with generative models to
predict unseen attribute values for new products. This inspires us
that instead of fine-tuning the popular generative models [56, 57, 61,
82] to extract attribute values, inductive graph for link prediction
can also be explored for zero-shot prediction. In addition, using
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Table 3: Ablation study over HyperPAVE components in the zero-shot setting across three categories on MAVE dataset.

F1 mAP AUC MRR NDCG Hits@5 Hits@10 Hits@100
Books

nodeID 11.54 ± 1.59 28.52 ± 1.29 95.31 ± 1.15 6.64 ± 1.07 48.41 ± 0.97 35.26 ± 0.63 53.85 ± 0.62 99.42 ± 0.05
BERT 23.87 ± 1.29 38.63 ± 0.57 97.07 ± 0.60 11.39 ± 0.83 57.31 ± 0.65 47.05 ± 0.42 63.59 ± 0.40 100.00 ± 0.00
BERT (Fine-tuned) 28.28 ± 0.81 40.32 ± 0.59 97.87 ± 0.21 14.44 ± 0.40 58.89 ± 0.41 50.90 ± 0.82 78.33 ± 0.38 100.00± 0.00
Hyper (Product) 30.44 ± 0.25 40.65 ± 0.41 98.03 ± 0.19 14.23 ± 0.19 59.49 ± 0.30 49.36 ± 0.14 80.51 ± 0.17 100.00± 0.00
Hyper (Behavior) 34.46 ± 0.29 35.93 ± 0.49 98.40 ± 0.20 19.37 ± 0.27 54.23 ± 0.31 63.67 ± 0.40 93.67 ± 0.24 100.00± 0.00
HyperPAVE 49.75 ± 0.18 56.45 ± 0.11 96.47 ± 0.02 32.99 ± 0.14 69.35 ± 0.18 85.27 ± 0.12 94.04 ± 0.08 100.00 ± 0.00

Giftcards
nodeID 6.67 ± 0.21 22.35 ± 0.20 41.94 ± 0.29 18.18 ± 0.30 42.92 ± 0.15 25.00 ± 0.00 97.50 ± 0.08 100.00± 0.00
BERT 26.41 ± 0.17 44.79 ± 0.14 71.94 ± 0.05 24.15 ± 0.18 62.47 ± 0.13 75.00 ± 0.00 100.00± 0.00 100.00± 0.00
BERT (Fine-tuned) 34.43 ± 0.17 41.67 ± 0.15 71.53 ± 0.16 23.17 ± 0.30 59.57 ± 0.11 67.50 ± 0.12 100.00± 0.00 100.00± 0.00
Hyper (Product) 39.77 ± 0.12 45.74 ± 0.10 84.55 ± 0.10 35.65 ± 0.17 61.83 ± 0.08 100.00± 0.00 100.00± 0.00 100.00± 0.00
Hyper (Behavior) 45.43± 0.15 60.50 ± 0.13 77.92 ± 0.12 29.13 ± 0.15 73.02 ± 0.07 71.00 ± 0.12 100.00± 0.00 100.00± 0.00
HyperPAVE 52.34 ± 0.22 65.03 ± 0.13 90.08 ± 0.05 44.56 ± 0.16 75.07 ± 0.11 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Pets
nodeID 6.95 ± 0.82 13.46 ± 0.92 98.51 ± 0.27 7.47 ± 0.19 42.17 ± 0.62 30.33 ± 0.46 50.00 ± 0.13 96.15 ± 0.10
BERT 9.93 ± 0.30 19.93 ± 0.51 99.73 ± 0.20 6.71 ± 0.27 41.16 ± 0.68 31.67± 0.54 65.00 ± 0.50 100.00± 0.00
BERT (Fine-tuned) 12.12 ± 0.29 19.99 ± 0.74 99.39 ± 0.11 10.79 ± 0.37 40.52 ± 0.61 25.00± 0.29 56.67 ± 0.14 100.00± 0.00
Hyper (Product) 17.58 ± 0.26 37.40 ± 0.32 99.03 ± 0.09 16.45 ± 0.19 45.67 ± 0.21 41.67 ± 0.17 71.67 ± 0.15 98.33 ± 0.12
Hyper (Behavior) 18.66 ± 0.14 24.71 ± 0.14 99.16 ± 0.10 19.01 ± 0.28 42.38 ± 0.35 36.07 ± 0.22 65.00 ± 0.09 100.00± 0.00
HyperPAVE 28.45 ± 0.13 38.46 ± 0.20 99.82 ± 0.06 29.92 ± 0.13 61.55 ± 0.20 56.67 ± 0.09 67.77 ± 0.03 100.00± 0.00

attention mechanism (i.e. HAN) shows better performance than
using fixed and uniformweights for aggregation (i.e. HGCN). This is
probably because assigning different weights to neighboring nodes
can capture varying levels of influence.

(3) Compared with graph-based baselines, adding complex struc-
tured data to capture higher order relationships (i.e. HGNN+, Hyper-
GCN, HyperPAVE) demonstrates significant performance improve-
ment over all ten categories. This is probably because hyperedges
can model relationships that go beyond pairewise connections, re-
sulting in more semantic node representations. Besides that, our
proposed model HyperPAVE achieves the best performance among
all models in most categories, indicating that our proposed hy-
pergraph construction from both user behavior data and product
inventory data is important and worth recording and exploring.
The effectiveness of different hyperedges are studied in Sec. 4.2.2.
4.2.2 Ablation Study. To evaluate the performance of each com-
ponent in HyperPAVE, we conduct an ablation study over three
categories (Books, Giftcards and Pet) in the zero-shot setting. Based
on the average number of aspects per product shown in last column
of Table 5, books, giftcards and pet categories have the smallest,
medium and largest number of aspects for each product, respec-
tively. Thus, we chose these categories to report ablation studies
due to the limited space. Table 3 shows the performance of each
component in HyperPAVE. More results are shown in Table 6 in the
Appendix. We have the following observations based on Table 3:

(1) Adding node features can significantly improve the perfor-
mance. We perform a model ‘nodeID’ in Table 3, which doesn’t use
any pre-trained encoder for providing node features. The model
‘nodeID’ uses a simple embedding-lookup encoder, mapping each
node to a unique low-dimensional vector. We can observe that
among all models in Table 3, ‘nodeID’ shows the worst perfor-
mance. After adding node features, such as BERT or fine-tuned
BERT, the performance increases significantly. We think that this

is because for link prediction in the zero-shot setting, pre-trained
embeddings provide richer and more semantically meaniningful
representations for node features in graphs than simple one-hot
encoding. (2) Fine-tuning the pre-trained encoders for node fea-
tures results in a big performance improvement when the dataset
(graph) is large enough. This is reasonable because a larger dataset
(graph with more nodes) provides more diverse and representa-
tive data, enabling better generalization for unseen nodes in the
zero-shot setting. However, as shown in Sec. 4.2.3, fine-tuning the
pre-trained encoder may result in more time for model training. A
balance of model performance and efficiency needs to be consid-
ered for different tasks/situations. (3) We explore the importance of
different hypergraphs shown in Figure 2(a). From Table 3, we find
out that adding different hyperedges built from user behavior data
or product inventory data results in a significant performance im-
provement. We conjecture that this is because different hyperedges
capture more complex higher-order information than the original
binary-relation graph. For example, hyperedge ’P-Palso_view’ built
from user behavior data includes the information of products with
potential similar attributes because users may probably view the
similar products at the same time for their needs. Hyperedge ‘C-P-
A’, built from product inventory data, aggregates all products and
aspects in the same sub-category. Attribute values such as ‘Chew
Type: Bones’ may only happen in sub-category of ‘Dog Treats’ in-
stead of ‘Cat Food’. By using hyperedges, more complex relations
can be included in the representation for each single node.
4.2.3 Efficiency Study. Table 4 presents the GPU computational
cost and model parameter comparison between classification-based
(BERT-MLC), generation-based (BART/T5small) and graph-based
(nodeID/HyperPAVE) models on Arts category of MAVE. Differ-
ent categories (different sizes of graphs) may result in a slight
difference. From the reported results, we can clearly find that com-
pared with classification or generation-based models, our proposed
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Table 4: Comparison of computational efficiency. The batch
size is set to 4.

Model Memory Consumption Model Parameters
Classification-based 5037MB 110M
Generation-based 8305MB / 5831MB 140M / 60M
Graph-based (ours) 1405MB / 1915 MB 5M / 115M

graph-based model HyperPAVE, has a significant computational
advantage in terms of memory consumption. The main reason is
that the zero-shot ability from generative LLMs is based on their
extensive pretraining and understanding on the diverse data. When
fine-tuning these LLMs, large quantities of model parameters need
to be updated, resulting in a huge GPU memory consumption cost.
However, the zero-shot ability of HyperPAVE results from the in-
ductive inference that can generalize to unseen product and aspect
nodes without retraining the whole model. The inductive Hyper-
PAVE divides the hypergraphs into batches and only consumes
per-batch memory when training. Note that for classification model
BERT-MLC, preprocessing steps for generating synthetic data from
generation models are required to predict unseen aspects. We have
not count the computational cost for these preprocessing steps.

Figure 3: Time Efficiency Performance (GPU Time of Model
Learning in Seconds for One Training Epoch).

In order to evaluate computation time of our graph-based model
HyperPAVE and other classification-based and generation-based
models, we record the model training time for one epoch in seconds
across the ten categories on MAVE as shown in Figure 3. All models
use the same input max_length and batch size for training. From
Figure 3, we observe that graph-based models show better model
training efficiency. Compared with other graph-based models (i.e.
GNN, HGNN), HyperPAVE can achieve the best prediction per-
formance as shown in Table 2 with only sacrificing a little more
time for training as shown in Figure 3. The slopes of BART, T5 and
BERT-MLE are much larger than graph-based models, indicating
that much more time is needed for training or fine-tuning with the
increasement of dataset size when updating the model parameters.
More details are shown in Table 7 in Appendix 6.3.

4.2.4 Parameter Sensitivity Analysis. The key hyperparameters
of HyperPAVE are the weights of the different hyperedges. Thus,
we explore the importance of different types of hyperedges on the
category of Giftcards as shown in Figure 4.

Figure 4: Effects on weights of different hyperedges on the
category of giftcards.

The left figure explores the weights of ‘P-Palso view’ and ‘P-
Palso buy’ hyperedges from user behavior information. The right
figure explores the weights of user behavior hyperedges (P-P) and
product inventory hyperedges (‘P-A’ and ‘C-P-A’). From Figure 4,
we observe that both ‘P-Palso view’ and ‘P-Palso buy’ contribute to
the model’s performance. The best weight for ‘P-Palso view’ falls in
the [0.2, 0.5] interval, which means ‘P-Palso buy’ is slightly more
important than ‘P-Palso view’. This is probably because ‘P-Palso buy’
records users’ history preference while ‘P-Palso view’ may include
some noise such as accidental clicks. We can also observe from the
right 4 that the best weight for user behavior data falls in the [0.6,
0.8] interval, indicating that user behavior is much more important
than product inventory data. As shown in Table 1, the number
of user behavior hyperedges is much smaller than the number of
product inventory hyperedges (‘P-A’ and ‘C-P-A’). But they show
more importance in Figure 4, demonstrating that user behavior
information is worth recording and exploring for extracting unseen
attribute values for new products.

5 CONCLUSION AND FUTUREWORK
In this paper, we formulate AVE task in zero-shot learning scenario
to identify unseen attribute values from new products with no
corresponding labeled data available for training. We propose an
inductive heterogeneous hypergraph (HyperPAVE) for multi-label
zero-shot attribute value extraction. Specifically, the heterogeneous
hypergraph captures the higher-order relationships among users
and products, and the inductive mechanism infter the future con-
nections between unseen nodes. Extensive experimental results on
ten different categories across the public dataset MAVE demonstrate
that our proposed model HyperPAVE outperforms other state-of-
the-art classification-based and generation-based models. Ablation
study validates the efficiency and effectiveness of different hyper-
graphs constructed from user behavior and product inventory data.
We plan to explore the following directions in future work: (1) In-
cluding multimodal features (i.e. product images) as node attributes
to capture more semantic information from the products. (2) Build-
ing dynamic graphs by including timestamps to make the product
graph adapt to the developing market.
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6 APPENDIX
6.1 Dataset

Table 5 reports an example of dataset statistics in training, vali-
dation and testing sets, where #𝑃 , #𝐴 and #𝑃𝐴 denotes the number
of product nodes, the number of aspect nodes and the number of
product to aspect edges, respectively. The last column Ave #𝐴/𝑝
indicates the average number of attribute value pairs for each prod-
uct. Because training, validation, and testing sets for the multi-label
zero-shot setting are randomly generated for each run of the exper-
iment, there exists different dataset statistics.

6.2 Parameters
Our proposed model HyperPAVE achieves its best performance
with the following setup. The nodes features are initialized by
BERT encoder with 768 dimension size. The max length for cate-
gory, product and attribute values are 32, 512 and 32, respectively.
The initial learning rate is selected via grid search within the range
of

{
5𝑒 − 1, 5𝑒 − 3, 5𝑒 − 4, 5𝑒 − 5

}
with 1e-6 weight decay for mini-

mizing the loss. The hidden sizes for convolution layers are 768 in
both HyperConv and GraphConv. The activation function is ReLU.
The dropout rate is 0.5 and the batch size is 4. We set the number
of neighbors to 20 and the negative sampling rate is 2.0. For the
fusion module, the weights of the product node embeddings from
hyperedges of ‘also buy’, ‘also view’, ‘products with all aspects’ and
‘category with all products and aspects’ are dynamically changed
for different categories. Experiments are conducted in Sec. 4.2.4 to
explore the weights in these fusion modules.

6.3 Experiments

Due to limited space in the main context, we only demonstrate
ablation study over three categories (Books, Giftcards and Pets) in
Table 3. Here in Table 6, we report the ablation study over the other
seven categories on MAVE. We also demonstrate the model training
time for one epoch across the ten categories on MAVE in Table 7.
All models use the same input max_length as 512 and batch size as
4. For different graph-based models, they show similar efficiency
performance. Thus, we only demonstrate two representative graph-
based models (GNN and HGNN) for training efficiency comparison.
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Table 5: Example of zero-shot dataset statistics in training, validation and testing sets, respectively.

Category Training Validation Testing All
#P #A #PA #P #A #PA #P #A #PA Ave #A/P

Arts 10,250 1,796 8,400 3 6 6 15 23 30 2.48
Books 9,310 158 5,210 4 3 8 413 54 852 1.44
Cellphones 6,772 1,149 5,187 91 109 192 157 175 332 2.38
Giftcards 84 8 74 8 2 16 11 3 9 2.37
Grocery 15,834 3,945 13,933 8 16 16 18 33 36 2.56
Industrial 2,644 1,264 2,381 16 27 33 8 14 17 2.76
Pet 12,878 2,193 13,187 24 42 48 73 117 150 3.16
Software 187 87 152 2 4 4 8 14 16 2.11
Tools 30,236 6,210 29,759 14 24 28 58 97 120 2.92
Videogames 559 240 477 35 45 75 57 67 128 2.86

12



1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Multi-Label Zero-Shot Product Attribute-Value Extraction Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 6: Ablation study over HyperPAVE components in the zero-shot setting across seven categories on MAVE dataset.

F1 mAP AUC MRR NDCG Hit@5 Hits@10 Hits@100
Arts

nodeID 1.35 ± 0.29 10.73 ± 0.52 92.03 ± 0.12 0.86 ± 0.03 21.92 ± 0.58 15.00 ± 1.23 28.33 ± 1.10 61.67 ± 0.64
BERT 8.23 ± 0.24 26.30 ± 0.14 92.69 ± 0.06 11.48 ± 0.19 40.27 ± 0.15 35.43 ± 0.27 52.86 ± 0.14 82.43 ± 0.10
BERT (Fine-tuned) 19.87 ± 0.15 34.77 ± 0.39 99.84 ± 0.04 13.16 ± 0.17 53.84 ± 0.25 75.00 ± 0.00 75.00 ± 0.00 100.00 ± 0.00
Hyper (Product) 30.93 ± 0.26 42.33 ± 0.27 99.06 ± 0.01 22.95 ± 0.27 57.84 ± 0.24 57.50 ± 0.31 75.00 ± 0.03 93.75 ± 0.04
Hyper (Behavior) 37.03 ± 0.67 42.39 ± 0.62 98.35 ± 0.02 28.51 ± 0.50 60.47 ± 0.46 56.67 ± 0.29 83.33 ± 0.24 100.00 ± 0.00
HyperPAVE 43.33 ± 0.22 40.99 ± 0.18 99.22 ± 0.01 47.52 ± 0.30 64.87 ± 0.39 75.00 ± 0.00 82.50 ± 0.12 100.00 ± 0.00

Cellphones
nodeID 19.75 ± 0.67 22.88 ± 0.20 97.72 ± 0.01 10.65 ± 0.45 38.33 ± 0.23 38.33 ± 0.50 57.22 ± 0.15 80.00 ± 0.11
BERT 24.21 ± 0.15 26.15 ± 0.16 97.60 ± 0.02 17.02 ± 0.47 40.97 ± 0.24 41.11 ± 0.05 70.05 ± 0.30 86.11 ± 0.36
BERT (Fine-tuned) 22.77 ± 0.16 26.80 ± 0.31 98.09 ± 0.04 16.50 ± 0.43 43.03 ± 0.37 50.00 ± 0.00 75.00 ± 0.00 92.50 ± 0.12
Hyper (Product) 32.27 ± 0.28 33.32 ± 0.09 98.94 ± 0.04 22.26 ± 0.30 54.17 ± 0.25 70.25 ± 0.27 90.00 ± 0.00 100.00 ± 0.00
Hyper (Behavior) 28.32 ± 0.38 33.88 ± 0.22 99.63 ± 0.01 22.57 ± 0.10 47.81 ± 0.26 52.50 ± 0.14 61.67 ± 0.04 97.50 ± 0.08
HyperPAVE 39.91 ± 0.16 35.81 ± 0.18 99.22 ± 0.02 23.54 ± 0.20 52.88 ± 0.18 72.50 ± 0.08 75.00 ± 0.00 100.00 ± 0.00

Grocery
nodeID 6.50 ± 0.49 23.31 ± 0.27 95.48 ± 0.04 15.33 ± 0.19 21.98 ± 0.38 22.50 ± 0.28 35.00 ± 0.31 65.00 ± 0.27
BERT 14.65 ± 0.40 22.85 ± 0.34 96.18 ± 0.08 15.80 ± 0.33 22.55 ± 0.42 30.10 ± 0.31 35.10 ± 0.17 75.00 ± 0.51
BERT (Fine-tuned) 19.42 ± 0.46 25.84 ± 0.18 99.20 ± 0.01 17.78 ± 0.20 27.93 ± 0.29 25.00 ± 0.10 35.50 ± 0.13 87.50 ± 0.13
Hyper (Product) 22.41 ± 0.62 32.41 ± 0.37 99.48 ± 0.02 18.82 ± 0.28 35.64 ± 0.40 33.33 ± 0.71 35.50 ± 0.21 66.67 ± 0.10
Hyper (Behavior) 29.20 ± 0.29 32.85 ± 0.49 98.34 ± 0.04 14.41 ± 0.16 37.66 ± 0.37 35.05 ± 0.16 50.00 ± 0.00 70.00 ± 0.11
HyperPAVE 33.43 ± 0.28 42.71 ± 0.30 99.56 ± 0.00 22.52 ± 0.38 52.64 ± 0.36 50.00 ± 0.00 50.00 ± 0.00 75.50 ± 0.50

Industrial
nodeID 10.40 ± 0.38 16.44 ± 0.22 93.16 ± 0.05 2.59 ± 0.17 30.07 ± 0.24 28.75 ± 0.49 35.00 ± 0.35 68.75 ± 0.27
BERT 1.48 ± 0.24 5.37 ± 0.16 89.75 ± 0.11 0.66 ± 0.10 13.58 ± 0.32 8.13 ± 0.31 11.87 ± 0.54 55.63 ± 0.71
BERT (Fine-tuned) 14.06 ± 0.11 18.82 ± 0.50 99.05 ± 0.01 4.99 ± 0.14 41.11 ± 0.50 25.00 ± 0.00 50.00 ± 0.04 100.00 ± 0.00
Hyper (Product) 19.78 ± 0.19 14.15 ± 0.17 94.34 ± 0.08 7.63 ± 0.16 26.68 ± 0.16 24.73 ± 0.29 37.50 ± 0.20 75.00 ± 0.40
Hyper (Behavior) 15.70 ± 0.31 31.42 ± 0.30 96.57 ± 0.04 7.19 ± 0.33 45.26 ± 0.22 41.25 ± 0.31 55.00 ± 0.35 87.50 ± 0.00
HyperPAVE 27.70 ± 0.10 33.29 ± 0.17 99.71 ± 0.01 16.10 ± 0.08 54.08 ± 0.26 52.50 ± 0.18 80.00 ± 0.16 100.00 ± 0.00

Software
nodeID 1.97 ± 0.22 18.11 ± 0.25 76.27 ± 0.18 4.39 ± 0.32 30.12 ± 0.53 23.75 ± 0.58 62.50 ± 0.05 100.00 ± 0.00
BERT 7.38 ± 0.14 14.10 ± 0.31 74.89 ± 0.14 6.38 ± 0.29 34.19 ± 0.44 26.70 ± 0.20 36.25 ± 0.11 100.00 ± 0.00
BERT (Fine-tuned) 11.78 ± 0.31 15.29 ± 0.50 76.70 ± 0.03 6.75 ± 0.46 36.52 ± 0.45 23.75 ± 0.23 37.50 ± 0.16 100.00 ± 0.00
Hyper (Product) 35.88 ± 0.37 40.72 ± 0.16 84.40 ± 0.10 21.25 ± 0.46 59.51 ± 0.18 46.25 ± 0.26 63.75 ± 0.40 100.00 ± 0.00
Hyper (Behavior) 12.22 ± 0.36 36.33 ± 0.48 81.25 ± 0.10 6.09 ± 0.27 34.19 ± 0.20 25.00 ± 0.31 38.75 ± 0.51 100.00 ± 0.00
HyperPAVE 47.62 ± 0.21 51.64 ± 0.10 77.80 ± 0.12 26.66 ± 0.15 63.48 ± 0.10 61.25 ± 0.40 62.50 ± 0.25 100.00 ± 0.00

Tools
nodeID 8.90 ± 0.37 17.00 ± 0.24 97.91 ± 0.10 2.36 ± 0.19 22.27 ± 0.37 50.00 ± 0.02 50.00 ± 0.00 50.00 ± 0.00
BERT 14.53 ± 0.17 18.51 ± 0.25 96.21 ± 0.09 6.51 ± 0.18 21.30 ± 0.48 48.50 ± 0.15 52.05 ± 0.33 80.00 ± 0.20
BERT (Fine-tuned) 21.33 ± 0.14 23.85 ± 0.36 99.19 ± 0.05 6.81 ± 0.31 26.88 ± 0.32 49.15 ± 0.26 55.70 ± 0.39 87.07 ± 0.25
Hyper (Product) 32.86 ± 0.24 29.20 ± 0.47 98.27 ± 0.06 12.26 ± 0.14 43.96 ± 0.26 49.53 ± 0.35 65.00 ± 0.24 83.87 ± 0.17
Hyper (Behavior) 31.43 ± 0.27 25.13 ± 0.25 99.30 ± 0.07 11.51 ± 0.17 28.11 ± 0.23 50.06 ± 0.25 58.20 ± 0.34 86.40 ± 0.18
HyperPAVE 34.00 ± 0.28 47.83 ± 0.29 98.00 ± 0.06 12.93 ± 0.18 59.05 ± 0.27 52.00 ± 0.34 65.37 ± 0.25 84.72 ± 0.20

Videogames
nodeID 3.25 ± 0.47 7.31 ± 0.38 79.00 ± 0.58 1.49 ± 0.22 17.27 ± 0.19 10.00 ± 1.21 20.00 ± 1.26 70.00 ± 0.62
BERT 6.67 ± 0.41 10.25 ± 0.27 85.83 ± 0.21 3.01 ± 0.52 33.30 ± 0.35 30.05 ± 0.26 43.50 ± 0.35 100.00 ± 0.00
BERT (Fine-tuned) 12.87 ± 0.21 11.44 ± 0.17 76.84 ± 0.15 4.21 ± 0.41 25.26 ± 0.29 15.71 ± 0.54 37.86 ± 0.30 73.70 ± 0.26
Hyper (Product) 20.00 ± 0.23 16.45 ± 0.19 91.51 ± 0.20 8.76 ± 0.39 28.61 ± 0.25 45.00 ± 0.16 50.00 ± 0.15 100.00 ± 0.00
Hyper (Behavior) 16.83 ± 0.26 12.38 ± 0.11 86.73 ± 0.36 7.33 ± 0.16 27.28 ± 0.17 15.00 ± 0.55 40.71 ± 0.38 80.71 ± 0.35
HyperPAVE 25.31 ± 0.19 21.19 ± 0.17 84.32 ± 0.05 9.31 ± 0.30 23.99 ± 0.16 50.00 ± 0.50 50.00 ± 0.50 85.71 ± 0.12

13



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 7: Model Training Time in One Epoch (second).

Model Giftcards Software Videogames Industrial Cellphones Arts Pet Books Grocery Tools
BERT-MLC 2.37 15.48 42.12 291.60 578.78 797.11 1004.53 1073.65 1266.68 2391.12
BART 3.66 24.48 66.60 304.56 873.36 1152.00 1292.95 1604.52 1910.52 3521.88
T5small 2.21 19.14 58.23 256.70 698.10 967.87 1209.27 1355.23 1576.67 2890.03
GNN 0.09 0.19 1.00 5.46 16.46 30.02 57.50 12.80 73.33 150.91
HGNN 0.72 1.60 6.28 27.59 64.24 122.06 209.28 94.52 235.20 504.61
HyperPAVE 0.90 1.66 6.71 30.06 70.18 133.43 224.40 89.22 251.14 543.07
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