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Abstract
Many tasks require flexibly modifying perception and be-
havior based on current goals. Humans can retrieve
episodic memories from days to years ago, using them to
contextualize and generalize behaviors across novel but
structurally related situations. The brain’s ability to con-
trol episodic memories based on task demands is often
attributed to interactions between the prefrontal cortex
(PFC) and hippocampus (HPC). We propose a reinforce-
ment learning model that incorporates a PFC-HPC inter-
action mechanism for goal-directed generalization. In our
model, the PFC learns to generate query-key representa-
tions to encode and retrieve goal-relevant episodic mem-
ories, modulating HPC memories top-down based on cur-
rent task demands. Moreover, the PFC adapts its en-
coding and retrieval strategies dynamically when faced
with multiple goals presented in a blocked, rather than
interleaved, manner. Our results show that: (1) combin-
ing working memory with selectively retrieved episodic
memory allows transfer of decisions among similar en-
vironments or situations, (2) top-down control from PFC
over HPC improves learning of arbitrary structural asso-
ciations between events for generalization to novel en-
vironments compared to a bottom-up sensory-driven ap-
proach, and (3) the PFC encodes generalizable repre-
sentations during both encoding and retrieval of goal-
relevant memories, whereas the HPC exhibits event-
specific representations. Together, these findings high-
light the importance of goal-directed prefrontal control
over hippocampal episodic memory for decision-making
in novel situations and suggest a computational mecha-
nism by which PFC-HPC interactions enable flexible be-
havior.
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Introduction
A fundamental aspect of intelligence is the ability to learn
from experience and apply that knowledge to guide future
decisions. While artificial intelligence (AI) systems can ef-
fectively utilize training data for some generalization within
their learned distribution, they struggle with out-of-distribution
generalization due to their design focus on capturing statis-
tical patterns. In contrast, biological systems demonstrate

remarkable flexibility in adapting to novel situations in a few
shots through their capacity to leverage both episodic memo-
ries of specific events and semantic knowledge accumulated
through experience. Humans can even transfer knowledge
across seemingly unrelated situations when they share un-
derlying principles - a phenomenon known as “far transfer”
(as opposed to “near transfer” where situations might appear
more similar) (Barnett & Ceci, 2002). A key question then is
how different brain regions might work in concert to general-
ize knowledge quickly and adaptively, and how this can flexibly
guide behavior.

Far transfer relies on two critical components: 1) knowl-
edge about the past, and 2) the ability to associate the cur-
rent situation with the past. The hippocampus (HPC) has
been thought of as being critical for storing context-specific
episodic memories, as well as matching current contexts with
past experiences. Motivated by the brain’s efficient handling
of episodic memory, recent AI research has sought to mimic
these processes. Approaches such as kNN-LM (Khandelwal
et al., 2020), which combines a pretrained language model
with a k-nearest neighbor search in a large memory bank, and
Retrieval Augmented Generation (RAG) (Lewis et al., 2021),
where a transformer queries an explicit memory bank for se-
mantically relevant information, represent early steps toward
integrating episodic-memory-like systems in AI. More recently,
researchers found that combining brain-inspired memory sys-
tems akin to short-term and long-term memory (including se-
mantic and episodic memory) with transformers boost model
performance in various domains beyond language modeling
(Behrouz et al., 2024).

To use episodic memory effectively, particular memories
must be selected from a very large set to include informa-
tion that is maximally relevant to the current context. A sim-
ple heuristic is to recall memories from previous situations
that presented similar sensory stimuli. However, far trans-
fer or analogical reasoning is better defined by the percep-
tion and utilization of unobvious structural similarities among
situations. Mounting evidence suggests that the prefrontal
cortex (PFC) is essential for selecting and integrating the
right memories for generalization, exerting top-down control
over HPC memory processing (Eichenbaum, 2017). Specif-
ically, the PFC is thought to support selective processing
and maintenance of task-relevant information and guide goal-
directed memory retrieval (Eichenbaum, 2017), and actively
integrate new environmental cues with established represen-



tations from the HPC to form and update its working memory
state (Miller & Cohen, 2001; Ranganath, 2010; Eichenbaum,
2017; Preston & Eichenbaum, 2013). Thus, mammalian
species may generalize to novel situations better through in-
teractions between the HPC and the PFC, whereas current
AI research has been lacking a prefrontal-like mechanism
(Russin et al., 2020; LeCun, 2022).

Damage to the PFC impairs an organism’s ability to adapt
to novel situations by disrupting the integration of new informa-
tion into existing knowledge frameworks (Eichenbaum, 2017).
Lesions in the PFC hinder learning overlapping stimulus pairs,
making transitive inferences, and distinguishing contexts (De-
Vito et al., 2010; Xu & Südhof, 2013). PFC damage also
affects spatial learning and the ability to adapt strategies in
dynamic environments, as evidenced by deficits in tasks like
the Morris water maze under changing conditions (Mogensen
et al., 1995; Compton et al., 1997; de Bruin et al., 1994;
Lacroix et al., 2002). Beyond encoding, the PFC is crucial
for effective memory retrieval, selecting contextually appro-
priate memories, and suppressing irrelevant representations
to resolve competition between similar memories (Preston &
Eichenbaum, 2013). Finally, PFC is at the core of analogi-
cal reasoning (Hobeika et al., 2016; Whitaker et al., 2018), a
key component for enabling far transfer. These findings col-
lectively highlight the PFC’s essential role in flexibly adapting
to new situations that may have a different context than past
experiences.

Despite advances in understanding how HPC and PFC
could interact to achieve generalization to similar or dramat-
ically different contexts, models have yet to fully capture the
dynamic interplay between these regions that supports gen-
eralization to a novel situation. Moreover, existing models do
not provide a clear computational mechanism by which the
HPC and PFC can learn to perform complex decision mak-
ing tasks in an integrated end-to-end system. Here, we pro-
pose a reinforcement learning agent architecture that com-
bines PFC working memory, implemented as an RNN (Wang
et al., 2018), with HPC episodic memory stored in a key-value
system (Gershman et al., 2025) queried by either PFC modu-
lated input, or raw sensory input during memory retrieval. In
our model, the PFC learns to encode and retrieve episodic
memories from the key-value buffer and uses self-attention to
integrate past experiences with its current state to guide ac-
tion selection. The agent continuously explores and exploits
a series of continuously generated environments simulating a
Morris water maze task, learning to use episodic memory dur-
ing exploration to improve decision-making during exploitation
in a few-shots through effective meta-learning (Wang et al.,
2018). We present three experiments demonstrating that: (1)
similarities in sensory input can be used to effectively recall
episodic memory for guiding current decision making, (2) ad-
ditional steps of processing that imitate the role of the PFC
can be trained to transfer memory based on structural rela-
tions, rather than sensory similarity, (3) the PFC can learn to
flexibly control which particular structural relations are used to

invoke episodic memories given changes in the goal context.

Methods
Reinforcement Learning Environment

We created a reinforcement learning environment that con-
tinuously generates new mazes for the agent to explore, and
samples from a set of previously explored environments for
the agent to exploit.

Base Environment We introduce an episodic Morris water
maze environment in discrete grid-world settings, formulated
as a partially observable Markov decision process (POMDP).
The agent observes a local 3×3 grid and a continuous “con-
text” vector that belongs to a maze. Each maze is instantiated
on a configurable 4×4 grid, where a target and an agent are
placed in distinct locations.

The environment contains two trial types, determined prob-
abilistically for each episode: explore trials, where a new maze
is generated with an updated context vector, and exploit trials,
where a maze is sampled from a history of 5 previous mazes.
The trial type is determined according to:

trialtype =
{

explore, with probability p
exploit, with probability 1− p (1)

where p = 50%. The trial type remains constant through-
out each episode, and is re-sampled at the start of each new
episode. During explore episodes, a new maze is generated
with a new random seed and remains fixed for all 5 trials within
that episode. For exploit episodes, each trial’s maze is inde-
pendently sampled from a history of 5 previously encountered
environments.

At each time step, the agent receives an observation com-
posed of a flattened 3×3 subgrid centered on its current posi-
tion and a context vector that provides contextual information
about the maze. The observation space can be formally de-
fined as:

obst = [vt ,e] (2)

where vt is the sensory input (the 3× 3 subgrid) and e is the
fixed maze context vector. Note that the context vector e re-
mains constant throughout exploration of a given maze.

The action space includes four discrete moves (up, down,
left, right). Movement is constrained by grid boundaries, en-
suring that the agent remains within the maze. Each action
incurs a small penalty, whereas reaching the target yields a
positive reward. Trials terminate when the target is reached or
the step limit is exceeded.

Asymmetrical Environment To test generalization beyond
surface similarity (as what is relevant is not always similar, and
what is similar is not always relevant), we introduce a variant of
the episodic water maze environment that includes an asym-
metrical tagging mechanism. In asymmetrical episodic water
mazes, structurally related mazes (i.e., mazes with the same
hidden platform location for reward but different contexts) dur-
ing explore and exploit trials are tagged with different context
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Figure 1: Task structure. A. Simulated 4×4 Morris water maze for reinforcement learning. An agent starts at a random location
in the maze, seeking a hidden platform for reward with a slight penalty for each action. The action space consists of four possible
moves: up, down, left, and right. The observation space of the agent at a given moment contains a 3× 3 subgrid centered on
its current position and a random context vector for the current maze. Note that only walls and the agent itself are visible. B.
Task procedure. Each row represents one episode, which contains 5 trials of a new maze during explore, or 5 trials of mazes
sampled from a history of mazes during exploit. Episode type is sampled by probability p. C. Task variants. The context vector
for explore and exploit trials can be either the same (as in Exp. 1), or different (as in Exp. 1 and 2), where the explore context
is a transformed version of the exploit context to represent arbitrary structural relationships between them (indicated by the red
arrow). In Exp. 3, the two mazes for explore trials contain context vectors that are transformed versions of the context vector for
exploit trials using two predefined transformation matrices across all mazes (indicated by the red and blue arrows). An additional
goal bit is provided in the observation to indicate the current goal reward location during exploit trials.

vectors with a fixed relationship between them:

e =
{

W · ebase, explore trials
ebase, exploit trials

(3)

where W is a fixed transformation matrix and ebase is the base
context vector for the maze.

This ensures the agent never encounters the base context
during explore trials, requiring learned mappings to retrieve
episodic memories for decision-making.

Asymmetrical Environment with Multiple Goals To test
generalization with multiple goals, we extend the asymmet-
rical environment to include mazes with multiple goals during
exploit trials. A 1-bit goal indicator tells the agent which goal
to pursue. The agent must learn to retrieve memories of previ-
ously seen mazes relevant to the current maze and goal. Each
goal corresponds to a unique context vector transformation for
explore trials, while exploit trials use the base context vector:

e =

 W1 · ebase, explore trials (goal 1)
W2 · ebase, explore trials (goal 2)
ebase, exploit trials

(4)

The observation space extends to include the goal bit:

obst = [vt ,e,g] (5)

where g is a binary indicator for the current goal.
In explore episodes, the agent learns about two different

goals in separate trials, where each goal has a unique context

vector derived from the same base vector. Explore trials can
be either blocked or interleaved. In exploit episodes, the agent
must retrieve previously seen, structurally related mazes with
the same goal as the current goal, demonstrating its ability to
utilize learned knowledge.

Agent Architecture

The agent mimics brain-like working and episodic memory in-
tegration for decision-making. Its architecture includes:

1. A hippocampal (HPC) module that stores and retrieves
episodic memories using a query-key-value architecture
(detailed below)

2. A PFC module that:

(a) Uses a recurrent neural network (RNN), implemented
as a reservoir network (Lukoševičius & Jaeger, 2009),
to integrate past rewards, actions, and observations into
working memory

(b) Learns to interact with the HPC for episodic control

(c) Uses a self-attention mechanism to integrate episodic
memory with working memory

Base Agent The agent was designed to both learn memory
tasks as efficiently as possible and to reflect plausible natu-
ral mechanisms of short-term memory. It has been found that
Echo State Networks (ESNs Jaeger, 2007), a type of reservoir
computing (Lukoševičius & Jaeger, 2009), outperform gated
memory architectures on tasks that involve meta-learning and
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Figure 2: Overview of the agent architecture. A. The agent contains a RNN as its working memory for keeping beliefs about the
parts of the environment that are not currently observable, as well as its historical actions and corresponding rewards given state
inputs. It also contains a q-k-v system for episodic memory, which can be attended over by working memory in a self-attention
layer before making the final output action. B. Potential functional mapping onto anatomical regions and pathways in the brain.
The bidirectional pathways between PFC and HPC (including indirect pathways through the entorhinal cortex) can be used both
during encoding and retrieval for PFC top-down modulation of HPC activities. Hippocampal memories are stored as key-value
pairs, where key represents a function of the environmental input, and value represents the hidden state of the RNN at the time
of encoding. During retrieval, the PFC (top-down) or the entorhinal cortex (bottom-up) can send in queries for retrieving the
most relevant memory, represented as a weighted sum of the values based on the similarity between the query and keys. See
Supplementary Materials for diagrams for encoding and retrieval.

non-Markovian time dependence (McKee, 2024). The addi-
tion of reward-driven input filtering greatly improves training
time when there the task involves many input dimensions that
do not usefully condition the agent’s policy, and resembles the
concept of selective attention in natural intelligence (McKee,
2025). Hence, our agent used an ESN (with hyperparame-
ters from McKee (2024)) for short-term memory with reward-
driven input filtering. At each timestep t, the RNN input is
the concatenation of the previous reward rt−1, previous action
at−1 (one-hot), and current observation obst , modulated by a
learned filter signal m:

xt = [rt−1,at−1,obst ] ·m (6)

ht = RNN(xt ,ht−1) (7)

The modulation signal m is generated by a neural network
that takes a fixed, high-dimensional bias vector b and outputs
values bounded between mmin and mmax:

m = (mmax −mmin) · sigmoid( ffilter(b))+mmin (8)

The agent retrieves relevant episodic memories and in-
tegrates them with its current hidden state through a self-
attention mechanism. The resulting context-enriched rep-
resentation is then passed through a Multilayer Perceptron
(MLP) to compute Q-values:

Q(st ,a) = fMLP(Attn(ht ,EM)) (9)

where Attn represents the self-attention mechanism, and EM
represents retrieved episodic memories (detailed in sections
below).

Learning uses double Q-learning with Huber loss and filter
regularization:

L = E
[
Huber

(
Qθ(st ,at)− yt

)]
+λfilterE [m] (10)

yt = rt + γQθ−

(
st+1, argmax

a′
Qθ(st+1,a′)

)
(11)

where yt is the target Q-value from Double Q-learning (van
Hasselt et al., 2016). θ represents the online network param-
eters, and θ− represents the target network. The discount
factor γ determines the relative importance of future rewards.
The Huber loss minimizes the Bellman error to maximize the
rewards obtained by sampling actions from the policy. Fi-
nally, the filter regularization term λfilterE[m] pressures inputs
to scale toward zero unless counteracted by backpropagated
gradients of the Bellman error, resulting in suppression of un-
necessary information in the RNN state early in training.

Query-Key-Value Memory in the Brain The episodic mem-
ory module is implemented as a key–value buffer for simplic-
ity while maintaining key principles in HPC episodic memory
(Gershman et al., 2025). At the end of each trial (event), the
agent stores key–value pairs, following insights from models
storing episodic memory at event boundaries (Lu et al., 2022):

q = fq(x), k = fk(x), vencoded = h (12)
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where both fq, the query function, and fk, the key function,
are identity functions in Experiment 1, and parameterized as
MLPs in Experiments 2 and 3. vencoded is just the reservoir
hidden state ht at the time of encoding, which contains all rel-
evant information about the event.

Memory retrieval is performed via a softmax-weighted sum
over stored values, as vretrieved = softmax(⟨Q,K⟩)V , where
⟨Q,K⟩ represents a vector of query-key similarities (dot prod-
ucts), and the retrieved value vretrieved is a weighted sum of
stored values (Hassabis & Maguire, 2009).

Attention over Working Memory and Episodic Memory
Our agent employs a self-attention mechanism to integrate
retrieved episodic memories with the current working mem-
ory state for decision-making. The current working memory
state and the retrieved episodic memory are first embedded
into a common representation space through a shared MLP
embedding network:

ewm = femb(ht), eem = femb(vretrieved) (13)

The attention mechanism then uses the embedded current
working memory state as the query to attend over itself and
the embedded retrieved episodic memory:

h̃t = Attn(ewm, [eem;ewm], [eem;ewm]) (14)

Attn(q,K,V ) =V · softmax
(

qK⊤
√

dk

)
(15)

where ht represents the current RNN hidden state, vretrieved

is the retrieved episodic memory value, femb denotes the
shared MLP embedding network, and [eem;ewm] indicates the
concatenation of embedded memories.

This attention mechanism allows the agent to dynamically
weight the relevance of both retrieved episodic memories and
recent working memory states when making decisions. The
attended representation h̃t is then used to compute Q-values
for final action selection using Eq. 9.

Results
Experiment 1: Episodic Memory Increases
Exploitation Efficiency when Encoding-Retrieval
Contexts are Similar
Reinforcement learning often struggles with quickly adapting
to new situations. Theories suggest that episodic memory
could be crucial in addressing this challenge (Gershman &
Daw, 2017). However, episodic memory retrieval can be dif-
ficult in complex environments, especially when they are par-
tially observable. We developed an episodic memory retrieval
mechanism based on the Encoding Specificity Principle (Tul-
ving & Thomson, 1973), which posits that episodic memory
is more effectively retrieved when the retrieval context closely
matches the encoding context. We tested this principle in our
agent (Fig. 2) by comparing its performance in the Morris wa-
ter maze task during exploit trials with context cues that were
either similar or dissimilar to those in the explore trials (Fig. 1).

Figure 3: Experiment 1 results. Excess steps are the extra
steps taken beyond the shortest path to the hidden target.
The agent required fewer steps during exploit trials when the
context cue matched that of the explore trials compared to
when it differed. On the other hand, when exploit and ex-
plore context cues were dissimilar or when the agent had no
episodic memory, performance was better during exploration
than when contexts were similar and episodic memory could
be used. NOTE: Shaded areas show SEM across runs.

In this task, the agent’s objective was to learn to locate a hid-
den target location in a maze, with the maze identified by a
context vector within the observation space, starting from ran-
dom locations. Initially, the agent explores a new maze in
each episode. Subsequently, with probability p, it enters ei-
ther another explore episode that presents a new maze or
an exploit episode that presents a previous maze randomly
sampled from the task history. The key assumption is that if
the context cues are similar across explore and exploit trials
for the structurally related mazes (i.e., those with the same
target location), the agent should be able to remember the
explore trials and navigate directly to the hidden target loca-
tion. On the other hand, if the context cues are dissimilar
across functionally related pairs of explore and exploit trials,
then the agent will not be able to exploit its memory based on
cue similarity alone. Without the right memory selection strat-
egy, episodic memory becomes only a source of noise that
must be ignored when taking actions during both explore and
exploit trials. This is further supported by an additional manip-
ulation we tested (see Supplementary Materials) in which we
added a gating mechanism that suppresses memory retrieval
when the available memories are irrelevant.

Our results demonstrate that the agent required signifi-
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cantly fewer steps to reach the hidden platform during exploit
trials when the context cue matched that of the explore tri-
als compared to when it differed (Fig. 3). This provides ev-
idence that retrieving relevant episodic memories and inte-
grating them with current state information (stored in work-
ing memory) can substantially improve exploitation efficiency.
Interestingly, we found that agents without episodic memory
or with dissimilar context cues performed better during explo-
ration (Fig. 3). This suggests that learning to use episodic
memory for some tasks can sometimes interfere with learn-
ing in novel environments, as the agent may inappropriately
weight irrelevant memories when no truly relevant experi-
ences exist (as during exploration episodes, the maze is pre-
sented is always a novel one). While counterintuitive, this find-
ing aligns with the well-documented phenomenon of proactive
interference (Jonides & Nee, 2006), where existing memories
can impair the acquisition of new associations to similar stim-
uli. This highlights an important trade-off between the benefits
of episodic memory for exploitation and its potential costs dur-
ing learning of novel information.

Experiment 2: PFC Top-Down Modulates
Hippocampal Episodic Memory for Structure
Learning

Figure 4: Experiment 2 results. The agent with PFC top-down
modulation over hippocampal episodic memory significantly
outperformed the sensory-driven bottom-up memory retrieval
condition and the random memory condition during exploit.
NOTE: Shaded areas show SEM across runs.

The results from Experiment 1 show that retrieving episodic
memories is beneficial for decision making in environments
that share the same context cues. However, in many real-

world scenarios, the current situation may look dramatically
different from past experiences, even though they are inher-
ently related in an abstract way. For example, students often
encounter math puzzles in school that are structurally similar
to those they have solved before, but appears seemingly dif-
ferent on the surface. Students are known to have a difficult
time transferring their knowledge to seemingly unrelated prob-
lems. This is commonly referred to as a phenomenon called
“far transfer” (Barnett & Ceci, 2002), and is known to be more
successful whenever the agent deeply grasps the underlying
problem structure (Duncker & Lees, 1945; Gick & Holyoak,
1980, 1983). Moreover, neuroimaging studies show that indi-
vidual differences in connectivity between HPC and PFC are
correlated with far transfer (Gerraty et al., 2014). Here, we
propose that PFC top-down modulates hippocampal activities
during encoding and retrieval of episodic memories to enable
learning of structures that are independent of the sensory in-
put.

To test this hypothesis, we took the task from the “dissimilar
context” condition in Experiment 1 and used it as a testbed
for learning arbitrary structural associations between events.
In this variant of the base environment (see Asymmetrical En-
vironment), the context cue for a maze during explore trials
is a transformed version of the context cue during exploit tri-
als. Note that we used a fixed transformation matrix across
all mazes for simplicity in the current simulations, but theo-
retically it could be replaced with any complicated structures
that need to be learned. We then took the base agent that
retrieves the memory (value) that corresponds to the most
similar query and key, and added a PFC module on top of
the query and key generation process (Fig. 2). This added
modulation allows extra flexibility in the expressiveness of the
hippocampal encoding and retrieval processes, enabling the
agent to recall memories given query-key matches between
the current situation and all memory keys, as long as their
is a learnable relationship between them. Results suggest
that adding PFC top-down control over hippocampal episodic
memory significantly improves the agent’s ability to exploit an
environment it has never seen before, by recalling memories
that are structurally related to the current situation (Fig. 4).
This PFC top-down modulation also outperforms a sensory-
driven bottom-up memory retrieval condition, where the agent
retrieves memories that share similar sensory inputs (includ-
ing the context cue and its surroundings), and a random mem-
ory condition, where the agent retrieves a random memory
from its values in the hippocampus.

Experiment 3: PFC Learns Goal-Dependent
Structures for Flexible Episodic Control
The results from Experiment 2 show that PFC can learn to
top-down modulate hippocampal episodic memory during en-
coding and retrieval to learn an arbitrary structure between
events. Building on this finding, we further extended the task
to include multiple structures that need to be learned and flex-
ibly represented by PFC modulatory activities for guiding truly
goal-directed behaviors. Numerous experiments have demon-
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Figure 5: Experiment 3 results. Blocked training outperformed
interleaved training in explore and exploit phases. Quickly
learning episodic memory and constantly recalling it could
hurt performance in exploration, as indicated by an initial quick
drop in excess steps followed by eventual increases at the end
of the run. NOTE: Shaded areas show SEM across runs.

strated the importance of PFC in decision making tasks that
show active maintenance of goal representations for general-
ization (Miller & Cohen, 2001; Seger & Peterson, 2013; Baram
et al., 2021; Samborska et al., 2022). On the other hand, the
hippocampus often represents even-specific information (Marr
et al., 1991; O’Reilly & McClelland, 1994; Yassa & Stark, 2011;
Reagh & Ranganath, 2023) despite showing some goal repre-
sentations (Crivelli-Decker et al., 2023; Brown et al., 2016). In
this experiment, we ask whether the PFC can learn to flexibly
switch between different query and key strategies to modu-
late hippocampal episodic memory depending on the current
goal of the task, under what circumstances such capability
can be learned, and what representations are formed in PFC
and HPC when facing events that differ in goals.

We took the task from Experiment 2 and added a binary bit
to represent the current goal in the observation space. The
goal bit is randomly selected for each trial and is associated
with two different hidden target locations that give rewards
once the agent reaches them. Note that an agent with goal
1 cannot get a reward at the hidden target location associated
with goal 2, which forces the agent to learn both structural
relationships between explore and exploit trials to maximally
utilize its episodic memory.

Our initial experiment doubled training time and interleaved
explore trials for goals 1 and 2. However, the agent only
partially learned to use episodic memory by the end of train-

ing, showing worse performance compared to Experiment 2
(Fig. 5). Representation analysis revealed that the agent suc-
cessfully learned query-key paring only for goal 1, while pair-
ings for goal 2 remained nearly random (Fig. 6). Inspired
by human experiments and computational models on contin-
ual learning (Flesch et al., 2018; Park et al., 2020; Russin et
al., 2022; Dekker et al., 2022), we improved learning of both
strategies by introducing blocked learning of explore trials for
goals 1 and 2. While this approach seems counterintuitive,
as neural networks typically train better with interleaved learn-
ing to prevent catastrophic forgetting (McClelland et al., 1995),
constantly switching between different tasks can create switch
costs (Russin et al., 2022; Flesch et al., 2022) that result
in noisy hidden state representations. In our case, working
memory benefits from accumulating information about a par-
ticular goal in the maze across multiple trials in an episode,
and storing such clean hidden representations in episodic
memory better captures the agent’s knowledge about navigat-
ing with that specific goal.

When trained with a blocked design during explore
episodes, we observed learning curves that eventually
matched the performance level of Experiment 2 (single-goal
learning). Interestingly, we also observed a similar effect
of episodic memory eventually hurting performance in explo-
ration, as indicated by initial quick drop of the excess steps
(due to cleaner working memory content) and eventual in-
creases at the end of run (due to interference from episodic
memories). Further analyses of the agent’s learned represen-
tations showed successful query-key pairings for both goals,
with queries and keys belonging to the same goal sharing sim-
ilar representations. In other words, PFC learned to amplify
the goal signal in the sensory input to better modulate hip-
pocampal episodic memory when facing different goals in the
same environment. Additionally, hippocampal representations
showed event-specific patterns, where each event in a maze
had a relatively unique representation, although some similar-
ity remained between mazes that had different goals but were
structurally related to the same context (Fig. 6). These repre-
sentation patterns suggest that PFC-HPC interactions support
goal-directed decision making in novel situations, with PFC
exerting top-down control over HPC episodic memory to opti-
mally serve the current task goal.

Discussion

We introduced a computational model that integrates work-
ing memory with episodic memory via a PFC-HPC interaction
framework. Our three experiments shed light on how the brain
might achieve generalization, including far transfer, and sug-
gest how these observations could contribute to improvement
of future AI models: 1) When the current context is similar
to past experiences, near transfer can be achieved by recall-
ing the most similar memories in any feature space; 2) When
current context is dissimilar to past experiences (or out-of-
distribution), generalization is difficult and requires modeling
the underlying structure to relate the current situation to rel-
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Figure 6: Representational analyses of blocked and interleaved agents in Experiment 3. Blocked training significantly improved
the agent’s ability to learn two underlying transformation matrices for two different goals, as indicated by better matching between
queries and keys for the same events and higher within-goal similarities but lower between-goal similarities in both queries
and keys. When these two structures were successfully learned, PFC amplified the goal bit in the sensory input to better
guide HPC episodic control, essentially encrypting and deciphering HPC episodic memories in a PFC-specific subspace. The
hippocampus represented event-specific information, with each event having a relatively unique representation, although some
similarity remained between mazes that had different goals but were structurally related to the same context.

evant memories. The PFC can learn many such structures
depending on the current goal of the task; 3) When there are
multiple structures to be learned, blocked training might pro-
vide advantages in learning each structure. This is evident in
humans but rarely done in practical AI training due to catas-
trophic interference. We argue that learning and generaliza-
tion may benefit from avoiding competing goal signals in work-
ing memory.

Generalization has been at the center of cognitive psy-
chology and neuroscience research (Woodworth & Thorndike,
1901; Watson & Rayner, 1920; Tolman, 1948). Out of be-
haviors observed in generalization, far transfer is one of the
most rare ones, resulting in debate about whether it truly ex-
ists (Barnett & Ceci, 2002). Despite efforts finding neural
correlates of far transfer in the brain (Urbanski et al., 2016;
Hobeika et al., 2016; Whitaker et al., 2018), it is yet to be de-
scribed how the brain can computationally achieve far transfer.
In particular, how does it represent the relational structure or
rule (Taylor et al., 2021) that is shared between the current
task and past experiences? Recent progress in AI, especially
among Large Language Models (LLMs), provides an intrigu-
ingly elegant way to represent relationships between events
(or sequences of tokens) – that is, abstracting all the semantic
relationships between tokens into a high-dimensional space.
As a result, the more training data and model parameters we
have, the more statistical regularities can be picked up, result-
ing in somewhat emergent capabilities that can be transferred
to solve daily tasks. However, the question remains how to ef-
fectively inject new semantic knowledge or episodic memories
into such models, and how to form connections between them
and the existing knowledge in the abstract parameter space.

Our model offers a potential mechanism for PFC modula-
tion of hippocampal memory to support goal-directed deci-
sions in novel situations, building on prior work on PFC–HPC

interactions. Prior work has emphasized the importance of
top-down modulation from the PFC for context-sensitive re-
trieval (Chateau-Laurent & Alexandre, 2022), which shows
that contextual signals from PFC can improve memory re-
trieval in a hippocampus-inspired architecture. Similarly, our
model learns to control encoding and retrieval dynamically
based on task structure. The Neural Episodic Control (Pritzel
et al., 2017) laid groundwork for fast learning via key–value
memory but lacked goal-modulated control. We extend this
idea by showing how PFC modulation enables memory re-
trieval beyond surface similarity. More recently, the EGO
model (Giallanza et al., 2024) provided a complementary
computational account of episodic generalization, combining
memory with contextual control. Both EGO and our model em-
phasize that effective generalization—particularly in far trans-
fer scenarios—requires more than sensory matching; it de-
pends on learning structured, goal-sensitive mappings be-
tween past and present contexts. While EGO models this via a
latent control signal, we implement it through top-down query-
key modulation from the PFC to the HPC. Together, these
frameworks converge on a shared hypothesis: that structured
generalization emerges from dynamic, goal-dependent inter-
actions between hippocampus and prefrontal cortex. Promis-
ing future directions include incorporating replay-based con-
solidation mechanisms (Singh et al., 2022), adaptive storage
via event boundary detection (Lu et al., 2022), and more bi-
ologically grounded hippocampal modules featuring pattern
separation and completion (Zheng et al., 2022, 2024).

Our current simulations fall short in that the environment
setup is still relatively abstract and lacks the complexity of real-
world RL tasks as seen in robotics research. However, the
principles we observed should scale up to more complex tasks
requiring learning of more abstract relationships between cur-
rent situations and past experiences. For example, one could

8



replace the fixed transformation matrices in the current exper-
iments with arbitrarily complicated algorithms and study how
to best learn to perform “algorithmic reasoning” using neural
networks (Veličković & Blundell, 2021).

In summary, we show how PFC-HPC interactions enable
flexible generalization through structured memory retrieval,
with the PFC learning to modulate HPC episodic memory
based on abstract relationships between tasks. These in-
sights advance our understanding of how biological sys-
tems generalize to novel situations while suggesting new ap-
proaches for AI.
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Supplementary Materials

Gating

While our main experiments used soft attention over episodic
memory, which produces a non-zero weighted sum of val-
ues, we acknowledge this implementation may oversimplify
hippocampal retrieval. Sparse, context-sensitive retrieval that
depends on gating mechanisms (e.g., basal ganglia) is more
biologically plausible.

In follow-up experiments, we explored adding a learned
gating mechanism that mimics basal ganglia modulation over
episodic memory retrieval. Specifically, a small policy network
outputs a scalar gating value conditioned on the current PFC
state, which multiplies the retrieved episodic memory vector
before it is integrated via self-attention. This enables the agent
to suppress memory retrieval when query-key similarity is low
or memory retrieval is expected to be irrelevant or harmful
(e.g., during exploration in novel mazes). This gating mecha-
nism could potentially reduce performance interference in ex-
ploration and lead to more context-appropriate use of episodic
memory. We plan to incorporate this extension in future ver-
sions of the model.

EC - HPC - PFC and value representation

The architecture in Figure 2B draws inspiration from known
anatomical pathways between entorhinal cortex (EC), hip-
pocampus (HPC), and prefrontal cortex (PFC), but it also
makes simplifications to focus on the computational mecha-
nism of top-down episodic control.

In our model:

• EC represents bottom-up, sensory-driven retrieval mech-
anisms, where queries to memory are generated directly
from current input without task-modulated control.

• PFC generates top-down, goal-modulated queries and
keys, enabling selective retrieval of memories based on ab-
stract structure rather than surface features.

The value stored in memory corresponds to the hidden
state of the PFC’s reservoir network at the time of encoding.
This represents a compressed snapshot of the agent’s internal
belief and goal-relevant information at that moment. While this
simplification helps isolate the role of PFC in memory control,
we acknowledge that in biological systems, hippocampal val-
ues would likely also incorporate EC-derived sensory inputs
and broader cortical states.

Thus, our current implementation frames HPC as stor-
ing PFC working memory representations, with EC pathways
serving as a contrasting retrieval route. Future extensions
could explore more biologically grounded representations of
episodic content that combine both PFC and EC contributions.

Model and Brain Correspondence

In our model, the network connections do not strictly corre-
spond to anatomically defined pathways in the brain. Some

connections may represent combinations of multiple bio-
logical pathways, which could be unidirectional or bidirec-
tional—for example, the connections between the prefrontal
cortex (PFC), hippocampus (HPC), and entorhinal cortex
(EC). In addition, EC in the diagram is not directly imple-
mented in the model and is for demonstrating the idea that
EC is a relay station of sensory input into the HPC. Computa-
tionally, we treat the PFC as modulating both the query, which
prompts the HPC to retrieve relevant memories, and the key,
which serves as an index into the hippocampal memory store.

For simplicity, we represent the memory values as the
PFC’s internal hidden states, since these are directly relevant
to solving the task. However, this is not a hard constraint. The
model can be extended to store richer memory content that
includes activity from other regions if doing so proves useful
for more complex tasks or closer biological fidelity.

To further clarify our interpretation, Figure 7 illustrates the
roles of different brain regions that may correspond to mem-
ory encoding and retrieval in our model. During encoding, the
HPC stores key–value pairs, where the key acts as a neural
index and the value represents the memory content. Keys
can be formed either through bottom-up sensory pathways
(e.g., via EC) or through top-down modulation from PFC. Sim-
ilarly, during retrieval, a query is sent to the HPC to retrieve a
weighted combination of stored memory values, depending on
query–key similarity. This query can again originate bottom-
up (from EC) or be modulated by PFC in a top-down manner.
The final output is a soft retrieval—a weighted sum over val-
ues, allowing partial activation of multiple memories.

Hippocampus

Prefrontal 
Cortex (ℎ)

Entorhinal 
Cortex

Sensory Input 
(𝑥)

Encoding Retrieval

𝑓𝑘 𝑥

Key (𝑘)

Value (𝑣)

Key (𝑥)

Hippocampus

Prefrontal 
Cortex (ℎ)

Entorhinal 
Cortex

Sensory Input 
(𝑥)

𝑓𝑞 𝑥

Query (q)

Value (𝑣)

Query (𝑥)

Value (𝑣)Value (𝑣)

Figure 7: Diagram of encoding and retrieval. During encod-
ing, the hippocampus stores key–value pairs, where the key
serves as a neural index for accessing stored content. Keys
can be computed either bottom-up (from the entorhinal cor-
tex) or top-down (from the entorhinal cortex modulated by the
prefrontal cortex). During retrieval, a query is sent to the
hippocampus to retrieve a weighted combination of memory
values, based on the similarity between the query and each
stored key. As with encoding, queries can originate bottom-up
or be shaped by top-down signals. The final retrieved memory
is a softmax combination of values.
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