
Published as a conference paper at ICLR 2024

CONTINUOUS-MULTIPLE IMAGE OUTPAINTING IN ONE-
STEP VIA POSITIONAL QUERY AND A DIFFUSION-
BASED APPROACH

Shaofeng Zhang1, Jinfa Huang2, Qiang Zhou3, Zhibin Wang3, Fan Wang4, Jiebo Luo2, Junchi Yan1∗
1Department of CSE & MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
2University of Rochester, 3INF Tech Co., Ltd., 4Alibaba Group
{sherrylone, yanjunchi}@sjtu.edu.cn
{jhuang90@ur,jluo@cs}.rochester.edu
Code: https://github.com/Sherrylone/PQDiff

ABSTRACT

Image outpainting aims to generate the content of an input sub-image beyond its
original boundaries. It is an important task in content generation yet remains an
open problem for generative models. This paper pushes the technical frontier of
image outpainting in two directions that have not been resolved in literature: 1)
outpainting with arbitrary and continuous multiples (without restriction), and 2)
outpainting in a single step (even for large expansion multiples). Moreover, we
develop a method that does not depend on a pre-trained backbone network, which
is in contrast commonly required by the previous SOTA outpainting methods. The
arbitrary multiple outpainting is achieved by utilizing randomly cropped views
from the same image during training to capture arbitrary relative positional infor-
mation. Specifically, by feeding one view and positional embeddings as queries,
we can reconstruct another view. At inference, we generate images with arbitrary
expansion multiples by inputting an anchor image and its corresponding positional
embeddings. The one-step outpainting ability here is particularly noteworthy in
contrast to previous methods that need to be performed for N times to obtain
a final multiple which is N times of its basic and fixed multiple. We evaluate
the proposed approach (called PQDiff as we adopt a diffusion-based generator as
our embodiment, under our proposed Positional Query scheme) on public bench-
marks, demonstrating its superior performance over state-of-the-art approaches.
Specifically, PQDiff achieves state-of-the-art FID scores on the Scenery (21.512),
Building Facades (25.310), and WikiArts (36.212) datasets. Furthermore, under
the 2.25x, 5x and 11.7x outpainting settings, PQDiff only takes 40.6%, 20.3% and
10.2% of the time of the benchmark state-of-the-art (SOTA) method.

1 INTRODUCTION

Image outpainting (Lin et al., 2021a; Cheng et al., 2022; Wang et al., 2021), a.k.a. image extrapola-
tion (Wang et al., 2022; Kim et al., 2021; Zhang et al., 2020), is to generate new content beyond the
original boundaries of a given sub-image. It is technically an essential problem for generative models
and remains relatively open (compared with other condition-based generation settings e.g. image
inpainting (Bertalmio et al., 2000), style transfer (Luan et al., 2017) etc.), which meanwhile can find
wide applications in automatic creative image, virtual reality. Usually, an ideal outpainter is expected
to achieve the following basic functions (Yao et al., 2022): 1) determining where the missing regions
should be located relative to the output’s spatial locations for both nearby and faraway features; 2)
guaranteeing that the extrapolated image has a consistent structural layout with the given sub-image;
and 3) the borders between extrapolated regions and original input images should be visually smooth.

∗Junchi Yan is the correspondence author. The SJTU authors are partly supported by NSFC (62222607) and
Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102) and SJTU Trans-med Awards
Research (STAR) 20210106.

1

https://github.com/Sherrylone/PQDiff


Published as a conference paper at ICLR 2024

1.0x 3.6x 9.7x 21.8x 99.0x

PQDiff

OriginN x
(a) (b)

Model

Origin

…

N Steps

One Step

Figure 1: PQDiff can outpaint images with arbitrary and continuous multiples in one step (b). In
contrast, previous methods (a) outpaint images with discrete multiples in multiple steps. Note that Nx
here means an N -times larger image needs to be generated, while 2.25x, 5x, and 11.7x are adopted in
the experiment following the setting of the previous work (Yao et al., 2022) for fair comparisons.

Table 1: Methodology comparisons of the proposed PQDiff with recent advanced image outpainting
methods. Pixel loss means pixel-wise l1 or l2 loss on the generated images. Feature loss means l2
loss on the feature map. No pretrain means the backbone is randomly initialized.

Method Generation type Objectives Encoder Continuous One-step No pretrain

NSIPO (Yang et al., 2019) GAN-based Pixel+GAN loss ResNet-50 % % "

IOH (Van Hoorick, 2019) GAN-based Pixel+GAN loss Conv layers % % "

Uformer (Gao et al., 2023) GAN-based Pixel+GAN+Feature Loss Swin Trans % % %

QueryOTR (Gao et al., 2023) GAN+MAE Pixel+GAN Loss ViT % % %

Vanilla Diff (Ho et al., 2020) Diffusion-based Pixel Loss ViT % % "

PQDiff Diffusion-based Pixel Loss ViT " " "

These requirements have been mainly addressed by existing outpainting methods which in general fall
into two categories: i) GAN-based methods (Van Hoorick, 2019; Yang et al., 2019), whereby random
noise and the initial input sub-images (as conditions) are used to generate the fake surrounding
image content, and the discriminator is to classify the generated images as fake or real; ii) MAE-
based methods (Yao et al., 2022) use MAE (Masked Autoencoder) (He et al., 2022) as the main
architecture. They model the extrapolation as the MIM (Masked Image Modeling) problem (Xie et al.,
2022) by replacing the extrapolated regions around the input sub-images with masked tokens and
predicting the pixels of the masked patches. Specifically, these MAE-based methods also employ a
discriminator to enhance the smoothness of the borders between extrapolated regions and the original
sub-images. The above two kinds of methods mainly suffer from two applicability limitations. First,
as shown in Fig. 1(a), they require running multiple times to outpaints the image (e.g., the SOTA
method in (Yao et al., 2022) outpaints 11.7x images by passing through the model three times (x
→ forward → 2.25x→ forward → 5x→ forward → 11.7x), which is inefficient especially
when the required expansion multiple is large (e.g. 99x); Second, the discriminator-based architecture
can slow down the convergence speed (Goodfellow et al., 2014; Adler & Lunz, 2018), and require a
pre-trained encoder. In other words, the computational cost of training their model in fact includes
the pretraining cost, which is usually very high (e.g. up to 1,000 or longer epochs on ImageNet).

In this paper, we emphasize and tackle two less-studied challenges, especially the flexibility, and
efficiency for a practical tool: the model is expected to i) outpaint images in arbitrary and continuous
multiples (i.e. by N ∈ R times), where Nx multiples mean the contents of the extrapolated images
are N > 1 times larger than the input sub-images, especially without resorting to retrain a model for
every different N ; and ii) outpaint with any multiple N in one step1.

Recently diffusion models (Dhariwal & Nichol, 2021; Pokle et al., 2022; Jin et al., 2023b;c; Augustin
et al., 2022) have shown success for multi-modal (Jin et al., 2023a; 2022), segmentation (Tan
et al., 2022; Wu et al., 2021), backbone designing (Wu et al., 2022; Dai et al., 2022), and image
generation (Saharia et al., 2022) with a progressive denoising procedure. Yet such an iterative
step-by-step (also called timesteps) in the sampling (i.e. testing) stage can be too tedious for
outpainting, especially considering image outpainting itself also still requires its own iterations

1Note that the step here refers to how many iterations are needed to be passed through the model instead of
timesteps in the diffusion models.

2



Published as a conference paper at ICLR 2024

(e.g. QueryOTR (Yao et al., 2022), IOH (Van Hoorick, 2019)). To achieve one-step diffusion-based
generation, we propose to use relative positional queries and input sub-images as conditions. Since the
relative positional embedding can represent any positional relationship between the input sub-image
and the extrapolated image, we can outpaint the sub-image in controllable and continuous multiples
in one step (Fig. 1(b)). We make methodology comparisons in Table 1 to better position our method.
The main contributions include:

i) Continuous multiples for image outpainting. We propose PQDiff, which learns the positional
relationships and pixel information at the same time. Specifically, in the training stage, PQDiff first
randomly crops the given images twice to generate two views. Then, PQDiff learns one cropped view
from the other cropped view and the pre-calculated relative positional embeddings (RPE) of the two
views. Since the RPE can represent continuous relationships between two views, PQDiff can outpaint
the images in continuous multiples. To our best knowledge, we are the first to outpaint images in
continuous multiples (e.g., 1x, 2.25x, 3.6x, 21.8x), whereas the SOTA QueryOTR (Yao et al., 2022)
can only outpaint images in discrete multiples.

ii) One-step image outpainting. We propose a position-aware cross-attention mechanism between
relative positional embedding and input sub-image patches, which helps PQDiff to outpaint images
in only one step for any multiple settings. As far as we know, PQDiff is the first to achieve this
capability, whereas (Yao et al., 2022; Yang et al., 2019) can only outpaint images step-by-step, which
severely limits their sampling, i.e. generation efficiency. Under the 2.25x, 5x and 11.7x outpainting
settings, PQDiff only takes 40.6%, 20.3%, and 10.2% of the time of QueryOTR (Yao et al., 2022).

iii) New SOTA performance. Experimental results on outpainting benchmarks (Gao et al., 2023;
Yang et al., 2019) show that PQDiff significantly surpasses QueryOTR (Yao et al., 2022) and achieves
new SOTA 21.512, 25.310 and 36.212 FID scores with the challenging 11.7x multiple setting on the
Scenery, Building Facades, and WikiArts datasets, respectively. Moverover, PQDiff achieves new
SOTA results in most settings (2.25x, 5x, and 11.7x).

2 BACKGROUND AND RELATED WORK

Image Outpainting. It aims to generate the surrounding regions from the visual content, which can be
considered as an image-conditioned generation task (Odena et al., 2017; Kang et al., 2021; Guo et al.,
2020; Arjovsky et al., 2017; Gulrajani et al., 2017). The work (Sabini & Rusak, 2018) brings the image
outpainting task to attention with a deep neural network inspired by image inpainting (Bertalmio
et al., 2000). It focuses on enhancing the quality of generated images smoothly by using GANs
and post-processing to perform horizontal outpainting. The work (Van Hoorick, 2019) designs a
CNN-based encoder-to-decoder framework by using GAN for image outpainting. In (Wang et al.,
2019), a Semantic Regeneration Network is proposed to directly learn the semantic features from the
conditional sub-image. While a 3-stage model is developed in (Lin et al., 2021b) with an edge-guided
generative network to produce semantically consistent output. Although these methods avoid bias in
the general padding and up-sampling pattern, they still suffer from blunt structures and abrupt color
issues, which tend to ignore spatial and semantic consistency. To tackle these issues, a Recurrent
Content Transfer (RCT) block is devised (Yang et al., 2019) for temporal content prediction with
Long Short Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997). To enrich the
context, (Lu et al., 2021) additionally switches the outer area of images into its inner area.

The SOTA Outpainting Method QueryOTR (Yao et al., 2022). We particularly discuss Query-
OTR for its so-far best performance as well as its adoption of ViT module as also will be used in
our approach. QueryOTR (Yao et al., 2022) proposes to adopt the ViT-based encoder and MIM-
based (Zhang et al., 2023c) architecture for outpainting. Specifically, given an input sub-image
x ∈ RH×W×3, QueryOTR first partitions x into regular non-overlapping patches with the patch size
P × P to obtain the patch tokens {x1

p,x
2
p, · · · ,xL

p }, where P is usually set as 16 and L = H×W
P 2 .

The goal of QueryOTR is to predict the extra sequence {xL+1
p ,xL+2

p , · · · ,xL+R
p } representing the

extrapolated regions. In line with MAE (He et al., 2022), the sin-cos positional embedding of input
patches is pre-defined. Thus, the positional embedding of the extrapolated patches can be obtained.
The training of QueryOTR also follows MAE (He et al., 2022), where the visible patches sequence
{x1

p,x
2
p, · · · ,xL

p } is fed to the encoder. Then, the fixed positional embedding of the masked tokens
sequences {xL+1

p ,xL+2
p , · · · ,xL+R

p } is used as input to the decoder to predict the extrapolated

3



Published as a conference paper at ICLR 2024

patches. Finally, QueryOTR copies the input sub-image to the generated image in the corresponding
position, followed by the Patch Smoothing Module (PSM) to smooth the border.

Diffusion Models. These models (e.g. the seminal work (Ho et al., 2020)) gradually inject noise
into data and then reverse this process to generate data from noise. The noise-injection process
is also called the forward process. Given the original data x0 (clean), then, the forward process
can be formalized as a Markov chain: q(x1:T |x0) =

∏T
t=1 q(xt|xt−1) where q is the forward

process and q(xt|xt−1) = N (xt|
√
αtxt−1, βtI), and α and β represent the noise schedule and

α + β = 1. N (0, 1) means the standard Gaussion noise. To reverse this process, a Gaussion
model p(xt−1|xt) = N (xt−1|µt(xt), σ

2
t I) is adopted to approximate the ground truth reverse

transition qxt−1|xt
. Specifically, the optimal mean value of xt can be written as (Bao et al., 2022):

µ∗
t (xt) =

1√
αt

(
xt − βt√

1−α
E[ϵ|xt]

)
where αt =

∏t
i=1 αi, and ϵ is the standard Gaussian noises

injected to xt. Thus, the learning is equivalent to a noise prediction task. Formally, a noise prediction
network ϵθ(xt, t) is used to learn E[ϵ|xt] by minimizing the noise prediction objective. For l2 loss,
we can formulate the objective of noise prediction task as minθ Et,x0,ϵ∥ϵ− ϵθ(xt, t)∥22, where t is
uniform between 1 and T . On the basis of the plain diffusion models, LDM (Rombach et al., 2022)
proposes to add noise and denoise in the latent space, which greatly improves the training efficiency.
Followed by LDM, ViTDiff (Bao et al., 2023) proposes to replace CNN-base U-net (Ronneberger
et al., 2015) with ViTs (Dosovitskiy et al., 2021) to estimate the backward process in diffusion models.

3 THE PROPOSED POSITIONAL-QUERY BASED DIFFUSION MODEL

We provide a concrete embodiment based on the diffusion model and we term our approach as PQDiff,
whereby the continuous multiples and one-step generation are achieved. In fact, our PQ framework
with these two advantages can also incorporate other generative models e.g. GANs, and the empirical
performance comparison given in our ablation studies. We also show the significant improvements of
our approach compared with a vanilla diffusion model directly for outpainting.

Approach Overview. Our approach mainly consists of key modules: relative positional embedding,
diffusion process, cross attention in the position-aware transformer model, and sampling pipeline.

Relative Positional Embedding. Given the image x ∈ RH×W×3from the training set, we first
randomly crop the image twice and resize the cropped image to generate two views xa ∈ Rh1×w1×3

and xb ∈ Rh2×w2×3, where xa and xb are denoted as the anchor and target view which are not
necessarily the same size. We also denote (w, h) as the predefined resolution to be generated. Then,
we resize both the anchor view and target view to (w, h). As illustrated in Fig. 2, we can first obtain
the prior information of positional relationship (m,n) between the anchor view xa and target view
xb. Then, we design the relative positional embedding to represent the position relation:

Em,n =
[
sin
( m

e2∗1/d

)
, cos

( m

e2∗2/d

)
, · · · , sin

(m
e

)
, sin

( n

e2∗1/d

)
, cos

( n

e2∗2/d

)
, · · · , sin

(n
e

)]
,

(1)
where e = 10, 000 is the pre-defined parameter, as also commonly used in (He et al., 2022; Zhang
et al., 2023a;b). (m,n) means the position of top-left patch position (see Fig. 2). Note that we
randomly crop two views, and as a result, the positional relationship of the two views might be either
containing, overlapping, or non-overlapping, and our model can jointly learn these three relationships.

Forward and Backward of Conditioned Diffusion. Given the anchor view xa ∈ Rh×w×3, target
view xb ∈ Rh×w×3 and the relative positional embedding E ∈ RL×D (L and D are the patches’
length and the predefined dimension), we first encode the two views by VQVAE (Van Den Oord et al.,
2017) (frozen) to compress the images to latent space, resulting in za ∈ Rh′×w′×c and zb ∈ Rh′×w′×c

(usually, h′ < h, w′ < w). The compression aims to improve the training efficiency and convergence
speed of the diffusion models (Bao et al., 2023; Rombach et al., 2022). After obtaining the two
latent views, we patchify the two views and obtain the anchor sequence {z1a, z2a, · · · , zLa } and target
sequence {z1b , z2b , · · · , zLb } (typically, we set L = h×w

p2 ). Then, the forward process of diffusion on
the target sequence can be formulated as:

q(zbt |zbt−1) = N (zbt−1 |
√
αtzbt−1 , βtI), and q(zbt |zb0) = N (zbt |

√
αt, (1− αt)I), (2)

where zb0 is the original target sequence {z1b , z2b , · · · , zLb } and αt =
∏t

t=1 αi. For the backward
process, suppose we have a neural network gθ (will be described later), taking the noisy target zbt ,

4



Published as a conference paper at ICLR 2024

Random Crop

Add noise

Pred

𝐿!"#$%%

Anchor

Target

Input image x

𝑇 steps

Training

Center Sampling

Relative Positional 
Embedding

Position-
Aware 

Transformer
Model

Input image x

Relative Positional 
Embedding

Position-
Aware 

Transformer
Model

1x

𝑇 iterations

VQVAE
Encoder

VQVAE
Encoder

VQVAE
Decoder

VQVAE
Encoder

𝒛!&

𝒛"

Arbitrary 
Sampling

Mode 

Mode 

…
…

Mode Center Mode 
Target AnchorFrozen Tuned

Pred

Gaussian noise

Outpainted image y

y'

Figure 2: Framework of PQDiff. RPE in Eq. 1 means relative positional embeddings (we give the
pseudo-code to calculate the RPE in Appendix A). For training, we randomly crop the image twice
with different random crop ratios to obtain two views. Then, we compute the relative positional
embeddings of the anchor view (red box) and the target view (blue box). For sampling, i.e. testing or
generation, we first compute the target view (blue box) based on the anchor view (red box) to form a
mode that means a positional relation. With different types of modes, we can perform arbitrary and
controllable image outpainting. Then, we feed the RPE, random Gaussian noise, and input sub-image
to perform outpainting. In theory, our PQDiff can outpaint (predict) the region at any location, due to
the randomness of cropping in the training stage. We illustrate how to calculate the relative position
in Appendix C. Mode means the positional relations between the anchor view and the target view.

clean anchor sequence za and relative positional embeddings E as input. Then, the network aims to
predict the added noise ϵt on the target sequence xbt . Then, the objective of PQDiff can be written as:

LPQDiff = ∥ϵ̃t − ϵt∥pp, and ϵ̃t = gθ(xa,xbt ,E, t). (3)
We set p = 2 in line with the previous generative methods (Rombach et al., 2022; Bao et al., 2023).

The Position-Aware Transformer Model gθ. Here, we describe the architecture of the neural
network used in the diffusion model in detail. Consider we have the noisy target zbt , clean anchor
sequence za, relative positional embeddings E and the timestep t, we first concatenate the noisy
target and the anchor sequence at the channel dimension, followed by a linear layer to map to original
dimension to reduce the computational cost, and we denote the mapped embedding as zg ∈ L×D,
where D is the predefined hidden dimension in transformer network. Then, we feed the zg into the
transformer encoder, which is composed of several transformer blocks (Vaswani et al., 2017). After
the transformer encoder, the position-aware cross-attention mechanism is proposed to learn positional
relationship, which can be formulated as:

zd = Attn
(
QE,Kzg

,Vzg

)
= Softmax

(
QEK

⊤
zg√

D

)
Vzg

, (4)

where QE = EWq, Kzg = zgWk, Vzg = zgWv, and Wq, Wk, Wv are learnable parameters.
After capturing the information of the target position zd, we directly feed the zd into the transformer
decoder composed of several transformer blocks, followed by a convolutional layer to predict noise.

Sampling Pipeline. After training the network well, we can outpaint the image in any controlled
multiples, since the designed relative positional encoding can represent any positional relationship
between two images. In the sampling stage, we can simply take the input sub-image as the anchor
view, and input any position we want. Then, we calculate the positional encoding of the given position
and feed the RPE to the network. Then, the network can predict the noise as mentioned in Eq. 3.
Finally, through Eq. 2, we can simply compute the fake z̃b0 , and predict zbt−1

step-by-step by:

q(zbt−1
|zbt , z̃b0) = N (zbt−1

; µ̃t(zbt , z̃b0), β̃tI),

µ̃t(zbt , z̃b0) =

√
αt−1βt

1− αt
z̃b0 +

√
α(1− αt−1)

1− αt
zbt , and β̃t =

1− αt−1

1− αt
βt.

(5)

5



Published as a conference paper at ICLR 2024

GT QueryOTR PQDiff (Ours)

1x
2x

3x

GT QueryOTR PQDiff (Ours)

Inconsistent Noise Speckle Noise Beneficial Phenomenon

Figure 3: Comparison on the 2.25x, 5x, and 11.7x settings with the SOTA method QueryOTR. The
images generated by QueryOTR come from the pre-trained model in their official repository. We
highlight two kinds of noises from QueryOTR. The red box indicates that the boundary of the input
sub-image is inconsistent with the generated region, and a yellow box contains noise and spots. We
also find some interesting phenomena (highlighted in the green ovals of generated images in the
right figure), where PQDiff can notice the generated “clouds”, and reflect the “clouds” in “water”.
Moreover, the shape of the clouds in the sky and the reflections in the water are also consistent. In
contrast, the previous method only generates “clouds”, but ignores the reflection in the water.

After several iterations, when t = 0, we can obtain the extrapolated images. The training and
sampling algorithms are given in Alg. 1 and Alg. 2 in Appendix A, respectively.

Discussion. As DDPM (Ho et al., 2020) requires step-by-step sampling, DDIM (Song et al., 2021a)
is proposed to use ODE (Song et al., 2021b) equation for faster sampling. Our PQDiff can also use
the DDIM for faster sampling. Specifically, through the Euler method and probability flow ODE
proposed in (Song et al., 2021b), we can obtain zbt−∆t by:

zbt−∆t
=
√
αt−∆t ·

(
zbt
αt

+
1

2

(
1− αt−∆t

αt−∆t
− 1− αt

αt

)
·
√

αt

1− αt
· gθ(zbt)

)
. (6)

Then, the one-timestep sampling in each iteration and be replaced with ∆t timesteps in each iteration.

4 EXPERIMENTS

4.1 EXPERIMENTAL RESULTS

Quantitative Results. Table 2 shows that PQDiff with a copy operation outperforms in all metrics
on 2.25x, 5x, and 11.7x experiments. In particular, with a larger outpainting multiple, PQDiff
can obtain better FID and IS scores. For 11.7x outpainting, PQDiff surpasses the previous SOTA
QueryOTR (Yao et al., 2022) 16.460, 25.310, and 36.216 FID scores on Scenery, Building and
WikiArt datasets, respectively. We also find an interesting phenomenon that, on WikiArt, PQDiff can
surpass PQDiff + Copy on 5x and 11.7x experiments. In other words, the generated images without
copy could be more realistic than the ones with the centroid copy operation. This is perhaps because
the boundary region of the input sub-image is slightly inconsistent with the generated image.

Qualitative Results. Examples of visual results are shown in Fig. 3 (the “copy” operation is added on
all methods for better comparisons). PQDiff effectively outpaints the images by querying the global
semantic-similar image patches. As seen from the 2.25x outpainting results, PQDiff could generate
more realistic images with vivid details and enrich the contents of the generated regions. In addition,
although QueryOTR (Yao et al., 2022) adds the smoothing module to handle the inconsistency of
the boundary region, there are still a few noisy spots as highlighted in red boxes. For 5x and 11.7x
results, we can clearly see the images generated from the QueryOTR are much vaguer than those
generated by PQDiff. Moreover, PQDiff can handle details well. For example, the “clouds’ reflection”

6



Published as a conference paper at ICLR 2024

Ori

Gen

Mode 1 Mode 2 Mode 3 Mode 4

Figure 4: Example images generated by PQDiff via random relative positional embedding. The
original image (Ori) as input is mapped to the corresponding location in the generated image (Gen).
Note that the generated images do not explicitly undergo any “copy” operation, but still reserve the
input pixels. Moreover, PQDiff learns the scales of input images according to the given mode setting.

Table 2: Results at different multiples. 2.25x, 5x, and 11.7x mean input sizes are 128x128, 86x86,
and 56x56, respectively. After feeding to the network gθ, all input sub-images are first resized to
192x192. “+ Copy” operation means after the network yields the extrapolated images, the model
copies the input sub-images to the corresponding center region in the extrapolated images. The best
results and second best results are indicated by boldface and underline, respectively.

Multiple Methods Type Encoder Scenery Building Facades WikiArt
FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑

2.25x

SRN (Wang et al., 2019) GAN-based VGG (Simonyan & Zisserman, 2014) 47.781 2.981 38.644 3.862 76.749 3.629
NSIPO (Yang et al., 2019) GAN-based ResNet (He et al., 2016) 25.977 3.059 30.465 4.153 22.242 5.600
IOH (Van Hoorick, 2019) GAN-based Conv layers 32.107 2.886 49.481 3.924 40.184 4.835
Uformer (Gao et al., 2023) GAN-based Swin Transformer (Liu et al., 2021) 20.575 3.249 30.542 4.189 15.904 6.567
QueryOTR (Yao et al., 2022) + Copy GAN+MAE ViT (Dosovitskiy et al., 2021) 20.366 3.955 22.378 4.978 14.955 7.896
PQDiff (Ours) Diffusion-based ViT (Dosovitskiy et al., 2021) 29.446 3.849 28.855 4.879 10.454 7.374
PQDiff + Copy (Ours) Diffusion-based ViT (Dosovitskiy et al., 2021) 20.100 3.981 19.133 5.350 7.968 8.605

5x

SRN (Wang et al., 2019) GAN-based VGG (Simonyan & Zisserman, 2014) 83.772 2.349 74.304 3.651 137.997 3.039
NSIPO (Yang et al., 2019) GAN-based ResNet (He et al., 2016) 45.989 2.606 58.341 3.669 51.668 4.591
IOH (Van Hoorick, 2019) GAN-based Conv layers 44.742 2.655 76.476 3.456 75.070 4.289
Uformer (Gao et al., 2023) GAN-based Swin Transformer (Liu et al., 2021) 39.801 2.920 63.915 3.798 41.107 5.900
QueryOTR (Yao et al., 2022) + Copy GAN+MAE ViT (Dosovitskiy et al., 2021) 39.237 3.431 41.273 4.547 43.757 6.341
PQDiff (Ours) Diffusion-based ViT (Dosovitskiy et al., 2021) 34.492 3.547 34.799 4.433 15.297 6.971
PQDiff + Copy (Ours) Diffusion-based ViT (Dosovitskiy et al., 2021) 28.668 3.712 29.396 4.763 15.772 7.876

11.7x

SRN (Wang et al., 2019) GAN-based VGG (Simonyan & Zisserman, 2014) 115.193 2.087 110.036 2.938 181.533 2.504
NSIPO (Yang et al., 2019) GAN-based ResNet (He et al., 2016) 64.457 2.405 81.301 3.431 75.785 4.225
IOH (Van Hoorick, 2019) GAN-based Conv layers 58.629 2.432 95.068 2.790 108.328 3.728
Uformer (Gao et al., 2023) GAN-based Swin Transformer (Liu et al., 2021) 60.497 2.638 93.888 3.388 72.923 5.904
QueryOTR (Yao et al., 2022) + Copy GAN+MAE ViT (Dosovitskiy et al., 2021) 60.977 3.114 64.926 4.612 69.951 5.683
PQDiff (Ours) Diffusion-based ViT (Dosovitskiy et al., 2021) 44.517 3.269 43.971 4.620 33.735 6.957
PQDiff + Copy (Ours) Diffusion-based ViT (Dosovitskiy et al., 2021) 39.465 3.574 39.616 4.754 36.326 7.724

Table 3: Comparison of sampling time, FID, and inception scores with 2.25x, 5x, 11.7x settings on
Scenery dataset. The sampling time is the wall-clock time of generating 64 images on a single GPU.

Method 2.25x 5x 11.7x
Time (Sec.) ↓ FID ↓ IS ↑ Time (Sec.) ↓ FID ↓ IS ↑ Time (Sec.) ↓ FID ↓ IS ↑

QueryOTR (Yao et al., 2022) 23.728 20.366 3.955 47.456 39.237 3.431 71.184 60.977 3.114
PQDiff (20 timesteps) 9.638 20.593 4.026 9.638 28.138 3.707 9.638 42.348 3.737

in the “water” is consistent with the generated “clouds” in the sky, as highlighted in the green ovals.
We also provide more qualitative comparisons and generated images in Appendix E.

Sampling (i.e. Generation) Speed. We also compare the sampling speed of PQDiff with different
timesteps. Specifically, we first train PQDiff with 80,000 iterations. Then, for the sampling stage, we
evaluate the pre-trained PQDiff with different timesteps. Table 3 reports the wall-clock time spent on
generating 64 images on 8 V100 GPUs. Since PQDiff can outpaint images with any multiples in one
step, the cases for 2.25x, 5x, and 11.7x spend almost the same time. In contrast, previous methods
will take much more time under the 5x and 11.7x settings than in 2.25x. It is worth noting that, under
the 2.25x setting, the inception score of PQDiff with 200 timesteps (4.111) is even higher than the
ground truth (4.091) (refer to Appendix E).

4.2 ABLATION STUDIES

Outpainting in an arbitrary position. Previous outpainting methods mainly plot the same multiples
around the top, down, left, and right regions, and they can simply find where the input sub-image
should locate in the generated image. Thus, the “copy” operation can be simply finished. However,
for outpainting in random positions, it is difficult to find the corresponding locations, since the

7



Published as a conference paper at ICLR 2024

Table 4: Comparisons of the center PSNR score over 2.25x, 5x, and 11.7x. Note that we find PQDiff
calculates several infinite values, which indicates the center parts in images generated by PQDiff
are completely the same with the input sub-images without any bias. Hence, to make our model
comparable, we only include the images whose PSNR scores are below 1,000. For QueryOTR, we do
not find the infinite value phenomenon, and we directly report the averaged PSNR scores.

Method Scenery Building WikiArt
2.25x 5x 11.7x 2.25x 5x 11.7x 2.25x 5x 11.7x

QueryOTR (Yao et al., 2022) 22.146 18.926 15.375 18.591 15.318 13.119 19.726 15.874 14.016
PQDiff (Ours) 27.676 27.267 24.697 28.831 28.614 27.219 25.946 25.673 23.372

two images (generated and original) could have different scales. Moreover, the two images may
also not intersect. Hence, we directly illustrate the images generated by PQDiff without the “copy”
operation. Some examples generated from the controlled position are shown in Fig. 4, where the
images generated by PQDiff without the “copy” iteration can be still vivid and realistic. Furthermore,
without the “copy” operation, the generated images can also record the pixel information and put
it into the corresponding locations. Meanwhile, since the scales of input sub-images and generated
images may be different, PQDiff implicitly learns to scale the input sub-images as well.

Diversity of generated images and PSNR in center regions. We also show five generated images
with fixed positions and input in Fig. 11 in Appendix E, showing PQDiff can generate diverse content
in the generated regions. Furthermore, it also retains the input pixels in the center parts of generated
samples. Recall that in Sec. B, we choose not to use the PSNR score as evaluation metrics, as we also
need to account for the diversity. Here we provide further analysis with PSNR score whose definition
is as follows, and a higher score suggests a smaller mean square error:

PSNR(x,y) = 10 · log10
(

MAX2
x

Ei,j [x(i, j)− yi,j ]2

)
, 0 ≤ i, j ≤ H,W (7)

where x,y are input images, and H,W are the height and width of the input images, and MAX2
x

is a constant. We then report the PSNR score of the generated center region and input images in
Table 4. Note that since the objective of QueryOTR is only added to the generated position, the
center part is not regularized in the training stage. Hence, the generated center content is completely
black area. Hence, for better comparison, we modify QueryOTR, adding the objective to the whole
generated images with the Lrec loss. The PSNR scores in Table 4 and the generated samples in Fig. 11
demonstrate our model can: 1) memorize the input pixels and put them into corresponding locations;
2) learn the semantic information of input images, and outpaint the image with consistent contents
around the images. It is worth noting that the central regions in images generated by our PQDiff
without the “copy” operation can be completely the same with input images (Ei,j [x(i, j)−yi,j ]

2 = 0),
which indicates, our PQDiff can reconstruct the images without any bias in some cases. Since these
cases without bias would lead to infinite values of the PSNR score, which will impact the average
values, we directly remove these infinite values. Experimental results show even if we remove these
infinite values, our method can still produce much higher center PSNR scores than QueryOTR.

Impact of random crop ratio. For better consistency of inputs in the training stage and sampling
stage, we crop the view xb with a larger crop ratio than view xa (since the outpainted images are
usually larger than input images). We conduct experiments to analyze the effect of random crop
ratios. Specifically, we fix the crop ratio of target view xb as (0.8, 1.0), and switch the crop ratio of
anchor views xa from 0.15∼0.50. We train the model with 80,000 iterations on the Scenery dataset
and show the results in Fig. 5. The results show the query crop ratio influences 2.25x, 5x, and 11.7x
experiments in different manners. Specifically, for 2.25x experiments, since the input images are
128x128, and the outpainted images are 192x192, where the extrapolated image is only a little larger
than the input sub-image. Hence, PQDiff with larger crop ratios outperforms PQDiff with smaller
ones. For 5x and 11.7x experiments, the size of extrapolated images is much larger than the given
input sub-image. As a result, PQDiff with smaller crop ratios outperforms PQDiff with larger ones.
On top of that, we also find when the anchor crop ratio equals 0.50, the inception score drops with a
large range, and we guess that is because when the random crop ratio is set (0.50, 0.50), we always
feed the images with the same scales to PQDiff, and correspondingly, PQDiff can not learn to scale
images. Then, in the sampling stage, since images in the test set are usually in different scales, it is
difficult for PQDiff to handle the scaling gaps between the training stage and the testing stage.

8



Published as a conference paper at ICLR 2024

Table 5: Performance of plain diffusion models and PQGAN (integrate PQ scheme in GAN) on the
Scenery dataset without the “copy” operation (as we report the center PSNR score).

Method 2.25x 5x 11.7x
FID ↓ IS ↑ Center PSNR ↑ FID ↓ IS ↑ Center PSNR ↑ FID ↓ IS ↑ Center PSNR ↑

Valinna diffusion (Ho et al., 2020) 57.425 3.816 11.538 59.475 3.286 10.894 73.587 2.867 10.347
PQGAN (Ours) 32.139 3.811 27.097 38.466 3.216 26.893 49.943 2.853 24.139
PQDiff (Ours) 29.446 3.849 27.676 34.492 3.547 27.267 44.517 3.269 24.797

Table 6: Impact of different types of positional embeddings on Scenery dataset. All methods are
without “copy” operation. The sin-cos positional embedding is also used in the main experiments.

Method 2.25x 5x 11.7x
FID ↓ IS ↑ Center PSNR ↑ FID ↓ IS ↑ Center PSNR ↑ FID ↓ IS ↑ Center PSNR ↑

None 61.382 3.811 10.382 75.281 3.298 10.285 90.271 2.974 10.286
Learnable 32.141 3.816 27.263 37.971 3.387 26.885 49.136 3.179 23.461
Sin-Cos (Eq.1) 29.446 3.849 27.676 34.492 3.547 27.267 44.517 3.269 24.797

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Query crop ratio

3.775

3.800

3.825

3.850

3.875

3.900

3.925

3.950

3.975

In
ce

pt
io

n 
sc

or
e

PQDiff
QueryOTR
PQDiff (default)

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Query crop ratio

3.2

3.3

3.4

3.5

3.6

3.7
In

ce
pt

io
n 

sc
or

e

PQDiff
QueryOTR
PQDiff (default)

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Query crop ratio

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

In
ce

pt
io

n 
sc

or
e

PQDiff
QueryOTR
PQDiff (default)

Figure 5: Inception scores on the Scenery dataset with different random crop ratios of anchor view
xa over 2.25x (left), 5x (middle), and 11.7x (right). In some cases, PQDiff outperforms PQDiff
(Default), as we do not heavily tune the hyper-parameters in the default version. The query crop ratio
is randomly sampled from r ∼ 0.5, where r is the values in the horizontal axis of the plots.

Integrate PQ scheme into other generating models. Beyond diffusion, we also integrate our PQ
learning paradigm into GAN-based model. In addition, to analyze the effect of the positional query,
we also report the performance when directly using diffusion models (Ho et al., 2020). Table 5
shows the results. Specifically, we find the quality of the images generated by GAN is lower than the
diffusion model (Ho et al., 2020), as the inception score of PQGAN is lower than diffusion models (Ho
et al., 2020). However, the diffusion model is not well conditioned by the input sub-image (the FID
and Center PSNR scores are much worse than PQGAN and PQDiff). The high FID and Center PSNR
scores indicate the proposed PQ scheme can provide a strong condition, enhancing the generative
models (Goodfellow et al., 2014; Ho et al., 2020) to learn where to outpaint.

Impact of the Positional Embedding. To analyze the effect of the positional embedding, we conduct
a group of experiments with different types of positional embeddings. We mainly consider two types
of embeddings (sin-cos and learnable). Learnable embedding means we take the relative position
(m,n) as input and use an MLP composed of two linear layers with the activation function to map the
2-dimensions to D-dimensions. Table 6 shows the results with different positional embedding. Note
that None means without relative positional embedding. Thus, the model can not learn the positional
relationships between input sub-image and extrapolated images. Correspondingly, the inception score
only drops with a little range, but the FID and Center PSNR drop with a large range.

5 CONCLUSION

We have proposed PQDiff, which learns the positional relationships and pixel information at the
same time. Methodically, PQDiff can outpaint at any multiple in only one step, greatly increasing the
applicability of image outpainting. We conduct experiments on three standard outpainting datasets,
where PQDiff achieves new SOTA results that surpass previous methods by a large margin under
almost all settings. We also conduct comprehensive ablation studies to show the robustness of our
approach, including crop ratios, the center PSNR score, and the relative positional embeddings.

Ethics Statement. PQDiff generates images conditioned by positional embeddings, learning pixel
information and positional relationships simultaneously. As the datasets used in PQDiff primarily

9



Published as a conference paper at ICLR 2024

focus on scenery, buildings, and arts, there are currently minimal negative potential impacts on ethics
and crime-related aspects. We are aware that any technology could be abused for ill purposes.

Reproducibility Statement. We have clarified training and sampling details including hyper-
parameters, pseudo code of the relative positional embeddings, and training pipeline in Sec. B in the
Appendix. In addition, all the datasets used in this paper are open-source and can be accessed online.

REFERENCES

Jonas Adler and Sebastian Lunz. Banach wasserstein gan. NeurIPS, 2018.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In ICML, 2017.

Maximilian Augustin, Valentyn Boreiko, Francesco Croce, and Matthias Hein. Diffusion visual
counterfactual explanations. NeurIPS, 2022.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. In ICLR, 2022.

Fan Bao, Chongxuan Li, Yue Cao, and Jun Zhu. All are worth words: a vit backbone for score-based
diffusion models. In CVPR, 2023.

Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image inpainting. In
SIGGRAPH, 2000.

Yen-Chi Cheng, Chieh Hubert Lin, Hsin-Ying Lee, Jian Ren, Sergey Tulyakov, and Ming-Hsuan
Yang. Inout: Diverse image outpainting via gan inversion. In CVPR, 2022.

Jifeng Dai, Min Shi, Weiyun Wang, Sitong Wu, Linjie Xing, Wenhai Wang, Xizhou Zhu, Lewei Lu,
Jie Zhou, Xiaogang Wang, et al. Demystify transformers & convolutions in modern image deep
networks. arXiv preprint arXiv:2211.05781, 2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. NeurIPS,
2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Penglei Gao, Xi Yang, Rui Zhang, John Y Goulermas, Yujie Geng, Yuyao Yan, and Kaizhu Huang.
Generalized image outpainting with u-transformer. Neural Networks, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. NeurIPS, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. NeurIPS, 2017.

Dongsheng Guo, Hongzhi Liu, Haoru Zhao, Yunhao Cheng, Qingwei Song, Zhaorui Gu, Haiyong
Zheng, and Bing Zheng. Spiral generative network for image extrapolation. In ECCV, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 1997.

10



Published as a conference paper at ICLR 2024

Peng Jin, Jinfa Huang, Fenglin Liu, Xian Wu, Shen Ge, Guoli Song, David Clifton, and Jie Chen.
Expectation-maximization contrastive learning for compact video-and-language representations.
NeurIPS, 2022.

Peng Jin, Jinfa Huang, Pengfei Xiong, Shangxuan Tian, Chang Liu, Xiangyang Ji, Li Yuan, and Jie
Chen. Video-text as game players: Hierarchical banzhaf interaction for cross-modal representation
learning. In CVPR, 2023a.

Peng Jin, Hao Li, Zesen Cheng, Kehan Li, Xiangyang Ji, Chang Liu, Li Yuan, and Jie Chen. Diffu-
sionret: Generative text-video retrieval with diffusion model. arXiv preprint arXiv:2303.09867,
2023b.

Peng Jin, Yang Wu, Yanbo Fan, Zhongqian Sun, Yang Wei, and Li Yuan. Act as you wish: Fine-
grained control of motion diffusion model with hierarchical semantic graphs. arXiv preprint
arXiv:2311.01015, 2023c.

Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park. Rebooting acgan: Auxiliary classifier
gans with stable training. NeurIPS, 2021.

Kyunghun Kim, Yeohun Yun, Keon-Woo Kang, Kyeongbo Kong, Siyeong Lee, and Suk-Ju Kang.
Painting outside as inside: Edge guided image outpainting via bidirectional rearrangement with
progressive step learning. In WACV, 2021.

Chieh Hubert Lin, Hsin-Ying Lee, Yen-Chi Cheng, Sergey Tulyakov, and Ming-Hsuan Yang. Infini-
tygan: Towards infinite-pixel image synthesis. In ICLR, 2021a.

Han Lin, Maurice Pagnucco, and Yang Song. Edge guided progressively generative image outpainting.
In CVPR, 2021b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Chia-Ni Lu, Ya-Chu Chang, and Wei-Chen Chiu. Bridging the visual gap: Wide-range image
blending. In CVPR, 2021.

Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. Deep photo style transfer. In CVPR,
2017.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary
classifier gans. In ICML, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. NeurIPS, 2019.

Ashwini Pokle, Zhengyang Geng, and J Zico Kolter. Deep equilibrium approaches to diffusion
models. NeurIPS, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI, 2015.

Mark Sabini and Gili Rusak. Painting outside the box: Image outpainting with gans. arXiv preprint
arXiv:1808.08483, 2018.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022
Conference Proceedings, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. NeurIPS, 2016.

11



Published as a conference paper at ICLR 2024

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021b.

Haoru Tan, Sitong Wu, and Jimin Pi. Semantic diffusion network for semantic segmentation. NeurIPS,
2022.

Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data
pruning via moving-one-sample-out. NeurIPS, 2024.

Wei Ren Tan, Chee Seng Chan, Hernán E Aguirre, and Kiyoshi Tanaka. Ceci n’est pas une pipe: A
deep convolutional network for fine-art paintings classification. In ICIP, 2016.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. NeurIPS, 2017.

Basile Van Hoorick. Image outpainting and harmonization using generative adversarial networks.
arXiv preprint arXiv:1912.10960, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Weilun Wang, Jianmin Bao, Wengang Zhou, Dongdong Chen, Dong Chen, Lu Yuan, and Houqiang
Li. Sindiffusion: Learning a diffusion model from a single natural image. arXiv preprint
arXiv:2211.12445, 2022.

Yaxiong Wang, Yunchao Wei, Xueming Qian, Li Zhu, and Yi Yang. Sketch-guided scenery image
outpainting. IEEE Transactions on Image Processing, 2021.

Yi Wang, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Wide-context semantic image extrapolation. In
CVPR, 2019.

Sitong Wu, Tianyi Wu, Fangjian Lin, Shengwei Tian, and Guodong Guo. Fully transformer networks
for semantic image segmentation. arXiv preprint arXiv:2106.04108, 2021.

Sitong Wu, Tianyi Wu, Haoru Tan, and Guodong Guo. Pale transformer: A general vision transformer
backbone with pale-shaped attention. In AAAI, 2022.

Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han Hu.
Simmim: A simple framework for masked image modeling. In CVPR, 2022.

Zongxin Yang, Jian Dong, Ping Liu, Yi Yang, and Shuicheng Yan. Very long natural scenery image
prediction by outpainting. In ICCV, 2019.

Kai Yao, Penglei Gao, Xi Yang, Jie Sun, Rui Zhang, and Kaizhu Huang. Outpainting by queries. In
ECCV, 2022.

Lingzhi Zhang, Jiancong Wang, and Jianbo Shi. Multimodal image outpainting with regularized
normalized diversification. In WACV, 2020.

Shaofeng Zhang, Qiang Zhou, Zhibin Wang, Fan Wang, and Junchi Yan. Patch-level contrastive
learning via positional query for visual pre-training. In ICML, 2023a.

Shaofeng Zhang, Feng Zhu, Rui Zhao, and Junchi Yan. Patch-level contrasting without patch
correspondence for accurate and dense contrastive representation learning. In ICLR, 2023b.

Shaofeng Zhang, Feng Zhu, Rui Zhao, and Junchi Yan. Contextual image masking modeling via
synergized contrasting without view augmentation for faster and better visual pretraining. In ICLR,
2023c.

12



Published as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIAL

A Pseudo Code of the Relative Positional Embeddings 14

B Training Details 15

C Illustration of the RPE During the Training and Sampling 16

D More results in continuous multiples 17

E Impact of the Continuous and Discrete Positional Embeddings 17

F Sampling Speed 18

G Impact of Predicting x0 or Noise. 18

H Incorporate with Pretrained Models 18

I More Generated Examples on Facade datasets 19

J Absolute Position Embedding v.s. Relative Position Embedding 19

K More Cases Generated by PQDiff 21

L More discussions 22

13



Published as a conference paper at ICLR 2024

A PSEUDO CODE OF THE RELATIVE POSITIONAL EMBEDDINGS

Pytorch-liked code of the relative positional embeddings.
def get_views_and_rpe(pil_image, scales, ratios, size):

"""
:param pil_image: images with PIL format
:param scales pil_image: random crop scale
:param ratios pil_image: random crop ratios
:param size: size of cropped views
"""
# Calculate the position of the anchor view
i_a, j_a, h_a, w_a = RandomResizedCrop.get_params(pil_image, scales,

ratios)
anchor_view = resized_crop(pil_image, i_a, j_a, h_a, w_a, (size,

size))
# Calculate the position of the target view
i_t, j_t, h_t, w_t = RandomResizedCrop.get_params(pil_image, scales,

ratios)
target_view = resized_crop(pil_image, i_t, j_t, h_t, w_t, (size,

size))
# Derive the relative positions of two views
grid = calculate_sin_cos([i_a, j_a, h_a, w_a], [i_t, j_t, h_t, w_t])
# embed_dim is relevant to the model, which is predefined
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
return pos_embed

def calculate_sin_cos(anchor_pos, target_pos, anchor_grid_size=14,
target_grid_size=14):
"""
:param target_pos: [i_t, j_t, h_t, w_t]
:param anchor_pos: [i_a, j_a, h_a, w_a]
:param target_grid_size: sequence length of the target view (relative

to patch size of models)
:param scales pil_image: sequence length of the anchor view (relative

to patch size of models)
:return grid: 2-d grid of the relative positions
"""
kg = anchor_pos[3] / anchor_grid_size
# calculate bias of width
w_bias = (target_pos[1] - anchor_pos[1]) / kg
kl = target_pos[3] / target_grid_size
# calculate scales of width
w_scale = kl / kg
kg = anchor_pos[2] / anchor_grid_size
# calculate bias of height
h_bias = (target_pos[0] - anchor_pos[0]) / kg
# calculate scales of height
kl = target_pos[2] / target_grid_size
h_scale = kl / kg
grid_h = np.arange(h_bias, grid_size * h_scale + h_bias-5e-3,

h_scale, dtype=np.float32)
grid_w = np.arange(w_bias, grid_size * w_scale + w_bias-5e-3,

w_scale, dtype=np.float32)
# make the width and height grids, and width goes first
grid = np.meshgrid(grid_w, grid_h)
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size, grid_size])
return grid

14



Published as a conference paper at ICLR 2024

B TRAINING DETAILS

Datasets. We use three datasets without any data selection strategies Tan et al. (2024): Scenery (Yang
et al., 2019), Building Facades (Gao et al., 2023), and WikiArt (Tan et al., 2016), in line with (Yang
et al., 2019; Yao et al., 2022; Van Hoorick, 2019). Scenery is a natural scenery with diverse
natural scenes, consisting of about 5,000 images for training and 1,000 images for testing. Building
Facades is a city scenes dataset consisting of about 16,000 and 1,500 images for training and testing,
respectively. WikiArt is a fine-art paintings dataset, which can be obtained from wikiart.org. We
use the split manner of genres datasets (used in (Yao et al., 2022; Gao et al., 2023)), which contain
45,503 training images and 19,492 testing images.

Training Details. We implement our approach with PyTorch (Paszke et al., 2019) on a platform
equipped with 8 V100 GPUs. The encoder is composed of 8-10 stacked transformer blocks. Then,
a cross-attention block is employed, followed by the decoder made of 8-10 transformer blocks.
Finally, a 3x3 convolutional layer is adopted to smooth the generated image. In line with previous
methods (Yao et al., 2022), we copy the ground truth (input) to the corresponding location in the
generated image. We find the copy operation will make a great impact on previous methods, while
PQDiff is much more robust to this operation, which we will discuss later. The number of parameters
is approximately equal to QueryOTR (Yao et al., 2022), which contains 12 transformer blocks in the
encoder and 4 transformer blocks in the decoder. We adopt AdamW optimizer (Loshchilov & Hutter,
2019), and we set the learning rate to 0.0002, weight decay to 0.03, and betas to 0.99. In the training
stage, we set the random crop ratio of the anchor view to (0.15, 0.5) and the ratio of the target view to
(0.8, 1.0), aiming to use the small view to predict the larger view. We train PQDiff 80k, 150k, and
300k iterations with 64 images per GPU on the Scenery, Building Facades, and WikiArt datasets,
respectively. Following QueryOTR, we set the resolution of each cropped view as 192x192. Our
core idea of PQ-Diff is to utilize the randomly cropped two views (anchor and target) to learn the
positional relation between them.

Evaluation and Baselines. We use Inception Score (IS) (Salimans et al., 2016), Frechet Inception
Distance (FID) (Heusel et al., 2017) to measure the generative quality. Note that the upper bounds of
IS are 4.091, 5.660, and 8.779 for Scenery, Building Facades, and WikiArt, respectively, which are
calculated by real images in the test set. Here we do not use PSNR (peak signal-to-noise ratio) as
once used in outpainting because PSNR cannot reflect the diversity of generated images, which is
important for generative models, and more details are given in Sec. 4.2. Alternatively, we report the
PSNR score between the input sub-images and the center region of the generated images. Because
we think this score is more meaningful to detect whether the network ignores the input conditions.
We make comparisons with five SOTA image outpainting methods, NSIPO (Yang et al., 2019),
SRN (Wang et al., 2019), IOH (Van Hoorick, 2019), Uformer (Gao et al., 2023) and QueryOTR (Yao
et al., 2022).

Sampling Details. In line with the previous method (Yao et al., 2022; Gao et al., 2023), for the testing
stage, all images are resized to 192x192 as the ground truth, and then the input images are obtained
by center cropping to the sizes 128x128, 86x86, and 56x56 for 2.25x, 5x, and 11.7x outpainting,
respectively. The total output sizes are 2.25, 5, and 11.7 times the input in terms of 2.25x, 5x, and
11.7x outpainting, respectively.

15



Published as a conference paper at ICLR 2024

Algorithm 1: Training pipeline of PQDiff.
Input: Raw complete image x, the

generating network for training: gθ,
VQVAE encoder and decoder
FE , FD, timestep T .

Result: The pretrained network gθ.
1 Initialize gθ.
2 repeat
3 Randomly sample t from 1 ∼ T .
4 xa,xb ← RandomCropResize(x).
5 Compute the relative position E.
6 Obtain latent embeddings

za,b ← FE(xa,b).
7 Randomly sample Gaussian noise ϵt.
8 Add noise ϵt to obtain zbt via Eq.2.
9 Predict ϵ̃t by gθ(za, zbt , t).

10 Compute the loss ∥ϵ̃t − ϵt∥pp via Eq.3.
11 Backward and update the network gθ.
12 until Converge;

Output: gθ

Algorithm 2: Sampling pipeline of PQDiff.
Input: Input sub-image x, the pretrained

network gθ, VQVAE encoder and
decoder FE , FD, timestep T , the
specified outpainting multiple K.

Result: Outpainted image y.
1 Compute the relative position p of ỹ through

K (illustrated in Fig. 2).
2 Acquire the positional embedding E through

p.
3 Randomly sample Gaussian noise yT .
4 repeat
5 Acquire latent embeddings z← FE(x).
6 Predict ϵ̃T by gθ(za,yT , T ).
7 Compute ỹ0 and yT−1 through Eq. 5.
8 T ← T − 1.
9 until T ≥ 1;

10 y← FD(y0).
Output: y.

C ILLUSTRATION OF THE RPE DURING THE TRAINING AND SAMPLING

Raw image

Target

(0, 0) (0, 7)

(7, 0)

(0, 0)
(0, 1) (0, 2)

(1, 0)

(2, 0)

(1, -2) (1, 0) (1, 2)

(2.66, -2)

(4.33, -2)
Target

AnchorAnchor
(1, 1)

(0, 3)

(6, 1) (6, 7)

(1, 7)

(0, 6)

(3, 3) (3, 6)

(b) Random Crop 
in Training Stage

(c) Continuous Outpainting
in Sample Stage (a) Relative Position

A1

A2

A20

A7

A5

…

Input Image
1.0x

99.0x…

Anchor view as new start point

Relative Positions

Figure 6: Here is the detailed working mechanism of Relative Position Embeddings (RPE). Among
them are (a) Specific calculation example diagram of RPE. (b) RPE captures different position
relationships by randomly sampling the anchor view and target view during the training stage. (c)
RPE achieves continuous outpainting through the learned positional relation in the sample stage.

Relative positional embeddings. Instead of simply using learnable positional embeddings (com-
monly used in previous transformer-based learning methods (Gao et al., 2023)), which can not
represent the relation between the anchor view and target view (as the positional relation is random
for each sample at each iteration due to the randomness of the RandomCrop augmentation), we
adopt fixed positional encoding to represent the relative positions between the anchor view and each
query tokens (i.e., each relative positional token in the target view), which is illustrated in Fig. 6.
Given the positions pA = {pAi, pAj , pAh, pAw} (top location, left location, height, and width),
pT = {pTi, pTj , pTh, pTw} of the two views xA and xT , the objective is calculating the relative

position of each patch [x
(1)
T ,x

(2)
T , · · · ,x(K2

T )
T ] in the target view based on the anchor view xA, where

(K2
T ) is the number of patches in the target view. Specifically, we calculate the patch-level relative

position of the target view via the following equation:

pm,n
t = [pmt , pnt ] = [

Ka · (pti − pai)

pah
+

pth ·Ka · (m− 1)

Kt · pah︸ ︷︷ ︸
Row

,
Ka · (ptj − paj)

paw
+

ptw ·Ka · (n− 1)

Kt · paw︸ ︷︷ ︸
Column

]

(8)
where K2

a means the number of patches of the anchor view. pm,n
t means the relative position of

the patch located at m-th row and n-th column in the target view. Then, for each patch, we use the

16



Published as a conference paper at ICLR 2024

following popular form in transformers (Vaswani et al., 2017) to generate the relative positional
embedding:

Pm,n
T =

[
sin

(
pmt

e2∗1/d

)
, cos

(
pmt

e2∗2/d

)
, · · · , sin

(
pmt
e

)
,

sin

(
pnt

e2∗1/d

)
, cos

(
pnt

e2∗2/d

)
, · · · , sin

(
pnt
e

)] (9)

where Pm,n
T ∈ R1×D is the relative positional embeddings of the patch located at m-th row and n-th

column in target view. D is the hidden dimension of the model and D = 2 ∗ d. e is the pre-defined
parameter that will be universally set to 10,000 in our experiments, in line with MAE (He et al.,
2022). (m,n) means the position of the top left patch position (as described in Eq. 8 and illustrated
in Fig. 6).

D MORE RESULTS IN CONTINUOUS MULTIPLES

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Outpainting Multiples

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

In
ce

pt
io

n 
Sc

or
es

 o
n 

Sc
en

er
y

SRN
NSIPO
IOH
Uformer
QueryOTR
PQDiff
Groud Truth

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Outpainting Multiples

20

40

60

80

100

FI
D

 S
co

re
s o

n 
Sc

en
er

y

SRN
NSIPO
IOH
Uformer
QueryOTR
PQDiff

Figure 7: Comparisons between PQDiff and previous methods v.s. different outpainting multiples,
where our PQDiff achieves state-of-the-art results under almost all settings. Note that since PQDiff
can additionally outpaint images with continuous multiples, we show the results of PQDiff as a
continuous curve instead of scatter plots.

E IMPACT OF THE CONTINUOUS AND DISCRETE POSITIONAL EMBEDDINGS

To further explore how PQDiff learns the relative position, we conduct a set of ablation studies.
Specifically, we remove the randomness of the positions of the anchor views and target views.
Specifically, the anchor view is the center region of the target view, and the target view is set 2.25x,
5x, and 11.7x larger than the anchor view with the same probability at each training iteration (1/3 for
each multiple) to better compare with the main results in our paper. Therefore, the sizes of the anchor
view and target view are discrete, as they are fixed as three numbers. We train the Discrete version
on 8 V100 GPUs with 80k iterations (in line with the main results). Table 7 shows the results when
evaluating with variant outpainting multiples. We find under 2.25x, 5x, and 11.7x settings (inner
distribution), discrete training, and achieve similar results with PQDiff. However, when transferred to
other outpainting multiples (4x, 9x, 16x), both three scores of discrete training drop, especially for
Center PSNR. We guess the reason behind the interesting phenomenon is that the “Discrete training”
strategy only memorizes the pixel information of the input sub-image, but fails to scale the sub-image
with proper ratio due to the outpainting multiples gaps in the training and inference stage.

17



Published as a conference paper at ICLR 2024

Metric Method Inner dist Outer dist
2.25x 5x 11.7x 4x 9x 16x

IS Discrete 3.813 3.553 3.207 3.626 3.391 2.891
PQDiff (Ours) 3.849 3.547 3.269 3.827 3.435 3.012

FID Discrete 29.481 33.917 47.239 35.183 50.183 53.174
PQDiff (Ours) 29.446 34.492 44.517 31.274 39.927 49.271

Center PSNR Discrete 27.814 27.017 23.917 18.271 17.238 14.927
PQDiff (Ours) 27.676 27.267 24.697 27.477 25.820 23.175

Table 7: Performance when transferring the model to different evaluation distributions. “Inner
dist” means evaluating the model under the same settings as the training stage. “Outer dist” means
evaluating the model under different settings with the training stage.

F SAMPLING SPEED

For better comparisons, we provide results of PQDiff with more timesteps in Table 8. Specifically,
in the training phase, we set timesteps as 1,000. In the testing phase, we change the timesteps from
50∼500 (since we observe with larger timesteps, the IS and FID score won’t improve anymore). We
find when timesteps are set to 300, PQDiff achieves 4.203 IS scores, while ground truth only achieves
4.091, which further demonstrates the vividness of images generated by PQDiff.

Table 8: Comparison of sampling time, FID, and inception scores with 2.25x, 5x, 11.7x settings on
Scenery dataset. The sampling time is the wall-clock time spent on generating 64 images on 8 V100
GPUs. The best results and second best results are boldface and underlined, respectively.

Method 2.25x 5x 11.7x
Time (Sec.) FID ↓ IS ↑ Time (Sec.) FID ↓ IS ↑ Time (Sec.) FID ↓ IS ↑

PQDiff (50 timesteps) 12.175 20.103 4.046 12.175 27.051 3.710 12.175 41.242 3.741
PQDiff (100 timesteps) 24.481 20.878 3.968 24.481 28.424 3.719 24.481 39.194 3.496
PQDiff (200 timesteps) 49.021 19.838 4.111 49.021 31.039 3.940 49.021 40.265 3.583
PQDiff (300 timesteps) 73.586 21.072 4.203 73.586 28.856 3.957 73.586 39.607 3.479
PQDiff (400 timesteps) 98.101 20.623 4.028 98.101 28.939 3.761 98.101 39.618 3.508
PQDiff (500 timesteps) 122.739 19.828 4.098 122.739 27.561 3.728 122.739 41.066 3.709
Ground Truth ∼ ∼ 4.091 ∼ ∼ 4.091 ∼ ∼ 4.091

G IMPACT OF PREDICTING x0 OR NOISE.

PQDiff can also be thought of as a predictive task conditioned by the relative information and
the anchor views. Hence, we conduct the experiments to directly predict xb, which is similar to
QueryOTR (Yao et al., 2022), and we report the inception score in Table 9. We find by predicting xb,
PQDiff is much worse than predicting noise under all settings (especially in the 11.7x setting), and
the phenomenon is also consistent with previous generative tasks (Bao et al., 2023; Ho et al., 2020).
We guess that’s because predicting xb makes the task more predictive but not generative, and the
learned network will overfit in the training set, resulting in bad generalization for the generative task
in the test set.

H INCORPORATE WITH PRETRAINED MODELS

As shown in Tab. 10 on the scenery dataset, We consider adding an ablation study to analyze the
usage of the pretrained model. First, we try to load the stable diffusion pretrained model in PQDiff.
As we use VQVAE and cross attention in our model (our model is a transformer-based model, while
stable diffusion mainly uses resnet-block), we can only load weights of the spatial transformer layer.

Then, we try to train our model on ImageNet with 80,000 iterations, and then, we re-train the model
on the Scenery dataset. We can find that pretrained with the imagenet has improved consistency,
which provides insights for the subsequent scale-up of our framework. We can find that pretrained
with the Imagenet has improved consistency, which provides insights for the subsequent scale-up of
our framework.

18



Published as a conference paper at ICLR 2024

I MORE GENERATED EXAMPLES ON FACADE DATASETS

We put more generated examples on facade datasets in Fig. 9. We have observed two interesting
phenomena when our PQDiff extends semantic structures in facade scenes.

• Our PQDiff can expand the reliable semantic structure that aligns with human cognition. In
contrast, the previous SOTA QueryOTR model pretends to generate a physically distorted
and abnormally deformed semantic structure. (As shown in the middle column (Fig. 9),
the comparison includes the First row(lane), second row(wooden building), and third row
(teaching buildings).

• Our PQDiff can expand more texture semantic details in facade scenes, thereby generating
high-fidelity expanded images. However, QueryOTR will lose detailed information, and the
generated extended image has a lot of noise. (Representative examples are shown in the first
column (First row, second row, and third row).

J ABSOLUTE POSITION EMBEDDING V.S. RELATIVE POSITION EMBEDDING

Anchor

Target

Flexible Modes

(b) Relative Position Embedding

…

(a) Absolute Position Embedding

Anchor

Target

Fixed Mode

Figure 8: The difference: (a) Absolute Position Embeddings and (b) Relative Position Embeddings.

Table 9: Comparison of x0 prediction and noise prediction on Scenery dataset. Since the copy
operation would lead to the infinite value in the center PSNR score, we only report the center PSNR
score without the copy operation. 2.25x, 5x, and 11.7x follow the setting in the main experiments.

Method 2.25x 5x 11.7x
FID ↓ IS ↑ Center PSNR ↑ FID ↓ IS ↑ Center PSNR ↑ FID ↓ IS ↑ Center PSNR ↑

QueryOTR (Yao et al., 2022) 20.366 3.955 ∼ 39.237 3.431 ∼ 60.977 3.114 ∼
x0 pred 37.645 3.353 26.478 52.505 3.230 26.027 69.406 2.984 23.835
x0 pred + Copy 27.356 3.920 ∼ 43.877 3.676 ∼ 67.170 3.556 ∼
Noise pred 29.446 3.849 27.676 34.492 3.547 27.267 44.517 3.269 24.797
Noise pred + Copy 20.100 3.981 ∼ 28.668 3.712 ∼ 39.465 3.574 ∼

19



Published as a conference paper at ICLR 2024

GT QueryOTR PQDiff (Ours) GT QueryOTR PQDiff (Ours) GT QueryOTR PQDiff (Ours)

Figure 9: Comparisons of PQDiff with the SOTA method QueryOTR on the facades building dataset.
We highlight the noise and spots generated by QueryOTR with yellow boxes.

1x

2x 3x

1x

2x 3x

1x

2x 3x

1x PQDiff1x QueryOTRInput 2x QueryOTR 2x PQDiff 3x QueryOTR 3x PQDiff

Figure 10: Qualitative comparisons with the previous SOTA method QueryOTR (Yao et al., 2022).

Input Generated samples

Figure 11: Example of images generated by PQDiff with fixed positions.

20



Published as a conference paper at ICLR 2024

Table 10: The experiment that incorporates our PQDiff with pretrained stable diffusion.

Method 2.25x 5x 11.7x
FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑

w/o pretrain 20.100 3.981 28.668 3.712 39.465 3.574
w SD pretrain 20.164 3.985 28.537 3.692 38.917 3.619
w Imagenet pretrain 19.791 3.993 28.016 3.731 36.271 3.629

K MORE CASES GENERATED BY PQDIFF

We show more examples generated by PQDiff in Fig. 12, Fig. 13 and Fig. 14.

PQDiff

PQDiff

PQDiff

Figure 12: Example of images generated by PQDiff in the testing set.

PQDiff

PQDiff

PQDiff

Figure 13: Example of images generated by PQDiff in the testing set.

21



Published as a conference paper at ICLR 2024

PQDiff

PQDiff

PQDiff

Figure 14: Example of images generated by PQDiff in the testing set.

L MORE DISCUSSIONS

Broader impact and potential applications. As PQDiff can generate images conditioned by
arbitrary relative positions, we believe our method has great potential in image-inpainting (change
the RPE of the target view with the inpainting regions), and super-resolutions (interpolate the relative
position of the anchor view) if we properly change the relative positional in the training and sampling
stages.

22


	Introduction
	Background and Related Work
	The proposed Positional-Query Based Diffusion model
	Experiments
	Experimental Results
	Ablation Studies

	Conclusion
	Pseudo Code of the Relative Positional Embeddings
	Training Details
	Illustration of the RPE During the Training and Sampling
	More results in continuous multiples
	Impact of the Continuous and Discrete Positional Embeddings
	Sampling Speed
	Impact of Predicting x0 or Noise. 
	Incorporate with Pretrained Models
	More Generated Examples on Facade datasets
	Absolute Position Embedding v.s. Relative Position Embedding
	More Cases Generated by PQDiff
	More discussions

