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S U M M A R Y 

Monitoring networks increasingly aim to assimilate data from a large number of diverse 
sensors covering many sensing modalities. Bayesian optimal experimental design (OED) seeks 
to identify data, sensor configurations or experiments which can optimally reduce uncertainty 

and hence increase the performance of a monitoring network. Information theory guides OED 

by formulating the choice of experiment or sensor placement as an optimization problem 

that maximizes the expected information gain (EIG) about quantities of interest given prior 
knowledge and models of expected observation data. Therefore, within the context of seismo- 
acoustic monitoring, we can use Bayesian OED to configure sensor networks by choosing 

sensor locations, types and fidelity in order to improve our ability to identify and locate seismic 
sources. In this work, we develop the framework necessary to use Bayesian OED to optimize 
a sensor network’s ability to locate seismic events from arrival time data of detected seismic 
phases at the regional-scale. This framework requires five elements: (i) A likelihood function 

that describes the distribution of detection and traveltime data from the sensor network, (ii) A 

prior distribution that describes a priori belief about seismic events, (iii) A Bayesian solver 
that uses a prior and likelihood to identify the posterior distribution of seismic events given the 
data, (iv) An algorithm to compute EIG about seismic events over a data set of hypothetical 
prior events, (v) An optimizer that finds a sensor network which maximizes EIG. Once we have 
de veloped this frame work, we explore man y rele v ant questions to monitoring such as: how to
trade off sensor fidelity and earth model uncertainty; how sensor types, number and locations 
influence uncertainty; and how prior models and constraints influence sensor placement. 

Key wor ds: Bay esian inference; Statistical methods; Earthquake monitoring and test-ban 

treaty verification; Earthquake source observations; Seismic noise; Statistical seismology. 

1  I N T RO D U C T I O N  

Seismo-acoustic monitoring networks are central to detecting and locating earthquakes, explosions or other seismic sources. In order to 
improve monitoring capabilities, network designers may incorporate new sensors or data types into the network to reduce detection thresholds
or improve estimate uncertainties for quantities of interest (QoIs) like location, magnitude and depth. To estimate a QoI, modern processing
algorithms often employ Bayesian inference because it provides rigorous uncertainty quantification to support decision making (Myers et al. 
2007 ; Arora et al. 2013 ). Therefore, when designing or analysing a monitoring network, we approach it from the philosophy of Bayesian
optimal experimental design (OED) (Lindley 1956 ; Krause et al. 2008 ; Huan & Marzouk 2013 ). Within this framework, we optimize sensors
of a monitoring network to reduce uncertainty about QoIs under different conditions described by a prior distribution. Therefore, with
Ba yesian OED w e not onl y design an ef fecti v e monitoring network, but also get an understanding of the e xpected performance of that network
under the specified conditions. While the target application of this research is e xplosion monitoring, the e xperimental design framework we
hav e dev eloped applies to arbitrary seismic sources. Therefore, this framework may support other applications of seismic networks such as
earthquake seismology, earthquake or tsunami early warning or exploration geophysics. 

OED has been a recent active area of research in many areas of seismology including early warning, seismic source inversion, tomography
and structural health monitoring. Typically these studies have focused on network design in terms of the number and location of sensors
(Papadimitriou et al. 2005 ; Guest & Curtis 2011 ; Yuen & Kuok 2015 ; An et al. 2018 ; Bloem et al. 2020 ; Toledo et al. 2020 ; B öse et al.
2022 ; Yang et al. 2022 ), although some work has also explored different sensor types (Yuen & Kuok 2015 ). For linear inverse problems, or
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hose that can be linearly approximated, the alphabetic optimality criteria like D-optimal design are often used as an objective (Steinberg &
abinowitz 2003 ; Coles & Curtis 2011 ; Burmin 2019 ; Bloem et al. 2020 ; Koval 2021 ). For nonlinear inverse prob lems, Bay esian methods
ave become popular, leveraging information-based metrics such as entropy-based design or mutual information (Maurer et al. 2010 ; Long
t al. 2015 ; Bloem et al. 2020 ; Yang et al. 2022 ). Ho wever , because of the computational cost of these methods, man y dif ferent approximations
ethods have been explored to speed up estimating the objective (Maurer et al. 2010 ; Coles & Prange 2012 ; Long et al. 2015 ). Finally,
ork has also explored different optimizers to explore the configuration space of networks ranging from genetic algorithms to gradient-based
ethods (Curtis et al. 2004 ; Papadimitriou et al. 2005 ; Oth et al. 2010 ; Guest & Curtis 2011 ; Toledo et al. 2020 ; B öse et al. 2022 ). All these

onsiderations lead to a trade-off between computational tractability and accuracy which has started to be explored. 
Our work adds to this body of recent research through the following contributions: 

(i) Presenting a holistic treatment of uncertainty (e.g. model error, measurement error, sensor correlation, etc.) for the Bayesian OED
roblem for seismic monitoring 

(ii) Studying OED in a broader context than just sensor placement, for e xample, relativ e trade-offs in model refinement versus data fidelity.
(iii) Introducing a Bayesian optimization algorithm to ef ficientl y optimize the sensor network. 
(iv) Releasing a computationally efficient grid method for fully Bayesian OED leveraging HPC that can be widely used for seismo-acoustic
onitoring network design and analysis. 

This work quantifies the sensitivity of a seismo-acoustic monitoring network for inferring the location and magnitude of seismic sources
hat include shallow earthquakes and explosions either on the surface or underground. We then present a Bayesian OED algorithm to improve
he monitoring network sensitivity by optimizing the location of ground motion sensors. Our computational approach combines information
nd Bayesian probability theory to quantify and optimize the sensitivity of our sensor network by estimating the information gain Bayesian
nference provides about QoIs. This approach includes four distinct analysis stages: 

(i) Build the likelihood function to estimate the probability of data, given a seismic event. 
(ii) Solve the Bayesian inference problem for locating events given data (e.g. solve for the posterior). 
(iii) Estimate seismic source location sensitivity through measuring the expected information gain, with a sensor network. 
(iv) Optimize the seismic monitoring network to improve the expected information gain over seismic source events. 

We use observational data from the U.S. T ransportable Arra y (IRIS T ransportable Arra y 2003 ) and physics-based models to build the
ayesian-likelihood functions. These likelihood functions incorporate many sources of uncertainty and model the behaviour of the seismic

ensor network. This model defines how well Bayesian inference can assimilate sensor data to locate seismic sources. For our sensor data, we
onsider spatially correlated traveltimes for seismic phase arri v als detected at our sensor network. We make generally justifiable assumptions
n our uncertainty models that match properties of the data sets that we consider. While we present our method using seismic P -wave arrivals,
ur approach is flexible to any event or signature data because it only requires that we can construct likelihood functions. 

We study how the optimized sensor configuration and network sensitivity change under different design conditions and uncertainty
odels. We present the dependence of our results over prior sensor distribution, sensor number and sensor fidelity. This analysis provides a

ramework that we can later extend to optimize sensor networks that measure other natural and explosion signatures (e.g. electromagnetic
r infrasound signals), which supports a more comprehensive need for multiphenomenology explosion monitoring (e.g. Arrowsmith et al.
020 ; Carmichael et al. 2020 ). This framework explores an alternative approach to existing tools, like Sandia National Laboratory’s NetMOD
Merchant 2013 ), with the aim to provide a highly flexible and rigorous framework for analysing and optimizing monitoring networks. This
igour is justified through our usage of Bayesian probability theory and uncertainty quantification. 

In Section 2 , we describe the Bayesian inference and optimal experimental design problems in general. In Section 3 we describe the
pecifics of a Bayesian inference problem to identify the location and magnitude of seismic sources, using records of their P -phase arri v als
t distributed receivers and demonstrate how to build the likelihood models from these data. Next, in Section 4 we describe the algorithms
sed for solving the Bayesian OED problem. Finally, in Section 5 we will describe several experiments that demonstrate the utility of this
pproach and identify areas for further exploration. Section 6 concludes with discussion and future work. 

 B AY E S I A N  M E T H O D S  

.1 Bay esian infer ence 

ayesian probability theory provides a rigorous methodology to quantify and update uncertainty about beliefs (Gelman et al. 1995 ; Jaynes
003 ; Beck 2010 ). Within this framework, uncertainty is represented using probability distributions. Therefore, within the Bayesian paradigm,
robability distributions represent uncertainty about beliefs and not necessarily intrinsic stochasticity and thus are not directly tied to
andomness. Uncertainty comes from both epistemic sources, when it represents a lack of knowledge about learnable phenomena (ignorance),
r aleatory sources, when it represents uncertainty about inherently unknowable randomness (unresolvable uncertainty for the observer). The
ayesian perspective describes both of these sources of uncertainty using a probability distribution. Therefore, the Bayesian framework can
elpfully incorporate modelling error, measurement error and parametric uncertainty. 
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Figure 1. Illustration of a Bayesian inference process for seismic source location. Bayesian inference begins with a prior distribution for different earthquake 
locations θ , shown by the contour lines on the leftmost figure. As an observer collects data, they use a likelihood function model to quantify the probability of 
observing that data, given that an earthquake occurs at a specific location. The obser ver constr ucts this likelihood model from physical models of seismic wave 
propagation, models of the sensors that detect seismic signals and models of uncertainty (e.g. background noise modelling errors, etc.). The observer then 
applies Bayes’ theorem to update the prior to assimilate this new information. The posterior distribution, shown by the contour lines in the rightmost image, 
then quantifies the probability that the seismic source has location θ , given the data. 
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As data or other sources of information become available, an observer can integrate these information into a new probability distributions
to update the observer’s beliefs. When the observer makes predictions, they include the uncertainty represented by these probability 
distributions in these predictions. The rules of Bayesian probability provide a rigorous logic for updating and propagating uncertainty just as
binary logic provides rules for working with statements that are true or false. 

The process of updating beliefs using data are known as Bayesian inference. Fig. 1 illustrates Bayesian inference applied to a hypothetical
seismic location problem (see Myers et al. 2007 ; Arora et al. 2013 , for some detailed applications of Bayesian inference to locating seismic
sources). Bayesian inference begins by expressing prior beliefs about parameters of interest θ . For example, within the context of identifying
characteristics of a seismic event, these beliefs may represent prior knowledge about the distribution of earthquake magnitudes or their
locations, for example, source proximity to lithospheric faults. As an observer gathers data D and other information, they update the prior
distribution using the rules of probability. This updated, or posterior, distribution p ( θ | D 

) now quantifies the likelihood of the source location
given the data. The obser ver perfor ms this update using a likelihood function to describe the probability of the data given an event hypothesis,
that is, p ( D | θ ) . An observer constructs such a likelihood function from a probabilistic forward model of the data observed given a set of
source parameters. This means that the likelihood can equally be used to construct a generative model of the data given the source parameters.
The likelihood function assumes specified source parameters that describe the seismic source and then uses physical models, sensor models
and models of background signals and noise to map this source description to plausible sensor data. As an example, if the arri v al time of a
seismic phase at a seismometer constitutes observed data, and event parameters describe the location and origin time of an earthquake, then
the likelihood uses an earth structure model to predict uncertainty in the arri v al time of a seismic phase from the source to an y recei vers. The
model of the traveltime could include (predicted) earth model uncertainty and measurement uncertainty on the sensor. 

Once an observer constructs a likelihood function, they can easily construct the posterior distribution on events given data. This
construction is an application of Bayes’ Theorem: 

p ( θ | D 

) = 

p ( D | θ ) p ( θ ) 

p ( D 

) 
. (1) 

We emphasize that the probability terms in eq. ( 1 ) can be either probabilities when θ is a discrete random variable or a probability
density when θ is continuous. Eq. ( 1 ) provides the foundational statement of belief about uncertainties in the model and the machinery to
update these beliefs as new information becomes available. In practice, solving for the updated Bayesian posterior requires approximate 
computational methods since the posterior may not have an analytical expression. Common approaches generate samples representing draws 
from the posterior distribution and can estimate QoIs. Examples of these methods include importance sampling using Monte Carlo, Quasi
Monte Carlo, meshing and Markov Chain Monte Carlo (Brooks et al. 2011 ; Owen 2013 ). 

2.2 Bayesian OED 

To quantify network performance, we require a measure of how much belief changes due to inference on observed data. This is a measure of
the sensor data’s utility that defines the objective for experimental design. One measure that is commonly used in information theory is the
K ullback–Leibler di vergence: 

KL [ p ( θ | D 

) || p ( θ ) ] = 

∫ 
p ( θ | D 

) log 
p ( θ | D 

) 

p ( θ ) 
d θ. (2) 

art/ggae458_f1.eps
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he KL divergence in eq. ( 2 ) measures how many units of information (bits for log 2 or nats for ln ) are needed to specify a change in the
istribution from p ( θ ) to p ( θ | D 

) . These units are related to the efficiency of encoding a probability distribution (see MacKay 2003 , for
iscussion). A KL divergence of 0 means that the distributions are the same up to sets of measure 0. The KL divergence is al wa ys non-ne gativ e
nd as it increases from zero, eq. ( 2 ) implies that the distributions increasingly differ. A relatively large KL divergence therefore indicates
hat the data were very informative, and the prior and posterior are measurably distinct. 

The Bayesian OED problem is built upon the concepts of Bayesian probability and information theory (Lindley 1956 ; Ginebra et al.
007 ; Huan & Marzouk 2013 ). Bayesian OED assumes that the observer applies Bayes’ theorem (i.e. that they are a Bayesian agent) to select
 sensor configuration S that maximizes utility; we term S as the ‘experiment.’ Because Bayesian inference is the optimal way to assimilate
nformation it provides, Bayesian OED defines the best case scenario for extracting information from the sensor network. The Bayesian
gent optimizes a utility function that depends on the posterior. In this research, the Bayesian agent maximizes the expected information gain
EIG) from the prior to the posterior, in the view of the posterior. Notationally, the expectation E D| S indicates that the observer computes the
xpectation with respect to the prior distribution of hypothetical data from the experiment given by p ( D | S 

) . The expected information gain
or a specific experimental configuration is (from eq. 2 ): 

 

( S 

) = E D| S [ KL [ p ( θ | D, S 

) || p ( θ ) ] ] 

= 

∫ 
p ( D | S 

) 
∫ 

p ( θ | D, S 

) log 
p ( θ | D, S 

) 

p ( θ ) 
d θd D. (3) 

The outer integral in eq. ( 3 ) is the e xpectation ov er the hypothetical data from the experiment, while the inner integral computes the KL
i vergence gi ven a realization of the hypothetical data. To compute the EIG in practice, we express p ( D | S 

) as the marginal distribution 

p ( D | S 

) = 

∫ 
p 

(
D | θ ′ , S 

)
p 

(
θ ′ ) dθ ′ 

ecause the evidence is often onl y implicitl y known b y w ay of integrating the likelihood and prior over parameters θ ′ . Note here that we have
ssumed that p( θ ) is a proper density. We then draw samples from the marginal distribution by first sampling the prior, and then sampling the
ata according to the likelihood. These samples allow us to compute the outer expectation. 

We now maximize I ( S 

) to estimate the best experimental design S 

∗ from S ∈ S , where S is the set of possible designs under
onsideration: 

 

∗ = argmax 
S∈ S 

I ( S 

) (4) 

his optimization is generalizable to include constraints that include, for example, a sensor budget or constraints on sensor locations through
ethods like Lagrange multipliers or nonlinear prog ramming. Fur ther, while we have formulated this problem through maximizing the EIG

or the posterior, we could more specifically optimize EIG about a specific quantity of interest derived from its parameters. 
Solving this optimization problem is challenging because it requires solving many Bayesian inference problems for many hypothetical

ealizations of data from many hypothetical sensor configurations. This nested complexity means that significant care must be taken to make
his approach computationally tractable. 

.3 Bayesian optimization 

reedy optimization algorithms provide an ef fecti ve computational solution to sequentially place sensors in OED and for other network
ptimization problems (Krause et al. 2008 ; Carmichael 2020 ). Such greedy optimization involves sequentially adding sensors one at a time so
hat the optimization problem at a particular iteration is low dimensional, and therefore only requires updating the location of that particular
ensor. During an iteration, the algorithm computes the EIG as an average over all possible source locations specified by the prior, and then
omputes an optimal location. Fig. 2 illustrates the process of adding sensors one-by-one. The optimization surfaces, shown in the top row of
he figure, start out fairly symmetric with multiple optima when there are fe w sensors. Howe ver, as more sensors are added these symmetries
re broken so there is a unique optimal location of the next sensor. The bottom row illustrates how the EIG increases with sensor density,
articularly about sources that are near several sensors. 

We concede that the true, optimal sensor network configuration requires that we compute sensor location solutions all at once. Ho wever ,
reedy optimization often does reasonably well with a significantly reduced computational cost. In fact, suboptimal bounds exist for certain
lasses of optimization problems approximated using greedy methods, such as the class of submodular functions. At a high level, submodular
tility functions exhibit diminishing returns with each iteration, that is, adding a sensor to a smaller network yields higher gains than adding
 sensor to a larger network. The EIG objective for Bayesian OED is submodular when the sensors are conditionally independent given the
vent description, that is, when 

p( D i , D j | θ ) = p( D i | θ ) p( D j | θ ) , 

here D i and D j are data generated by sensors i and j , respecti vel y. If the utility function is submodular, then we can show that the greedy
ptimum will be near-optimal, meaning that if the utility function is submodular, it can be shown that the greedy algorithm provides a
ear-optimal solution. Specifically, it offers a multiplicative approximation guarantee of (1 − 1 /e ) , where e denotes Euler’s number, meaning
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Figure 2. Illustration of greedy optimization of a sensor network with five sensors according to eq. ( 4 ). Moving from left to right, the first sensor was placed 
at the centre of the domain and then the subsequent four sensors are placed sequentially to maximize expected information gain (EIG). The white dots define 
the initial sensor configuration while the black star defines the new sensor that is being added to optimally augment the network. The top row illustrates the 
optimization surface, where the colour contours show how much the EIG, averaged over all event locations, would increase if a sensor were added at that 
location given the initial network. The bottom row shows the EIG for the augmented sensor network where the colour contours show the EIG about the location 
of a shallo w, lo w-magnitude seismic source at that specific latitude and longitude, that is, for n = 2 , . . . , 5 it displays I( S n | θ ′ = [ L , x, m ]) for all L in the 
domain (see eq. 21 ). 
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that the greedy solution is guaranteed to be above 1 − 1 /e ≈ 63 per cent of the value of the global optimum. This bound is loose in practice,
and stronger assumptions on the problem structure may yield smaller departures from global optimality. We refer to Krause et al. ( 2008 ) for
details on submodular functions and greedy optimization. 

We use Bayesian optimization (Mo ̌ckus 1975 ) to greedily optimize sensor placement locations. Instead of finding the optimal config-
uration of all sensors at once, we iterati vel y choose sensors one at a time. Given the sensors that have already been placed, we choose the
location of the next sensor by using Bayesian optimization to solve the 2-D optimization problem for a single sensor placement. 

Doing this requires sampling the utility function to build a surrogate model of the optimization surface from the samples, such as
a Gaussian Process model (Williams & Rasmussen 2006 ). Using this surrogate model, we choose new points at which to evaluate the
utility function according to an acquisition function. The choice of acquisition function determines how we balance the exploration of high
uncertainty regions of the parameter space, improving our surrogate model, with optimizing the existing surrogate to sample new points that
will be close to the predicted optimum. The residual between the optimal solution and the sampled solution improves with iteration. Details
of Bayesian optimization and descriptions of acquisition functions can be found in Jones et al. ( 1998 ), Srini v as et al. ( 2010 ), Picheny et al.
( 2013 ) and Frazier ( 2018 ). We use the Python library SCIKIT-OPT (Head et al. 2020 ) to implement Bayesian optimization with a GP surrogate.

3  B AY E S I A N  S E I S M I C  M O N I T O R I N G  

3.1 General approach 

As introduced in F ig. 1 , Bay esian inference for seismic monitoring requires constructing a likelihood model p ( D | θ, S 

) that quantifies the
likelihood of the data given an event θ with a seismic sensor network configuration S . We assume that a source can be suf ficientl y defined by
a vector of its origin time, location and magnitude θ = { Time , Lat , Long , Depth , Mag } . Notationally, these parameters are epicentral location 
L = { Lat , Long } , source depth x , event magnitude m and origin time t o . The network S consists of individual stations S i . Such stations may
have heterogenous response or sampling features but here we assume they are homogenous. Therefore, station description is sufficiently 
described by S i = { S 

Loc 
i } where S 

Loc is the station’s location in latitude and longitude. 
We limit our analysis to modelling arri v als of seismic phases from their sources and leave inclusion of waveform features to future

research. Therefore, our data take the form of D = { D , A } , where D stores data about which stations detected different seismic phases and A
stores information about the arri v al times, t i j , of the detected phases. 

D i j = 

{ 

1 if station idetects phase j 
0 if station idoes not detect phase j 

(5) 

A i j = 

{ 

t i j if station idetects phase j 
∅ if station idoes not detect phase j 

(6) 

art/ggae458_f2.eps
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Figure 3. Map of transportable array stations from December 2007 [Map from EarthScope ANF Website ( 2021 )]. The outer highlighted region indicates the 
region (Latitude ∈ [39 o N , 43 o N ] , Longitude ∈ [113 o W, 107 . 36 o W ] ) that we use gathered sensor data that populates the parameters of the likelihood models. 
The inner highlighted region (Latitude ∈ [40 o N , 42 o N ] , Longitude ∈ [112 o W, 109 . 36 o W ] ), corresponds to the monitoring region over which we build a sensor 
network (IRIS Transportable Array 2003 ). 
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Note that A i j = ∅ when no phase is detected since there is no arri v al time to capture. We make the simplifying assumption that the
ikelihood of detection is independent of the origin time t o . This assumption seems reasonable, but may not hold in cases that background
oise is diurnally variable. Incorporating a time-dependent background would not be difficult but is left to future work. We also assume that
he priors are independent, but this likewise is easy to relax as needed. The posterior then is: 

p ( L , x, m, t o | A , D , S 

) = 

p ( A , D | L , x, m, t o , S 

) p ( L , x, m, t o ) 

p ( A , D | S 

) 
∝ p ( A | L , x, m, t o , D , S 

) p ( D | L , x, m, S 

) p ( L 

) p ( x ) p ( m 

) p ( t o ) (7) 

To construct the likelihood p ( D | L , x, m, S 

) we must estimate the detection probability for a gi ven arri v al. When historic data are
 vailable, w e can build a model for the detection of a phase at a station given an event at a specific location and with a specified magnitude
s we discuss in Section 3.2 . 

We consider two separate sources of uncertainty in the arri v al time likelihood p ( A | L , x, m, t o , D , S 

) : measurement noise and model
rediction uncertainty. We assume that the measurement noise distributions for each station are independent (which may not be true in
ituations where sensors are close, but provides a tractable simplifying assumption that is valid for sparse networks). For situations where
easurement noise statistics are known a priori for a sensor and processing method, they be directly integrated into the likelihood model.
therwise, the measurement noise model can be derived from data along with other assumptions that we will describe in Section 3.3.2 .
o wever , when deriving measurement error models directly from data, the effect of modelling uncertainty must also be simultaneously

ccounted for. Unlike for measurement uncertainty, including correlated traveltime errors across different stations in the likelihood function
or modelling error is important. This correlation reflects that real Earth structure will likely be different than the modelled Earth structure
nd this discrepancy will induce correlated errors. We therefore model this uncertainty, and the correlation induced in the sensor network, by
ampling a distribution of Earth models to estimate the distribution in arri v al times as discussed in Section 3.3.1 . 

.2 Detection model 

e use a catalogue from the USArray Transportable Array experiment (IRIS Transportable Array 2003 ) to build a detection model for seismic
hases, specifically the first P arrival, that is, arrivals labelled as P, Pg and Pn in the catalogue. Details of the modelling region can be seen in
ig. 3 . This model is similar to the logistic regression model used by NET-VISA (Arora et al. 2013 ). In principle this method can be followed
or any monitoring region with existing sensors. The USArray data set was chosen because of the homogeneity of the sensor network and
ts uniform coverage for a region. Sensors were deployed in this region from August 2007–August 2008 and during that time, 1089 events
ere registered on 45 stations. For these events, 11 487 P arri v als were detected out of the 49 005 potential detections, which corresponds

o 23 per cent of potential P detections. Note we assume that every station had the potential to detect each event so the number of potential
etections is just the number of events multiplied by the number of stations. Of the 1089 events, 833 had estimated magnitudes. The minimum
agnitude of the data set was 0.51, maximum was 4.37 and median was 2.03. 

Fig. A1 shows the mean detection probability of seismic sources in our catalogue, binned over magnitude and distance. We construct a
ogistic regression model using input features that include the distance between the event and the sensor (in degrees), the depth of the event
nd the magnitude of the event. Our catalogue data also included events with missing magnitude estimates. We therefore used an additional

art/ggae458_f3.eps
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Tab le 1. Tab le displaying the ef fect of SNR of fset on measurement error for both the unifor m and non-unifor m prior. 

SNR offset σmeas , Uniform prior σmeas , Non-uniform prior 

3.5 0.1 0.1 
2.91 0.1 0.1 
2.32 0.13 0.15 
1.73 0.23 0.38 
1.14 0.41 0.75 
0.55 0.62 1.19 
−0.05 0.81 1.5 
−0.64 0.92 1.83 
−1.23 0.97 1.94 
−1.82 0.99 1.98 
−2.41 1.0 1.99 
−3.0 1.0 2.0 

Note: The first column shows the of fset v alue, and the second two columns show the average measurement error across 
all events sampled from the given prior for sensors with the given offset. It appears that between values of 1.73 and 
−0.64, the average measurement error is more sensitive to changes in SNR. We emphasize that this is not an equi v alency 
table, but rather a notional description of how the measurement error changes as the SNR is changed. 
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indicator feature to reflect the absence of magnitude information in our source vector θ . This feature is 1 when the magnitude data are
absent and 0 when magnitude data are present. This feature helps us train using the data with missing magnitudes, which is critical for low
magnitude events. When this model is used as part of the Bayesian OED framework, the magnitudes of hypothetical events will all be known
so this indicator feature is al wa ys ignored after training. As described pre viousl y, we assume that the detection probability for each station is
conditionally independent, so the likelihood model becomes: 

p ( D | L , x, m, S 

) = 

∏ 

i 

p ( D i | L , x, m, S i ) , (8) 

where 

p ( D i | L , x, m, S i ) = 

{ 

exp ( αDist [ L , S i ] + βx+ γ m + δ) 
1 + exp ( αDist [ L , S i ] + βx+ γ m + δ) , if station idetects the phase 

1 
1 + exp ( αDist [ L , S i ] + βx+ γ m + δ) , if station idoes not detect the phase. 

(9) 

The coefficients α, β, γ, δ in eq. ( 9 ) correspond to the regression coefficients that fit the data. Dist [ L , S i ] is the distance in degrees
from L to S i , x is the depth and m is the magnitude. Since we only consider one phase, we remove the phase index in D hereon. With this
choice, we find the distance coefficient, α = −2 . 82 , the depth coefficient, β = −0 . 03 , the magnitude coefficient, γ = 1 . 14 and the intercept,
δ = 1 . 95 . From this we see that the distance and magnitude have a much higher influence than depth on the detection probability of the first
P arri v al. While the distance coefficient appears larger than the depth coefficient, this primarily reflects that distance is measured in degrees
while depth is in kilometres; when converted to the same units, their effects are more comparable, though depth typically has less impact on
detection probability due to its smaller range of values. 

3.3 Arri v al time model 

3.3.1 Earth model uncertainty 

For our traveltime uncertainty model, first we will build an uncertainty model that captures the uncertainty due to the earth model. We then
will include a conditionally independent and additive measurement uncertainty model. We take the approach of using model uncertainty 
over using replicate variability because we are using synthetic earth models that produce the same output (up to measurement error) for the
same inputs, although these earth models will have unknown errors when compared to potentially obser vable ‘g round tr uth’ traveltimes. We
treat this latent discrepancy between these models and the true experiment as aleatoric uncertainty since, in practice, experiments treat each
e vent independentl y. It is possible to learn this discrepancy by jointly inferring events (Myers et al. 2007 ), however the added complexity is
beyond the scope of this optimal experimental design study. For more details on this type of understanding, see Kennedy & O’Hagan ( 2001 )
or Maupin & Swiler ( 2020 ). 

To capture earth model uncertainty, we selected 121 vertical cross-sections from Crust 1.0 (Laske et al. 2013 ) from the area around the
monitoring region to get 121 different 1-D earth models with different Vp velocity profiles. These models can be seen in Fig. 4 . For each
of these models we used TauP (Crotwell et al. 1999 ) to compute the traveltimes for different distances, � , and depth, x , pairs. For a given
distance and depth pair we compute the mean and variance of the trav eltimes, t i , giv en the trav eltimes computed by TauP for the N = 121
models: 

μ ( �, x ) = 

1 
N 

∑ N 
i= 1 t i ( �, x ) (10) 

σ ( �, x ) = 

√ 

1 
N−1 

∑ N 
i= 1 [ t i ( �, x ) − μ ( �, x ) ] 2 (11) 
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Figure 4. Illustration of the 121 1-D velocity models for Vp sampled from around the monitoring region in Fig. 3 . These representative earth models are used 
to estimate traveltime uncertainty from earth model uncertainty. 

Figure 5. Left : A scatter plot (blue) of the estimated traveltime mean μ ( �, x ) , and estimated traveltime standard deviation, σ ( �, x ) for various distance 
and depth pairs, superimposed with a fit polynomial model (red). Right : A scatter plot of predicted traveltime standard deviations compared to the true value 
(red). A line demonstrating the performance of a perfect model is display ed in b lue. The pol ynomial model adequatel y captures the bulk trend, despite some 
variability due to the nature of the first arriving phase. 
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Given the estimated mean and standard deviation pairs (Fig. 5 ), we derive a model for the standard deviation of the traveltime σmodel as
 fifth degree polynomial function of depth and distance that will be used in the likelihood. This high-order polynomial sufficiently captures
he major dependencies in the traveltime standard deviation over the domain of interest but would fail to extrapolate beyond that domain.
herefore, care should be taken whenever using these types of function approximations that they are trained on the domain of interest as they
re not intended for extrapolation. 

.3.2 Measurement error 

s described earlier, we also develop a model of measurement uncertainty for each station that we treat as conditionally independent of the
ther station. This takes the form of phase pick uncertainty (Velasco et al. 2001 ), σmeas , that depends on a sensor’s signal-to-noise ratio (SNR).
e model the SNR of a sensor’s detection using a linear model that is a function of log distance, log � , and magnitude m , given by 

NR = a · m − b · log � + c + ε, (12) 

here ε is an offset hyperparameter called the SNR offset used to account for different sensor fidelities. We fit the coefficients a, b and c again
sing the transportable array data set (IRIS Transportable Array 2003 ). We note that for our fit we found that no depth term was required
hich is why it was omitted but this will obviously depend on the problem context. We also add an offset term to this equation, potentially
nique to each sensor, which allows us to tune sensor fidelity as we perform various experiments. As in Velasco et al. ( 2001 ), the σmeas is thus
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Figure 6. Visualization of the correlation matrix. The left figure is the correlation matrix, 
, induced by the earth model uncertainty computed using eq. ( 14 ). 
The axes correspond to the distance along the surface from the source epicentre in km. Stations are approximately spaced 33 km apart. The right figure is 
a simplified model of the correlation, 
 GP , found using a square-exponential kernel, w hich appro ximates 
. The square-exponential kernel assumes that 
correlation is only a function of the distance between stations. This simplified model reasonably captures the correlation length scale for 
 but is unable to 
capture the complex, non-translation invariant block structure of 
. 
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gi ven b y 

σmeas ( SNR ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

σ0 SNR < t L 
γ σ0 SNR > t U 
σ0 − σ0 −γ σ0 

log ( t U ) −log ( t L ) 
log ( SNR 

t L 
) otherwise 

, (13) 

where γ , t U and t L , and σ0 may all be tuned as hyperparameters (with γ constrained to be less than 1). 
Ultimately, combining the modelling and measurement error we get that the total arri v al error is 

σ 2 
p ( �, x, m ) = σ 2 

model ( �, x) + σ 2 
meas ( �, m ) . 

. 

3.4 Traveltime correlation 

While the previous models described the magnitude of errors at a station, they have not captured any correlations between the stations. In
principle, we expect that there could be signification correlation in traveltime uncer tainty, par ticularly due to the earth model. We can compute
the correlation between the traveltimes observed at two different stations at locations � j and � k for an event at depth x . This correlation is
induced by the earth model uncertainty as: 

ρ
(
� j , � k , x 

) = 

∑ N 
i= 1 [ t i 

(
� j , x 

) − μ
(
� j , x 

)
][ t i ( � k , x ) − μ ( � k , x ) ] 

( N − 1 ) σ
(
� j , x 

)
σ ( � k , x ) 

. (14) 

Here μ and σ are computed from the N earth models in different locations from Crust 1.0 as in eqs ( 10 ) and ( 11 ). For simplicity we will
remove the depth dependence of the correlation by averaging the correlation over all L depths. Therefore we estimate the correlation between
two sensors as ρ

(
� j , � k 

) = 

1 
L 

∑ L 
l= 1 ρ

(
� j , � k , x l 

)
. 

We define the full correlation matrix, 
, between the stations at distances � i from the source has having elements 
 jk = ρ
(
� j , � k 

)
.

We want to fit a Gaussian process model with a square exponential kernel to this data so we can easily estimate the correlation between
arbitrary sensor pairs when designing the network, that is, we want 
 ≈ 
 GP . Therefore we want to find the correlation length, l , such that

{ 
 GP } jk = exp 
[ 
− 1 

2 l 2 

(
� j − � k 

)2 
] 

and 
 GP minimizes the discrepancy with 
. We, under our modelling conditions, find the correlation 

length scale as l = 147 . 5 km. The comparison of 
 and the resulting 
 GP can be seen in Fig. 6 . We observe that the square exponential kernel
is able to capture the general length scale of the induced correlation, meaning that stations that are close together are more correlated, but does
not capture its complexity. The induced correlation has a block-like structure where stations that are near to the source are highly correlated,
stations far from the source are highly correlated, and stations in the transition region exhibit less strong correlation with nearby stations.
This likely corresponds to the type of first arri v al that is being observed at each station, where close stations observe a Pg while far stations
observe a Pn. Our choice of GP kernel is translation invariant meaning that the sensor correlation is only a function of the distance between
the two sensors and does not depend on the source parameters. More generally, a different GP kernel would need to be constructed for each
seismic source, which is computationally challenging for the nested complexity of OED. Considering only a translation invariant GP kernel
is obviously a simplification but provides a first step towards modelling station correlation which is typically very difficult and often ignored.
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We can now construct the P arri v al time likelihood p ( A | L , x, t o , D , S 

) by combining our model of the traveltime prediction, μp ;
arth-model-induced standard deviation, σmodel ; measurement-induced standard deviation σmeas ; and correlation matrix, 
 GP : 

p ( A | L , x, t o , D , S 

) = 

1 
( 2 π ) | D | / 2 | 
| 1 / 2 exp 

(
− 1 

2 

[
A − μp ( L , x, D , S 

) − t o 
]T 


 

−1 
[
A − μp ( L , x, D , S 

) − t o 
])

(15) 

 = σ T 
model ( �, x, D 

) 
 GP ( D , S) σmodel ( �, x, D 

) + diag 
[
σ 2 

meas ( �, m, D , S) 
]
. (16) 

ere | D | is the number of detections, | 
| is the determinant, μp ( L , x, D , S 

) is a vector of the predicted traveltimes for stations that had
 detection, σmodel ( �, x, D 

) is a vector of the predicted standard deviations of the traveltime to each station induced by the earth model
ncertainty and diag 

[
σ 2 

meas ( �, m, D , S 

) 
]

is a diagonal matrix of the squared predicted standard deviations of the traveltime to each station
nduced by the measurement uncertainty. Finally, 
 GP ( D , S 

) is the estimated correlation between stations using the GP model. 
We further note that we marginalized our source origin time prior over t o , assuming a uniform improper prior (meaning that an event is

quall y likel y at an y time), and therefore omit it from the model. We assume this prior since the origin time is naturall y restricted b y the size
f the chosen domain. The improper uniform prior only behaves differently from a proper prior on the edges of the proper prior’s domain, so
ny uniform prior that is wide enough to ensure that possible traveltimes given the domain do not occur on the edges of the domain should be
unctionall y equi v alent to an improper prior. See Fig. A4 for further details. This reduces the dimension of our seismic source parametrization
pace and leads to our final model of the arri v al time likelihood: 

p ( A | L , x, D , S 

) = 

∫ 
t o 

p ( A | L , x, t o , D , S 

) p ( t o ) dt o 

= 

1 

( 2 π ) ( | D |−1) / 2 | 
| 1 / 2 β1 / 2 
exp 

(
−1 

2 

[
A − μp ( L , x, D , S 

) 
]T 


 

−1 
[
A − μp ( L , x, D , S 

) 
])

exp 

(
α2 

2 β

)
(17) 

= � 

T 
 

−1 
[
A − μp ( L , x, D , S 

) 
]

(18) 

= � 

T 
 

−1 
� (19) 

 C O M P U TAT I O NA L  A P P R  O  A C H  

.1 Estimating information gain 

iven the Bayesian framework introduced in Section 2 and the specific models introduced in Section 3 we present a method to estimate the
xpected information gain, I ( S 

) , of the sensor network S . Recall from eq. ( 3 ) that we can express EIG as: 

 

( S 

) = 

∫ 
p 

(
θ ′ ) ∫ 

p 
(
D | θ ′ , S 

) ∫ 
p ( θ | D, S 

) log 
p ( θ | D, S 

) 

p ( θ ) 
d θd Dd θ ′ . (20) 

e can further define I ( S | θ ′ ) as the expected information gained about a specific event θ ′ where 

 

(
S | θ ′ ) = 

∫ 
p 

(
D | θ ′ , S 

) ∫ 
p ( θ | D, S 

) log 
p ( θ | D, S 

) 

p ( θ ) 
d θd D (21) 

nd thus express I ( S 

) as: 

 

( S 

) = 

∫ 
I 

(
S | θ ′ ) p 

(
θ ′ ) dθ ′ (22) 

 

( S | θ ′ ) is an important quantity on its own as it can be used to tell how sensitive the network is to a specific event θ ′ . We can then produce
aps of this sensitivity in order to communicate how the network performs under different conditions in order to check against requirements.

We will use the approach of estimating I ( S | θ ′ ) to estimate EIG. First, we draw samples from θ ′ from p( θ ′ ) to construct a large set
f candidate seismic events using a method like importance sampling with a Quasi-Monte Carlo (QMC) mesh (Owen 2013 ). QMC provides
n efficient set of space-filling samples that requires significantly fewer samples than a standard unifor m g rid. Then, for each element in our
vent space, we estimate I ( S | θ ′ ) and average them to estimate I ( S 

) . To estimate I ( S | θ ′ ) we construct hypothetical data sets by sampling
p ( D | θ ′ , S 

) . Then we will solve the Bayesian inference problem given the data sets to estimate the information gain measured via the KL
iv ergence. We solv e the Bay esian inference prob lem ov er the discrete ev ent space instead of a continuous ev ent space for computational
fficiency, although this results in a bias. Solving the Bayesian inference prob lem inv olves sampling from the prior distribution, which we
ccomplish using importance sampling (discussed further in Section A3 ), sampling from an importance distribution q( θ ) instead of the prior.
his yields an estimator for the KL divergence given by 

L [ p( θ | D) || p( θ ) ] ≈
N ∑ 

i= 1 

w i ∑ N 
i= 1 w i 

( 

log ( p( θ | D)) − log 

( 

1 

N 

N ∑ 

i= 1 
w i 

) ) 

, (23) 
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where 

w i = 

p( θi ) 

q( θi ) 
p( D | θi ) . (24) 

For more details on this estimator, see Section A4 . 
As long as enough discrete points are used, the KL divergence will converge to the same value as the continuous distribution so the bias

will be small. By looking at statistics of the posterior probabilities of the discrete events, we can assess whether enough points have been
used. The hypothetical data are constructed by sampling p ( A | L , x, D , S 

) and p ( D | L , x, m, S 

) . The resulting algorithm is summarized in
Algorithm 1. 

Algorithm 1 Expected Information Gain (EIG) Calculation 

1: Input: S (sensor configuration), � (plausible events), p( θ ′ ) 
2: Result: I ( S| θ ) for individual events θ , and total I ( S) 
3: for each event hypothesis θ ′ ∈ � do 
4: simulate arri v al dataset according to D ∼ p( D| L 

′ , x ′ , m 

′ , S) 
5: for each arrival dataset D do 
6: simulate arri v al time according to A ∼ p( A | L 

′ , x ′ , D, S) 
7: for each simulated dataset D = { A, D} do 
8: discretize the parameter space using N samples θ ∼ q( θ ) 
9: compute likelihoods p( D| θ, S) for each θ using Equations 9 and 17 

10: compute importance weights for each θ according to Equation 24 
11: compute KL divergence for information gain I ( S| θ ′ , D) according to Equation 23 
12: end for 
13: end for 
14: compute EIG for θ ′ , as average of I ( S| θ ′ , D) across simulated data 
15: end for 
16: compute total EIG I ( S) as average over all event hypotheses and data 

We choose to use this approach as opposed to a Markov chain Monte Carlo (MCMC) method for two reasons. First, the dimension of
the sample space is small, allowing us to draw enough samples to reliably reconstruct the prior and posterior distributions. Secondly, this
approach allows us to reuse likelihood computations for each sample across all steps of the algorithm, whereas an MCMC method would
require computing a new likelihood at each iteration. In applications where the dimension of the sample space is higher, an MCMC method
would likely be preferred. We also acknowledge that there are potential issues with this approach in cases where the importance distribution
does a poor job of approximating the sampling distribution (Williams 2021 ). This could be particularly problematic in cases where diffuse
prior samples are used for sampling a concentrated posterior. In further work we hope to explore alternative sampling methods such as
MCMC, double-nested Monte Carlo and those discussed in Picard et al. ( 2019 ) and compare their performance to the method used in this
work. 

4.2 Optimization 

Once we have the algorithms to estimate I ( θ ′ | S 

) and I ( S 

) , we can formulate the optimal experimental design problem to choose the
location and type of different seismic stations. We can use the greedy Bayesian optimization method described in 2.3 . We use the Python
library SCIKIT-OPT (Head et al. 2020 ) to implement Bayesian optimization with a Gaussian process (GP) surrogate. This library enables us
to adapti vel y learn hyperparameters of the GP kernel function, for example, length scales of the squared exponential kernel, magnitudes of
the additive white noise, etc. Further, it can support several different criteria for Bayesian optimization that control the way in which the
optimizer balances exploration versus exploitation in Bayesian optimization. This trade-off means that the Bayesian optimizer has to choose 
sample points that enable it to both learn the surrogate for the EIG surface and find points that optimize the EIG. The common criteria for this
found in SCIKIT-OPT are the expected improvement, lower confidence bound and probability of improvement. SCIKIT-OPT also has the option
to mix these criteria and choose one at random. We found that e xpected improv ement works well but have not systematically explored all
these options. 

4.3 Software implementation 

The models in Section 3 and algorithms from this section can be found on GitHub (Catanach et al. 2024 ). This code provides the tools
necessary to analyse and optimize seismic monitoring networks. Currently we target the location problem, like those discussed in Section 5 , in
which we want to study how well the network will identify the location of an event and then optimize the network to provide better locations.
A detailed explanation of the software implementation can be found in A5 . 
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Figure 7. Simple prior distribution on latitude and longitude representing a fault and point source. It is comprised of three mixture components: a bi v ariate 
Gaussian representing the point source, a uni v ariate Gaussian in the longitude direction multiplied by a uniform in the latitude direction representing the fault 
and a uniform in both directions representing the background probabilities. 
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 R E S U LT S  

nless otherwise specified, we explore a simple model for placing sensors to monitor a square domain for latitudes between 40 ◦ N and 42 ◦ N,
ongitudes between 112 ◦ W and 108:36 ◦ W, magnitudes greater than 0 and depth between 0 and 40 km. For computing the EIG, 10k events
ere chosen using a QMC mesh defined by the Sobol sequence. For each candidate event 32 hypothetical data realizations were used. 100

teps of Bayesian optimization per sensor were used to optimize the sensor configuration. 

.1 Prior distributions 

e perform our experiments with one or both of the following prior distributions on our seismic parameters. 
The first prior used was a uniform prior. Under this prior, seismic sources are assumed to have a uniform prior probability in this domain.

e also assume that the magnitude prior is an exponential distribution with rate parameter λ = log (10) and a minimum magnitude of 0.5.
his prior means that the likelihood of an event of a given magnitude falls off exponentially as the magnitude increases. We assume that the
rigin time is a uniform improper prior meaning that all times are equally likely. The sensors are also limited to be placed in this domain. 

The second distribution used a mixture distribution on latitude and longitude to very simply simulate both a fault line and a point source.
t used a uniform distribution on depth and an exponential distribution with λ = 10 on magnitude. 

We choose the mixture distribution on latitude and longitude to represent a fault line and a point source. The first mixture component is
 bi v ariate Gaussian centred at (40.25, −109) with cov ariance matrix 

 = 

[ 

0 . 125 0 
0 0 . 125 

] 

. 

he second mixture component is a 1-D Gaussian in the longitude direction with mean −110.19 and standard deviation 0.125 multiplied by a
niform in the latitude direction. The final mixture component is a uniform distribution across both latitude and longitude. These components
ere given mixture weights 0.49, 0.49 and 0.02, respecti vel y. See Fig. 7 for a visual representation. 

The total probability for a single event under this prior is thus given by the product of the probability for each parameter. For convenience,
e refer to this second prior as the fault-box prior. 

.2 Anal ysis r esults 

sing our algorithm, we can perform two different types of analyses: We can design new sensor networks for a given area, and we can analyse
he sensitivity of existing sensor networks to events in a given area. Fig. A5 shows what it looks like when sensors are placed sequentially
n a given area. Fig. 8 shows an an analysis of network sensitivity to events in a given area. We see that the network gains more information
bout events that are far from the high-density areas of the prior, and less information about events that are closer to high-density areas. 

.3 Effect of sensor fidelity 

e ne xt inv estigate how sensor placement is af fected b y v arying sensor fidelity conditions. We control the fidelity of a given sensor by adding
n offset to its ratio of signal to measurement noise, an offset than can be thought of as corresponding to measurement noise with a given

art/ggae458_f7.eps
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Figure 8. A network sensitivity analysis to events in a given latitude/longitude domain. The prior distribution on event location is shown by the grey contour 
plot. Events that are far from the high-density areas of the prior distribution contribute more information than events close to high-density areas. 

Figure 9. The left panel illustrates the change in EIG as additional sensors are placed using greedy optimization for three different networks with different 
sensor fidelities. These networks have signal-to-noise (SNR) ratio offsets of 2, 5, 0 and −1.5 s. The corresponding average measurement error for these 
networks, σ , is listed in parentheses. See Table 1 for a description of the relationship between SNR and measurement error. The right panel describes the 
geometry of the networks based upon how close the stations are to each other. We can see that, particularly in the beginning, the noisier the network is, the 
far ther apar t stations are added to those networks. 
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standard deviation. Using a uniform prior, we place 20 sensors using four different sensor fidelity values (See Fig. 9 ). Unsurprisingly, we see
that as sensor fidelity increases, the network’s information gain also increases. It is difficult to see a clear pattern in sensor proximity, but we
notice that as sensor fidelity increases, sensors are generally placed closer together. This could be due to the fact that noisy sensors need to
be placed farther apart from each other than less noisy sensors in order to properly triangulate events. 

We ne xt inv estigate the effect of sensor fidelity on information gain. We examine the effect of fidelity by comparing the information
gain surface generated by a grid of 9 e venl y spaced sensors across 12 different signal-to-measurement noise ratio offsets. In this experiment,
these e venl y spaced of fsets range from −3.0 to 3.5. We perform this experiment using both a uniform prior on events and the non-uniform
fault-box prior. The results of these experiments can be seen in Fig. 10 , and full visualizations of how the SNR affects IG across all events
in a domain can be found in Figs A6 and A7 . As when controlling the measurement noise standard deviation directly, we see that below a
certain fidelity offset value the measurement noise dominates the signal and as such we see minimal information gain. Once past a certain
threshold (in this case a sensor fidelity of −0.045 corresponding to a measurement noise standard deviation of 1.59) the model uncertainty
begins to take over and we see an increase in information gain in both the uniform and non-uniform prior cases. 

5.4 Optimizing a network with boundary constraints 

We also examined the behaviour of the optimization when constraints were placed on the location of the sensors according to Fig. 11 . This
boundary was chosen based on the boundaries of the Uinta National Forest, which was chosen because the Uinta National Forest are irregular
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art/ggae458_f9.eps


Seismo-acoustic monitoring with Bayesian OED 1815 

Figure 10. Illustrations of the degradation of EIG for all events on both priors as the signal-to-noise ratio is decreased. This analysis shows where measurement 
error dominates versus modelling error and vice versa. We see that EIG is fairly stable when SNR is offset by more than 1.73 or less than −0.64, and is 
greatl y af fected when the signal offset is between those values. See Table 1 for a description of the relationship between SNR and measurement error. For the 
av erage ev ent, EIG is more sensitiv e to the measurement error when the SNR value is between 1.73 and −0.64. These larger fluctuations in measurement error 
correspond to the steeper curve in the plots. On the other hand, an SNR offset greater than 1.73 means that model error dominates, while an SNR offset of less 
than −0.64 means that measurement error dominates. This can inform where to invest effort in reducing uncertainty. 

Figure 11. Network optimized under the shown boundary constraints. Twenty sensors were placed within the highlighted area. The figure on the left shows the 
domain on which the seismic models were trained (the outer area in Fig. 3 ), with the square box on the left being the area from which events were sampled (the 
inner area in Fig. 3 ). The figure on the right shows a zoomed in view of the admissible placement area shows just the area in which the events were sampled. 
We see that sensors were placed near the boundary of the admissible area. This is possibly done in an attempt to better capture events outside the optimization 
domain. 
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nd therefore provide a good test for the bounded optimization software, and they are also entirely contained within the area on which our
odels were trained. 

The network created by our script under our boundary constraints is shown in Fig. 11 . We can see that sensors are placed on the edges
f boundaries in order to gain information about the surrounding area. 

.5 Effect of correlation 

e investigate the effect of station correlation on the placement of sensors. We look at three different correlation length scales, l: 14.75,
47.5 and 1475 km. We do this using both a uniform prior distribution and a fault-box prior. The signal-to-measurement-noise ratio in both
ases was fixed at 0 (corresponding to a standard deviation of 1.5). Twenty stations were then placed using greedy optimization. In Fig. 12 ,
e observe that at higher correlations EIG also increases. Since higher correlation means less information, this is what we would expect to

ee. Ho wever , we note that this EIG gain is relati vel y modest, especiall y as more sensors are placed. It is possible that this could mean that
orrelation does not have a large effect on sensor placement. The mean nearest neighbour distance is also very similar for all correlation
alues once the number of sensors grows large. 
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Figure 12. Analysis of the evolution of the EIG (left) and mean distance between station (right) for three different correlation length scales. Sensors were 
placed using both a non-uniform and uniform prior. Top – Non-uniform prior: We see that initially the disparity in EIG is small then increases with the number 
of sensors. Ho wever , after about 10 sensors, the disparity begins to decrease. Few patterns can be identified in the evolution of the geometry of the network 
although it may be the case that stations are initially fur ther apar t for the low correlation model. Bottom – uniform prior: We see that, like with the non-uniform 

prior, the disparity in EIG across correlation length scales star ts small, g rows and then shrinks again. Unlike the non-uniform prior, we see that EIG levels off 
sharply around six sensors. As with the non-uniform prior, few patterns can be discerned from the network geometry plot. 
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6  C O N C LU S I O N  

In this work, we have demonstrated and implemented a modern framework for Bayesian optimal experimental design for analysing and
optimizing a seismic monitoring network. We used this framework on a seismic source location problem with uncertainty in both the detection
of seismic phases and uncertainty in the arri v al time. We selected these models using data from the U.S. Transportable Array and physics-based
traveltime modelling with earth model uncertainty. Using these models, we capture the often-ignored influence of earth model uncertainty 
and station correlation on traveltimes. We further investigate the influence of station correlation, earth model uncertainty and phase-arri v al
pick uncertainty on the sensor placement and sensitivity of the monitoring network. 

Our Bayesian OED approach will enable rigorous and flexible analysis and design of monitoring networks for applications like 
earthquake or explosion monitoring. When e v aluating a monitoring network, decision makers in high-consequence domains can trust the
rigor of the Bayesian approach to provide coherent uncer tainty quantification. Fur ther, decision makers may employ Bayesian OED to assess
the monitoring network’s sensitivity to different types of seismic sources and locations and therefore can certify the capabilities of the network
to meet design requirements. Bayesian OED may answer other questions critical to seismic monitoring such as: how may multiphenomenology 
data be used to reduce uncertainty; what is the appropriate sensor fidelity or earth model resolution for estimating a QoI and how do sensor
types, number and locations influence estimates of QoIs? 

While this work provides a meaningful first step towards analysing and optimizing monitoring networks, many simplifications were 
made during this exploratory study. Based on these results w e ha v e identified sev eral follow-on directions to increase its applicability to real
monitoring problems: 
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(i) In this work, we used a very simple Gaussian traveltime model because it enabled marginalization of origin time and handling correlation
etween stations. As we saw, real data are much more complex and so more complex traveltime models should be explored. 

(ii) Further, w e ma y extend the correlation model to include more e vent characteristics. We ultimatel y assumed that the station correlation
as independent of the event and was only a function of how far apart the stations were. Real data exhibits more complex correlation

tructures, such as depth dependence. Further, we assumed that the detections of each station were independent. Again, we would expect this
ot to be true. 

(iii) We also assumed that the stations were identical. Studying a heterogeneous sensor network is much more realistic. Stations are
eterogeneous both because of the use of different sensors but also based upon how the stations are installed, which could introduce different
ncertainties and background noise environments. Modelling this heterogeneity also would enable us to better assess the trade-off between
ifferent sensor types and installation methods. 

(iv) De velop methodolo gy that is not data dri v en for nov el sensor placements. 
(v) Finally, w e ma y incorporate many other sources of data into this anal ysis. We onl y considered P arri v als so other seismic phases should

e studied using the same w orkflo w and incorporated into the likelihood function. Also, infrasound sensors and seismic arrays could be
ncluded to make the analysis multimodal by providing directional information. This would then give us the ability to explore the utility of
ifferent sensor types as we could see how the expected information gain changes as we add sensors with these different modalities. We could
lso then deduce the types of seismic sources different data modalities most benefit. 
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A P P E N D I X  A :  M O D E L L I N G  D E TA I L S  

A1 Detection model 

We re-emphasize that only 23 per cent of the event-sensor pairs contained a detection. We therefore tuned our data to balance the performance
of the model. We fit the logistic regression model by minimizing binary cross entropy loss across the data set. This loss comes from the KL
divergence between the predicted detection probability and the realized detection. Placing higher weight in the loss function on detections
biases the model to predicting detection and balances the data set composition. We experimented with different weights, Table A1 summarizes
these results. 

A weighting of 2 was chosen to maintain accuracy while providing a significant recall boost (catching the actual positive detections,
which contribute more uniquely to the information gain). 
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Figure A1. The left panel shows the estimated detection probability from the transportable array data set. We binned these data by distance and magnitude and 
then estimated the detection probability as the number of detections versus the number of potential detections for stations and events within a given distance 
and magnitude. The right panel shows the detection probability predicted by a logistic regression model fit to the data from the transportable array data set. The 
modelled detection probabilities appear as a smoother version of the empirical data histogram, indicating that the model captures the underlying distribution 
of the data well. 

Figure A2. Arri v al time residual as a function of distance in kilometres. Note that there is a bias tow ards positi ve residuals, particularl y at longer distances. 
This bias is particularly evident in Fig. A3 . 
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2 Arri v al time model 

2.1 Data-driven model 

hile the analysis in the rest of this document does not rely on a data-driven arrival time likelihood model, it is helpful to consider the
omplexities of real arri v al time data to understand some of the modelling choices. Again, the same transportable array data set was used.
or each P arri v al, we predict the arri v al time for a phase given the event and sensor locations and origin time in the catalogue using the
ASP91 velocity model. Then, we calculated the residuals observed in the data. Fig. A2 shows a scatter plot of the residual data as a function
f distance. 

We see little obvious relationship between distance and the residual. This residual is probably a combination of many factors: measurement
oise, traveltime model errors, phase categorization errors and location errors in the catalogue. In the histogram Fig. A3 , we see that the
esiduals follow a heavy tailed distribution. We choose to model it with a non-centred t -distribution. 
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Figure A3. Arri v al time residual histo gram compared to the fit of dif ferent statistical models. The magenta line indicates the non-centred t -distribution fit to 
the data. The orange line shows the marginal residual distribution under the more tractable distance dependent Gaussian model discussed in Section 3.3.1 . We 
see that the non-centred t t -distribution is a better fit to the data than the Gaussian model. Note that the non-data driven model does not a priori know the bias 
so it is centred at zero. 

Figure A4. These plots show the 1-D marginal likelihood for a giv en trav eltime prediction t if the origin time t 0 is in [ a − T , a] (meaning the origin time is 
before the measured arri v al time). For an improper uniform prior, this marginal likelihood should be constant on ( −∞ , ∞ ) . In the plot on the left, an interval 
length of T = 2 and a standard deviation of σ = 0 . 1 are used. The marginal likelihood matches that of an improper prior except near t = 0 and t = T . On the 
right, an interval length of T = 2 and a standard deviation of σ = 0 . 1 t (i.e. the error is a percentage of the mean traveltime) are used. Here differences only 
appear near t = T , and the likelihood is otherwise constant. 
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For the non-centred t -distribution we fit the data and found that the degrees of freedom parameter was 2.198, location parameter was
0.214 and scale parameter was 0.293. While this distribution fits the data reasonably well, it does not give us the ability to tune the various
sources of uncertainty when analysing and optimizing the seismic netw ork. Further , considering station correlation and marginalizing out
origin time uncertainty is very hard for this distribution. Therefore, we instead turn to a simple Gaussian distribution because the Gaussian
distribution allows us to easily model correlation and marginalize out origin time uncertainty anal yticall y. Finall y, for the purpose of Bayesian
OED, ignoring the bias and choosing to use a zero mean Gaussian is justified because adding a constant, known, bias to all traveltimes would
onl y af fect the time of the arri v als but not their uncertainty and therefore the likelihood would be the same. Obviousl y, for inference with real
data including the bias is necessary. 

A2.2 Improper uniform prior 

Fig. A4 shows an empirical comparison between a marginal mean traveltime likelihood using an improper prior and one using a proper
prior. We see that differences between the two arise only on the boundaries of the domain of the proper prior. We note that predicted mean
traveltimes are necessarily restricted by the size of the event domain, so when the proper uniform prior is wide enough to accommodate all
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Figure A5. Illustration of the sequential placement of sensors on a square domain when using a non-uniform prior on events. Each plot shows the sensors 
placed in previous steps in white and the sensor placed at the current step represented as a star. The location component of the prior is depicted by the heat map 
underneath the sensors, with warmer areas indicating areas of higher prior density. 

Figure A6. Illustration of the effect of changing the measurement uncertainty standard deviation ov er sev eral orders of magnitude when using a uniform 

distribution. The colour plots illustrate the EIG of a shallow seismic source with the different stated measurement errors. For noise levels below about 0.41 s 
the model uncertainty dominates over measurement uncertainty so EIG is fairly stable. 
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Figure A7. Illustration of the effect of changing the measurement uncertainty standard deviation ov er sev eral orders of magnitude when using a non-uniform 

distribution. The colour plots illustrate the EIG of a shallow seismic source with the different stated measurement errors. For noise levels below about 1.59 s 
the model uncertainty dominates over measurement uncertainty so EIG is fairly stable. 

Table A1. Over weighting of detections in the loss function was considered to correct for the data set imbalance towards 
non-detections. A weight of 2 was chosen to balance the different performance metrics. 

Detection weight Accuracy Precision Recall AUC 

1 0.870 0.728 0.686 0.92 
2 0.865 0.665 0.820 0.92 
3 0.850 0.617 0.874 0.92 
4 0.835 0.583 0.905 0.92 
5 0.819 0.553 0.920 0.92 
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possible traveltimes, such discrepancies will not influence the likelihoods of any observed data. In this case, the proper and improper priors
are functionally equivalent. 

A3 Importance sampling 

For many applications of OED, there are reasonable prior distributions from which sampling is prohibiti vel y dif ficult (e.g. complex fault
geometries). Further, even when sampling from a prior is easy, it might not be the most computationally efficient method for estimating the
integrals in ( 21 ) because events that are rare according to the prior may contribute significantly to the integral (e.g. high magnitude seismic
events that are likely to cause very high information gains). Thus, to be able to fully utilize domain knowledge about areas of interest in an
efficient manner it is important that w e ha ve a way to representatively sample from these challenging priors and important events. Importance
sampling is one such way. 

We draw samples from an importance distribution ( q ( θ ′ ) , a distribution different from the prior but one that is possible to sample),
weight those samples according to the probability density function of our target prior distribution, p ( θ ′ ) and use these weighted samples to
approximate our quantities of interest. This means that in Algorithm 1 instead of θ ′ ∼ p ( θ ′ ) , w e ha ve that θ ′ ∼ q ( θ ′ ) and has a corresponding
weight of w 

( θ ′ ) = p ( θ ′ ) /q ( θ ′ ) . For a detailed discussion of importance sampling see Owen ( 2013 ). 

art/ggae458_fa7.eps
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4 Computing EIG 

he EIG is computed by first generating M event samples { θ ′ 
i } M 

i= 1 . These samples may be generated from the prior distribution or from some
ther distribution of interest. Then, K synthetic data observations are drawn from the likelihood for each event: { D 

( i) 
j } K j= 1 ∼ p( D | θi ) . This

ields M × K e vent-observ ation pairs ( θ ′ 
i , D 

( i) 
j ) . 

Next, we sample N parameters, { θn } N n = 1 ∼ q( θ ) , where q( θ ) is an important distribution for the prior distribution. This distribution is
ampled using a space-filling design (e.g. a uniform distribution sampled using a QMC mesh), ensuring coverage of the parameter space.
or a given data set D 

( i) 
j , we then compute the KL divergence between posterior p( θ | D 

( i) 
j ) and prior p( θ ) . The log-ratio term in the KL

ivergence can be rewritten using Bayes Rule: 

log 

(
p( θ | D) 

p( θ ) 

)
= log 

(
p( D | θ ) 

p( D) 

)
, 

o we have 

KL [ p( θ | D) || p( θ ) ] = 

∫ 
θ

p ( θ | D) [ log ( p ( D | θ ) − log ( p( D)) ] 

= 

∫ 
θ

q( θ ) 
p( θ ) 

q( θ ) 

p( D | θ ) 

p( D) 
[ log ( p( D | θ ) − log ( p( D)) ] 

= E q( θ) 

[
p( θ ) 

q( θ ) 

p( D | θ ) 

p( D) 
[ log ( p( D | θ ) − log ( p( D)) ] 

]
. 

(A1) 

ere, observe that 

p 
(

D 

( i) 
j 

)
= 

∫ 
p 

(
D 

( i) 
j | θ

)
p( θ ) dθ

= E q( θ) 

[
p 

(
D 

( i) 
j | θ

) p( θ ) 

q( θ ) 

]

≈ 1 

N 

N ∑ 

n = 1 
p 

(
D 

( i) 
j | θn 

) p( θn ) 

q( θn ) 
. 

etting 

 n = 

p( θn ) 
q( θn ) 

p 
(

D 

( i) 
j | θn 

)
, 

e can write the evidence as 

p 
(

D 

( i) 
j 

)
≈ 1 

N 

N ∑ 

n = 1 
w n , 

o substituting into ( A1 ) yields 

KL 

[ 
p 

(
θ | D 

( i) 
j 

)
|| p( θ ) 

] 
≈

N ∑ 

n = 1 

w n ∑ N 
n = 1 w n 

( 

log ( p( θ | D 

( i) 
j )) − log 

( 

1 

N 

N ∑ 

n = 1 
w n 

) ) 

. 

hen, since we may treat the pair ( θ ′ 
i , D j ) as a draw from the joint distribution p( θ ′ , D) , we have that 

I ( S) = 

∫ 
p 

(
θ ′ ) ∫ 

p 
(
D | θ ′ , S 

) ∫ 
p ( θ | D, S 

) log 
p ( θ | D, S 

) 

p ( θ ) 
d θ d D d θ ′ 

= 

∫ 
p ( θ ′ , D | S) KL [ p ( θ | D || p ( θ ) ] d D d θ ′ 

= E p( θ ′ , D| S) [ KL 

( p( θ | D) || p( θ ) ) ] 

≈ 1 

M K 

M ∑ 

i= 1 

K ∑ 

j= 1 
KL 

[ 
p 

(
θ | D 

( i) 
j 

)
|| p( θ ) 

] 
, (A2) 

here D 

( i) 
j denotes the j th draw from p( D | θi ) . 

Unlike the traditional double-nested Monte Carlo (DNMC) approach to computing EIG (Huan & Marzouk 2013 ), this method directly
omputes the expectation of the KL di vergence b y ‘gridding’ the parameter space and approximating the value of the posterior at each grid
oint. It is likely that the DNMC method is faster in general, but since we can pre-compute likelihoods and because the parameter space is
mall, the computation is not too e xpensiv e. 

The advantage of this approach is that we have direct access to the approximate KL di vergence v alues at each point in the domain, which
llows us to generate the information surfaces shown in Figs 8 , A6 and A7 . It also allows us to investigate the information gain about specific
vents of interest in the domain since w e ha ve access to the distribution of KL divergences at each e vent. Gi ven the low dimensionality of the
arameter domain, this added interpretability justifies the small trade-off in computational cost. 
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A5 Description of software implementation 

The accompanying software to this paper is hosted at https://github.com/sandialabs/seismic boed. The user can specify models for generating 
synthetic data and assessing the likelihood of that synthetic data for different sensors and events in the domain of candidate events. The code
is separated into two main components: analysis network and optimization network. The code is designed to use MPI so that it can run on
HPC resources. The multicore parallelism through MPI is implemented by MPI4PY (Dalcin & Fang 2021 ). The EIG computational is highly
parallelizable so it can be scaled easily to thousands of cores, which is important due to the number of computations required for robust
estimates of the EIG, particularly when making the sensitivity maps to show how the network performs on specific events. 

The analysis code estimates the EIG of a given seismic monitoring networks for a user-defined prior distribution of potential events. As
described in Algorithm 1, the code samples these candidate events and then generates synthetic data sets that could plausibly be seen by the
sensors. Likelihood models for several sensor types are provided but user-specified models can also be used. For each of the data sets the
code constructs the posterior distribution and computes the information gain IG according to the KL-divergence. This information gain is
av eraged ov er all synthetic data sets to compute the EIG. The code can also return a list of the IG for dif ferent hypothetical e vents which can
be used to generate a map of sensitivities of the network to different event locations, depths and magnitudes. See Fig. 8 for an example. 

The optimization code is a wrapper around the analysis code. Given a specified initial network configuration of sensors, the code will add
a desired number of sensors to the network. The goal of the optimization is to maximize the EIG of the new sensor network while respecting
user-specified constraints on where sensors can be placed. This is done with a sequential (greedy) optimization that adds sensors one at a time
to the initial network. Each optimization is done using a Bayesian optimization method that construct a Gaussian process surrogate model
of the EIG optimization surface. This is done by evaluating many potential new sensor locations and measuring the EIG using the analysis
code. These data are then used to construct the surrogate and inform new trial points to query the EIG function. The code then returns the
new sensor network after the optimal sensors have been added. 

Please refer to the documentation in Catanach et al. ( 2024 ) for a complete description of the code, capabilities and provided tutorials. 

A6 More results 

This section contains additional figures illustrating various results of the paper. Fig. A5 demonstrates the process of sequentially placing
sensors using a non-uniform prior. Figs A6 and A7 show the effect of changing the sensor fidelity on expected information gain. The EIG
was computed using 8192 sampled events to generate synthetic data over a domain discretized into 32 768 points. These numbers were
chosen to ensure that the ef fecti ve sample size (ESS), which measures how well the target distribution is represented by the weighted samples
(Owen 2013 ), remained relati vel y large while keeping the computational cost feasible. Since the other approximations we make (e.g. greedy
optimization) are likely to be more impactful than uncertainty in the EIG estimator, we prioritized computational feasibility over fine-tuning
the number of samples used. 
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