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Abstract

In recent years, the availability of digitized Whole Slide Images (WSIs) has enabled the use
of deep learning-based computer vision techniques for automated disease diagnosis. How-
ever, WSIs present unique computational and algorithmic challenges. WSIs are gigapixel-
sized (∼100K pixels), making them infeasible to be used directly for training deep neural
networks. Also, often only slide-level labels are available for training as detailed annotations
are tedious and can be time-consuming for experts. Approaches using multiple-instance
learning (MIL) frameworks have been shown to overcome these challenges. Current state-of-
the-art approaches divide the learning framework into two decoupled parts: a convolutional
neural network (CNN) for encoding the patches followed by an independent aggregation
approach for slide-level prediction. In this approach, the aggregation step has no bearing
on the representations learned by the CNN encoder. We have proposed an end-to-end
framework that clusters the patches from a WSI into k-groups, samples k′ patches from
each group for training, and uses an adaptive attention mechanism for slide level prediction;
Cluster-to-Conquer (C2C). We have demonstrated that dividing a WSI into clusters can
improve the model training by exposing it to diverse discriminative features extracted from
the patches. We regularized the clustering mechanism by introducing a KL-divergence loss
between the attention weights of patches in a cluster and the uniform distribution. The
framework is optimized end-to-end on slide-level cross-entropy, patch-level cross-entropy,
and KL-divergence loss (Implementation: https://github.com/YashSharma/C2C).
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1. Introduction

Histopathology comprises an essential step in the diagnosis of patients with cancer and
gastrointestinal diseases, among others. In recent years, digital pathology has seen an in-
crease in the availability of digitized whole slide images (WSIs) and consequently in the
development of novel computational frameworks for computer-aided diagnosis. In particu-
lar, a histopathology-based cancer diagnosis has improved significantly via the use of deep
learning-based computational frameworks (Bejnordi et al., 2017). These advancements have
motivated progress in computational methods for gastrointestinal disease diagnosis (van der
Sommen et al. 2020, Syed and Stidham 2020). However, this area poses its unique challenge,
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including variability in histopathological features across diseases, limited data for training
deep learning models, and the extremely high resolution of WSI images (∼ 100k × 100k
pixel). Large WSI sizes make them computationally infeasible to be directly used for the
training of deep learning-based techniques. Downsampling images for training leads to
loss of relevant cellular and structural details pertinent for diagnosis. Therefore, several re-
cently proposed frameworks follow a two-stage modeling approach where patch-level feature
extraction is performed on the WSI followed by an independent aggregation approach to
combine the patch level predictions for obtaining patient-level prediction (Campanella et al.
2019, Wang et al. 2016, Wang et al. 2019, Tellez et al. 2019, Lu et al. 2019, Li et al. 2019).
This two-stage approach follows a framework known as multiple instance learning (MIL).
In MIL, all the instances (patches) coming from a negative slide (non-diseased) comprise a
negative label, whereas at least one instance (patch) that comes from a positive slide (dis-
eased) should contain positive class-specific information. Since only a global-image level
label is used, this approach is also known as weakly supervised learning (Rony et al., 2019).

Generally, approaches use a patch encoder followed by either a machine learning model or
mathematical aggregation such as mean or max pooling for slide-level prediction. The patch
encoder can be trained in both supervised or unsupervised settings. With the supervised
training set-up, patch-level labels are required for training. Most proposed approaches
utilize a MIL-based set-up to train on noisy labels under the mathematical assumption that
all the patches from a positive WSI are positive, which may not be true (Campanella et al.
2019, Wang et al. 2019, Hou et al. 2016, Li et al. 2019). Alternatively, these approaches
require pathologists to annotate the complete slide at the cellular level for patch-level labels
(Wang et al. 2016). Another commonly used approach employs unsupervised methods such
as autoencoder or siamese networks for learning patch representation (Tellez et al. 2019, Lu
et al. 2019, Li et al. 2020). However, these methods do not guarantee that discriminative
features for normal and diseased tissues are being learned. Since the second stage of the
model has no control over the learned patterns, it can lead to sub-optimal solutions.

These limitations have increased the interest in an end-to-end training framework using
WSIs (Chikontwe et al. 2020, Xie et al. 2020). In this paper, we have proposed an end-
to-end approach (C2C) with the following features: (1) Cluster-based sampling for diverse
patch selection from a WSI. (2) Attention-based aggregation for slide-level prediction. (3)
Inclusion of KL-divergence in the loss for regularizing the intra-cluster variance.

2. Related Works

2.1. Two-stage model training

The two-stage model training approaches can be further classified into two categories based
on whether a supervised learning or an unsupervised learning approach is used to learn
patch-level feature representation.

2.1.1. Supervised learning approach

Campanella et al. (2019) proposed a MIL-RNN approach comprising patch level train-
ing, top-k instance selection, and RNN-based aggregation for patient-level prediction. Hou
et al. (2016) proposed a patch-level classifier that used expectation-maximization for filter-
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ing unimportant patches and used an image-level decision fusion model on the histogram
of patch level predictions for aggregation. Li et al. (2019) used a multi-scale convolutional
layer on top of a pre-trained CNN to capture scale-invariant patterns and top-k pooling
to aggregate feature maps for patient-level prediction. Shrivastava et al. (2019) proposed
a patch-level classifier with a mean pooling operation for patient-level prediction. Wang
et al. (2019) used a patch-classifier and context-aware block selection using spatial contex-
tual information for patch selection before passing the global feature descriptor through a
random forest algorithm for patient-level prediction. Lu et al. (2021) proposed a weakly-
supervised attention-based learning approach (CLAM), which used a pre-trained encoder
to extract all patches representation, followed by attention pooling for WSI classification.
Wang et al. (2016) used detailed pathologist annotations for WSIs for patch-level training
and a random forest classifier on the extracted geometrical and morphological features for
patient-level aggregation.

2.1.2. Unsupervised Learning Approach

Tellez et al. (2019) proposed a neural image compression model that learned patch-level
representation using an unsupervised approach followed by spatial consistent aggregation
to generate a compressed WSI representation and a standard CNN model for patient-level
prediction. Lu et al. (2019) used self-supervised feature learning via contrastive predictive
coding and attention-based MIL-pooling for WSI level prediction. Li et al. (2020) used self-
supervised contrastive learning for learning patch representation and a dual-stream MIL
network for aggregation. Zhu et al. (2017), Yao et al. (2020), and Muhammad et al. (2019)
have demonstrated the use of unsupervised learning for discriminative feature representation
learning followed by clustering-based sampling for survival analysis tasks.

2.2. End-to-End training

In this approach, previous works have attempted to model WSI classification in an end-
to-end framework instead of a two-stage approach. Chikontwe et al. (2020) proposed a
center embedding approach that employed the joint learning of instance-level and bag-level
classifiers and used a center loss for performing end-to-end training with top-k instance
sampling. Xie et al. (2020) proposed an end-to-end part learning approach that divided
patches from a WSI into k parts based on global clustering centroids and sampled k tiles
in each training epoch for end-to-end training. Ilse et al. (2018) proposed the popular
neural network-based permutation-invariant aggregation operator that corresponds to the
attention mechanism. They demonstrated the efficacy of their approach for identifying the
tissue areas indicative of malignancy in breast and colon cancer datasets.

3. Methods

3.1. Problem Background

For digital pathology classification problems, WSIs (W ) of patients are available along with
their disease labels. Typically, a WSI is in dimensions ranging from 50k×50k to 100k×100k
pixels, making it computationally infeasible for being directly used for training. Hence,
using the Otsu thresholding approach and sliding window approach, patches containing
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substantial tissue area (> 50%) of desirable size are extracted. Given a WSI W (bag)
with label y, we extract w1, w2, w3, ..., wn patches (instances) from it for training. As we
approach the classification problem with the MIL framework, positive bags include at least
one diseased patch (instance) while negative bags contain all healthy patches (instances).

To this end, we have developed a convolutional neural network framework, C2C, using:
(1) cluster-based sampling method for sampling N ′ instances from a bag of N instances,
(2) end-to-end training using attention aggregation, and (3) inclusion of KL-divergence loss
in the clustering set-up for regularizing the attention distribution within a cluster.

3.2. Attention-based Aggregation

We used the weighted-average aggregation approach proposed in Ilse et al. (2018) for ag-
gregating the patch-level representation to obtain WSI-level representations. This flexible
and adaptive pooling approach uses a two-layered neural network to compute weights for
each instance in the bag. Let HW = h1, h2, . . . , hN be the l-dimension representations of N
patches coming from the WSI (W ), then

z =
N∑

n=1

anhn

where:

an =
exp

{
v2

> tanh
(
v1h

>
n

)}∑N
j=1 exp

{
v2

> tanh
(
v1h>

j

)}
where z denotes the aggregated representation of the WSI, v1 and v2 are parameters, and
an is attention weight corresponding to nth patch.

3.3. Cluster-based Sampling Approach

To accommodate for end-to-end training, we deploy a local cluster-based sampling approach
for sampling N ′ patches from a bag of N patches linked to a WSI (W ). The cluster-based
sampling approach exposes the model to diverse discriminative patches from WSIs. Local
clustering (clustering patches from a single WSI) is preferred over the global clustering
approaches (clustering patches from all the WSI) as the latter is susceptible to creating
clusters based on the visual biases such as variation to staining or scanning procedure
instead of medically relevant features.

A patch-level encoder, Ge(x; Θe) : x → h, maps all patches to l-dimensional embed-
dings where Θe is the set of trainable parameters. These parameters are frozen during the
clustering step. K-means clustering is performed independently for each of the WSIs using
all the patches for dividing and grouping WSI patches into k different buckets. Equal k′

patches are sampled from each of the k clusters, keeping the maximum number of patches
sampled from a WSI to 64 (N ′ ≥ k′ × k). The maximum number of patches sampled from
each cluster is kept at 64 to accommodate for computational limitation. As the represen-
tations get richer, we hypothesize that these N ′ randomly sampled instances approximate
the representation of a WSI with N patches.
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Figure 1: Overview of the proposed Cluster-to-Conquer (C2C) framework. a) At the start
of each epoch, representation of all the patches of one WSI are extracted. K-
means clustering is performed for segregating patches coming from the WSI into
k-buckets. b) k′ patches are sampled from each of the k clusters for end-to-
end training. c) Using encoder, representation is generated for all the patches.
d) Patch representations are passed through a 2-layer fully connected attention
module for weight calculation. e) Using the weighted aggregation, representation
for the WSI is generated and passed to the WSI classifier. f) Attention weights
corresponding to patches coming from the same cluster are passed to the KL-
divergence module to penalize the high intra-cluster attention variance. g) Patch
representations are passed to instance classifier for training with weak supervision.

3.4. End-to-End Learning

The sampled instances h1, h2, . . . , hN ′ are passed through attention aggregation module
Ga(hN

′
i=1; Θa) : h→ z where Θa are the trainable parameters for generating the aggregated

representation of the WSI. Using the aggregated representation of the WSI and repre-
sentation of patches (instances), end-to-end training is performed using cross-entropy and
KL-divergence loss. The aggregated representation is passed through Gy : z→ y to obtain
WSI prediction probability and the instance representation are passed through Gy′ : h→ y’
to obtain patches prediction probability. Instance loss is included with weak supervision
assumption. All the patches from a diseased tissue are treated as diseased, and all the
patches coming from healthy tissue are healthy to compensate for limited size training.
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Θa, Θe, Θy and Θy′ are trained in each epoch with clustering performed using Θe rep-
resentation at the start of each epoch for sampling patches. Patches are sampled randomly
from each cluster to regularize the model. Along with WSI and patch cross-entropy loss,
for each cluster, KL-divergence loss between the patches’ attention weight and a uniform
distribution is included. The inclusion of KL-divergence loss regularizes the same cluster
patches’ attention distribution and allows the attention module to weight all the positive
class patches uniformly. The aggregated loss can be written as:

L(Gy, Gy′ , Ga, Ge) = α ∗ LWSI + β ∗ LPatch + γ ∗ LKLD

where α, β, and γ balance the importance of different losses.

3.5. Architecture and Hardware

For the base architecture, we used ResNet-18 (He et al., 2015) with a combination of
the linear layer to reduce 512 flattened representation to l (64 in our case). Clustering
and attention pooling were performed on this l-dimension representation. Clustering was
performed using the k-means algorithm with l2-normalization. The model was implemented
with PyTorch and trained on a single RTX2080 GPU. The framework was trained end-to-
end with Adam optimizer with a batch size of 1 and a learning rate of 1e− 4 for 30 epochs.
Empirically, α = 1, β = 0.01 and γ = 0.1 for loss hyperparameters demonstrated best
performance. We experimented with different k. K = 8 had the best performance (Refer
to Appendix for k comparison). All the patches were used with the attention aggregation
module for computing WSI representation during the inference stage before passing them
through the classifier layer for final prediction.

4. Experiment and Results

4.1. Data Description

We demonstrated our approach and compared it with standard approaches on a gastroin-
testinal dataset containing 413 high-resolution WSIs obtained from digitizing 124 H&E
stained duodenal biopsy slides (where each slide could have one or more biopsy images) at
40× magnification. The biopsies were from children who went endoscopy procedures at the
University of Virginia Hospital. There were 63 children with Celiac Disease (CD) and 61
healthy children (with histologically normal biopsies). A 65%-15%-20% split was used to
split data for training, validation, and testing. Patches with at least 50% tissue area of size
512 × 512 were extracted from each WSI. We have also reported our performance on the
publicly available CAMELYON16 dataset for breast cancer metastasis detection and have
compared it to the fully-supervised approaches. For the CAMELYON16 dataset, patches
of size 512 × 512 at 10× magnification were extracted with at least 50% tissue area. For
studying the effect of the KL-divergence loss, we experimented on a widely used MNIST-
bags MIL dataset. We created 400 bags of MNIST instances for training and 100 bags
for testing. We defined a bag as positive if it contained either the numbers 8 or 9 (details
provided in Appendix). We used the LeNet5 (LeCun et al., 1998) model as encoder with
our proposed changes for demonstrating the effect of KL-divergence loss on training.
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Table 1: Evaluation of our proposed method (C2C) against standard approaches on Gas-
trointestinal Data for classifying Celiac vs. Normal. Avg. of 3 runs are reported.

Method Accuracy Precision Recall F1-Score

Campanella-MIL 82.8 94.9 74.5 83.5
Campanella-MIL RNN 74.7 75.4 84.3 79.6
Two-Stage Mean 81.6 87.3 80.3 83.7
C2C (w WSI Loss) 81.6 80.7 90.1 85.2
C2C (w WSI+KLD Loss) 83.9 84.9 86.3 85.4
C2C (w WSI+Patch Loss) 85.1 86.5 88.2 87.4
C2C (w WSI+Patch+KLD Loss) 86.2 85.5 92.2 88.7

4.2. Evaluation

We compared our proposed approach with two approaches: (1) The two-stage state-of-
the-approach proposed in Campanella et al. (2019). (Campanella-MIL and Campanella-
MIL RNN)1 and (2) the two-stage mean pooling approach proposed in Shrivastava et al.
(2019) (Two-Stage Mean Pooling)2. The Campanella-MIL approach used ResNet-34 as the
backbone architecture, and the Two-Stage Mean Pooling approach used ResNet-50 as the
backbone architecture.

Table 1 demonstrates the performance of the C2C method. We observed that even with
a relatively weaker ResNet backbone among comparison methods, C2C performs better than
other approaches. We attributed this to the synergy between the aggregation and encoding
module that the C2C framework can achieve using end-to-end training of an encoder and
aggregation module. In the two-stage modeling approach, the encoder is decoupled from
the aggregation module, leading to sub-optimal learning for the classification task.

Additionally, to verify if C2C consistently created clusters and assigned high attention
weights to relevant patches. We randomly sampled Celiac Disease WSIs from our test set
and got the patches with their cluster allotment and attention weights reviewed by a med-
ical expert. The high importance patches highlighted damaged surface epithelium, which
indicates tissue inflammation present in Celiac Disease (Liu et al., 2020) and intraepithelial
lymphocytes in the surface epithelium, which is a histopathologic feature used for Celiac
Disease diagnosis (Oberhuber, 2000). Medical expert review has been explained in detail in
the Appendix with figure Figure 3 showing sampled patches from each cluster in descending
order of their attention weights.

In the CAMELYON16 dataset, by training the model only on slide-level labels, C2C
achieved a strong performance of 0.9112 ROC-AUC score on the test dataset. This perfor-
mance would have ranked second on the classification portion of CAMELYON16 challenge
(best model by Wang et al. (2016) achieved an AUC score of 0.9223) and seventh on the open
leaderboard(Bejnordi et al., 2017). We have reported a competitive performance compared

1. https://github.com/MSKCC-Computational-Pathology/MIL-nature-medicine-2019
2. https://github.com/GutIntelligenceLab/histo visual recog

7



C2C

Figure 2: Inclusion of KL-divergence regularizes the attention value corresponding to the
positive instance classes - 8 and 9. When the model was trained with a) Bag loss
or b) Bag and Instance loss, the attention module randomly selected one of the
positive instance classes and gave it the highest attention value. In contrast, when
the model was trained with Bag, Instance, and KL-divergence loss, the attention
module gave equal importance to both the positive instance classes - 8 and 9.

to fully supervised techniques trained using detailed pathologist annotations 3. Details of
our model and examples of high attentive patches overlaid on the tumor maps are shared
in the Appendix section. We observed that C2C could accurately identify the patches with
tumor regions and assign them higher attention weights.

Using MNIST-bag data, we demonstrated the value of including KL-divergence in our
approach. The inclusion of KL-divergence regularizes the high instance variance of attention
distribution observed in similar positive instances, Figure 2. All models reported in the
Figure 2 quickly converged to higher accuracy as expected in the MNIST-bag experiment.
However, without KL-divergence loss, attention weights for positive instance classes 8 and
9 were highly variable in different bags. We observed that by including KL-divergence loss,
attention weight became more uniform for both the positive instance classes.

5. Conclusion

In this paper, we proposed an end-to-end Whole Slide Image (WSI) Classification framework
using clustering-based sampling technique, adaptive attention module, and KL-divergence
loss. We demonstrated strong performance of the proposed framework for celiac disease
and breast cancer classification. C2C is able to achieve comparable performance to fully
supervised methods trained using detailed pathologist annotation. This highlights the power
of building strong MIL frameworks. More importantly, clusters with high attention maps
in breast cancer overlap with pathologist-annotated tumor areas, and top clusters of celiac
disease match the patterns deemed important by medical experts for diagnosing celiac
disease. In our future work, we will explore the performance of the C2C framework on
multi-class and sub-type classification problems.

3. https://camelyon16.grand-challenge.org/Results/
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Appendix A. Example and UMAP Plot of WSI

Figure 3: a) Gastrointestinal Dataset - Patches sampled from clusters of different whole slide
images in decreasing order of attention importance for detecting Celiac disease. b)
CAMELYON Dataset - Top figure contains the actual tumor regions annotated
by the pathologists, and the bottom figure contains the patches assigned high
attention importance by our model.

Figure 4: WSI embedding representation of Celiac and Normal biopsies in the test dataset.
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Appendix B. MNIST Bag Set-Up

To investigate the impact of the inclusion of patch loss and KL-divergence loss to attention
map distribution, we used the well-known MNIST image bag dataset proposed in Ilse et al.
(2018). In MNIST, a bag is made up of 28× 28 grayscale images of random numbers. The
number of images in a bag is Gaussian-distributed, and the closest integer value is taken.
A bag is given a positive label if it contains either an ’8’ or a ’9’. For all experiments, a
LeNet5 model is used (LeCun et al., 1998) as an encoder with cluster sampling technique
and adaptive attention aggregation for bag prediction. In the experiments, we use a bag
of mean size 400 with a variance of 100 for creating problems similar to the WSI-modeling
scenario. We compared how the inclusion of instance and KL-divergence loss with bag loss
changed the distribution of attention weights. All of our experiments quickly converged
to an accuracy of 100% with a different distribution of attention weights. We report that
the inclusion KL-divergence loss regularizes the attention weight distribution for positive
instance classes.

Appendix C. Impact of Different Parameters on the Performance of
Celiac Disease vs. Histologically Normal Dataset and
Inference Time

Table 2: Performance of the model on test dataset with different number of clusters. For
training, we sample at max 64 (N ′) patches per WSI.

Number of Clusters Accuracy Precision Recall F1-Score

k=4 81.6 80.7 90.2 85.2
k=6 78.6 76.63 90.2 82.3
k=8 86.2 85.5 92.2 88.7
k=10 79.3 81.13 84.31 82.7

Table 3: Performance of the model on test dataset with different sampling strategies. For
training, we sampled at max 64 (N ′) patches per WSI.

Sampling Strategy Accuracy Precision Recall F1-Score

Cluster 86.2 85.5 92.2 88.7
Top-K 82.75 87.2 82.35 84.84
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Table 4: Sensitivity analysis of gamma (KL-divergence loss weight) on performance. For
training, we sampled at max 64 (N ′) patches per WSI.

KL-Divergence Loss Weight Accuracy Precision Recall F1-Score

γ = 1 81.6 87.2 80.4 83.7
γ = 0.1 86.2 85.5 92.2 88.7
γ = 0.01 83.9 84.9 88.2 86.5

Table 5: Performance of the model on test dataset with different pooling strategy. For
training, we sampled at max 64 (N ′) patches per WSI.

Pooling Strategy Accuracy Precision Recall F1-Score

Mean Pooling 85.05 85.1 90.1 87.6
Attention Pooling 86.2 85.5 92.2 88.7

Table 6: Inference time per WSI in test dataset.

Approach Inference time (sec)

C2C 2.2
Campanella-MIL 1.8
Campanella-MIL RNN 2.1
Two-Stage Mean 2.5
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Appendix D. Medical Expert Qualitative Review

WSI\Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

WSI-1 damaged
surface
epithelium
and con-
nective
tissue

damaged
tissue and
brunner
glands

connective
tissue and
brunner
glands

connective
tissue and
brunner
glands

crypt
cross sec-
tions with
crowded
epithelial
nuclei and
brunner
glands

connective
tissue and
brunner
glands

crowded
nuclei in
lamina
propria and
connective
tissue

crypt
cross sec-
tions with
crowded
epithelial
nuclei

WSI-2 damaged
surface
epithelium
and surface
epithe-
lium with
intraep-
ithelial
lympho-
cytes

crowded
nuclei in
lamina
propria and
epithelium
and dam-
aged tissue
surface
- which
maybe an
artifact
or due to
tissue in-
flammation

crowded
nuclei in
lamina
propria

crowded
nuclei in
lamina
propria

crowded
nuclei in
lamina pro-
pria with
crypt cross
sections

crowded
nuclei in
lamina pro-
pria with
crypt cross
sections

inconclusive:
has too
many
features:
crowded
nuclei in
lamina
propria,
damaged
surface
epithe-
lium, and
crypt cross
sections

crowded
nuclei in
lamina
propria

WSI-3 surface
epithe-
lium with
intraep-
ithelial
lympho-
cytes

damaged
surface
epithe-
lium and
tissue sur-
face with
crowded
nuclei

artefactual
tissue sepa-
ration with
crowded
nuclei

crowded
nuclei and
connective
tissue in
lamina
propria

crowded
nuclei and
connective
tissue in
lamina
propria

crypt
cross sec-
tions with
prominent
enteroen-
docrine
cells and
paneth cells

crowded
nuclei in
lamina
propria and
crypt cross
sections

crowded
nuclei in
lamina
propria and
crypt cross
sections

WSI-4 surface
epithe-
lium with
intraep-
ithelial
lympho-
cytes

Less colum-
nar surface
epithe-
lium with
intraep-
ithelial
lympho-
cytes

Less colum-
nar surface
epithe-
lium with
intraep-
ithelial
lympho-
cytes and
connective
tissue

crypt
cross sec-
tions with
crowded
epithelial
nuclei

areas of
connec-
tive tissue
within and
outside
lamina
propria

crypt
cross sec-
tions with
crowded
epithelial
nuclei

crypt cross
sections
with promi-
nent paneth
cells

crypt cross
sections
with promi-
nent paneth
cells

In the table above, we present a qualitative assessment of the patch clusters by a med-
ical expert. Cluster 1 was of the highest importance, while Cluster 8 was the lowest. Top
clusters (Cluster 1) for the WSIs included histopathologic features important for celiac dis-
ease diagnosis along with the assessment of tissue inflammation and celiac disease severity.
These include intraepithelial lymphocytes, diagnosis and severity assessment as per mod-
ified Marsh-Oberhuber classification (Oberhuber, 2000), and damaged surface epithelium
indicative of tissue injury due to inflammation (Liu et al., 2020). Other histopathologic
features identified were brunner glands and less columnar epithelium comparison to histo-
logically normal duodenum. These findings are supported by literature to be present in
intestinal inflammation due to enteropathies such as celiac disease where brunner gland hy-
perplasia (Liu et al., 2020) and loss of columnar epithelium is noted (Dickson et al., 2006).
Enteroendocrine cells were also noted in Cluster 6 of WSI 3 that have been reported to be
present in duodenal biopsies of patients with refractory celiac disease (Di Sabatino et al.,
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2014). These findings show that our method utilized medically relevant histopathologic
features to cluster patches from WSIs.

Appendix E. CAMELYON16 Model and Examples

For the CAMELYON16 model, we used ResNet 18 as the backbone encoder with α = 0.01
for WSI loss, β = 1 for Patch loss, and γ = 0.01 for KL-Divergence loss. As suggested in
Raghu et al., we reinitialized running mean to unit distribution and running std to zero
along with increasing momentum to 0.9 to tackle for small batch-size. The model was
trained with 85%-15% training-validation split for 30 epochs with Adam optimizer and a
learning rate of 1e − 4. The number of clusters (k = 8) and patches sampled per cluster
(k′ = 8) was kept similar to our experiment with the celiac disease dataset.

Figure 5: Cancerous WSIs from CAMELYON16 data with pathologist-annotated tumor
area and deep learning assigned attention distribution. For each WSI, left figure
shows the pathologist annotation and right shows the deep learning results.
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Appendix F. Limitations

In this section, we present the limitations we observed in our approach. A batch size of 1 WSI
is used for training, leading to unstable peaks in training depending on the normalization
strategy adopted. In the proposed MIL framework, each batch contains 64 patches from
a WSI; hence, the batch normalization is typically used for WSI normalization in each
iteration. We used momentum tuning and reinitialize running mean and std to stabilize
the training as proposed in Raghu et al.. Clustering is also a time-intensive step and can
slow down the training. Xie et al. (2020) randomly sampled 10% of the slides in their
global clustering approach for handling the large number of patches coming from a WSI.
We will experiment with similar strategies for optimizing C2C training without impacting
the performance in our future work.
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