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ABSTRACT

Classical wisdom suggests that estimators should avoid fitting noise to achieve
good generalization. In contrast, modern overparameterized models can yield
small test error despite interpolating noise — a phenomenon often called “benign
overfitting” or “harmless interpolation”. This paper argues that the degree to which
interpolation is harmless hinges upon the strength of an estimator’s inductive bias,
i.e., how heavily the estimator favors solutions with a certain structure: while
strong inductive biases prevent harmless interpolation, weak inductive biases can
even require fitting noise to generalize well. Our main theoretical result establishes
tight non-asymptotic bounds for high-dimensional kernel regression that reflect this
phenomenon for convolutional kernels, where the filter size regulates the strength
of the inductive bias. We further provide empirical evidence of the same behavior
for deep neural networks with varying filter sizes and rotational invariance.

1 INTRODUCTION

According to classical wisdom (see, e.g., Hastie et al. (2001)), an estimator that fits noise suffers
from “overfitting” and cannot generalize well. A typical solution is to prevent interpolation, that is,
stopping the estimator from achieving zero training error and thereby fitting less noise. For example,
one can use ridge regularization or early stopping for iterative algorithms to obtain a model that
has training error close to the noise level. However, large overparameterized models such as neural
networks seem to behave differently: even on noisy data, they may achieve optimal test performance
at convergence after interpolating the training data (Nakkiran et al., 2021; Belkin et al., 2019a) — a
phenomenon referred to as harmless interpolation (Muthukumar et al., 2020) or benign overfitting
(Bartlett et al., 2020) and often discussed in the context of double descent (Belkin et al., 2019a).

To date, we lack a general understanding of when interpolation is harmless for overparameterized
models. In this paper, we argue that the strength of an inductive bias critically influences whether
an estimator exhibits harmless interpolation. An estimator with a strong inductive bias heavily
favors “simple” solutions that structurally align with the ground truth (such as sparsity or rotational
invariance). Based on well-established high-probability recovery results of sparse linear regression
(Tibshirani, 1996; Candes, 2008; Donoho & Elad, 2006), we expect that models with a stronger
inductive bias generalize better than ones with a weaker inductive bias, particularly from noiseless
data. In contrast, the effects of inductive bias are much less studied for interpolators of noisy data.

Recently, Donhauser et al. (2022) provided a first rigorous analysis of the effects of inductive bias
strength on the generalization performance of linear max-ℓp-margin/min-ℓp-norm interpolators. In
particular, the authors prove that a stronger inductive bias (small p → 1) not solely enhances a
model’s ability to generalize on noiseless data, but also increases a model’s sensitivity to noise —
eventually harming generalization when interpolating noisy data. As a consequence, their result
suggests that interpolation might not be harmless when the inductive bias is too strong.

In this paper, we confirm the hypothesis and show that strong inductive biases indeed prevent harmless
interpolation, while also moving away from sparse linear models. As one example, we consider data
where the true labels nonlinearly only depend on input features in a local neighborhood, and vary
the strength of the inductive bias via the filter size of convolutional kernels or shallow convolutional
neural networks — small filter sizes encourage functions that depend nonlinearly only on local
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neighborhoods of the input features. As a second example, we also investigate classification for
rotationally invariant data, where we encourage different degrees of rotational invariance for neural
networks. In particular,

• we prove a phase transition between harmless and harmful interpolation that occurs by
varying the strength of the inductive bias via the filter size of convolutional kernels for kernel
regression in the high-dimensional setting (Theorem 1).

• we further show that, for a weak inductive bias, not only is interpolation harmless but
partially fitting the observation noise is in fact necessary (Theorem 2).

• we show the same phase transition experimentally for neural networks with two common
inductive biases: varying convolution filter size, and rotational invariance enforced via data
augmentation (Section 4).

From a practical perspective, empirical evidence suggests that large neural networks not necessarily
benefit from early stopping. Our results match those observations for typical networks with a weak
inductive bias; however, we caution that strongly structured models must avoid interpolation, even if
they are highly overparameterized.

2 RELATED WORK

We now discuss three groups of related work and explain how their theoretical results cannot reflect
the phase transition between harmless and harmful interpolation for high-dimensional kernel learning.

Low-dimensional kernel learning: Many recent works (Bietti et al., 2021; Favero et al., 2021; Bietti,
2022; Cagnetta et al., 2022) prove statistical rates for kernel regression with convolutional kernels in
low-dimensional settings, but crucially rely on ridge regularization. In general, one cannot expect
harmless interpolation for such kernels in the low-dimensional regime (Rakhlin & Zhai, 2019;
Mallinar et al., 2022; Buchholz, 2022); positive results exist only for very specific adaptive spiked
kernels (Belkin et al., 2019b). Furthermore, techniques developed for low-dimensional settings (see,
e.g., Schölkopf et al. (2018)) usually suffer from a curse of dimensionality, that is, the bounds become
vacuous in high-dimensional settings where the input dimension grows with the number of samples.

High-dimensional kernel learning: One line of research (Liang et al., 2020; McRae et al., 2022; Liang
& Rakhlin, 2020; Liu et al., 2021) tackles high-dimensional kernel learning and proves non-asymptotic
bounds using advanced high-dimensional random matrix concentration tools from El Karoui (2010).
However, those results heavily rely on a bounded Hilbert norm assumption. This assumption is
natural in the low-dimensional regime, but misleading in the high-dimensional regime, as pointed out
in Donhauser et al. (2021b). Another line of research (Ghorbani et al., 2021; 2020; Mei et al., 2021;
Ghosh et al., 2022; Misiakiewicz & Mei, 2021; Mei et al., 2022) asymptotically characterizes the
precise risk of kernel regression estimators in specific settings with access to a kernel’s eigenfunctions
and eigenvalues. However, these asymptotic results are insufficient to investigate how varying the filter
size of a convolutional kernel affects the risk of a kernel regression estimator. In contrast to both lines
of research, we prove tight non-asymptotic matching upper and lower bounds for high-dimensional
kernel learning which precisely capture the phase transition described in Section 3.2.

Overfitting of structured interpolators: Several works question the generality of harmless interpolation
for models that incorporate strong structural assumptions. Examples include structures enforced
via data augmentation (Nishi et al., 2021), adversarial training (Rice et al., 2020; Kamath et al.,
2021; Sanyal et al., 2021; Donhauser et al., 2021a), neural network architectures (Li et al., 2021),
pruning-based sparsity (Chang et al., 2021), and sparse linear models (Wang et al., 2022; Muthukumar
et al., 2020; Chatterji & Long, 2022). In this paper, we continue that line of research and offer a new
theoretical perspective to characterize when interpolation is expected to be harmless.

3 THEORETICAL RESULTS

For convolutional kernels, a small filter size induces a strong bias towards estimators that depend
nonlinearly on the input features only via small patches. This section analyzes the effect of filter size
(as an example inductive bias) on the degree of harmless interpolation for kernel ridge regression.
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For this purpose, we derive and compare tight non-asymptotic bias and variance bounds as a function
of filter size for min-norm interpolators and optimally ridge-regularized estimators (Theorem 1). Fur-
thermore, we prove for large filter sizes that not only does harmless interpolation occur (Theorem 1),
but fitting some degree of noise is even necessary to achieve optimal test performance (Theorem 2).

3.1 SETTING

We study kernel regression with a (cyclic) convolutional kernel in a high-dimensional setting where
the number of training samples n scales with the dimension of the input data d as n ∈ Θ(dℓ). We use
the same setting as in previous works on high-dimensional kernel learning such as Misiakiewicz &
Mei (2021): we assume that the training samples {xi, yi}ni=1 are i.i.d. draws from the distributions
xi ∼ U({−1, 1}d), and yi = f⋆(xi)+ϵi with ground truth f⋆ and noise ϵ ∼ N (0, σ2). For simplicity
of exposition, we further assume that f⋆(x) = x1x2 · · ·xL∗ , with L∗ specified in Theorem 1.

While the assumptions on the noise and ground truth can be easily extended by following the proof
steps in Section 5, generalizing the feature distribution is challenging. Indeed, existing results that
establish precise risk characterizations (see Section 2) crucially rely on hypercontractivity of the
feature distribution — an assumption so far only proven for few high-dimensional distributions,
including the hypersphere (Beckner, 1992), and the discrete hypercube (Beckner, 1975) which we
use in this paper. Hypercontractivity is essential to tightly control the empirical kernel matrix within
Lemma 3 in Section 5. Generalizations beyond this assumption require the development of new tools
in random matrix theory, which we consider important future work.

We consider (cyclic) convolutional kernels with filter size q ∈ {1, . . . , d} of the form

K(x, x′) =
1

d

d∑

k=1

κ

(
⟨x(k,q), x′(k,q)⟩

q

)
, (1)

where x(k,q) := [xmod(k,d) · · ·xmod(k+q−1,d)], and κ : [−1, 1] → R is a nonlinear function that
implies standard regularity assumptions (see Assumption 1 in Appendix B) that hold for instance for
the exponential function. Decreasing the filter size q restricts kernel regression solutions to depend
nonlinearly only on local neighborhoods instead of the entire input x.

We analyze the kernel ridge regression (KRR) estimator, which is the minimizer of the following
convex optimization problem:

f̂λ = argmin
f∈H

1

n

n∑

i=1

(f(xi)− yi)
2 +

λ

n
∥f∥2H, (2)

where H is the Reproducing Kernel Hilbert space (RKHS) over {−1, 1}d generated by the convolu-
tional kernel K in Equation (1), ∥·∥H the corresponding norm, and λ > 0 the ridge regularization
penalty.1 In the interpolation limit (λ→ 0), we obtain the min-RKHS-norm interpolator

f̂0 = argmin
f∈H

∥f∥H s.t. ∀i : f(xi) = yi. (3)

For simplicity, we refer to f̂0 as the kernel ridge regression estimator with λ = 0. We evaluate all
estimators with the expected population risk over the noise, defined as

Risk(f̂λ) := Ex

[(
Eϵ[f̂λ(x)]− f⋆(x)

)2]

︸ ︷︷ ︸
:=Bias2(f̂λ)

+Ex,ϵ

[(
f̂λ(x)− Eϵ[f̂λ(x)]

)2]

︸ ︷︷ ︸
:=Variance(f̂λ)

.

3.2 MAIN RESULT

We now present tight upper and lower bounds for the prediction error of kernel regression estimators
in the setting from Section 3.1. The resulting rates hold for the high-dimensional regime, that is,
when both the ambient dimension d and filter size q scale with n.2 We defer the proof to Section 5.

1Note that previous works show how early-stopped gradient methods on the square loss behave statistically
similarly to kernel ridge regression (Raskutti et al., 2014; Wei et al., 2017).

2We hide positive constants that depend at most on ℓ and β (defined in Theorem 1) using the standard
Bachmann–Landau notation O(·), Ω(·), Θ(·), as well as ≲, ≳, and use c, c1, . . . as generic positive constants.

3



Published as a conference paper at ICLR 2023

Theorem 1 (Non-asymptotic prediction error rates). Let ℓ > 0, β ∈ (0, 1), ℓσ ∈ R. Assume a dataset
and a kernel as described in Section 3.1, with the kernel satisfying Assumption 1. Assume further
n ∈ Θ(dℓ), the filter size q ∈ Θ

(
dβ
)
, and σ2 ∈ Θ(d−ℓσ ). Lastly, define δ̄ := ℓ−1

β − ⌊ ℓ−1
β ⌋ and

δ := ℓ−ℓλ−1
β − ⌊ ℓ−ℓλ−1

β ⌋ for any ℓλ. Then, with probability at least 1− cd−βmin{δ̄,1−δ̄} uniformly

over all ℓλ ∈ [0, ℓ− 1), the KRR estimate f̂λ in Equation (2) with max{λ, 1} ∈ Θ(dℓλ) satisfies

Variance(f̂λ) ∈ Θ
(
n

−ℓσ−ℓλ
ℓ − β

ℓ min{δ,1−δ}
)
.

Further, for a ground truth f⋆(x) = x1x2 · · ·xL∗ with L∗ ≤
⌈
ℓ−ℓλ−1

β

⌉
, with probability at least

1− cd−βmin{δ̄,1−δ̄}, we have

Bias2(f̂λ) ∈ Θ
(
n−2− 2

ℓ (−ℓλ−1−β(L∗−1))
)
.

Finally, by setting ℓλ = 0, both rates also hold for the min-RKHS-norm interpolator f̂0 in Eq. (3).

Note how the theorem reflects the usual intuition for the effects of noise and ridge regularization
strength on bias and variance via the parameter ℓλ: With increasing ridge regularization ℓλ (and thus
increasing λ), the bias increases and the variance decreases. Similarly, as noise increases (and thus
ℓσ decreases), the variance increases.

Phase transition as a function of β: In the following, we focus on the impact of the filter size
q ∈ Θ

(
dβ
)

on the risk (sum of bias and variance) via the growth rate β. Recalling that a small filter
size (small β) corresponds to a strong inductive bias, and vice versa, Figure 1 demonstrates how
the strength of the inductive bias affects generalization. For illustration, we choose the ground truth
f⋆(x) = x1x2 so that the assumption on L∗ is satisfied for all β. Specifically, Figure 1a shows the
rates for the min-RKHS-norm interpolator f̂0 and the optimally ridge-regularized estimator f̂λopt ,
where we choose λopt to minimize the expected population risk Risk(f̂λopt). Furthermore, Figure 1b
depicts the (statistical) bias and variance of the interpolator f̂0. At the threshold β∗ ∈ (0, 1), implicitly
defined as the β at which the rates of statistical bias and variance in Theorem 1 match, we can observe
the following phase transition:

• For β < β∗, that is, for a strong inductive bias, the rates in Figure 1a for the optimally ridge-
regularized estimator f̂λopt are strictly better than the ones for the corresponding interpolator
f̂0. In other words, we are observing harmful interpolation.

• For β > β∗, that is, for a weak inductive bias, the rates in Figure 1a of the optimally
ridge-regularized estimator f̂λopt and the min-RKHS-norm interpolator f̂0 match. Hence, we
observe harmless interpolation.

In the following theorem, we additionally show that interpolation is not only harmless for β > β∗, but
the optimally ridge-regularized estimator f̂λopt necessarily fits part of the noise and has a training error
strictly below the noise level. In contrast, we show that when interpolation is harmful in Figure 1a,
that is, when β < β∗, the training error of the optimally ridge-regularized model approaches the
noise level.
Theorem 2 (Training error (informal)). Let λopt be such that the expected population risk Risk(f̂λopt)

is minimal, and let β∗ be the unique threshold3 where the bias and variance bounds in Theorem 1
are of the same order for the interpolator f̂0 (setting ℓλ = 0). Then, the expected training error
converges in probability:

lim
n,d→∞

1

σ2
Eϵ

[
1

n

∑

i

(f̂λopt(xi)− yi)
2

] {
= 1 β < β∗,

≤ cβ β ≥ β∗,

where cβ < 1 for any β > β∗.

We refer to Appendix D.2 for the proof and a more general statement.

3See Theorem 4 for a more general statement that does not rely on a unique β∗.
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(a) Interpolating vs. regularized model
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(b) Variance vs. bias for interpolating model

Figure 1: Illustration of the rates in Theorem 1 for high-dimensional kernel ridge regression as a function of
β — the rate of the filter size q ∈ Θ(dβ). (a) Rate exponent α of the Risk ∈ Θ(nα) for the interpolator f̂0 vs.
the optimally ridge-regularized estimator f̂λopt . (b) Rate exponent of the variance and bias for the interpolator
f̂0. For both illustrations, we choose f̂0 with ℓ = 2, ℓσ = 0.6, and the ground truth f⋆(x) = x1x2. Lastly, β∗

denotes the threshold where the bias and variance terms in Theorem 1 match, and where we observe a phase
transition between harmless and harmful interpolation. See Appendix D.1 for technical details.

Bias-variance trade-off: We conclude by discussing how the phase transition arises from a (statistical)
bias and variance trade-off for the min-RKHS-norm interpolator as a function of β, reflected in
Theorem 1 when setting ℓλ = 0 and illustrated in Figure 1b. While the statistical bias monotonically
decreases with decreasing β (i.e., increasing strength of the inductive bias), the variance follows a
multiple descent curve with increasing minima as β decreases. Hence, analogous to the observations
in Donhauser et al. (2022) for linear max-ℓp-margin/min-ℓp-norm interpolators, the interpolator
achieves its optimal performance at a β ∈ (0, 1), and therefore at a moderate inductive bias. Finally,
we note that Liang et al. (2020) previously observed a multiple descent curve for the variance, but as
a function of input dimension and without any connection to structural biases.

4 EXPERIMENTS

We now empirically study whether the phase transition phenomenon that we prove for kernel
regression persists for deep neural networks with feature learning. More precisely, we present
controlled experiments to investigate how the strength of a CNN’s inductive bias influences if
interpolating noisy data is harmless. In practice, the inductive bias of a neural network varies by
way of design choices such as the architecture (e.g., convolutional vs. fully-connected vs. graph
networks) or the training procedure (e.g., data augmentation, adversarial training). We focus on two
examples: convolutional filter size that we vary via the architecture, and rotational invariance via data
augmentation. To isolate the effects of inductive bias and provide conclusive results, we use datasets
where we know a priori that the ground truth exhibits a simple structure that matches the networks’
inductive bias. See Appendix E for experimental details.

Analogous to ridge regularization for kernels, we use early stopping as a mechanism to prevent noise
fitting. Our experiments compare optimally early-stopped CNNs to their interpolating versions. This
highlights a trend that mirrors our theoretical results: the stronger the inductive bias of a neural
network grows, the more harmful interpolation becomes. These results suggest exciting future work:
proving this trend for models with feature learning.

4.1 FILTER SIZE OF CNNS ON SYNTHETIC IMAGES

In a first experiment, we study the impact of filter size on the generalization of interpolating CNNs.
As a reminder, small filter sizes yield functions that depend nonlinearly only on local neighborhoods
of the input features. To clearly isolate the effects of filter size, we choose a special architecture on a
synthetic classification problem such that the true label function is indeed a CNN with small filter
size. Concretely, we generate images of size 32× 32 containing scattered circles (negative class) and
crosses (positive class) with size at most 5× 5. Thus, decreasing filter size down to 5× 5 corresponds
to a stronger inductive bias. Motivated by our theory, we hypothesize that interpolating noisy data is
harmful with a small filter size, but harmless when using a large filter size.
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Figure 2: Convolutional neural network experiments with varying filter size on synthetic image data. (a) For
noisy data, small filter sizes (strong inductive bias) induce a gap between the generalization performance of
interpolating (blue) vs. optimally early-stopped models (yellow). The gap vanishes as the inductive bias decreases
(i.e., filter size increases). For noiseless data (dashed), interpolation is always harmless. (b) Training error of the
optimally early-stopped model (optimized for test error) on the noisy and clean subsets of a training set with
20% label noise. Under optimal early stopping, models with a strong inductive bias ignore all noisy samples
(100% error on the noisy subset), while models with a weak inductive bias fit all noisy training samples (0%
error on the noisy subset). All lines show the mean over five random datasets, and shaded areas the standard
error; see Section 4.1 for the experiment setup.

Training setup: In the experiments, we use CNNs with a single convolutional layer, followed by global
spatial max pooling and two dense layers. We train those CNNs with different filter sizes on 200
training samples (either noiseless or with 20% label flips) to minimize the logistic loss and achieve
zero training error. We repeat all experiments over 5 random datasets with 15 optimizations per
dataset and filter size, and report the average 0-1-error for 100k test samples per dataset. For a detailed
discussion on the choice of hyperparameters and more experimental details, see Appendix E.1.

Results: First, the noiseless error curves (dashed) in Figure 2a confirm the common intuition that
the strongest inductive bias (matching the ground truth) at size 5 yields the lowest test error. More
interestingly, for 20% training noise (solid), Figure 2a reveals a similar phase transition as Theorem 1
and confirms our hypothesis: Models with weak inductive biases (large filter sizes) exhibit harmless
interpolation, as indicated by the matching test error of interpolating (blue) and optimally early-
stopped (yellow) models. In contrast, as filter size decreases, models with a strong inductive bias
(small filter sizes) suffer from an increasing gap in test errors when interpolating versus using
optimal early stopping. Furthermore, Figure 2b reflects the dual perspective of the phase transition as
presented in Theorem 2 under optimal early stopping: models with a small filter size entirely avoid
fitting training noise, such that the training error on the noisy training subset equals 100%, while
models with a large filter size interpolate the noise.

Difference to double descent: One might suspect that our empirical observations simply reflect
another form of double descent (Belkin et al., 2019a). As a CNN’s filter size increases (inductive
bias becomes weaker), so does the number of parameters and degree of overparameterization. Thus,
double descent predicts vanishing benefits of regularization due to model size for weak inductive
biases. Nevertheless, we argue that the phenomenon we observe here is distinct, and provide an
extended discussion in Appendix E.3. In short, we choose sufficiently large networks and tune their
hyperparameters to ensure that all models interpolate and yield small training loss, even for filter
size 5 and 20% training noise. To justify this approach, we repeat a subset of the experiments while
significantly increasing the convolutional layer width. As the number of parameters increases for
a fixed filter size, double descent would predict that the benefits of optimal early stopping vanish.
However, we observe that our phenomenon persists. In particular, for filter size 5 (strongest inductive
bias), the test error gap between interpolating and optimally early-stopped models remains large.

4.2 ROTATIONAL INVARIANCE OF WIDE RESIDUAL NETWORKS ON SATELLITE IMAGES

In a second experiment, we investigate rotational invariance as an inductive bias for CNNs whenever
true labels are independent of an image’s rotation. Our experiments control inductive bias strength
by fitting models on multiple rotated versions of an original training dataset, effectively performing
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(b) Training error of optimally early-stopped models

Figure 3: Varying degrees of rotational invariance when fitting Wide Residual Networks on satellite images.
(a) For noisy data (solid), a strong bias towards rotational invariance (via the number of augmented rotations)
induces a gap between the generalization performance of interpolating (blue) vs. optimally early-stopped models
(yellow). The gap decreases as the inductive bias decreases (# rotations decreases). (b) Training error of
optimally early-stopped models (w.r.t. the test error) on the noisy and clean subsets of a training set with 20%
label noise: For maximum rotational invariance (12 rotations), optimally early-stopped models avoid fitting
noisy data (close to 100% training error on noisy subset), yet no rotational invariance (1 rotation) requires fitting
noise (less than 50% training error on noisy subset) for optimal generalization. All lines show the mean over
five optimization runs, and shaded areas the standard error; see Section 4.2 for the experiment setup.

varying degrees of data augmentation.4 As an example dataset with a rotationally invariant ground
truth, we classify satellite images from the EuroSAT dataset (Helber et al., 2018) into 10 types of land
usage. Because the true labels are independent of image orientation, we expect rotational invariance
to be a particularly fitting inductive bias for this task.

Training and test setup: For computational reasons, we subsample the original EuroSAT training set
to 7680 raw training and 10k raw test samples. In the noisy case, we replace 20% of the raw training
labels with a wrong label chosen uniformly at random. We then vary the strength of the inductive
bias towards rotational invariance by augmenting the dataset with an increasing number of k rotated
versions of itself. For each sample, we use k equal-spaced angles spanning 360◦, plus a random offset.
Note that training noise applies before rotations, so that all rotated versions of the same image share
the same label. We then center-crop all rotated images such that they only contain valid pixels. In all
experiments, we fit Wide Residual Networks (Zagoruyko & Komodakis, 2016) on the augmented
training set for 5 different network initializations. We evaluate the 0-1-error on the randomly rotated
test samples to avoid distribution shift effects from image interpolation. All random rotations are the
same for all experiments and stay fixed throughout training. See Appendix E.2 for more experimental
details. Lastly, we perform additional experiments with larger models to differentiate from double
descent; see Appendix E.3 for the results and further discussions.

Results: Similar to the previous subsection, Figure 3a corroborates our hypothesis under rotational
invariance: stronger inductive biases result in lower test errors on noiseless data, but an increased
gap between the test errors of interpolating and optimally early-stopped models. In contrast to filter
size, the phase transition is more abrupt; invariance to 180◦ rotations already prevents harmless
interpolation. Figure 3b confirms this from a dual perspective, since all models with some rotational
invariance cannot fit noisy samples for optimal generalization.

5 PROOF OF THE MAIN RESULT

The proof of the main result, Theorem 1, proceeds in two steps: First, Section 5.1 presents a fixed-
design result that yields matching upper and lower bounds for the prediction error of general kernels
under additional conditions. Second, in Section 5.2, we show that the setting of Theorem 1 satisfies
those conditions with high probability over dataset draws.

4Data augmentation techniques can efficiently enforce rotational invariance; see, e.g., Yang et al. (2019).
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Notation Assuming that inputs are draws from a data distribution ν (i.e., x, x′ ∼ ν), we can
decompose and divide any continuous, positive semi-definite kernel function as

K(x, x′) =

∞∑

k=1

λkψk(x)ψk(x
′) =

m∑

k=1

λkψk(x)ψk(x
′)

︸ ︷︷ ︸
:=K≤m(x,x′)

+

∞∑

k=m+1

λkψk(x)ψk(x
′)

︸ ︷︷ ︸
:=K>m(x,x′)

, (4)

where {ψk}k≥1 is an orthonormal basis of the RKHS induced by ⟨f, g⟩ν := Ex∼ν [f(x)g(x)]
and the eigenvalues λk are sorted in descending order. In the following, we write [·]i,j to refer
to the entry in row i and column j of a matrix. Then, we define the empirical kernel matrix
for K as K ∈ Rn×n with [K]i,j := K(xi, xj), and analogously the truncated versions K≤m

and K>m for K≤m and K>m, respectively. Next, we utilize the matrices Ψ≤m ∈ Rn×m with
[Ψ≤m]i,l := ψl(xi), and D≤m := diag(λ1, . . . , λm). We further use the squared kernel S(x, x′) :=
Ez∼ν [K(x, z)K(z, x′)], its truncated versions S≤m and S>m, as well as the corresponding empirical
kernel matrices S,S≤m,S>m ∈ Rn×n. Next, for a symmetric positive-definite matrix, we write
µmin (·) and µmax(·) (or ∥·∥) to indicate the min and max eigenvalue, respectively, and µi(·) for the
i-th eigenvalue in decreasing order. Finally, we use ⟨·, ·⟩ for the Euclidean inner product in Rd.

5.1 GENERALIZATION BOUND FOR FIXED-DESIGN

First, Theorem 3 provides tight fixed-design bounds for the prediction error.

Theorem 3 (Generalization bound for fixed-design). Let K be a kernel that under a distribution ν
decomposes as K(x, x′) =

∑
k λkψk(x)ψk(x

′) with Ex∼ν [ψk(x)ψk′(x)] = δk,k′ , and {(xi, yi)}ni=1

be a dataset with yi = f⋆(xi) + ϵi for zero-mean σ2-variance i.i.d. noise ϵi and ground truth f⋆.

Define τ1 := min
{

nλm

max{λ,1} , 1
}

, τ2 := max
{

nλm+1

max{λ,1} , 1
}

, r1 := µmin(K>m)+λ
max{λ,1} , r2 := ∥K>m∥+λ

max{λ,1} .
Then, for any m ∈ N such that r1 > 0 and

∥∥∥Ψ⊺
≤mΨ≤m/n− Im

∥∥∥ ≤ 1

2
, (5)

the KRR estimate f̂λ in Equation (2) for any λ ≥ 0 has a variance upper and lower bounded by

r21τ
2
1

2r22(1.5 + r1)2
m

n
+

∑n
i=m+1 µi(S>m)

r22 max{λ, 1}2
≤ Variance(f̂λ)/σ2 ≤ 6

r22
r21

m

n
+

Tr (S>m)

r21 max{λ, 1}2
.

Furthermore, for any ground truth that can be expressed as f⋆(x) =
∑m

k=1 akψk(x) with a ∈ Rm
+

and ψk as defined in Equation (4), the bias is upper and lower bounded by

r21τ
2
1

(1.5 + r1)2
max{λ, 1}2

∥D−1
≤ma∥2

n2
≤ Bias2(f̂λ) ≤ 4

(
r22 + 1.5

r32
r21

)
τ2 max{λ, 1}2

∥D−1
≤ma∥2

n2
.

See Appendix A.1 for the proof. Note that this result holds for any fixed-design dataset. We derive
the main ideas from the proofs in Bartlett et al. (2020); Tsigler & Bartlett (2020), where the authors
establish tight bounds for the min-ℓ2-norm interpolator on independent sub-Gaussian features.

Remark 1 (Comparison with McRae et al. (2022)). The upper bound for the bias in Theorem 1 from
McRae et al. (2022) depends on the suboptimal term ∥D−1/2

≤m a∥/n, but also applies to more general
ground truths. We improve that upper bound in Theorem 3 and present a matching lower bound.

5.2 PROOF OF THEOREM 1

Throughout the remainder of the proof, all statements hold for the setting in Section 3.1 and under
the assumptions of Theorem 1, especially Assumption 1 on K, n ∈ Θ(dℓ), and max{λ, 1} ∈ Θ(dℓλ).
Furthermore, as in Theorem 1, we use δ, δ̄ > 0 with δ := ℓ−ℓλ−1

β −
⌊
ℓ−ℓλ−1

β

⌋
and δ̄ := ℓ−1

β −
⌊
ℓ−1
β

⌋
.

We show that there exists a particular m for which the conditions in Theorem 3 hold and we can
control the terms in the bias and variance bounds.
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Step 1: Conditions for the bounds in Theorem 3 We first derive sufficient conditions on m such
that the conditions on Ψ≤m and f⋆ in Theorem 3 hold with high probability. The following standard
concentration result shows that all m≪ n satisfy Equation (5) with high probability.
Lemma 1 (Corollary of Theorem 5.44 in Vershynin (2012)). For d large enough, with probability at
least 1− cd−βδ̄ , all m ∈ O(n · q−δ̄) satisfy Equation (5).

See Appendix C.1 for the proof. Simultaneously, to ensure that f⋆ is contained in the span of the first
m eigenfunctions, m must be sufficiently large. We formalize this in the following lemma.
Lemma 2 (Bias bound condition). Consider a kernel as in Theorem 1 satisfying Assumption 1, and a
ground truth f⋆(x) =

∏L∗

j=1 xj with 1 ≤ L∗ ≤
⌈
ℓ−ℓλ−1

β

⌉
. Then, for any m with λm ∈ o

(
1

dqL∗−1

)

and d sufficiently large, f⋆ is in the span of the first m eigenfunctions and
∥∥∥D−1

≤ma
∥∥∥ ∈ Θ

(
dqL

∗−1
)
.

See Appendix B.3 for the proof. Note that L∗ ≥ 1 follows from ℓλ < ℓ− 1 in Theorem 1, and allows
us to focus on non-trivial ground truth functions.

Step 2: Concentration of the (squared) kernel matrix In a second step, we show that there exists
a set of m that satisfy the sufficient conditions, and for which the spectra of the kernel matrix K>m

and squared kernel matrix S>m concentrate.

Lemma 3 (Tight bound conditions). With probability at least 1− cd−βmin{δ̄,1−δ̄} uniformly over
all ℓλ ∈ [0, ℓ − 1), for d sufficiently large and any λ ∈ R, m ∈ N with max{λ, 1} ∈ Θ(dℓλ),

nλm ∈ Θ(max{λ, 1}), and m ∈ O
(

nq−δ

max{λ,1}

)
, we have

r1, r2 ∈ Θ(1), Tr(S>m) ∈ O
(
dℓλq−δ + dℓλq−(1−δ)

)
,

n∑

i=m+1

µi(S>m) ∈ Ω
(
dℓλq−(1−δ)

)
.

We refer to Appendix C.3 for the proof, which heavily relies on the feature distribution. Note that the
results for m in Lemma 3 also imply τ1, τ2 ∈ Θ(1).

Step 3: Completing the proof Finally, we complete the proof by showing the existence of a
particular m that simultaneously satisfies all conditions of Lemmas 1 to 3.
Lemma 4 (Eigendecay). There exists an m such that

nλm ∈ Θ(max{λ, 1}) and m ∈ Θ

(
nq−δ

max{λ, 1}

)
⊆ O(n · q−δ̄).

Furthermore, assuming L∗ ≤
⌈
ℓ−ℓλ−1

β

⌉
, we have λm ∈ o

(
1

d·qL∗−1

)
.

We refer to Appendix B.4 for the proof. As a result, we can use Lemmas 1 to 4 to instantiate
Theorem 3 for the setting in Theorem 1, resulting in the following tight high-probability bounds for
variance and bias:

d−ℓλq−δ + d−ℓλq−(1−δ) ≲ Variance(f̂λ)/σ2 ≲ d−ℓλq−δ + d−ℓλq−(1−δ),

d−2(ℓ−ℓλ−1−β(L∗−1)) ≲ Bias2(f̂λ) ≲ d−2(ℓ−ℓλ−1−β(L∗−1)).

Reformulating the bounds in terms of n then concludes the proof of Theorem 1.

6 SUMMARY AND OUTLOOK

In this paper, we highlight how the strength of an inductive bias impacts generalization. Concretely,
we study when the gap in test error between interpolating models and their optimally ridge-regularized
or early-stopped counterparts is zero, that is, when interpolation is harmless. In particular, we prove a
phase transition for kernel regression using convolutional kernels with different filter sizes: a weak
inductive bias (large filter size) yields harmless interpolation, and even requires fitting noise for
optimal test performance, whereas a strong inductive bias (small filter size) suffers from suboptimal
generalization when interpolating noise. Intuitively, this phenomenon arises from a bias-variance
trade-off, captured by our main result in Theorem 1: with increasing inductive bias, the risk on
noiseless training samples (bias) decreases, while the sensitivity to noise in the training data (variance)
increases. Our empirical results on neural networks suggest that this phenomenon extends to models
with feature learning, which opens up an avenue for exciting future work.
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A GENERALIZATION BOUND FOR FIXED-DESIGN

We prove Theorem 3 by deriving a closed-form expression for the bias and variance, and bounding
them individually. Hence, the proof does not rely on any matrix concentration results.

A.1 PROOF OF THEOREM 3

It is well-known that the KRR problem defined in Equation (2) yields the estimator

f̂λ(x) = y⊺H−1k(x),

where x, xi ∼ ν, y := f+ϵ = [f⋆(x1)+ϵ1, . . . , f
⋆(xn)+ϵn]

⊺, k(x) := [K(x1, x), . . . ,K(xn, x)]
⊺,

and H := K+ λIn. For this estimator, both bias and variance exhibit a closed-form expression:

Bias2(f̂λ) = Ex∼ν [
(
f⋆(x)− Eϵ[(f + ϵ)⊺H−1k(x)]

)2
]

= Ex∼ν [
(
f⋆(x)− f⊺H−1k(x)

)2
]

= Ex∼ν

[
f⋆(x)2

]
− 2f⊺H−1Ex∼ν [f

⋆(x)k(x)] + f⊺H−1Ex∼ν [k(x)k(x)
⊺]H−1f

(i)
= a⊺a− 2a⊺Ψ⊺

≤mH−1Ψ≤mD≤ma+ a⊺Ψ⊺
≤mH−1SH−1Ψ≤ma, (6)

Variance(f̂λ)/σ2 =
1

σ2
Ex∼νEϵ[

(
(f + ϵ)⊺H−1k(x)− Eϵ[(f + ϵ)⊺H−1k(x)]

)2
]

=
1

σ2
Ex∼νEϵ[ϵ

⊺H−1k(x)k(x)⊺H−1ϵ]

=
1

σ2

∑

i,j

E[ϵiϵj ]
[
H−1Ex∼ν [k(x)k(x)

⊺]H−1
]
i,j

(i)
= Tr

(
H−1SH−1

)
. (7)

Step (i) uses the definition of the squared kernel S , that f⋆(x) =
∑m

k=1 akψk(x) as f⋆ is in the span
of the first m eigenfunctions, and the following consequences of the eigenfunctions’ orthonormality:

Ex∼ν

[
f⋆(x)2

]
=

m∑

k,k′=1

akak′Ex∼ν [ψk(x)ψk′(x)] =

m∑

k,k′=1

akak′δk,k′ = ∥a∥22,

Ex∼ν [[f
⋆(x)k(x)]i] =

m∑

k=1

∞∑

k′=1

akλk′Ex∼ν [ψk(x)ψk′(x)]ψk′(xi)

=

m∑

k=1

akλkψk(xi) = [Ψ≤mD≤ma]i .

We now bound the closed-form expressions of bias and variance individually.

Bias Lemma 5 below yields S = Ψ≤mD2
≤mΨ⊺

≤m + S>m. Hence, the bias decomposes into

Bias2(f̂λ) = a⊺a− 2a⊺Ψ⊺
≤mH−1Ψ≤mD≤ma+ a⊺Ψ⊺

≤mH−1Ψ≤mD2
≤mΨ⊺

≤mH−1Ψ≤ma

+ a⊺Ψ⊺
≤mH−1S>mH−1Ψ≤ma

=
∥∥∥
(
Im −D≤mΨ⊺

≤mH−1Ψ≤m

)
a
∥∥∥
2

︸ ︷︷ ︸
:=B1

+ a⊺Ψ⊺
≤mH−1S>mH−1Ψ≤ma︸ ︷︷ ︸

:=B2

.

First, we rewrite B1 as

B1 =
∥∥∥
(
Im −D≤mΨ⊺

≤mH−1Ψ≤m

)
a
∥∥∥
2

(i)
=

∥∥∥∥
(
D≤m −D≤mΨ⊺

≤m

(
Ψ≤mD≤mΨ⊺

≤m +H>m

)−1

Ψ≤mD≤m

)
D−1

≤ma

∥∥∥∥
2

(ii)
=

∥∥∥∥
(
D−1

≤m +Ψ⊺
≤mH−1

>mΨ≤m

)−1

D−1
≤ma

∥∥∥∥
2

, (8)
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where (i) uses the decomposition H = K≤m +H>m with H>m := K>m + λIn, and (ii) applies
the Woodbury matrix identity.

Second, we can upper-bound B2 as follows:

B2 ≤ ∥S>m∥a⊺Ψ⊺
≤mH−2Ψ≤ma = ∥S>m∥

(
D−1

≤ma
)⊺

D≤mΨ⊺
≤mH−2Ψ≤mD≤m

(
D−1

≤ma
)

(i)
= ∥S>m∥a⊺D−1

≤m

(
D−1

≤m +Ψ⊺
≤mH−1

>mΨ≤m

)−1

Ψ⊺
≤mH−2

>mΨ≤m

(
D−1

≤m +Ψ⊺
≤mH−1

>mΨ≤m

)−1

D−1
≤ma

≤ ∥S>m∥
∥∥∥Ψ⊺

≤mH−2
>mΨ≤m

∥∥∥
︸ ︷︷ ︸

:=C1

∥∥∥∥
(
D−1

≤m +Ψ⊺
≤mH−1

>mΨ≤m

)−1

D−1
≤ma

∥∥∥∥
2

︸ ︷︷ ︸
B1

,

where (i) uses Lemma 6. Thus, the bias can be bounded by B1(1 + C1) with C1 ≥ 0.

We proceed by upper bounding C1:

1 + C1 ≤ 1 + n∥S>m∥

∥∥∥∥∥
Ψ⊺

≤mΨ≤m

n

∥∥∥∥∥
1

µmin (H>m)
2

(i)

≤ 1 + 1.5
nλm+1∥K>m∥

(µmin (K>m) + λ)
2 ≤ 1 + 1.5

nλm+1 (∥K>m∥+ λ)

(µmin (K>m) + λ)
2

≤ 1 + 1.5
nλm+1

max{λ, 1}
max{λ, 1}2

(µmin (K>m) + λ)2
∥K>m∥+ λ

max{λ, 1}

≤ 1 + 1.5
r2
r21

nλm+1

max{λ, 1}
(ii)

≤
(
1 + 1.5

r2
r21

)
max

{
nλm+1

max{λ, 1}
, 1

}

=

(
1 + 1.5

r2
r21

)
τ2, (9)

where (i) uses Equation (5) to bound ∥Ψ⊺
≤mΨ≤m/n∥ and Lemma 7 to bound ∥S>m∥, and (ii)

follows from cx+ 1 ≤ (c+ 1)max{x, 1} for c ≥ 0.

Hence, to conclude the bias bound, we need to bound B1 in Equation (8) from above and below.

Upper bound:

B1 ≤

∥∥∥∥∥∥

(
D−1

≤m

n
+

Ψ⊺
≤mH−1

>mΨ≤m

n

)−1
∥∥∥∥∥∥

2

∥D−1
≤ma∥2

n2

≤ ∥H>m∥2

µmin

(
Ψ⊺

≤m
Ψ≤m

n

)2
∥D−1

≤ma∥2

n2

(i)

≤ 4 (∥K>m∥+ λ)
2 ∥D−1

≤ma∥2

n2

= 4r22 max{λ, 1}2
∥D−1

≤ma∥2

n2
(10)

where (i) follows from Equation (5).

Combining Equation (9) in (i) and Equation (10) in (ii) yields the desired upper bound on the bias:

Bias2 ≤ B1+B2 ≤ (1+C1)B1

(i)

≤
(
1 + 1.5

r2
r21

)
τ2B1

(ii)

≤ 4

(
1 + 1.5

r2
r21

)
r22τ2 max{λ, 1}2

∥D−1
≤ma∥2

n2
.
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Lower bound:

B1 ≥ µmin



(
D−1

≤m

n
+

Ψ⊺
≤mH−1

>mΨ≤m

n

)−1



2

∥D−1
≤ma∥2

n2

≥ 1
(

1
nλm

+ 1
µmin(H>m)

∥∥∥Ψ⊺
≤m

Ψ≤m

n

∥∥∥
)2

∥D−1
≤ma∥2

n2

(i)

≥




nλm

max{λ,1}

1.5 max{λ,1}
µmin(K>m)+λ

nλm

max{λ,1} + 1




2

max{λ, 1}2
∥D−1

≤ma∥2

n2

(ii)

≥
(

r1
1.5 + r1

)2

min

{
nλm

max{λ, 1}
, 1

}2

max{λ, 1}2
∥D−1

≤ma∥2

n2
,

=

(
r1

1.5 + r1

)2

τ21 max{λ, 1}2
∥D−1

≤ma∥2

n2
,

where (i) follows from Equation (5), and (ii) from the fact that x
cx+1 ≥ 1

1+c min{x, 1} for x, c ≥ 0.
Since Bias2 ≥ B1, this concludes the lower bound for the bias.

Variance As for the bias bound, we first apply Lemma 5 to write S = Ψ≤mD2
≤mΨ⊺

≤m + S>m

and decompose the variance in Equation (7) into

Variance(f̂λ)/σ2 = Tr
(
H−1Ψ≤mD2

≤mΨ⊺
≤mH−1

)

︸ ︷︷ ︸
:=V1

+Tr
(
H−1S>mH−1

)
︸ ︷︷ ︸

:=V2

. (11)

Next, we rewrite V1 as follows:

V1 = Tr
(
H−1Ψ≤mD2

≤mΨ⊺
≤mH−1

)
= Tr

(
D≤mΨ⊺

≤mH−2Ψ≤mD≤m

)

(i)
= Tr

((
D−1

≤m +Ψ⊺
≤mH−1

>mΨ≤m

)−1

Ψ⊺
≤mH−2

>mΨ≤m

(
D−1

≤m +Ψ⊺
≤mH−1

>mΨ≤m

)−1
)

=
1

n
Tr



(
D−1

≤m

n
+

Ψ⊺
≤mH−1

>mΨ≤m

n

)−1
Ψ⊺

≤mH−2
>mΨ≤m

n

(
D−1

≤m

n
+

Ψ⊺
≤mH−1

>mΨ≤m

n

)−1

 ,

where (i) follows from Lemma 6.

To bound V1 and V2, we use the fact that the trace is the sum of all eigenvalues. Therefore, the trace
is bounded from above and below by the size of the matrix times the largest and smallest eigenvalue,
respectively. This yields the following bounds for V1:

V1 ≤ m

n

∥∥∥∥∥∥

(
D−1

≤m

n
+

Ψ⊺
≤mH−1

>mΨ≤m

n

)−1
Ψ⊺

≤mH−2
>mΨ≤m

n

(
D−1

≤m

n
+

Ψ⊺
≤mH−1

>mΨ≤m

n

)−1
∥∥∥∥∥∥

(i)

≤ m

n
4r22 max{λ, 1}2

∥Ψ⊺
≤mΨ≤m/n∥

µmin (H>m)
2

(ii)

≤ 6
m

n
r22

max{λ, 1}2

(µmin (K>m) + λ)
2

= 6

(
r2
r1

)2
m

n
,
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and

V1 ≥ m

n
µmin



(
D−1

≤m

n
+

Ψ⊺
≤mH−1

>mΨ≤m

n

)−1
Ψ⊺

≤mH−2
>mΨ≤m

n

(
D−1

≤m

n
+

Ψ⊺
≤mH−1

>mΨ≤m

n

)−1



(iii)

≥ m

n

(
r1

1.5 + r1

)2

τ21 max{λ, 1}2
µmin

(
Ψ⊺

≤mΨ≤m/n
)

(∥K>m∥+ λ)
2

(iv)

≥ 1

2

m

n

(
r1

1.5 + r1

)2

τ21
max{λ, 1}2

(∥K>m∥+ λ)
2 =

1

2

m

n

(
r1

r2(1.5 + r1)

)2

τ21 .

For (i) and (iii), we bound the terms analogously to the upper and lower bound of B1, and use
Equation (5) in (ii) and (iv).

Next, the upper bound on V2 follows from a special case of Hölder’s inequality as follows:

V2 = Tr
(
H−1S>mH−1

)
≤ Tr (S>m) ∥H−2∥

=
Tr (S>m)

µmin (K≤m +H>m)
2 ≤ Tr (S>m)

µmin (H>m)
2 =

Tr (S>m)

r21 max{λ, 1}2
.

For the lower bound, we need a more accurate analysis. First, we apply the identity

H−1 = (H>m +K≤m)−1 = H−1
>m −H−1

>mK≤m(H>m +K≤m)−1

︸ ︷︷ ︸
:=A

, (12)

which is valid since H and H>m are full rank.

Next, note that the rank of A is bounded by the rank of K≤m, which can be written as
Ψ≤mD≤mΨ⊺

≤m and therefore has itself rank at most m. Furthermore, Equation (5) implies that
Ψ⊺

≤mΨ≤m has full rank, and hence m ≤ n.

Let now {v1, . . . , vrank(A)} be an orthonormal basis of col(A), and let {vrank(A)+1, . . . , vn} be an
orthonormal basis of col(A)⊥. Hence, {v1, . . . , vn} is an orthonormal basis of Rn, and similarity
invariance of the trace yields

V2 = Tr
(
H−1S>mH−1

)
=

n∑

i=1

v⊺i H
−1S>mH−1vi

≥
n∑

i=rank(A)+1

v⊺i H
−1S>mH−1vi

(i)
=

n∑

i=rank(A)+1

v⊺i (H
−1
>m −A)S>m(H−1

>m −A)vi

(ii)
=

n∑

i=rank(A)+1

v⊺i H
−1
>mS>mH−1

>mvi

≥ 1

∥H>m∥2
n∑

i=rank(A)+1

v⊺i S>mvi,

=
1

∥H>m∥2
Tr (P⊺S>mP) ,

where P is the projection matrix of Rn onto col(A)⊥, and (i) follows from Equation (12). Step (ii)
uses that, for all i > rank(A), vi is orthogonal to the column space of A, and hence

v⊺i (H
−1
>m −A)S>m(H−1

>m −A)vi

=v⊺i H
−1
>mS>mH−1

>mvi − v⊺i A︸︷︷︸
=0

S>mH−1
>mvi − v⊺i H

−1
>mS>m Avi︸︷︷︸

=0

+ v⊺i AS>mAvi︸ ︷︷ ︸
=0

.
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Finally, let µi(·) be the i-th eigenvalue of its argument with respect to a decreasing order. Then,
the Cauchy interlacing theorem yields µrank(A)+i(S≤m) ≤ µi(P

⊺S>mP) for all i = 1, . . . , n −
rank(A). This implies

Tr (P⊺S>mP) =

n−rank(A)∑

i=1

µi(P
⊺S>mP) ≥

n−rank(A)∑

i=1

µrank(A)+i(S>m)

=

n∑

i=1+rank(A)

µi(S>m)
(i)

≥
n∑

i=1+m

µi(S>m),

where (i) uses that the rank of A is bounded by m. This concludes the lower bound on V2 as follows:

V2 = Tr
(
H−1S>mH−1

)
≥
∑n

i=m+1 µi(S≤m)

∥H>m∥2
=

∑n
i=m+1 µi(S≤m)

r22 max{λ, 1}2
.

A.2 TECHNICAL LEMMAS

Lemma 5 (Squared kernel decomposition). Let K be a kernel function that under a distribution ν
can be decomposed as K(x, x′) =

∑
k λkψk(x)ψk(x

′), where Ex∼ν [ψk(x)ψk′(x)] = δk,k′ . Then,
the squared kernel S(x, x′) = Ez∼ν [K(x, z)K(x′, z)] can be written as

S(x, x′) =
∑

k

λ2kψk(x)ψk(x
′),

and for any m > 0, the corresponding kernel matrix can be written as S = Ψ≤mD2
≤mΨ⊺

≤m +S>m.

Proof. The statement simply follows from

S(x, x′) =
∑

k,k′

λkλk′ψk(x)Ez∼ν [ψk(z)ψk′(z)]︸ ︷︷ ︸
δk,k′

ψk′(x′) =
∑

k

λ2kψk(x)ψk(x
′).

Lemma 6 (Corollary of Lemma 20 in Bartlett et al. (2020)).

D≤mΨ⊺
≤mH−2Ψ≤mD≤m =

(
D−1

≤m +Ψ⊺
≤mH−1

>mΨ≤m

)−1

Ψ⊺
≤mH−2

>mΨ≤m

(
D−1

≤m +Ψ⊺
≤mH−1

>mΨ≤m

)−1

Proof.

D≤mΨ⊺
≤mH−2Ψ≤mD≤m = D

1/2
≤mD

1/2
≤mΨ⊺

≤mH−2Ψ≤mD
1/2
≤mD

1/2
≤m

(i)
= D

1/2
≤m

(
Im +D

1/2
≤mΨ⊺

≤mH−1
>mΨ≤mD

1/2
≤m

)−1

D
1/2
≤mΨ⊺

≤mH−2
>mΨ≤mD

1/2
≤m

(
Im +D

1/2
≤mΨ⊺

≤mH−1
>mΨ≤mD

1/2
≤m

)−1

D
1/2
≤m

=
(
D−1

≤m +Ψ⊺
≤mH−1

>mΨ≤m

)−1

Ψ⊺
≤mH−2

>mΨ≤m

(
D−1

≤m +Ψ⊺
≤mH−1

>mΨ≤m

)−1

,

where (i) applies Lemma 20 from Bartlett et al. (2020).

Lemma 7 (Squared kernel tail). For m > 0, let S>m be the kernel matrix of the truncated squared
kernel S>m =

∑
k>m λ2kψk(x)ψk(x

′), and let K>m be the kernel matrix of the truncated original
kernel K>m =

∑
k>m λkψk(x)ψk(x

′). Then,

∥S>m∥ ≤ λm+1∥K>m∥.
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Proof. We show that for any vector v, v⊺S>mv ≤ λm+1v
⊺K>mv, which implies the claim. To

do so, we define Ψk ∈ Rn×n with [Ψk]i,j = ψk(xi)ψk(xj) for all k > m. Then we can write
K>m =

∑
k>m λkΨk and S>m =

∑
k>m λ2kΨk. Since the eigenvalues are in decreasing order, we

have λk ≤ λm+1 for any k > m, and thus

v⊺S>mv =
∑

k>m

λ2kv
⊺Ψkv ≤ λm+1

∑

k>m

λkv
⊺Ψkv = λm+1v

⊺K>mv.

B CONVOLUTIONAL KERNELS ON THE HYPERCUBE

First, Appendix B.1 provides a way to decompose general functions for features distributed uniformly
on the hypercube. Next, Appendix B.2 uses those results to characterize the eigenfunctions and eigen-
values of cyclic convolutional kernels. Finally, Appendices B.3 and B.4 apply this characterization to
prove Lemmas 2 and 4, respectively.

B.1 GENERAL FUNCTIONS ON THE HYPERCUBE

This subsection focuses on the main setting in our paper: the hypercube domain {−1, 1}d together
with the uniform probability distribution, previously studied in Misiakiewicz & Mei (2021). For any
S ⊆ {1, . . . , d}, we define the polynomial

YS(x) :=
∏

j∈S

[x]j (13)

of degree |S|, where [x]j is the j-th entry of x ∈ {−1, 1}d. It is easy to see that {YS}S⊆{1,...,d} is set
of orthonormal functions with respect to the inner product ⟨f, g⟩{−1,1}d := Ex∼U({−1,1}d)[f(x)g(x)].
Those functions play a key role in the remainder of our proof; as it turns out, they are the eigenfunc-
tions of the kernel in Section 3.1. Towards a formal statement, define the polynomials

G(d)
l

(
⟨x, x′⟩√

d

)
:=

1

B(l, d)
∑

|S|=l

YS(x)YS(x
′), (14)

where B(l, d) := |{S ⊆ {1, . . . , d} | |S| = l}| =
(
d

l

)
. (15)

Note that G(d)
l only depends on the (Euclidean) inner product of x and x′. Furthermore, {G(d)

l }dl=0

is a set of orthonormal polynomials with respect to the distribution of ⟨x, x′⟩/
√
d. The following

lemma shows how such polynomials form an eigenbasis for functions that only depend on the inner
product between points in the unit hypercube.
Lemma 8 (Local kernel decomposition). Let κ : R → R be any function and d ∈ N>0. Then, for
any x, x′ ∈ {−1, 1}d, we can decompose κ(⟨x, x′⟩/d) as

κ

(
⟨x, x′⟩
d

)
=

d∑

l=0

ξ
(d)
l

1

B(l, d)
∑

|S|=l

YS(x)YS(x
′). (16)

Proof. Note that the decomposition only needs to hold at the evaluation of κ in the values that
⟨x, x′⟩/d can take, that is, κ computed in {−1,−1 + 2/d, . . . ,−2/d + 1, 1}. Since that set has a
cardinality d+1, we can write κ as a linear combination of d+1 uncorrelated functions. In particular,
{G(d)

l }dl=0 is a set of such functions with respect to the distribution of ⟨x, x′⟩/
√
d, and hence

κ

(
⟨x, x′⟩
d

)
=

d∑

l=0

clG(d)
l

(
⟨x, x′⟩√

d

)

for some (unknown) coefficients cl. Finally, the proof follows by expanding the definition of G(d)
l in

Equation (14) and choosing ξ(d)l = cl.
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B.2 CONVOLUTIONAL KERNELS ON THE HYPERCUBE

While the previous subsection considers general functions on the hypercube, we now focus on
convolutional kernels and their eigenvalues. This yields the tools to prove Lemmas 2 and 4. In order
to characterize eigenvalues, we first follow existing literature such as Misiakiewicz & Mei (2021) and
introduce useful quantities.

Let S ⊆ {1, . . . , d}. The diameter of S is

γ(S) := max
i,j∈S

min {mod (j − i, d) + 1,mod (i− j, d) + 1}

for S ̸= ∅, and γ(∅) = 0. Furthermore, we define

C(l, q, d) := |{S ⊆ {1, . . . , d} | |S| = l, γ(S) ≤ q}|. (17)

Intuitively, the diameter of S is the smallest number of contiguous feature indices that fully contain
S. The following lemma yields an explicit formula for C(l, q, d), that is, the number of sets of size l
with diameter at most q.
Lemma 9 (Number of overlapping sets). Let l, q, d ∈ N with l ≤ q < d/2. Then,

C(l, q, d) =

{
d
(
q−1
l−1

)
l > 0,

1 l = 0.

Proof. Since the result holds trivially for l = 0 and l = 1, we henceforth focus on l ≥ 2. Let
C̃(l, γ, d) be the number of subsets S ⊆ {1, . . . , d} of cardinality |S| = l with diameter exactly
γ(S) = γ. First, consider C̃(2, γ, d). For each set, we can choose the first element i from d different
values, and the second as mod ((i− 1)± (γ − 1), d) + 1. In this way, since q < d/2, we count each
set exactly twice. Thus,

C̃(2, γ, d) = d · 2
2

= d.

Next, consider l > 2. We can build all the possible sets by starting with one of the C̃(2, γ, d) = d
sets, and adding the remaining l − 2 elements from γ − 2 possible indices. Hence, every fixed set of
size 2 and diameter γ yields

(
γ−2
l−2

)
different sets of size l. Furthermore, by construction, every set of

size l and diameter γ results from exactly one set of size 2 and diameter γ. Therefore,

C̃(l, γ, d) = d

(
γ − 2

l − 2

)
.

The result for l ≥ 2 then follows from summing C̃(l, γ, d) over all diameters γ ≤ q:

C(l, q, d) = d

q∑

γ=l

(
γ − 2

l − 2

)
(i)
= d

(
q − 1

l − 1

)
,

where (i) follows from the hockey-stick identity.

Now, we focus on cyclic convolutional kernels K as in Equation (1). First, we restate Proposition 1
from Misiakiewicz & Mei (2021). This proposition establishes that YS for S ⊆ {1, . . . , d} are indeed
the eigenfunctions of K, and yields closed-form eigenvalues λS up to factors ξ(q)|S| that depend on the
inner nonlinearity κ. Next, Lemma 10 uses additional regularity assumptions on κ to eliminate the
dependency on ξ(q)|S| . This characterization of the eigenvalues then enables the proof Lemmas 2 and 4.

Proposition 1 (Proposition 1 from Misiakiewicz & Mei (2021)). Let K be a cyclic convolutional
kernel over the unit hypercube as defined in Equation (1). Then,

K(x, x′) :=
1

d

d∑

k=1

κ

( ⟨x(k,q), x′(k,q)⟩
q

)
=

q∑

l=0

∑

γ(S)≤q
|S|=l

λSYS(x)YS(x
′),
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with

λS = ξ
(q)
|S|
q + 1− γ(S)

dB(|S|, q)

where ξ(q)|S| are the coefficients of the κ-decomposition (Equation (16)) over {−1, 1}q . Alternatively,

K(x, x′) =
∑

k

λSk
YSk

(x)YSk
(x′)

where we order all Sk ⊆ {1, . . . , d} with γ(Sk) ≤ q such that λSk
≥ λSk+1

. In particular, λSk
= λk.

We refer to Proposition 1 from Misiakiewicz & Mei (2021) for a formal proof. Intuitively, the result
follows from applying Lemma 8 for each subset S ⊆ {1, . . . , d} of contiguous elements. This is
possible because crucially, any subset of q features is again distributed uniformly on the q-dimensional
unit hypercube. Lastly, the factor q + 1 − γ(S) stems from the fact that each eigenfunction YS

appears as many times as there are contiguous index sets of size γ(S) supported in a fixed contiguous
index set of size q. In other words, the term is the number of shifted instances of S supported in a
contiguous subset of q features.

As mentioned before, Proposition 1 characterizes the eigenvalues of cyclic convolutional kernels K
up to factors ξ(q)|S| that depend on the inner nonlinearity κ. To avoid the additional factors, we require
the following regularity assumptions:

Assumption 1 (Regularity). Let T :=
⌈
4 + 4ℓ

β

⌉
. A cyclic convolutional kernel K(x, x′) =

1
d

∑d
k=1 κ

(
⟨x(k,q),x

′
(k,q)⟩

q

)
from the setting of Section 3.1 with inner function κ satisfies the regular-

ity assumption if there exist constants c ≥ T , c′, c′′ > 0 and a series of constants {cl > 0}Tl=0 such
that, for any q ≥ c, the decomposition

K(x, x′) =

q∑

l=0

∑

γ(S)≤q
|S|=l

ξ
(q)
|S|
q + 1− γ(S)

dB(|S|, q)
YS(x)YS(x

′)

from Proposition 1 over inputs x, x′ ∈ {−1, 1}d satisfies

ξ
(q)
l ≥ cl ∀l ∈ {0, . . . , T}, (18)

ξ
(q)
l ≥ 0 ∀l > T, (19)

ξ
(q)
q−l ≤

c′

qT−l+1
∀l ∈ {0, . . . , T}, (20)

∑

l≥0

ξ
(q)
l ≤ c′′. (21)

For sufficiently high-dimensional inputs x, x′, Equations (18) and (19) ensure that the convolutional
kernel K(x, x′) in Equation (1) is a valid kernel, and that it can learn polynomials of degree up to T .
Indeed, if ξ(q)l = 0 for some l, then there are no polynomials of degree l among the eigenfunctions
of K. Furthermore, Equations (18), (20) and (21) guarantee that the eigenvalue tail is sufficiently
bounded. This allows us to bound ∥K>m∥ and µmin (K>m) in Appendix C.

Our assumption resembles Assumption 1 by Misiakiewicz & Mei (2021): For one, Equations (20)
and (21) are equivalent to Equations 43 and 44 in Misiakiewicz & Mei (2021). Furthermore,
Equation (18) above is a slightly stronger version of Equation 42, where strengthening is necessary
due to the non-asymptotic nature of our results.

We still argue that many standard κ, for example, the Gaussian kernel, satisfy Assumption 1 with our
convolution kernel K. Because such κ satisfy Assumption 1 in Misiakiewicz & Mei (2021), we only
need to check that they additionally satisfy our Equation (18). If κ is a smooth function, we have
ξ
(q)
l = κ(l)(0) + o(1) for all l ≤ T , where κ(l) is the l-th derivative of κ. In particular, all derivatives

of the exponential function at 0 are strictly positive, implying Equation (18) for the Gaussian kernel
if d is large enough.
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The final lemma of this section is a corollary that characterizes the eigenvalues solely in terms of |S|,
and further shows that, for d large enough, the eigenvalues decay as |S| grows.
Lemma 10 (Corollary of Proposition 1). Consider a cyclic convolutional kernel as in Proposition 1
that satisfies Assumption 1 with q ∈ Θ(dβ) for some β ∈ (0, 1). Then, for any S ⊆ {1, . . . , d} such
that γ(S) ≤ q and |S| < T , the eigenvalue λS corresponding to the eigenfunction YS(x) satisfies

λS ∈ Ω

(
1

d · q|S|

)
and λS ∈ O

(
1

d · q|S|−1

)
. (22)

Furthermore,

max
|S|≥T
γ(S)≤q

λS ∈ O
(

1

d · qT−1

)
. (23)

Proof. Without loss of generality, assume d is large enough such that d > q/2 ≥ c/2, where c is a
constant from Assumption 1.

Let S ⊆ {1, . . . , d} with γ(S) ≤ q be arbitrary and define l := |S| and r := q + 1 − γ(S). Since
l ≤ γ(S) ≤ q, we have

1 ≤ r ≤ q + 1− l.

Furthermore, since B(l, q) =
(
q
l

)
, we use the following classical bound on the binomial coefficient

throughout the proof: (
1

l

)l

ql ≤ B(l, q) ≤
(e
l

)l
ql.

For the first part of the lemma, assume |S| < T . Then, using Assumption 1, we have

λS =
ξ
(q)
l r

dB(l, q)
(i)

≤ ll

ql
c′′r

d
≤ cl,1

1

dql−1
≤ cT,1

1

dql−1
,

(ii)

≥ ll

qlel
clr

d
≥ cl,2

1

dql
≥ cT,2

1

dql

for some positive constants cl,1, cl,2 that depend on l, cT,1 := maxl∈{0,...,T−1} cl,1, and cT,2 :=
minl∈{0,...,T−1} cl,2. Step (i) follows from the upper bound in Equation (21) with non-negativity in
Equations (18) and (19), and (ii) follows from the lower bound in Equation (18). Since cT,1 and cT,2

do not depend on l, this concludes the first part of the proof.

For the second part of the proof, we consider two cases depending on whether |S| ∈ [T, q − T ] or
|S| > q − T .

Hence, first assume T ≤ |S| ≤ q − T . Then,

λS
(i)
= ξ|S|

q + 1− γ(S)

d
(

q
|S|
)

(ii)

≤ ξ|S|
q + 1− γ(S)

d
(
q
T

)
(iii)

≤ c′′
q

d
(
q
T

)T =
c′′TT

dqT−1
, (24)

where (i) follows from Proposition 1. In step (ii), we use that
(

q
|S|
)

is minimized when |S| is has the
largest difference to q/2. Lastly, step (iii) applies the upper bound from Equation (21) together with
non-negativity of ξ|S| in Assumption 1, and the classical bound on the binomial coefficient.

Now assume|S| > q − T . Then,

λS
(i)
= ξ|S|

q + 1− γ(S)

d
(

q
|S|
) ≤ ξq−(q−|S|)

q

d
(

q
q−(q−|S|)

)

(ii)
= ξq−(q−|S|)

q

d
(

q
q−|S|

)

(iii)

≤ ξq−(q−|S|)
(q − |S|)q−|S|q

dqq−|S|

(iv)

≤ c′
(q − |S|)q−|S|q

dqT−(q−|S|)+1qq−|S|

(v)

≤ c′TT

dqT
, (25)
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where (i) follows from Proposition 1, (ii) from the fact that
(

n
n−k

)
=
(
n
k

)
, (iii) from the classical

bound for the binomial coefficient, (iv) from Equation (20) in Assumption 1, and (v) from the fact
that q − |S| < T in the current case.

Combining Equations (24) and (25) from the two cases finally yields

max
|S|≥T
γ(S)≤q

λS ≤ max





max
T≤|S|≤q−T

γ(S)≤q

λS , max
|S|>q−T
γ(S)≤q

λS





≤ max

{
c′′TT

dqT−1
,
c′TT

dqT

}
∈ O

(
1

dqT−1

)
,

which concludes the second part of the proof.

B.3 PROOF OF LEMMA 2

First, note that f⋆ = YS∗ for S∗ = {1, . . . , L∗}. Since |S∗| = γ(S∗) = L∗, Proposition 1 yields

λS∗ = ξ
(q)
L∗
q + 1− L∗

dB(L∗, q)

(i)
∈ Θ

(
q

dqL∗

)
= Θ

(
1

dqL∗−1

)
(ii)

⊆ ω(λm),

where (i) uses Equations (18) and (21) in Assumption 1 for L∗ ≤ T and d large enough to get
ξ
(q)
L∗ ∈ Θ(1), and (ii) uses λm ∈ o

(
1

dqL∗−1

)
. Hence, for d sufficiently large, λS∗ > λm. Since the

eigenvalues are in decreasing order, this implies that f⋆ is in the span of the first m eigenfunctions.
This further yields

∥D−1
≤ma∥ = λ−1

S∗ ∈ Θ
(
dqL

∗−1
)
,

since the entry of a corresponding to YS∗ is 1 while all others are 0.

B.4 PROOF OF LEMMA 4

Before proving Lemma 4, we introduce the following quantity:

L :=

⌊
ℓ− ℓλ − 1

β

⌋
. (26)

Intuitively, L corresponds to the degree of the largest polynomial that a cyclic convolutional kernel as
defined in Equation (1) can learn. This quantity plays a key role throughout the proof of Lemma 4,
and Lemma 3 later. Finally, note that δ as defined in Theorem 1 can be written as δ = ℓ−ℓλ−1

β − L.

Proof of Lemma 4. First, we use Proposition 1 to write the cyclic convolutional kernel as

K(x, x′) =

q∑

l=0

∑

γ(S)≤q
|S|=l

λSYS(x)YS(x
′) =

∑

k

λSk
YSk

(x)YSk
(x′)

where the λSk
are ordered such that λSk+1

≤ λSk
.

For the first part of the proof, we need to pick an m ∈ N such that nλm ∈ Θ(max{λ, 1}) and
m ∈ Θ

(
nq−δ

max{λ,1}

)
. We will equivalently choose m ∈ Θ(dqL) with λm ∈ Θ

(
1

d·qL+δ

)
; since

n ∈ Θ(dℓ) and max{λ, 1} ∈ Θ(dℓλ), we have

Θ

(
max{λ, 1}

n

)
= Θ

(
dℓλ

dℓ

)
= Θ

(
dℓλ

d1+ℓλ+β(L+δ)

)
= Θ

(
1

d · qL+δ

)
,

Θ

(
nq−δ

max{λ, 1}

)
= Θ

(
dℓq−δ

dℓλ

)
= Θ

(
d1+ℓλ+β(L+δ)q−δ

dℓλ

)
= Θ(dqL).

The remainder of the proof proceeds in five steps: we first construct a candidate Sm ⊆ {1, . . . , d}
with γ(Sm) ≤ q, show that the rate of the eigenvalue corresponding to YSm

satisfies λSm
= λm ∈

Θ
(

1
d·qL+δ

)
, show that the rate of m ∈ Θ(dqL), establish Θ

(
nq−δ

max{λ,1}

)
⊆ O(n · q−δ̄), and finally

show that λm ∈ o
(

1
d·qL∗−1

)
for appropriate L∗.
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Construction of m We consider two different Sm depending on δ:

Sm =

{
{1, . . . , L, ⌊q + 1− q1−δ⌋} δ ∈ (0, 1)

{1, . . . , L, ⌊q/2⌋} δ = 0.
(27)

For d—and hence q ∈ Θ(dβ)—large enough, Sm is well-defined, |Sm| = L+ 1, and the diameter is

γ(Sm) =

{
⌊q + 1− q1−δ⌋ δ ∈ (0, 1)

⌊q/2⌋ δ = 0.

For the rest of the proof, assume that d is sufficiently large.

Rate of λSm Using Proposition 1 and |Sm| = L+ 1, we can write

λSm
= ξ

(q)
L+1

q + 1− γ(Sm)

dB(L+ 1, q)
.

First, we show that the numerator is in Θ
(
q1−δ

)
for both definitions of Sm. In the case where

δ ∈ (0, 1), we have

q + 1− ⌊q + 1− q1−δ⌋ = −⌊−q1−δ⌋ = ⌈q1−δ⌉
(i)
∈ Θ

(
q1−δ

)
,

where (i) follows from δ < 1 and q sufficiently large. In the case where δ = 0, we have

q + 1− ⌊q/2⌋ ≤ q + 1 ∈ O(q),

q + 1− ⌊q/2⌋ ≥ q/2 ∈ Ω(q).

Thus, since δ = 0 in this case, the numerator is in Θ(q) = Θ(q1−δ).

As the denominator does not depend on δ, we use the same technique for both δ = 0 and δ ∈ (0, 1).
The classical bound on B(L+ 1, q) =

(
q

L+1

)
yields

qL+1 ≲

(
q

L+ 1

)L+1

≤
(

q

L+ 1

)
≤ eL+1

(
q

L+ 1

)L+1

≲ qL+1.

Therefore, dB(L+ 1, q) ∈ Θ
(
dqL+1

)
.

Finally, since L + 1 ≤ T = ⌈4 + 4ℓ/β⌉, we have ξ(q)L+1 ∈ Θ(1) by Equations (18) and (21) in
Assumption 1 for d sufficiently large. Combining all results then yields the desired rate of λSm

as
follows:

λSm
∈ Θ

(
q1−δ

dqL+1

)
= Θ

(
1

d · qL+δ

)
. (28)

Rate of m To establish m ∈ Θ(dqL), we bound m individually from above and below.

Upper bound: Since the eigenvalues are in decreasing order, we can bound m from above by counting
how many eigenvalues are larger than λm. To do so, we use |Sm| = L + 1, and show that for
d sufficiently large, all Sk with |Sk| > L + 1 correspond to eigenvalues λSk

< λSm . We first
decompose

max
k:|Sk|>L+1
γ(Sk)≤q

λSk
= max





max
k:L+1<|Sk|<T

γ(Sk)≤q

λSk

︸ ︷︷ ︸
=:M1

, max
k:|Sk|≥T
γ(Sk)≤q

λSk

︸ ︷︷ ︸
=:M2





.

For M1, let k with L+ 1 < |Sk| < T be arbitrary. Then,

λSk

(i)
∈ O

(
1

dq|Sk|−1

)
⊆ O

(
1

dq(L+2)−1

)
= O

(
1

dqL+1

)
(ii)

⊆ o(λSm
),
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where we apply Equation (22) from Lemma 10 in (i), and use Equation (28) with δ < 1 in (ii). This
implies M1 ∈ o(λSm

).

For M2, we directly get

M2 = max
k:|Sk|≥T
γ(Sk)≤q

λSk

(i)
∈ O

(
1

dqT−1

)
(ii)

⊆ O
(

1

dq(L+2)−1

)
= O

(
1

dqL+1

)
(iii)

⊆ o(λSm
),

where we apply Equation (23) from Lemma 10 in (i), (ii) follows from L+ 2 ≤ T , and step (iii)
uses Equation (28) with δ < 1.

Combined, we have maxk:|Sk|>L+1,γ(Sk)≤q λSk
= max {M1,M2} ∈ o(λSm

). Thus, for d suffi-
ciently large and |Sk| > L + 1, we have λSk

< λSm . For this reason, m is at most the number of
eigenfunctions with degree no larger than L+ 1:

m ≤
L+1∑

l=0

C(l, q, d)
(i)
∈ O(dqL),

where (i) uses Lemma 9 for d large enough with
(
q
l

)
∈ Θ(ql).

Lower bound: By construction of Sm in Equation (27), we have γ(Sm) ≥ ⌊q/2⌋. This, combined
with Proposition 1, implies that the indices of all polynomials with degree L + 1 but diameter at
most ⌊q/2⌋ − 1 are smaller than m. Hence, for large enough d, Lemma 9 yields the following lower
bound:

m ≥ C(L+ 1, ⌊q/2⌋ − 1, d) = d

(
⌊q/2⌋ − 2

L

)
≥ d

(
⌊q/2⌋ − 2

L

)L

∈ Ω(dqL).

The upper and lower bound together then imply m ∈ Θ(dqL). This concludes the existence of an
m ∈ N such that λm and m exhibit the desired rates.

Rate of m with respect to n We can write n as

n ∈ Θ(dℓ) = Θ
(
d · dβ

ℓ−1
β

)
= Θ

(
dq⌊

ℓ−1
β ⌋+( ℓ−1

β −⌊ ℓ−1
β ⌋)

)
= Θ

(
dq⌊

ℓ−1
β ⌋+δ̄

)
.

Combining this with L ≤
⌊
ℓ−1
β

⌋
, we directly get Θ(dqL) ⊆ O(dq⌊

ℓ−1
β ⌋) = O(nq−δ̄).

Rate of λm for appropriate L∗ Since nλm ∈ Θ(max{λ, 1}), we have

λm ∈ Θ

(
max{λ, 1}

n

)
(i)
= Θ

(
dℓλ

d · dℓλqL+δ

)
= Θ

(
1

dqL+δ

)
,

where (i) uses the identity ℓ = 1+ ℓλ + β(L+ δ). Assume now L∗ ≤
⌈
ℓ−ℓλ−1

β

⌉
. For the remainder,

we need to consider two cases depending on δ.

If δ > 0, then L∗ ≤ L+ 1, and we have

λm ∈ O
(

q−δ

dqL∗−1

)
⊆ o

(
1

dqL∗−1

)
.

If δ = 0, then L∗ ≤ L, and we have

λm ∈ O
(
q−δ

dqL

)
⊆ O

(
1

dqL∗

)
⊆ o

(
1

dqL∗−1

)
.

In both cases, λm ∈ o
(

1
dqL∗−1

)
, concluding the proof.

C MATRIX CONCENTRATION

This section considers the random matrix theory part of our main result. First, Appendix C.1 focuses
on the large eigenvalues of our kernel, and proves Lemma 1. Next, Appendices C.2 and C.3 focus on
the tail of the eigenvalues, culminating in the proof of Lemma 3. Lastly, Appendices C.4 and C.5
establishes some technical tools that we use throughout the proofs.
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C.1 PROOF OF LEMMA 1

In this proof, we show that the matrix Ψ⊺
≤mΨ≤m/n concentrates around the identity matrix for all

m ∈ O(nd−βδ̄), thereby establishing Equation (5). Let m̂ be the largest m ∈ O(nq−δ̄). The proof
consists of applying Theorem 5.44 from Vershynin (2012) to the matrix Ψ≤m̂, and extending the
result to all suitable choices of m simultaneously.

More precisely, let c̃ be the implicit constant of the O(nq−δ̄)-notation, and define m̂ to be the largest
m ∈ N with m ≤ c̃ · nq−δ̄ . Note that m̂ exists, because d is large enough and fixed.

Bound for m̂ To apply Theorem 5.44 from Vershynin (2012), we need to verify the theorem’s
conditions on the rows of Ψ≤m̂. In particular, we show that the rows are independent, have a
common second moment matrix, and that their norm is bounded. Let [Ψ≤m̂]i,: indicate the i-th row
of Ψ≤m̂ ∈ Rn×m̂. We may write each row entry-wise as

[Ψ≤m̂]i,: = [Y1(xi) Y2(xi) · · · Ym̂(xi)]
⊺
.

First, the rows of Ψ≤m̂ are independent, since each row depends on a different xi, and we assume
the data to be i.i.d..

Second, since the eigenfunctions are orthonormal w.r.t. the data distribution, the second moment of
the rows is E

[
[Ψ≤m̂]i,:[Ψ≤m̂]⊺i,:

]
= Im̂ for all rows i ∈ {1, . . . , n}.

Third, to show that each row has a bounded norm, we use the fact that the eigenfunctions Yk in
Equation (13) over {−1, 1}d satisfy Yk(xi)

2 = 1 for all k. Thus, the norm of each row is

∥[Ψ≤m̂]i,:∥2 =

√√√√
m̂∑

k=1

Yk(xi)2 =

√√√√
m̂∑

k=1

1 =
√
m̂.

We can now apply Theorem 5.44 from Vershynin (2012). For any t ≥ 0, this yields the following
inequality with probability 1− m̂ exp{−ct2}, where c is an absolute constant:

∥∥∥∥∥
Ψ⊺

≤m̂Ψ≤m̂

n
− Im̂

∥∥∥∥∥ ≤ max
{
∥Im̂∥ 1

2∆,∆2
}
, where ∆ = t

√
m̂

n
.

The choice t = 1
2

√
n
m̂ yields max

{
∥Im̂∥ 1

2∆,∆2
}
= 1/2, and the following error probability for

large enough d:

m̂ exp
{
−c n

4m̂

} (i)

≲ nq−δ̄ exp

{
−c′ n

nq−δ̄

}
≲ q−δ̄ · dℓ exp{−c′qδ̄} ≲ q−δ̄,

where (i) follows from m̂ ∈ O(nq−δ̄).

Bound for any m < m̂ Note that Ψ⊺
≤mΨ≤m is a submatrix of Ψ⊺

≤m̂Ψ≤m̂. Thus,

Ψ⊺
≤mΨ≤m

n
− Im is also a submatrix of

Ψ⊺
≤m̂Ψ≤m̂

n
− Im̂.

Therefore, ∥∥∥∥∥
Ψ⊺

≤mΨ≤m

n
− Im

∥∥∥∥∥ ≤

∥∥∥∥∥
Ψ⊺

≤m̂Ψ≤m̂

n
− Im̂

∥∥∥∥∥ ≤ 1/2

with probability at least 1− cd−βδ̄ uniformly over all m ≤ m̂.

C.2 FURTHER DECOMPOSITION OF THE TERMS AFTER m

In this section, we focus on the concentration of the smallest and largest eigenvalue of the kernel
matrix K>m to prove Lemma 3. However, this proof is involved, and requires additional tools. In
particular, we further decompose K>m into two kernels K1 and K2.
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In the following, we consider the setting of Theorem 1 with a convolutional kernel K that satisfies
Assumption 1. We define the additional notation

L :=

⌊
ℓ− ℓλ − 1

β

⌋
and L̄ :=

⌊
ℓ− 1

β

⌋
.

Intuitively, L is the maximum polynomial degree that K can learn with regularization, and L̄ is the
analogue without regularization. Finally, note that δ and δ̄ as defined in Theorem 1 can be written as
δ = ℓ−ℓλ−1

β − L and δ̄ = ℓ−1
β − L̄, respectively.

We now introduce the two additional kernels, and then show in Lemma 11 that K>m = K1 + K2.
First, applying Proposition 1 to K yields

K(x, x′) =
∑

k

λSk
YSk

(x)YSk
(x′), (29)

where {Sk}k>0 is a sequence of all subsets Sk ⊆ {1, . . . , d} with γ(Sk) ≤ q, ordered such that
λSk

≥ λSk+1
. Next, let m ∈ N be such that nλSm

∈ Θ(max{λ, 1}), and define the index sets

I1 := {k ∈ N | k > m and |Sk| ≤ L̄+ 1},
I2 := {k ∈ N | |Sk| ≥ L̄+ 2}.

Those sets induce the following kernels:

K1(x, x
′) :=

∑

k∈I1

λSk
YSk

(x)YSk
(x′), S1(x, x

′) :=
∑

k∈I1

λ2Sk
YSk

(x)YSk
(x′),

K2(x, x
′) :=

∑

k∈I2

λSk
YSk

(x)YSk
(x′), S2(x, x

′) :=
∑

k∈I2

λ2Sk
YSk

(x)YSk
(x′),

where S1 and S2 are the squared kernels corresponding to K1 and K2, respectively. The empirical
kernel matrices K1,K2,S1,S2 ∈ Rn×n are

[K1]i,j = K1(xi, xj), [K2]i,j = K2(xi, xj), [S1]i,j = S1(xi, xj), and [S2]i,j = S2(xi, xj).

Furthermore, as in the original kernel decomposition, we define the matrices

Ψ1 ∈ Rn×|I1|, [Ψ1]i,j = YSkj
(xi),

D1 ∈ R|I1|×|I1|, D1 = diag(λSk1
, . . . , λSk|I1|

),

where {kj}|I1|
j=1 is a sequence of all indices in I1 ordered such that λSkj

≥ λSkj+1
. Intuitively,

Ψ1,D1 are the analogue to Ψ≤m,D≤m in the original decomposition K = K≤m +K>m.

Lastly, we define m̄ as the largest eigenvalue corresponding to an eigenfunction YS of degree
|S| ≥ L̄+ 2, that is,

m̄ := min I2.

Using the previous definitions, the following lemma establishes that K1 and K2 indeed constitute a
decomposition of K>m.
Lemma 11 (1-2 decomposition). For d sufficiently large, we have

K>m(x, x′) = K1(x, x
′) +K2(x, x

′) and S>m(x, x′) = S1(x, x
′) + S2(x, x

′).

Proof. For the decomposition of K>m, we have to show that exactly the eigenfunctions with index
larger than m appear in either K1 or K2, that is, I1 ∪ I2 = {k > m}, and that no eigenfunction
appears in both K1 or K2, that is, I1 ∩ I2 = ∅. Furthermore, since we can write S>m(x, x′) =∑

k>m λ2Sk
YSk

(x)YSk
(x′) by Lemma 5, the same argument implies the 1-2 decomposition of S>m.

First, from the definition of I1 and I2, it follows directly that I1 ∩ I2 = ∅, that I1 ∪ I2 ⊇ {k > m},
and that I1 ⊆ {k > m}. Hence, to conclude the proof, we only need to show that I2 ⊆ {k > m}.
Since the eigenvalues are sorted in decreasing order, we equivalently show that, for d sufficiently
large, all eigenvalues λSk

with k ∈ I2 are smaller than λSm ∈ Θ(max{λ, 1}/n).
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More precisely, we show that maxk∈I2
nλSk

∈ o(nλSm
) = o(max{λ, 1}). Using T from Assump-

tion 1, we have

max
k∈I2

nλSk
= max





max
k∈I2:|Sk|<T

nλSk

︸ ︷︷ ︸
=:M1

, max
k∈I2:|Sk|≥T

nλSk

︸ ︷︷ ︸
=:M2




.

For M1, we bound a generic k ∈ I2 with |Sk| < T as follows:

nλSk

(i)
∈ O

(
n

dq|Sk|−1

)
⊆ O

(
n

dq(L̄+2)−1

)
= O

(
d1+ℓλ+β(L+δ)

d1+β(L̄+δ)
d−β(1−δ)

)

= O(max{λ, 1}dβ(L−L̄)d−β(1−δ))
(ii)

⊆ o(nλm),

where (i) applies Equation (22) from Lemma 10, and (ii) uses L̄ ≥ L and δ < 1. In particular, this
implies M1 ∈ o(nλm).

For M2 we have

max
k∈I2:|Sk|≥T

nλSk
= n max

|Sk|≥T
γ(Sk)≤q

λSk

(i)
∈ O

(
n

dqT−1

)

(ii)

⊆ O
(

n

dq(L̄+2)−1

)
= O

(
d1+ℓλ+β(L+δ)

d1+β(L̄+δ)
d−β(1−δ)

)

= O(max{λ, 1}dβ(L−L̄)d−β(1−δ))
(iii)

⊆ o(nλm),

where (i) applies Equation (23) from Lemma 10, (ii) uses that L̄+ 2 ≤ T , and (iii) follows from
L̄ ≥ L and δ < 1.

Combining the bounds on M1 and M2, we have maxk∈I2
nλSk

∈ o(nλSm
) = o(max{λ, 1}).

Hence, for d sufficiently large, all k ∈ I2 yield λSk
< λSm and consequently k > m.

Using the 1-2 decomposition, we now prove Lemma 3. We defer the auxiliary Lemmas 12 to 15 to
Appendix C.4, and concentration-results to Appendix C.5.

C.3 PROOF OF LEMMA 3

Throughout the proof, we assume d to be large enough such that all quantities are well-defined and
all necessary lemmas apply. In particular, we assume the conditions of Lemma 11 to be satisfied, and
that c < ⌊q/2⌋ < q < d/2 for c in Assumption 1. Hence, L+ 2 ≤ L̄+ 2 < T < ⌊q/2⌋, and we can
apply Lemmas 9 to 15, the setting of Appendix C.2, as well as Assumption 1 throughout the proof.
We will mention additional implicit lower bounds on d as they arise.

The proof proceeds in three steps: we first bound r1 and r2, then bound Tr(S>m), and finally∑n
i=1+m µi(S>m). We do not establish the required matrix concentration results directly, but apply

various auxiliary lemmas. All corresponding statements hold with either probability at least 1− c̃q−δ̄

or at least 1 − c̃q−(1−δ̄) for context-dependent constants c̃. We hence implicitly choose a c > 0
such that collecting all error probabilities yields the statement of Lemma 3 with probability at least
1− cd−βmin{δ̄,1−δ̄}.

To start, let m ∈ N as in the statement of Lemma 3, and instantiate Appendix C.2 with that m. In
particular, Lemma 11 yields the 1-2 decomposition K>m = K1 +K2 and S>m = S1 + S2, which
we will henceforth use. Finally, we define

Q(d,q)
l (x, x′) :=

∑

γ(S)≤q
|S|=l

q + 1− γ(S)

dB(l, q)
YS(x)YS(x

′) (30)

with the corresponding kernel matrix Q
(d,q)
l ∈ Rn×n.
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Bound on r1 and r2 Remember the definition of r1 and r2:

r1 =
µmin (K>m) + λ

max{λ, 1}
, r2 =

∥K>m∥+ λ

max{λ, 1}
.

To bound those quantities, we have to bound µmin (K>m) and ∥K>m∥. For the upper bound on
∥K>m∥, we use the triangle inequality on ∥K>m∥ = ∥K1 +K2∥, and then bound ∥K1∥ and ∥K2∥
individually.

Note that we can write K1 = Ψ1D1Ψ
⊺
1 by definition. Hence,

∥K1∥ = ∥Ψ1D1Ψ
⊺
1∥ = n∥D1∥

∥∥∥∥
Ψ⊺

1Ψ1

n

∥∥∥∥
(i)

≤ 1.5n∥D1∥
(ii)

≤ 1.5nλm
(iii)
∈ O (max{λ, 1}) ,

where (i) follows from Lemma 12 with probability at least 1− c̃1q
−δ̄ , (ii) uses that all eigenvalues

of K1 are at most λm by definition, and (iii) follows from nλm ∈ Θ(max{λ, 1}).

Next, Lemma 13 directly yields with probability at least 1 − c̃2q
−(1−δ̄) that ∥K2∥ ∈ Θ(1) and

µmin (K2) ∈ Θ(1). Hence, with probability at least 1− (c̃1q
−δ̄ + c̃2q

−(1−δ̄)) ≥ 1− cq−min{δ̄,1−δ̄},
we have

∥K1∥, ∥K2∥ ∈ O (max{λ, 1}) ,
µmin (K2) ∈ Ω(1).

This implies

∥K>m∥+ λ ≤ ∥K1∥+ ∥K2∥+ λ ∈ O(max{λ, 1}),
µmin (K>m) + λ ≥ µmin (K2) + λ ∈ Ω(max{λ, 1}),

and subsequently

r2 =
∥K>m∥+ λ

max{λ, 1}
∈ O(1),

r1 =
µmin (K>m) + λ

max{λ, 1}
∈ Ω(1).

Finally, since r1 ≤ r2, this yields r1, r2 ∈ Θ(1).

Bound on Tr(S>m) We need to show that

Tr(S>m) ≲ dℓλq−δ + dℓλqδ−1 (31)

with high probability, where the two terms correspond to the 1-2 decomposition Tr(S>m) =
Tr(S1) +Tr(S2). We differentiate between L̄ = L and L̄ > L. Intuitively, the case L̄ = L corre-
sponds to interpolation or weak regularization, because the maximum degree of learnable polynomials
with regularization equals the one without regularization. Conversely, L̄ > L corresponds to strong
regularization.

Case L̄ = L (interpolation or weak regularization): In this setting,

δ =
ℓ− ℓλ − 1

β
− L =

ℓ− 1

β
− L̄− ℓλ

β
= δ̄ − ℓλ

β
. (32)

First, Lemma 14 yields Tr(S2) ∈ Θ(q−(1−δ̄)) with probability at least 1− c̃3q
−(1−δ̄). Therefore,

Tr(S2) ∈ Θ(q−(1−δ̄))
(i)
= Θ(q−(1−δ)+

ℓλ
β ) = Θ

(
dℓλq−(1−δ)

)
,

where (i) follows from Equation (32).

We now consider Tr(S1):

Tr(S1) = nTr

(
Ψ⊺

1Ψ1

n
D2

1

)
≤ n

∥∥∥∥
Ψ⊺

1Ψ1

n

∥∥∥∥Tr(D2
1)

(i)

≤ 1.5n
∑

k∈I1

λ2Sk
,
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where (i) follows from Lemma 12 with probability at least 1− c̃1q
−δ̄ . The bound continues as

Tr(S1) ≲ n
∑

k∈I1

λ2Sk

(i)

≤ nλ2m|I1|

(ii)
∈ O

(
max{λ, 1}2 |I1|

n

)

(iii)

⊆ O

(
d2ℓλ

dqL̄

dqL̄+δ̄

)
= O

(
d2ℓλq−δ̄

)
(iv)
= O

(
dℓλq−δ

)
,

where (i) uses λk ≤ λm for all k ∈ I1 by definition, (ii) uses nλm ∈ Θ(max{λ, 1}), and (iv)
follows from Equation (32). Furthermore, (iii) uses the following bound of |I1|:

|I1| ≤
L̄+1∑

l=0

C(l, q, d) (i)
= 1 + d

L̄+1∑

l=1

(
q − 1

l − 1

)
(ii)

≤ 1 + d

L̄+1∑

l=1

(
e
q − 1

l − 1

)l−1
(iii)
∈ O(d · qL̄),

where C(l, q, d) is defined in Equation (17), (i) follows from Lemma 9, (ii) is a classical bound
on the binomial coefficient, and (iii) follows from the fact that the term corresponding to L̄ + 1
dominates the polynomial.

Finally, collecting the upper bounds on Tr(S1) and Tr(S2) yields

Tr(S≥m) = Tr(S1) +Tr(S2) ∈ O
(
dℓλq−δ + dℓλq−(1−δ)

)

with probability at least 1− (c̃3q
−(1−δ̄) + c̃1q

−δ̄) ≥ 1− cq−min{δ̄,1−δ̄}.

Case L̄ > L (strong regularization): In this setting, the dominating rate will arise from Tr(S1). We
start by linking δ̄ and δ in analogy to Equation (32):

δ =
ℓ− ℓλ − 1

β
− L = −ℓλ

β
+
ℓ− 1

β
− L̄+ L̄− L = δ̄ − ℓλ

β
+ L̄− L. (33)

Next, as in the previous case, Lemma 14 yields Tr(S2) ∈ Θ(q−(1−δ̄)) with probability at least
1− c̃3q

−(1−δ̄), and therefore

Tr(S2) ∈ Θ(q−(1−δ̄)) = Θ(qδ̄−1)
(i)
= Θ

(
dℓλqδ−(L̄−L)−1

) (ii)

⊆ o
(
dℓλq−(1−δ)

)
,

where (i) follows from Equation (33), and (ii) from L̄ > L.

To bound Tr(S1), we start as in the previous case:

Tr(S1) = nTr

(
Ψ⊺

1Ψ1

n
D2

1

)
≤ n

∥∥∥∥
Ψ⊺

1Ψ1

n

∥∥∥∥Tr(D2
1)

(i)

≤ 1.5n
∑

k∈I1

λ2Sk
,

where (i) follows from Lemma 12 with probability at least 1− c̃1q
−δ̄ . We then decompose the sum

over all squared eigenvalues with index in I1 as

n
∑

k∈I1

λ2Sk
= n

∑

k∈I1

|Sk|≤L+1

λ2Sk

︸ ︷︷ ︸
=:E1

+n
∑

k∈I1

|Sk|=L+2

λ2Sk

︸ ︷︷ ︸
=:E2

+n
∑

k∈I1

|Sk|≥L+3

λ2Sk

︸ ︷︷ ︸
=:E3

,

and bound the three terms individually.

First, we upper-bound E1 as follows:

E1 = n
∑

k∈I1

|Sk|≤L+1

λ2Sk

(i)

≤ n2λ2m
n

∑

k∈I1

|Sk|≤L+1

1

≤ n2λ2m
n

L+1∑

l=0

C(l, q, d)
(ii)
∈ O

(
max{λ, 1}2

n
dqL

)

= O
(

d2ℓλ

d · dℓλ · qL+δ
dqL

)
= O

(
dℓλq−δ

)
,
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where (i) follows from λk ≤ λm for all k > m due to the decreasing order of eigenvalues. Step
(ii) applies nλm ∈ Θ(max{λ, 1}), as well as

∑L+1
l=0 C(l, q, d) ∈ O(d · qL), which follows as in the

other case from Lemma 9 and the classical bound on the binomial coefficient.

Second, the upper bound of E2 arises as follows:

E2 = n
∑

k∈I1

|Sk|=L+2

λ2Sk

(i)
= n(ξ

(q)
L+2)

2
∑

k∈I1

|Sk|=L+2

(
q + 1− γ(Sk)

dB(L+ 2, q)

)2

(ii)

≤ (ξ
(q)
L+2)

2 n · q
dB(L+ 2, q)

∑

γ(S)≤q
|S|=L+2

q + 1− γ(S)

dB(L+ 2, q)

(iii)

≲
n · q

d · qL+2

∑

γ(S)≤q
|S|=L+2

q + 1− γ(S)

dB(L+ 2, q)

(iv)
=

n · q
d · qL+2

Q(d,q)
L+2 (x, x)

(v)
∈ O

(
d · dℓλqL+δ · q
d · qL+2

)
= O

(
dℓλq−(1−δ)

)
,

where (i) follows from Proposition 1, and (ii) uses q + 1 − γ(Sk) ≤ q. Next, (iii) uses that
Equations (18) and (21) in Assumption 1 imply ξ(q)L+2 ∈ Θ(1), and applies the bound B(L+ 2, q) =(

q
L+2

)
≤ (eq/(L + 2))L+2. Step (iv) uses YS(x)YS(x) = 1 for all S and x ∈ {−1, 1}d, together

with the definition of Q(d,q)
L+2 . Lastly, (v) applies Lemma 15 and n ∈ Θ(dℓ) = Θ(d · dℓλqL+δ).

Third, we upper-bound E3:

E3 = n
∑

k∈I1

|Sk|≥L+3

λ2Sk
≤ n

(
max

k∈I1,|Sk|≥L+3
λS

) ∑

k∈I1

|Sk|≥L+3

λSk
≲ n max

k∈I1,|Sk|≥L+3
(λSk

).

The last step follows from

∑

k∈I1

|Sk|≥L+3

λSk
≤

L̄+1∑

l=L+3

∑

γ(S)≤q
|S|=l

λS

(i)
=

L̄+1∑

l=L+3

∑

γ(S)≤q
|S|=l

ξ
(q)
l

q + 1− γ(S)

dB(l, q)

(ii)
=

L̄+1∑

l=L+3

ξ
(q)
l

∑

γ(S)≤q
|S|=l

q + 1− γ(S)

dB(l, q)
YS(x)YS(x)

(iii)
=

L̄+1∑

l=L+3

ξ
(q)
l

(iv)

≲ 1,

where (i) follows from Proposition 1, (ii) uses YS(x)YS(x) = 1 for all S and x ∈ {−1, 1}d, (iii)
applies the definition of Q(d,q)

l and Lemma 15, and (iv) follows from Equations (18) and (21) in
Assumption 1 since L̄+ 1 ≤ T .

For maxk∈I1,|Sk|≥L+3(λSk
), we bound each element individually:

λSk

(i)
∈ O

(
1

dq|Sk|−1

)
⊆ O

(
1

dq(L+3)−1

)
,
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where (i) uses Equation (22) in Lemma 10 since k ≤ L̄ + 1 < T by definition of I1. Hence, we
obtain the following bound on E3:

E3 ≲ n max
k∈I1,|Sk|≥L+3

(λSk
) ∈ O

(
n

dqL+2

)
= O

(
d · dℓλqL+δ

dqL+2

)
⊆ O

(
dℓλq−(1−δ)

)
.

Finally, we can bound Tr(S1) as

Tr(S1) ≤ 1.5n
∑

k∈I1

λ2Sk
= E1 + E2 + E3 ∈ O

(
dℓλq−δ + dℓλq−(1−δ)

)
,

which yields
Tr(S≥m) = Tr(S1) +Tr(S2) ∈ O

(
dℓλq−δ + dℓλq−(1−δ)

)

as desired with probability at least 1− (c̃3q
−(1−δ̄) + c̃1q

−δ̄) ≥ 1− cq−min{δ̄,1−δ̄}.

Bound on
∑n

i=1+m µi(S>m) As before, we differentiate between no/weak and strong regulariza-
tion, that is, between L̄ = L and L̄ > L:

Case L̄ = L (interpolation or weak regularization): In this case, we start by directly bounding
n∑

i=1+m

µi(S>m) =

n∑

i=1+m

µi(S1 + S2) ≥
n∑

i=1+m

µi(S2)

=

n∑

i=1

µi(S2)−
m∑

i=1

µi(S2)
(i)

≥ Tr(S2)−m∥S2∥ (34)

(ii)
∈ Ω

(
q−(1−δ̄) − m

dqL̄+1

)

(iii)
= Ω

(
dℓλq−(1−δ) − m

dqL̄+1

)
,

where (i) bounds each of the first m eigenvalues of S2 with the largest one, (ii) follows from
Lemma 14 with probability at least 1− c̃3q

−(1−δ̄), and (iii) from Equation (32) since L̄ = L.

To conclude the lower bound, it suffices to show that m
dqL̄+1 ∈ o(dℓλq−(1−δ)):

m

dqL̄+1

(i)
∈ O

(
nq−δ

max{λ, 1}dqL̄+1

)
= O

(
q−δdqδ̄+L̄

dℓλdqL̄+1

)
(ii)
= O

(
q−δ̄dℓλq−(1−δ)

) (iii)

⊆ o(dℓλq−(1−δ)),

where (i) follows from m ∈ O
(

nq−δ

max{λ,1}

)
, and (ii) from Equation (32). For (iii), note that δ̄ = 0

for a sufficiently large c yields a vacuous result. We hence assume without loss of generality that
δ̄ > 0, which justifies the step. This concludes the proof for the current case with probability at least
1− c̃3q

−(1−δ̄) ≥ 1− cq−min{δ̄,1−δ̄}.

Case L̄ > L (strong regularization): In this case, we define the additional index set

I3 := {k ∈ I1 | |Sk| = L+ 2}

with S3,Ψ3,D3 analogously to S1,Ψ1,D1 in Appendix C.2, but using I3 instead of I1. Since
I3 ⊆ I1, it follows that Ψ⊺

3Ψ3 is a submatrix of Ψ⊺
1Ψ1, and thus

Ψ⊺
3Ψ3

n
− I|I3| is a submatrix of

Ψ⊺
1Ψ1

n
− I|I1|.

This particularly implies
∥∥∥∥
Ψ⊺

3Ψ3

n
− I|I3|

∥∥∥∥ ≤
∥∥∥∥
Ψ⊺

1Ψ1

n
− I|I1|

∥∥∥∥
(i)

≤ 1/2, (35)

where (i) follows from Lemma 12 with probability at least 1− c̃1q
−δ̄ .
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We now move our focus back to the lower bound of
∑n

i=1+m µi(S>m):
n∑

i=1+m

µi(S>m)
(i)

≥
n∑

i=1+m

µi(S1)
(ii)

≥
n∑

i=1+m

µi(S3)
(iii)

≥ Tr(S3)−m∥S3∥, (36)

where (i) follows from the 1-2 decomposition S>m = S1 + S2, (ii) from the fact that I3 ⊆ I1,
and (iii) analogously to Equation (34). Similar to the previous case, we conclude the proof by first
showing that Tr(S3) ∈ Ω

(
dℓλq−(1−δ)

)
, and then m∥S3∥ ∈ o(Tr(S3)).

For the lower bound of Tr(S3), we start with

Tr(S3) = nTr

(
1

n
Ψ3D

2
3Ψ

⊺
3

)

≥ nTr
(
D2

3

)
µmin

(
Ψ⊺

3Ψ3

n

)

(i)

≥ 0.5n
∑

k∈I3

λ2k

(ii)
= n(ξ

(q)
L+2)

2
∑

|S|=L+2
γ(S)≤q

(
q + 1− γ(S)

dB(L+ 2, q)

)2

where (i) follows with high probability from Equation (35). Step (ii) applies Proposition 1, and the
fact that I3 = {k ∈ N | |Sk| = L+ 2 and γ(S) ≤ q} for d sufficiently large. To show this, we use

λm ∈ Θ

(
dℓλ

n

)
= Θ

(
dℓλ

ddℓλqL+δ

)
= Θ

(
1

dqL+δ

)
.

Since the eigenvalues are in decreasing order and L+ 2 ≤ L̄+ 1 in the current case, we only need to
show that λS < λm for all S ⊆ {1, . . . , d} with |S| = L+ 2 and γ(S) ≤ q:

λS
(i)
∈ O

(
1

dqL+1

)
= o

(
1

dqL+δ

)
= o(λm),

where (i) applies Equation (22) in Lemma 10 sinceL+2 < T . Thus, λS < λm for all S ⊆ {1, . . . , d}
with |S| = L+ 2 and γ(S) ≤ q if d is sufficiently large, which we additionally assume from now on.

The lower bound of Tr(S3) continues as follows:

Tr(S3) ≥ n(ξ
(q)
L+2)

2
∑

|S|=L+2
γ(S)≤q

(
q + 1− γ(S)

dB(L+ 2, q)

)2

≥ n(ξ
(q)
L+2)

2
∑

|S|=L+2
γ(S)≤⌊q/2⌋

(
q + 1− γ(S)

dB(L+ 2, q)

)2

(iii)

≥ (ξ
(q)
L+2)

2 n · q/2
dB(L+ 2, q)

∑

|S|=L+2
γ(S)≤⌊q/2⌋

⌊q/2⌋+ 1− γ(S)

dB(L+ 2, q)

(iv)

≳ (ξ
(q)
L+2)

2 n · q/2
dB(L+ 2, q)

∑

|S|=L+2
γ(S)≤⌊q/2⌋

⌊q/2⌋+ 1− γ(S)

dB(L+ 2, ⌊q/2⌋)
,

where (iii) follows from q ≥ ⌊q/2⌋ and q + 1− γ(S) ≥ q/2. Step (iv) follows from the fact that
B(L+ 2, q) and B(L+ 2, ⌊q/2⌋) are of the same order; this follows from a classical bound on the
binomial coefficient:

B(L+ 2, q) ≤
(

eq

L+ 2

)L+2

≲

(
⌊q/2⌋
L+ 2

)L+2

≤ B(L+ 2, ⌊q/2⌋).

32



Published as a conference paper at ICLR 2023

We conclude the lower bound on Tr(S3) as follows:

Tr(S3) ≳ (ξ
(q)
L+2)

2 n · q/2
dB(L+ 2, q)

∑

|S|=L+2
γ(S)≤⌊q/2⌋

⌊q/2⌋+ 1− γ(S)

dB(L+ 2, ⌊q/2⌋)

(v)
= (ξ

(q)
L+2)

2 n · q/2
dB(L+ 2, q)

Q(d,⌊q/2⌋)
L+2 (x, x)

(vi)
= (ξ

(q)
L+2)

2 n · q/2
dB(L+ 2, q)

(vii)
∈ Ω

(
n · q

dB(L+ 2, q)

)

(viii)
= Ω

(
d · dℓλqL+δ · q
d · qL+2

)
= Ω

(
dℓλq−(1−δ)

)
, (37)

where (v) uses YS(x)YS(x) = 1 for all S and x ∈ {−1, 1}d with the definition of Q(d,⌊q/2⌋)
L+2 in

Equation (30), (vi) applies Lemma 15 with ⌊q/2⌋ as filter size, (vii) follows from Equation (18) in
Assumption 1, and (viii) uses the classical bound on the binomial coefficient.

Finally, for the upper bound on m∥S3∥, we have

m∥S3∥ = m∥Ψ3D3Ψ
⊺
3∥ ≤ mn∥D3∥

∥∥∥∥
Ψ⊺

3Ψ3

n

∥∥∥∥
(i)

≤ 1.5mn∥D3∥ = mnmax
k∈I3

λ2k

(ii)
= mnmax

k∈I3

(
ξ
(q)
L+2

q + 1− γ(Sk)

dB(L+ 2, q)

)2

≤ m

n
(ξ

(q)
L+2)

2

(
n · q

dB(L+ 2, q)

)2

(iii)
∈ O

(
m

n

(
ddℓλqL+δ · q
dqL+2

)2
)

(iv)

⊆ O
(
q−δd−ℓλ

(
dℓλq−(1−δ)

)2)

= O
(
q−δq−(1−δ)

(
dℓλq−(1−δ)

)) (v)

⊆ o
(
dℓλq−(1−δ)

) (vi)

⊆ o(Tr(S3)),

where (i) follows with high probability from Equation (35), and (ii) from Proposition 1. Step (iii)

uses that Equations (18) and (21) in Assumption 1 yield ξ(q)L+2 ∈ Θ(1), and B(L+ 2, q) =
(

q
L+2

)
∈

O(qL+2). Furthermore, (iv) follows from m ∈ O
(

nq−δ

max{λ,1}

)
, (v) from q−δq−(1−δ) ∈ o(1), and

(vi) from the lower bound on Tr(S3) in Equation (37).

Finally, combining this result with Equations (36) and (37), we have
n∑

i=1+m

µi(S>m) ≥ Tr(S3)−m∥S3∥ ∈ Ω(Tr(S3)) ⊆ Ω
(
dℓλq−(1−δ)

)

with probability at least 1− c̃1q
−δ̄ ≥ 1− cq−min{δ̄,1−δ̄}.

C.4 TECHNICAL LEMMAS

We use the following technical lemmas in the proof of Lemma 3. All results assume the setting of
Appendix C.2, particularly a kernel as in Theorem 1 that satisfies Assumption 1.
Lemma 12 (Bound on K1). In the setting of Appendix C.2, for d/2 > q ≥ L̄+ 1, we have

∥∥∥∥
Ψ⊺

1Ψ1

n
− I|I1|

∥∥∥∥ ≤ 1/2

with probability at least 1− cq−δ̄ uniformly over all choices of m and λ.

Proof. The proof follows a very similar argument to Lemma 1 with minor modifications. First, define

Î1 := {k ∈ N | |Sk| ≤ L̄+ 1}.
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Note that Î1 does not depend on m or λ, and I1 ⊆ Î1 for any m. Furthermore,

|Î1| =
L̄+1∑

l=0

C(l, q, d) (i)
= 1 +

L̄+1∑

l=1

d

(
q − 1

l − 1

)
(ii)

≤ 1 + d

L̄+1∑

l=1

(
e(q − 1)

l − 1

)l−1
(iii)
∈ O(d · qL̄),

where (i) follows from Lemma 9, (ii) is a classical bound on the binomial coefficient, and (iii)
follows from the fact that the largest degree monomial dominates the others.

Next, we define Ψ̂1 ∈ Rn×|Î1| with [Ψ̂1]i,j = YSkj
(xi) where kj is the j-th element in Î1. Using

the same arguments as in the proof of Lemma 1, it follows that the rows of Ψ̂1 are independent, that
their norm is bounded by |Î1|, and that they have an expected outer product equal to I|Î1|.

Hence, as in the proof of Lemma 1, we can apply Theorem 5.44 from Vershynin (2012). Choosing
t = 1

2

√
n

|Î1|
yields

∥∥∥∥∥
Ψ̂⊺

1Ψ̂1

n
− I|Î1|

∥∥∥∥∥ ≤ 1/2

with probability at least 1− cq−δ̄ for some absolute constant c.

Finally, since I1 ⊆ Î1 for all choices of λ and m,
∥∥∥∥
Ψ⊺

1Ψ1

n
− I|I1|

∥∥∥∥ ≤

∥∥∥∥∥
Ψ̂⊺

1Ψ̂1

n
− I|Î1|

∥∥∥∥∥ ≤ 1/2

with probability at least 1− cq−δ̄ uniformly over all λ and m.

Lemma 13 (Bound on K2). In the setting of Appendix C.2, if c < ⌊q/2⌋ < q < d/2 for c as in
Assumption 1, we have

c1 ≤ µmin (K2) ≤ ∥K2∥ ≤ c2

for some positive constants c1, c2 with probability at least 1− c̃q−(1−δ̄).

Proof. First, the condition on d implies q > T and ensures that we can apply Lemmas 16 and 17,
and Assumption 1. Furthermore, note that T − 1 > L̄+ 2.

Proposition 1 and the definition of K2 yield the following decomposition:

K2(x, x
′) =

q∑

l=L̄+2

ξ
(q)
l

∑

γ(S)≤q
|S|=l

q + 1− γ(S)

dB(l, q)
YS(x)YS(x

′) =

q∑

l=L̄+2

ξ
(q)
l Q(d,q)

l (x, x′),

where Q(d,q)
l (x, x′) is defined in Equation (30). Then, using the triangle inequality with non-negativity

of the ξ(q)l from Equations (18) and (19) in Assumption 1, we have

∥K2∥ =

∥∥∥∥∥∥

q∑

l=L̄+2

ξ
(q)
l Q

(d,q)
l

∥∥∥∥∥∥
=

∥∥∥∥∥∥

T−1∑

l=L̄+2

ξ
(q)
l Q

(d,q)
l +

q∑

l=T

ξ
(q)
l Q

(d,q)
l

∥∥∥∥∥∥

≤
T−1∑

l=L̄+2

ξ
(q)
l

∥∥∥Q(d,q)
l

∥∥∥+
∥∥∥∥∥

q∑

l=T

ξ
(q)
l Q

(d,q)
l

∥∥∥∥∥

(i)

≤ 1.5

T−1∑

l=L̄+2

ξ
(q)
l + c3

(ii)

≤ c2 with probability ≥ 1− cq−(1−δ̄).

Q
(d,q)
l is the kernel matrix corresponding to Q(d,q)

l (x, x′), (i) uses Lemmas 16 and 17, and (ii) uses
non-negativity and additionally Equation (21) in Assumption 1.
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The lower bound follows similarly from

µmin (K2) ≥
q∑

l=L̄+2

ξ
(q)
l µmin

(
Q

(d,q)
l

)
≥ ξ

(q)

L̄+2
µmin

(
Q

(d,q)

L̄+2

) (i)

≥ 1

2
ξ
(q)

L̄+2

(ii)

≥ c1,

where (i) follows from Lemma 16 with probability at least 1− cq−(1−δ̄), and (ii) from Equation (18)
in Assumption 1.

Since Lemma 16 yields both the upper and lower bound for all l uniformly with probability 1 −
cq−(1−δ̄), this concludes the proof.

Lemma 14 (Bound on Tr(S2)). In the setting of Appendix C.2, if c < ⌊q/2⌋ < q < d/2 for c as in
Assumption 1, we have with probability at least 1− c̃q−(1−δ̄) that

Tr(S2) ∈ Θ(q−(1−δ̄)) and ∥S2∥ ∈ O
(

1

dqL̄+1

)
,

where S2 is defined in Appendix C.2.

Proof. Throughout the proof, the conditions on d and hence q ∈ Θ(dβ) ensure that we can apply
Assumption 1 and Lemma 16, as well as L̄+ 2 ≤ T < ⌊q/2⌋.

First, Lemma 13 yields ∥K2∥ ∈ Θ(1) with probability at least 1 − c′q−(1−δ̄), which we will use
throughout the proof. Next, we bound ∥S2∥ in two steps. For this, remember that λm̄ is the largest
eigenvalue corresponding to an eigenfunction YS of degree |S| ≥ L̄+ 2.

Proof that ∥S2∥ ≤ λm̄∥K2∥ Define Ψ̃k ∈ Rn×n with [Ψ̃k]i,j := YSk
(xi)YSk

(xj) for all i, j ∈
{1, . . . , n}, k ∈ I2, and let v be any vector in Rn. Then,

∥S2v∥
(i)
=

∥∥∥∥∥

(∑

k∈I2

λ2kΨ̃k

)
v

∥∥∥∥∥

≤

∥∥∥∥∥max
k∈I2

{λk}
∑

k∈I2

λkΨ̃kv

∥∥∥∥∥

(ii)
= λm̄

∥∥∥∥∥

(∑

k∈I2

λkΨ̃k

)
v

∥∥∥∥∥
= λm̄∥K2v∥,

where (i) follows from the definition of S2 and (ii) from the definition of m̄.

Proof that λm̄ ∈ Θ
(

1
dqL̄+1

)
We show that λk ∈ O

(
1

dqL̄+1

)
for all k ∈ I2, and that there exists

m̃ ∈ I2 with λm̃ ∈ Ω
(

1
dqL̄+1

)
. Since λm̄ = maxk∈I2

λSk
, those two facts imply λm̄ ∈ Θ

(
1

dqL̄+1

)
.

Let k ∈ I2 be arbitrary. Lemma 10 yields

λk ∈




O
(

1
dq|Sk|−1

)
|Sk| < T

O
(

1
dqT−1

)
|Sk| ≥ T

(i)

⊆ O
(

1

dqL̄+1

)
,

where (i) follows from |Sk| ≥ L̄+ 2 and T ≥ L̄+ 2.

Now we show that there exists m̃ with λm̃ ∈ Ω
(

1
dqL̄+1

)
. We choose m̃ with Sm̃ = {1, 2, . . . , L̄+2}.

Note that L̄+ 2 = γ(Sm̃) ≤ q and thus m̃ ∈ I2. Next, Proposition 1 yields

λSm̃
= ξ

(q)

L̄+2

(q + 1− γ(Sm̃))

dB(L̄+ 2, q)

(i)
∈ Θ

(
q

dqL̄+2

)
⊆ Θ

(
1

dqL̄+1

)
,
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where (i) follows from Equations (18) and (21) in Assumption 1.

Finally, combining the previous two results and ∥K2∥ ∈ Θ(1), we have

∥S2∥ ≤ λm̄∥K2∥ ∈ O (λm̄) = O
(

1

dqL̄+1

)
.

Upper bound of Tr(S2) The upper bound also follows directly from the last two results:

Tr(S2) ≤ n∥S2∥ ∈ O
(

n

dqL̄+1

)
= O

(
dqL̄+δ̄

dqL̄+1

)
= O(q−(1−δ̄)).

Lower bound of Tr(S2) The lower bound requires a more refined argument.

S2(x, x
′) =

∑

k∈I2

λ2Sk
YSk

(x)YSk
(x′) ≥

∑

γ(S)≤q
|S|=L̄+2

λ2SYS(x)YS(x
′)

≥
∑

γ(S)≤⌊q/2⌋
|S|=L̄+2

λ2SYS(x)YS(x
′)

(i)
= (ξ

(q)

L̄+2
)2

∑

γ(S)≤⌊q/2⌋
|S|=L̄+2

(q + 1− γ(S))2

d2B(L̄+ 2, q)2
YS(x)YS(x

′)

=
(ξ

(q)

L̄+2
)2

dB(L̄+ 2, q)

∑

γ(S)≤⌊q/2⌋
|S|=L̄+2

(q + 1− γ(S))
q + 1− γ(S)

dB(L̄+ 2, q)
YS(x)YS(x

′)

(ii)

≥
(ξ

(q)

L̄+2
)2q/2

dB(L̄+ 2, q)

∑

γ(S)≤⌊q/2⌋
|S|=L̄+2

⌊q/2⌋+ 1− γ(S)

dB(L̄+ 2, q)
YS(x)YS(x

′),

where (i) follows from Proposition 1. In (ii), we use that, as long as γ(S) ≤ ⌊q/2⌋, we have
q + 1− γ(S) ≥ q

2 and q ≥ ⌊q/2⌋. Continuing the bound, we have

S2(x, x
′) ≥

(ξ
(q)

L̄+2
)2q/2

dB(L̄+ 2, q)

∑

γ(S)≤⌊q/2⌋
|S|=L̄+2

⌊q/2⌋+ 1− γ(S)

dB(L̄+ 2, q)
YS(x)YS(x

′)

(iii)

≥ c′L̄
(ξ

(q)

L̄+2
)2q/2

dB(L̄+ 2, q)

∑

γ(S)≤⌊q/2⌋
|S|=L̄+2

⌊q/2⌋+ 1− γ(S)

dB(L̄+ 2, ⌊q/2⌋)
YS(x)YS(x

′)

(iv)
= c′L̄

(ξ
(q)

L̄+2
)2q/2

dB(L̄+ 2, q)
Q(d,⌊q/2⌋)

L̄+2
(x, x′).

In (iii), we use the classical bound on the binomial coefficient
( q
L̄+2

)
= B(L̄+ 2, q) as follows:

B(L̄+ 2, q) ≤ (2e)L̄+2

(
q/2

L̄+ 2

)L̄+2

≤ (2e)L̄+2cL̄

(
⌊q/2⌋
L̄+ 2

)L̄+2

= c′L̄B(L̄+ 2, ⌊q/2⌋),

where c′
L̄

is a constant that depends only on L̄. Finally, (iv) follows from the definition of Q(d,⌊q/2⌋)
L̄+2

in Equation (30).

The bound on S2(x, x
′) implies

µmin (S2) ≥ c′L̄
(ξ

(q)

L̄+2
)2q/2

dB(L̄+ 2, q)
µmin

(
Q

(d,⌊q/2⌋)
L̄+2

)
,
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and allows us to ultimately lower-bound Tr(S2) as follows:

Tr(S2) ≥ nµmin (S2) ≥ c′L̄n
(ξ

(q)

L̄+2
)2q/2

dB(L̄+ 2, q)
µmin

(
Q

(d,⌊q/2⌋)
L̄+2

)

(i)

≳ c′L̄n
(ξ

(q)

L̄+2
)2q/2

dB(L̄+ 2, q)

(ii)

≳ dℓ
q

dqL̄+2
=
dqL̄+δ̄

dqL̄+1
= q−(1−δ̄),

where (i) follows from the lower bound on µmin

(
Q

(d,⌊q/2⌋)
L̄+2

)
in Lemma 16 with probability at

least 1 − c′′⌊q/2⌋−(1−δ̄) ≥ 1 − c′′q−(1−δ̄), and (ii) follows from Equation (18) in Assumption 1
and the classical lower bound on the binomial coefficient. This yields the desired lower bound
Tr(S2) ∈ Ω(q−(1−δ̄)).

Finally, collecting all error probabilities concludes the proof.

Lemma 15 (Diagonal elements of Q(d,q)). Let l, q, d ∈ N with 0 < l ≤ q < d/2 and x ∈ {−1, 1}d.
Then,

Q(d,q)
l (x, x) = 1.

Proof. First,

Q(d,q)
l (x, x) =

∑

γ(S)≤q
|S|=l

q + 1− γ(S)

dB(l, q)
YS(x)

2

(i)
=

1

dB(l, q)
∑

γ(S)≤q
|S|=l

q + 1− γ(S)

=
1

dB(l, q)

q∑

γ=l

(q + 1− γ)
∑

γ(S)=γ
|S|=l

1

where (i) follows from the fact that YS(x)
2 = 1.

Note that
∑

γ(S)=γ
|S|=l

1 matches the definition of C̃(l, γ, d) in the proof of Lemma 9. Next, we use the

following recurrence:
q∑

γ=l

(q + 1− γ)C̃(l, γ, d) =
q∑

γ=l

(
C̃(l, γ, d) + ((q − 1) + 1− γ)C̃(l, γ, d)

)

= C(l, q, d) + 0 +

q−1∑

γ=l

((q − 1) + 1− γ)C̃(l, γ, d),

where the last step uses the fact that C(l, q, d) =
∑q

γ=l C̃(l, γ, d) by definition, and that the term
corresponding to γ = q in the second sum is zero. Recursively applying this formula q − l times
yields

q∑

γ=l

(q + 1− γ)C̃(l, γ, d) =
q∑

γ=l

C(l, γ, d).

Using this identity, we finally get

Q(d,q)
l (x, x) =

1

dB(l, q)

q∑

γ=l

C(l, γ, d) (i)
=

1

dB(l, q)

q∑

γ=l

d

(
γ − 1

l − 1

)
(ii)
=

1

dB(l, q)
d

(
q

l

)
(iii)
= 1,

where (i) follows from Lemma 9, (ii) from the hockey-stick identity, and (iii) from the definition of
B(l, q) in Equation (15).
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C.5 RANDOM MATRIX THEORY LEMMAS

We use the following lemmas related to random matrix theory in the proof of Lemma 3. The first two
results bound the kernel’s intermediate and late eigenvalues.

Lemma 16 (Bound on the kernel’s intermediate tail). In the setting of Appendix C.2, for T − 1 ≤
q < d/2, with probability at least 1− cq−(1−δ̄), all l ∈ N with L̄+ 2 ≤ l < T satisfy

∥Q(d,q)
l − In∥ ≤ 1

2
,

where T is defined in Assumption 1 and Q in Equation (30).

This lemma particularly implies ∥Q(d,q)
l ∥ ≤ 1.5 and µmin

(
Q

(d,q)
l

)
≥ 1/2 for all L̄ + 2 ≤ l < T

with high probability.

Lemma 17 (Bound on the kernel’s late tail). In the setting of Appendix C.2, if c ≤ ⌊q/2⌋ − 1 < q <
d/2, for c and T as in Assumption 1, we have

∥∥∥∥∥

q∑

l=T

ξ
(q)
l Q

(d,q)
l

∥∥∥∥∥ ≲ 1

with probability at least 1− c̃d−1.

Proof of Lemma 16. First, Lemma 15 yields that the diagonal elements of Q(d,q)
l are just 1. Hence,

we define W
(d,q)
l := Q

(d,q)
l − In, and want to show that, with high probability, ∥W(d,q)

l ∥ ≤ 1/2 for
all L̄+ 2 ≤ l < T at the same time.

The proof makes use of Lemma 18. Therefore, we need to find an appropriate M(l,q) for each
considered l, and show that the conditions of the lemma hold.

The first condition follows directly from the construction of W(d,q)
l and diag(Q

(d,q)
l ) = In.

To establish the second condition, we have for all i ̸= j, k ̸= j
∣∣∣Exj

[
[W

(d,q)
l ]i,j [W

(d,q)
l ]j,k

]∣∣∣

=

∣∣∣∣∣∣∣∣∣

1

(dB(l, q))2
∑

γ(S)≤q
|S|=l

∑

γ(S′)≤q
|S′|=l

(q + 1− γ(S))(q + 1− γ(S′))YS(xi)E [YS(xj)YS′(xj)]YS′(xk)

∣∣∣∣∣∣∣∣∣

(i)
=

1

(dB(l, q))2

∣∣∣∣∣∣∣∣

∑

γ(S)≤q
|S|=l

(q + 1− γ(S))2YS(xi)YS(xk)

∣∣∣∣∣∣∣∣

≤ q

dB(l, q)
1

dB(l, q)

∣∣∣∣∣∣∣∣

∑

γ(S)≤q
|S|=l

(q + 1− γ(S))YS(xi)YS(xk)

∣∣∣∣∣∣∣∣

=

(
dB(l, q)

q

)−1 ∣∣∣∣
[
W

(d,q)
l

]
i,k

∣∣∣∣ ≤
(
dB(l, q)
lq

)−1 ∣∣∣∣
[
W

(d,q)
l

]
i,k

∣∣∣∣,

where (i) follows from orthogonality of the eigenfunctions. Hence,

M(l,q) = dB(l, q)/lq

satisfies the second condition in Lemma 18 for all L̄+ 2 ≤ l < T .
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The extra l factor is necessary for the third condition to hold. As in Lemma 18, let p ∈ N, p ≥ 2.
Then, for all i ̸= j,

E
[
|[W(d,q)

l ]i,j |p
] 1

p
(i)

≤ (p− 1)l/2
√
E
[
[W

(d,q)
l ]2i,j

] (ii)

≤

√√√√√pl
∑

γ(S)≤q
|S|=l

(q + 1− γ(S))2

(dB(l, q))2

(iii)

≤

√
pl

q2

(dB(l, q))2
C(l, q, d) =

√
pl

lq

dB(l, q)

√
qC(l, q, d)
ldB(l, q)

(iv)
=

√
pl

M(l,q)
,

where (i) follows from hypercontractivity in Lemma 19, (ii) from orthogonality of the eigenfunctions,
and (iii) from the definition of C(l, q, d) as well as 1 ≤ γ(S) ≤ q. Step (iv) follows from Lemma 9,
the definition of B(l, q) in Equation (15),

(
q−1
l−1

)
q
l =

(
q
l

)
, and the definition of M(l,q).

Since all conditions are satisfied, Lemma 18 yields for all p ∈ N, p > 2

Pr
(
∥W(d,q)

l ∥ > 1/2
)
≤ cpl,1p

3pn
( n

M(l,q)

)p
+ cpl,2

( n

M(l,q)

)2
,

where cl,1, cl,2 are positive constants that depend on l. In particular, if p ≥ 2 +
1
β+L̄+δ̄

1−δ̄
, then we get

Pr
(
∥W(d,q)

l ∥ > 1/2
)
≤ clq

−2(1−δ̄),

where cl is a positive constant that depends on l. To avoid this dependence, we can take the union
bound over all l = L̄+ 2, . . . , T − 1:

Pr
(
∃l ∈ {L̄+ 2, . . . , T − 1} : ∥W(d,q)

l ∥ > 1/2
)
≤ q−2(1−δ̄)

T−1∑

l=L̄+2

cl ≤ c′L̄q
−2(1−δ̄),

where c′
L̄

only depends on L̄ and T , which are fixed in our setting. Finally, additionally note that
neither L̄ nor T depend on ℓλ.

Proof of Lemma 17. First, Lemma 15 yields that the diagonal elements of Q(d,q)
l are just 1 for all

l ∈ {T, . . . , q}. Hence, we define W
(d,q)
l := Q

(d,q)
l − In, and decompose the kernel matrix as

q∑

l=T

ξ
(q)
l Q

(d,q)
l =

q∑

l=T

ξ
(q)
l W

(d,q)
l +

q∑

l=T

ξ
(q)
l In.

We can hence apply the triangle inequality to bound the norm as follows:
∥∥∥∥∥

q∑

l=T

ξ
(q)
l Q

(d,q)
l

∥∥∥∥∥ ≤

∥∥∥∥∥

q∑

l=T

ξ
(q)
l W

(d,q)
l

∥∥∥∥∥+
∥∥∥∥∥

q∑

l=T

ξ
(q)
l In

∥∥∥∥∥
(i)

≤
q∑

l=T

ξ
(q)
l ∥W(d,q)

l ∥+
q∑

l=T

ξ
(q)
l ∥In∥

(ii)

≤
q∑

l=T

ξ
(q)
l

√√√√
n∑

i ̸=j

[W
(d,q)
l ]2i,j +

q∑

l=T

ξ
(q)
l

(iii)

≤
q∑

l=T

ξ
(q)
l

√
n2 max

i̸=j
[W

(d,q)
l ]2i,j

︸ ︷︷ ︸
=:ϖl

+ c′′

(iv)

≤
q∑

l=T

c′

q
+ c′′ ≲ 1, with probability ≥ 1− cd−1,

where (i) uses non-negativity of the ξ(q)l from Equations (18) and (19) in Assumption 1, (ii) bounds
the operator norm with the Frobenius norm, and (iii) additionally bounds the sum of the ξ(q)l using
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Equation (21) in Assumption 1. Step (iv) use a bound that we show in the remainder of the proof:
with probability at least 1− cd−1, we have ϖl ≤ c′/q uniformly over all l ∈ {T, . . . , q}.

We first bound ϖl for a fixed T ≤ l ≤ q as follows:

Pr(ϖl > 1/q) = Pr

(
ξ
(q)
l

√
n2 max

i ̸=j
[W

(d,q)
l ]2i,j > 1/q

)

= Pr

(
max
i ̸=j

[W
(d,q)
l ]2i,j >

1

n2(ξ
(q)
l )2q2

)
= Pr

(
∃i ̸= j : [W

(d,q)
l ]2i,j >

1

n2(ξ
(q)
l )2q2

)

(i)

≤ n(n− 1)Pr

(
[W

(d,q)
l ]21,2 >

1

n2(ξ
(q)
l )2q2

)

(ii)

≤ n4(ξ
(q)
l )2q2E

[
[W

(d,q)
l ]21,2

]

(iii)
=

n4(ξ
(q)
l )2q2

(dB(l, q))2
∑

γ(S),γ(S′)≤q
|S|,|S′|=l

(q + 1− γ(S))(q + 1− γ(S′))E [YS(x1)YS(x2)YS′(x1)YS′(x2)]︸ ︷︷ ︸
δS,S′

=
n4(ξ

(q)
l )2q2

(dB(l, q))2
∑

γ(S)≤q
|S|=l

(q + 1− γ(S))2

(iv)

≤
(q + 1− l)n4(ξ

(q)
l )2q2

dB(l, q)
∑

γ(S)≤q
|S|=l

(q + 1− γ(S))

dB(l, q)
YS(x1)

2

≤
n4(ξ

(q)
l )2q3

dB(l, q)
Q(d,q)

l (x1, x1)
(v)
=

n4q3

d

(ξ
(q)
l )2

B(l, q)
,

where (i) follows from the union bound and the distribution of the off-diagonal entries in W(d,q),
and (ii) from the Markov inequality. In step (iii), we use orthogonality of the eigenfunctions, as well
as the fact that W(d,q)

l and Q
(d,q)
l coincide on off-diagonal entries by construction. Step (iv) follows

from YS(x)
2 = 1 for all S and x ∈ {−1, 1}d. Finally, step (v) applies Lemma 15.

Next, we use the union bound over all ϖl of interest:

Pr (∃l ∈ {T, . . . , q} : ϖl > 1/q) ≤
q∑

l=T

Pr (ϖl > 1/q)

≤
q∑

l=T

n4q3

d

(ξ
(q)
l )2

B(l, q)

=
n4q3

d




⌈q/2⌉∑

l=T

(ξ
(q)
l )2(
q
l

) +

q−T∑

l=⌈q/2⌉+1

(ξ
(q)
l )2(
q
l

) +

q∑

l=q−T+1

(ξ
(q)
l )2(
q
l

)




(i)
=
n4q3

d




⌈q/2⌉∑

l=T

(ξ
(q)
l )2(
q
l

) +

q−⌈q/2⌉−1∑

l′=T

(ξ
(q)
q−l′)

2

(
q

q−l′

) +

T−1∑

l′=0

(ξ
(q)
q−l′)

2

(
q

q−l′

)




(ii)

≤ n4q3

d




⌈q/2⌉∑

l=T

(ξ
(q)
l )2 + (ξ

(q)
q−l)

2

(
q
l

)
︸ ︷︷ ︸

=:E1

+

T−1∑

l′=0

(ξ
(q)
q−l′)

2

(
q
l′

)
︸ ︷︷ ︸

=:E2



,

where (i) substitutes l′ = q − l, and (ii) uses q − ⌈q/2⌉ − 1 ≤ ⌈q/2⌉ as well as the fact that(
q

q−l′

)
=
(
q
l′

)
. We bound both E1 and E2 using Assumption 1.
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For E1 in particular, Equations (18), (19) and (21) imply that all ξ(q)l ≲ 1. Hence,

E1 =

⌈q/2⌉∑

l=T

(ξ
(q)
l )2 + (ξ

(q)
q−l)

2

(
q
l

) ≲
⌈q/2⌉∑

l=T

1(
q
l

)
(i)

≤
⌈q/2⌉∑

l=T

1(
q
T

) =
⌈q/2⌉ − T + 1(

q
T

)
(ii)

≤ TT q

qT
≲

1

qT−1
,

where (i) exploits that T is the value in {T, . . . , ⌈q/2⌉} the furthest away from q/2, and thus

min
l∈{T,...,⌈q/2⌉}

(
q

l

)
=

(
q

T

)
,

and (ii) follows from the classical lower bound on the binomial coefficient.

For E2, we have

E2 =

T−1∑

l′=0

(ξ
(q)
q−l′)

2

(
q
l′

)
(i)

≤
T−1∑

l′=0

l′l
′
(ξ

(q)
q−l′)

2

ql′
(ii)

≤
T−1∑

l′=0

l′l
′
(

c′

qT−l′+1

)2

ql′
≲

T−1∑

l′=0

l′l
′

q2T−2l′+2+l′
≤ T

TT

qT+2
≲

1

qT−1
,

where (i) uses the classical bound on the binomial coefficient, and (ii) Equation (20) in Assumption 1.

Combining the bounds on E1 and E2 finally yields

Pr (∃l ∈ {T, . . . , q} : ϖl > 1/q) ≤
q∑

l=T

Pr (ϖl > 1/q) ≤ n4q3

d
(E1 + E2)

≲
n4

dqT−4
≲ d4ℓ−1−β(T−4)

(i)

≲
1

d
,

where (i) follows from the definition of T = ⌈4 + 4ℓ
β ⌉ in Assumption 1.

The next statement is a non-asymptotic version of Proposition 3 from Ghorbani et al. (2021).
Lemma 18 (Graph argument). Let W ∈ Rn×n be a random matrix that satisfies the following
conditions:

1. [W]i,i = 0, ∀i ∈ {1, . . . , n}.

2. There exists M > 0 such that, for all i, j, k ∈ {1, . . . , n} with i ̸= j and j ̸= k, we have
∣∣Exj

[[W]i,j [W]j,k]
∣∣ ≤ 1

M
|[W]i,k|.

3. There exists l ∈ N such that, for all p ∈ N, p ≥ 2 and all i, j ∈ {1, . . . , n}, i ̸= j, we have

E [|[W]i,j |p]1/p ≤
√

pl

M
.

Then, for all p ∈ N, p > 2,

Pr (∥W∥ > 1/2) ≤ cp1p
3pn

( n

M

)p
+ cp2

( n

M

)2
,

where c1 and c2 are positive constants that depend on l.

Proof. Repeating the steps in the proof of Proposition 3 from Ghorbani et al. (2021), we get

E[∥W∥2p] ≤ E
[
Tr(W2p)

]
≤ (cp)3p

np+1

Mp
+ c′p

( n

M

)2
.

Note that the proof in Ghorbani et al. (2021) assumes M to be in the order of dl. We get rid of this
assumption and keep M explicit. Furthermore, Ghorbani et al. (2021) use their Lemma 4 during their
proof, but we use our Lemma 19 instead.

Ultimately, we apply the Markov inequality to get a high-probability bound:
Pr(∥W∥ ≥ 1/2) = Pr

(
∥W∥2p ≥ (1/2)2p

)

≤ E[∥W∥2p]
(1/2)2p

=

(
c3

(1/2)2

)p

p3p
np+1

Mp
+

(
c′

(1/2)2

)p ( n

M

)2
.

Renaming the constants concludes the proof.
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Lemma 19 (Hypercontractivity). For all l, q, d ∈ N and p ≥ 2, we have

Ex,x′∼U({−1,1}d)

[
|Q(d,q)

l (x, x′)|p
]1/p

≤ (p− 1)l/2
√
Ex,x′∼U({−1,1}d)

[
(Q(d,q)

l (x, x′))2
]
,

where Q(d,q)
l (x, x′) is defined in Equation (30).

Proof. Let x, x′ ∼ U({−1, 1}d) and let z be the entry-wise product of x and x′. Then, for all
S ⊆ {1, . . . , d}, YS(x)YS(x

′) depends only on z:

YS(x)YS(x
′) =

(∏

i∈S

[x]i

)(∏

i∈S

[x′]i

)
=
∏

i∈S

[x]i[x
′]i =

∏

i∈S

[z]i.

Hence, Q(d,q)
l (x, x′) also only depends on x and x′ via z. Furthermore, note that z ∼ U({−1, 1}d).

Therefore, we can use hypercontractivity (Beckner, 1975) as for instance in Lemma 4 from Misi-
akiewicz & Mei (2021) to conclude the proof.

D OPTIMAL REGULARIZATION AND TRAINING ERROR

D.1 OPTIMAL REGULARIZATION

In the main text we often refer to the optimal regularization λopt, defined as the minimizer of
the risk Risk(f̂λ). While we cannot calculate λopt directly, we only need the rate ℓλopt such that

max{λopt, 1} ∈ Θ
(
dℓλopt

)
. Furthermore, it is not a priori clear that such a ℓλopt minimizes the rate

exponent of the risk in Theorem 1. The current subsection establishes that this is indeed the case, and
provides a way to determine ℓλopt .

We introduce some shorthand notation for the rate exponents in Theorem 1:

ηv(ℓλ; ℓ, ℓσ, β) :=
−ℓσ − ℓλ

ℓ
− β

ℓ
min{δ, 1− δ},

ηb(ℓλ; ℓ, L
∗, β) := −2− 2

ℓ
(−ℓλ − 1− β(L∗ − 1)),

η(ℓλ; ℓ, ℓσ, L
∗, β) := max {ηv(ℓλ; ℓ, ℓσ, β), ηb(ℓλ; ℓ, L∗, β)} .

We highlight that ηb and η depend on ℓλ also through δ = ℓ−ℓλ−1
β −

⌊
ℓ−ℓλ−1

β

⌋
. Hence, in the setting

of Theorem 1, we have with high probability that

Variance(f̂λ) ∈ Θ(nηv(ℓλ;ℓ,ℓσ,β)),

Bias2(f̂λ) ∈ Θ(nηb(ℓλ;ℓ,L
∗,β)),

Risk2(f̂λ) ∈ Θ(nη(ℓλ;ℓ,ℓσ,L
∗,β)).

In the following, we view those quantities as functions of ℓλ, with all other parameters fixed. Next,
we additionally define

λopt := argmin
λ≥0|max {λ,1}∈O(dℓ̄)

Risk(f̂λ),

ℓλmin := argmin
ℓλ∈[0,ℓ̄]

η(ℓλ; ℓ, ℓσ, L
∗, β),

ηmin := min
ℓλ∈[0,ℓ̄]

η(ℓλ; ℓ, ℓσ, L
∗, β),

ℓ̄ := ℓ− 1− β(L∗ − 1).

First, we remark that ℓλmin —the set of regularization rates that minimize the risk rate—might have
cardinality larger than one. However, it cannot be empty: [0, ℓ̄] is a closed set, and Lemma 21 below
shows that η is a continuous function.
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Second, ℓ̄ defines the scope of the minimization domain, guaranteeing that the constraint on L∗ in
Theorem 1 holds for all candidate ℓλ.

Rate of optimal regularization ℓλopt vs. optimal rate ℓλmin : Let ℓλopt be the rate of the optimal regu-
larization strength such that max {λopt, 1} ∈ Θ(dℓλopt ). It is a priori not clear that ℓλopt minimizes η.
However, Lemma 20 bridges the two quantities, and guarantees with high probability that the rate of
λopt minimizes the rate of the risk.

Lemma 20 (Optimal regularization and optimal rate). In the setting of Theorem 1, assume ℓ > 0,
β ∈ (0, 1), ℓσ ≥ −ℓ̄, L∗ ∈

[
1, ⌈ ℓ−1

β ⌉
]
∩ N. Then, for d sufficiently large, with probability at least

1− cd−βmin{δ̄,1−δ̄} there exists l ∈ ℓλmin such that

max{λopt, 1} ∈ Θ
(
dl
)
.

Hence, we only need to obtain a minimum rate l ∈ ℓλmin instead of ℓλopt . In order to propose a method
for this, we first establish properties of η, ηb, ηv in the following lemma.

Lemma 21 (Properties of η). Assume ℓ > 0, β ∈ (0, 1), ℓσ ≥ −ℓ̄, L∗ ∈
[
1, ⌈ ℓ−1

β ⌉
]
∩ N.

1. Over [0, ℓ̄], ηv(·; ℓ, ℓσ, β) is continuous and non-increasing, and ηb(·; ℓ, L∗, β) is continuous
and strictly increasing.

2. ℓλmin := argminℓλ∈[0,ℓ̄] η(ℓλ; ℓ, ℓσ, L
∗, β) is a closed interval.

3. If there exists l̃ ∈
[
0, ℓ̄
]

with ηv(l̃; ℓ, ℓσ, β) = ηb(l̃; ℓ, L
∗, β), then ηmin = η(l̃; ℓ, ℓσ, L

∗, β).
Otherwise, ηmin = η(0; ℓ, ℓσ, L

∗, β).

4. Every l ∈ [0, ℓ̄] with l ≥ l for all l ∈ ℓλmin satisfies

η(l; ℓ, ℓσ, L
∗, β) = ηb(l; ℓ, L

∗, β).

5. Let l ∈ [0, ℓ̄] with l ≤ l for all l ∈ ℓλmin . If η(l; ℓ, ℓσ, L∗, β) − ηmin ≤ c where c > 0 is
constant 5 and depends only on ℓ, ℓσ, L∗, β, then

η(l; ℓ, ℓσ, L
∗, β) = ηmin +

2

ℓ
(min (ℓλmin)− l) .

Finding an optimal rate: Lemma 21 suggests a simple strategy to find a l ∈ ℓλmin numerically: search
the intersection of ηv and ηb in [0, ℓ̄]; if found, then the intersection point is optimal, otherwise l = 0
is optimal. Note that, if the intersection point exists, it is unique and easy to numerically approximate,
since ηv is non-increasing, and ηb is strictly increasing.

Calculating numerical solutions: However, Lemma 21 also shows that ℓλmin is an interval and thus
might contain multiple values. In that case, the proposed strategy might not necessarily retrieve the
rate of λopt, but a different l ∈ ℓλmin . Yet, Theorem 1 guarantees that both the optimally regularized
estimator and any estimator regularized with max {λ, 1} ∈ dl for any l ∈ ℓλmin have a risk vanishing
with the same rate nηmin with high probability. In particular, this allows us to exhibit the rate of the
optimally regularized estimator in Figure 1a. Finally, because of the multiple descent phenomenon
(see, for example, Figure 1), we do not expect either ℓλopt or β∗ to attain an easily readable closed-form
expression. Nevertheless, simple optimization procedures allow us to calculate accurate numerical
approximations.

Finally, we prove Lemmas 20 and 21.

Proof of Lemma 20. Let ℓλopt be such that

max {λopt, 1} ∈ Θ
(
dℓλopt

)
.

5We omit an explicit definition of c here for brevity and refer to the proof instead.
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Combining the bounds on bias and variance from Theorem 1, we have

Risk2(f̂λ) = Bias2(f̂λ) + Variance2(f̂λ)

∈ Θ
(
n−2− 2

ℓ (−ℓλ−1−β(L∗−1)) + n
−ℓσ−ℓλ

ℓ − β
ℓ min{δ,1−δ}

)

∈ Θ
(
nη(ℓλ;ℓ,ℓσ,L

∗,β)
)

with probability ≥ 1− cd−min{δ̄,1−δ̄} (38)

uniformly for all ℓλ ∈
[
0, ℓ̄
]

with max{λ, 1} ∈ Θ(dℓλ).

Throughout the remainder of this proof, we drop the dependencies on ℓ, ℓσ, L∗, β in the notation of
η and simply write η(ℓλ). We further omit repeating that each step is true with probability at least
1− cd−min{δ̄,1−δ̄}, but imply it throughout.

The goal of the proof is to show that there exists l ∈ ℓλmin sufficiently close to ℓλopt ; formally, we need
to show that

dℓλopt−l ∈ Θ(1). (39)

If this is the case, then the definition of ℓλopt yields the conclusion as follows:

max {λopt, 1} ∈ Θ
(
dℓλopt

)
= Θ

(
dldℓλopt−l

)
(i)
= Θ

(
dl
)
,

where (i) uses Equation (39).

Towards an auxiliary result, we first apply Equation (38) to ℓλopt and l ∈ ℓλmin with max{λ, 1} ∈
Θ(dl):

Risk2(f̂λ) ≤ c2n
η(l) = c2n

ηmin ,

Risk2(f̂λopt) ≥ c1n
η(λopt),

where c1, c2 > 0 are the constants hidden by the Θ-notation in Equation (38). Next, the optimality of
λopt yields c1 < c2, and

c1n
η(ℓλopt ) ≤ Risk2(f̂λopt) ≤ Risk2(f̂l) ≤ c2n

ηmin .

This implies

nη(ℓλopt )−ηmin ≤ c2
c1

⇒ η(ℓλopt)− ηmin ≤ log(c2/c1)

log n
, (40)

where the second implication uses that η(ℓλopt)− ηmin ≥ 0, since ηmin is the minimum rate.

With this result, we finally focus on establishing Equation (39) which yields the claim of this lemma.
Lemma 21 shows that ℓλmin is an interval; hence, we distinguish three cases:

Case ℓλopt ∈ ℓλmin : Picking ℓλopt = l ∈ ℓλmin directly yields dℓλopt−ℓλopt = d0 ∈ Θ(1).

Case ℓλopt < min (ℓλmin): Let l := min(ℓλmin). Equation (40) yields η(ℓλopt)− ηmin ≤ c for any c > 0
if d is large enough. Hence, for d fixed but sufficiently large, Lemma 21 yields

η(ℓλopt) = ηmin +
2

ℓ

(
l − ℓλopt

)
.

Applying Equation (40), we get

l − ℓλopt =
ℓ

2
(η(ℓλopt)− ηmin) ≤

ℓ log(c2/c1)

2 log n
.

Now, since ℓλopt ≤ l, dℓλopt−l ∈ O(1). Furthermore,

dl−ℓλopt ≤ d
ℓ log(c2/c1)

2 log n
(i)
= d

log(c2/c1)
2 log d =

√
c2/c1 ∈ O(1),

where (i) follows from n ∈ Θ(dℓ). Since both dl−ℓλopt and 1

d
l−ℓλopt

= dℓλopt−l are in O(1),

dℓλopt−l ∈ Θ(1),
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which establishes Equation (39) for l ∈ ℓλmin and thereby concludes this case.

Case ℓλopt > max (ℓλmin): Let l := max(ℓλmin). Then, Lemma 21 yields

η(ℓλopt) = −2− 2

ℓ
(−ℓλopt − 1− β(L∗ − 1))

= −2− 2

ℓ
(−ℓλopt − l + l − 1− β(L∗ − 1))

= −2− 2

ℓ
(−l − 1− β(L∗ − 1))− 2

ℓ
(l − ℓλopt)

(i)
= ηmin +

2

ℓ
(ℓλopt − l),

where (i) uses that l ∈ ℓλmin . Applying Equation (40), we get

ℓλopt − l =
ℓ

2
(η(ℓλopt)− ηmin) ≤

ℓ log(c2/c1)

2 log n
.

Analogously to the previous case, this implies dℓλopt−l ∈ O(1), and the fact that ℓλopt > l implies

dℓλopt−l ∈ Ω(1). Together, this yields

dℓλopt−l ∈ Θ(1),

which establishes Equation (39) for l ∈ ℓλmin and thereby concludes this case.

Proof of Lemma 21. Throughout this proof, we drop the dependencies on ℓ, ℓσ, L∗, β in the notation
of η, ηv, ηb and simply write η(l), ηv(l), ηb(l).

Continuity and monotonicity (Item 1) We first show that ηv(l) and ηb(l) are continuous functions.
ηb(l) is an affine function of l, hence continuous. ηv(l), however, additionally depends on l via δ,
which is not linear. Hence, to show that ηv(l) is continuous, we need to show that min{δ, 1− δ} is
continuous. Consider the triangle wave function

ϖ(t) := min{t− ⌊t⌋, 1− (t− ⌊t⌋)},

which is well-known to be continuous. Because min{δ, 1− δ} = ϖ
(

ℓ−l−1
β

)
, and ℓ−l−1

β is a linear
function of l, we get that ηv(l) is also continuous.

For monotonicity, we consider the derivatives of ηv(l) and ηb(l). For ηb(l), we have

∂lηb(l) =
2

ℓ
.

Since ηb is an affine function, and 2
ℓ > 0, this also implies that ηb is strictly increasing. For ηv, we

need to distinguish two cases:

∂lηv(l) =

{
∂l

−ℓσ−l−βδ
ℓ δ < 1− δ

∂l
−ℓσ−l−β(1−δ)

ℓ δ ≥ 1− δ

=

{
0 δ < 1− δ,

− 2
ℓ δ ≥ 1− δ.

Since ηv is a continuous function with non-positive derivatives, this implies that ηv is non-increasing.

η decomposition (Item 3) First assume that there exists l̃ ∈
[
0, ℓ̄
]

with ηv(l̃) = ηb(l̃). Since ηv is
non-increasing and ηb is strictly increasing,

η(l) := max{ηb(l), ηv(l)} =

{
ηv(l) l < l̃,

ηb(l) otherwise.

In particular, η(l) > η(l̃) for all l > l̃ as ηb is strictly increasing, and η(l) ≥ η(l̃) for all l < l̃ since
ηv is non-increasing. Combined, this yields ηmin = η(l̃; ℓ, ℓσ, L

∗, β).
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Next, assume l̃ does not exist, that is, ηv(l) ̸= ηb(l) for all l ∈
[
0, ℓ̄
]
. Then, due to continuity, either

ηb(l) > ηv(l) for all l ∈
[
0, ℓ̄
]
, or ηv(l) > ηb(l) for all l ∈

[
0, ℓ̄
]
. However, a closer analysis shows

that the latter is not possible: the rates at the boundary ℓ̄ are

ηb(ℓ̄) = −2− 2

ℓ
(− (ℓ− 1− β(L∗ − 1))− 1− β(L∗ − 1)) = 0,

ηv(ℓ̄) = −ℓσ + (ℓ− 1− β(L∗ − 1))

ℓ
− β

ℓ
min{δ, 1− δ}

(i)

≤ 0,

where (i) follows from the assumption ℓσ ≥ −ℓ̄ and the fact that min{δ, 1 − δ} ≥ 0. Hence, if l̃
does not exist, ηv(l) < ηb(l),∀l ∈ [0, ℓ̄]. In particular, ηmin is the minimum of the strictly increasing
function ηb(l) over [

[
0, ℓ̄
]
, and therefore attained only at 0.

Lastly, combining both cases of l̃ yields the following convenient expression:

η(l) =

{
ηv(l) l̃ exists and l < l̃,
ηb(l) otherwise.

(41)

Closed interval of solutions (Item 2) We again differentiate whether l̃ as in the previous step exists
or not. If l̃ does not exist, then the previous step already yields ℓλmin = {0}, which is a closed interval.
Next, assume l̃ exists. Then, all l ∈ ℓλmin satisfy l ≤ l̃, since l̃ ∈ ℓλmin and ηb is strictly increasing.
Since further ηv is continuous and non-increasing over

[
0, l̃
]
⊇ ℓλmin , ℓλmin is an interval. Finally,

η(l) = max{ηb(l), ηv(l)} is the maximum of two continuous functions, hence itself also continuous.
Therefore, the minimizers ℓλmin of η are a closed set. This concludes that ℓλmin is a closed interval.

Proof of Items 4 and 5 Item 4 follows straightforwardly from Equation (41): If l̃ does not exist,
then η(l) = ηb(l) for all l ∈

[
0, ℓ̄
]
. Similarly, if l̃ exists, η(l) = ηb(l) for all l ≥ l̃, in particular for

l ≥ l̃ ∈ ℓλmin .

Item 5 requires additional considerations. In the case where l̃ does not exist, we have ℓλmin = {0},
and the result follows directly. Otherwise, using Equation (41), we have η(l) = ηv(l) for any l ≤ l,
as l ≤ min(ℓλmin) ≤ l̃. As shown in the proof of Item 1, ηv(l) alternates between derivatives 0
and −2/ℓ. We claim that there exists a left neighborhood of min (ℓλmin) where the derivative is
−2/ℓ. Assume towards a contradiction that no such left neighborhood exists. Then, there must be a
left neighborhood of min (ℓλmin) where the derivative is 0, since ηv(l) alternates between only two
derivatives. However, in that left neighborhood, ηv(l) is constant with all values equal to ηmin. Hence,
there exists l < min (ℓλmin) with η(l) = ηv(l) = ηmin and thus l ∈ ℓλmin , which is a contradiction.

Thus, there exists a left neighborhood of min (ℓλmin) with diameter ε > 0 throughout which the
derivative is − 2

ℓ . Then, for all l ∈ [min (ℓλmin)− ε,min (ℓλmin)],

ηv(l) = ηmin − 2

ℓ
(l −min (ℓλmin)).

Finally, since ηv(l) is non-increasing, as long as ηv(l) ≤ ηmin + 2
ℓ ε we have l ≥ min (ℓλmin) − ε.

Hence, choosing c = 2
ℓ ε yields the statement of Item 5.

D.2 PROOF OF THEOREM 2

The informal Theorem 2 in the main text relies on a β∗, defined as the intersection of the variance
and bias rates from Theorem 1 for the interpolator f̂0 (setting ℓλ = 0). Whenever β∗ is unique,
the fact that Bias2(f̂0) in Theorem 1 strictly increases as a function of β induces a phase transition:
for β > β∗, the bias dominates the rate of the risk in Theorem 1, while for β ≤ β∗, the variance
dominates. In particular, Lemmas 20 and 21 imply that interpolation is harmless whenever the bias
dominates, and harmful if the variance dominates.

Intuitively, Theorem 2 considers optimally regularized estimators, and varies the inductive bias
strength via β. The formal Theorem 4 below presents a different perspective: it considers β fixed,
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and instead differentiates whether the optimal risk rate in Theorem 1 results from ℓλ > 0 (harmful
interpolation) or ℓλ = 0 (harmless interpolation).

Whenever β∗ is well-defined and unique, as for example in the setting of Figure 1, the two perspectives
coincide. However, one can construct pathological edge cases where variance and bias rates intersect
on an interval of β values, or the dominating quantity of the risk rate in Theorem 1 as a function of β
alternates between the variance and bias. While Theorem 2 fails to capture such settings, Theorem 4
still applies. We hence present Theorem 4 as a more general result.

Theorem 4 (Formal version of Theorem 2). In the setting of Theorem 1 using the notation from
Appendix D.1, let ℓ > 0, β ∈ (0, 1), ℓσ ≥ −ℓ̄, and L∗ ∈

[
1, ⌈ ℓ−1

β ⌉
]
∩ N. Let further λopt =

argminλ≥0|max {λ,1}∈O(dℓ̄) Risk(f̂λ). Then, the expected training error behaves as follows:

1. If all l ∈ argminl∈[0,ℓ̄] η(l; ℓ, ℓσ, L
∗, β) satisfy η(l; ℓ, ℓσ, L∗, β) < η(0; ℓ, ℓσ, L

∗, β), then

∣∣∣∣∣Eϵ

[
1

n

∑

i

(f̂λopt(xi)− yi)
2

]
− σ2

∣∣∣∣∣ ∈ O(d−l+Risk2(f̂λopt)), w.p. ≥ 1−cd−βmin{δ̄,1−δ̄}.

2. If all l ∈ (0, ℓ̄] satisfy η(l; ℓ, ℓσ, L∗, β) > η(0; ℓ, ℓσ, L
∗, β), then

Eϵ

[
1

n

∑

i

(f̂λopt(xi)− yi)
2

]
≤ c̃σ2 +O

(
Risk2(f̂λopt)

)
, w.p. ≥ 1− cd−βmin{δ̄,1−δ̄}

for some constant c̃ < 1.

Intuitively, the two cases in Theorem 4 correspond to harmful and harmless interpolation, where the
optimal rate in Theorem 1 is for ℓλ > 0 and ℓλ = 0, respectively. Then, Lemma 20 yields with high
probability that also ℓλopt > 0 and ℓλopt = 0 in the first and second case, respectively. Finally, we
remark that Theorem 4 lacks an edge case: if both some ℓλ > 0 and ℓλ = 0 minimize the risk rate in
Theorem 1 simultaneously, Lemma 20 fails to differentiate whether ℓλopt is zero or positive. However,
that edge case corresponds to either interpolation or very weak regularization. Hence, we conjecture
the corresponding model’s training error to behave similar to the second case in Theorem 4.

Proof of Theorem 4. First, Lemma 20 yields with probability at least 1 − cd−βmin{δ̄,1−δ̄} that
max{λopt, 1} ∈ Θ(dl), where l is a minimizer of η(l; ℓ, ℓσ, L∗, β). The condition in Item 1 guarantees
that all optimal l are positive, while the condition in Item 2 ensures that the optimal l = 0.

Harmful interpolation setting (Item 1) In this case, l > 0, and thus λopt ∈ Θ(dl) for d sufficiently
large. We start by applying Theorem 1 with ℓλ = l in this setting.

Within the proof of Theorem 1 in Section 5.2, we pick a m ∈ N such that for d sufficiently large, with
probability at least 1− cd−βmin{δ̄,1−δ̄}, m satisfies the conditions of Lemmas 1 to 4 and Theorem 3.
For the remainder of this proof, let m be the same as in the proof of Theorem 1 for ℓλ = l. This m
satisfies the conditions of Lemma 23, which hence yields

λ2optσ
2

n
Tr
(
H−2

)
≤ Eϵ

[
1

n

∑

i

(f̂λopt(xi)− yi)
2

]
≤
λ2optσ

2

n
Tr
(
H−2

)
+ 6λ2opt

r22
r21

∥D−1
≤ma∥2

n2
,

where H := K+ λIn. Then, using that a ≤ b ≤ a+ d implies |b− c| ≤ |a− c|+ d, we further get
∣∣∣∣∣Eϵ

[
1

n

∑

i

(f̂λopt(xi)− yi)
2

]
− σ2

∣∣∣∣∣ ≤ σ2

∣∣∣∣∣
λ2opt

n
Tr
(
H−2

)
− 1

∣∣∣∣∣
︸ ︷︷ ︸

:=T1

+6λ2opt
r22
r21

∥D−1
≤ma∥2

n2︸ ︷︷ ︸
:=T2

. (42)
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We first bound T2 as follows:

T2 = 6λ2opt
r22
r21

∥D−1
≤ma∥2

n2

(i)

≲
d2l

d2ℓ
r22
r21

∥D−1
≤ma∥

2

(ii)

≲
d2l

d2ℓ
· d2q2(L

∗−1)

=
d2l

d2d2ld2(ℓ−l−1)
· d2q2(L

∗−1)

≲ d−2(ℓ−l−1−β(L∗−1))

(iii)
∈ O

(
Bias2(f̂λopt)

)
⊆ O

(
Risk2(f̂λopt)

)
, (43)

where (i) uses n ∈ Θ(dℓ) and λopt ∈ Θ(dl), (ii) applies Lemma 2 for the rate of ∥D−1
≤ma∥ and

Lemma 3 for r22, r
2
1 ∈ Θ(1), and (iii) matches the expression to the rate of the bias in Theorem 1.

For T1, we will bound Tr
(
H−2

)
from above and below using Lemma 22. We hence introduce the

following notation:

K−2 := K≤m +K1, H2 := K2 + λoptIn,

so that H = H2 +K−2, and where K1 and K2 are defined in Appendix C.2. Furthermore, the rank
of K−2 is at most |N \ I2| = |{k ∈ N | |Sk| < L̄+ 2}|, that is, the number of eigenfunctions that
contribute to K−2. The rate of |N \ I2| is

|N \ I2|
(i)
=

L̄+1∑

l=0

C(l, q, d) (ii)
= 1 +

L̄+1∑

l=1

d

(
q − 1

l − 1

)
(iii)
∈ O(d · qL̄),

where (i) uses the definition of C(l, q, d) in Equation (17), (ii) applies Lemma 9 with d sufficiently

large, and (iii) uses the classical bound
(
q−1
l−1

)
≤
(
e q−1
l−1

)l−1

as well as the fact that the largest

monomial dominates the sum. Finally, since n ∈ Θ(d · qL̄+δ̄), we have

rank(K−2) ≤ |N \ I2| ∈ O(nq−δ̄) ⊆ o(n). (44)

Therefore, for d and hence n ∈ Θ(dℓ) sufficiently large, rank(K−2) < n, and Lemma 13 yields
c1 ≤ µmin (H2) ≤ ∥H2∥ ≤ c2 for some constants c1, c2 > 0 with probability at least 1− c′q−(1−δ̄).
We can thus instantiate Lemma 22 with M = H,M1 = K−2,M2 = H2. This implies that:

Tr
(
H−2

)
≥ n− rank(K−2)

∥H2∥2
≥ n− rank(K−2)

(c2 + λopt)2
.

The upper bound on Tr
(
H−2

)
simply follows from

Tr
(
H−2

)
≤ n∥H−2∥

=
n

µmin (K≤m +K1 +K2 + λoptIn)
2

≤ n

µmin (K2 + λoptIn)
2

(i)

≤ n

(c1 + λopt)2
, (45)

where (i) uses the previous lower bound on µmin (K2) from Lemma 13.
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Combining the upper and lower bounds on Tr
(
H−2

)
yields

n− rank(K−2)

(c2 + λopt)2
≤ Tr

(
H−2

)
≤ n

(c1 + λopt)2

n− rank(K−2)
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λ2opt
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λ2opt

n
Tr
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≤
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− rank(K−2)
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λ2opt
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+

λ2opt
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λ2opt

n
Tr
(
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− 1 ≤

λ2opt

(c1 + λopt)2
− 1

− rank(K−2)
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λ2opt

(c2 + λopt)2
−

2c2λopt + c22
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≤
λ2opt

n
Tr
(
H−2

)
− 1 ≤ −

2c1λopt + c21
(c1 + λopt)2

.

Taking absolute values, a simple case distinction and c1 < c2 yields the following bound:
∣∣∣∣∣
λ2opt

n
Tr
(
H−2

)
− 1

∣∣∣∣∣ ≤
2c2 + λopt

(c2 + λopt)2
+

rank(K−2)

n

λ2opt

(c2 + λopt)2

(i)

≲
dl

d2l
+
nq−δ̄

n

d2l

d2l
= d−l + q−δ̄ ∈ O(d−l),

where (i) uses the rate of rank(K−2) from Equation (44) and λopt ∈ Θ
(
dl
)
. Combining this bound

on T1 with the bound on T2 in Equation (43) and collecting all error probabilities concludes the
current case.

Harmless interpolation setting (Item 2) In this setting, the only minimizer of the risk rate is l = 0,
and hence

λopt ≤ max {λopt, 1} ∈ O(d0) = O(1).

As for the previous case, let m be the same as in the proof of Theorem 1 for ℓλ = 0. With probability
at least 1− cd−βmin{δ̄,1−δ̄}, this m again satisfies the conditions of Lemma 23, which yields

Eϵ

[
1

n

∑

i

(f̂λopt(xi)− yi)
2

]
≤
λ2optσ

2

n
Tr
(
H−2

)
︸ ︷︷ ︸

:=T3

+6λ2opt
r22
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∥D−1
≤ma∥2

n2︸ ︷︷ ︸
T2

.

Furthermore, we apply the same steps with l = 0 as in the previous case (Equation (43)) to bound T2:

T2 ∈ O
(

Risk2(f̂λopt)
)
.

For T3, we use the same bound on Tr
(
H−2

)
as in Equation (45) with the same probability as

follows:

T3 =
λ2optσ

2

n
Tr
(
H−2

)
≤
λ2optσ

2

n

n

(c1 + λopt)2

= σ2
λ2opt

(c1 + λopt)2

(i)

≤ σ2 (c′′)2

(c1 + c′′)2
,

where (i) follows for d sufficiently large from λopt ∈ O(1) with c′′ > 0. Since c1 > 0, we have
(c′′)2

(c1+c′′)2 < 1. Hence, combining the bounds on T2 and T3, as well as collecting all probabilities, we
get the desired result for this case.

D.3 TECHNICAL LEMMAS

Lemma 22 (Trace of the inverse). Let M,M1,M2 ∈ Rn×n be symmetric positive semi-definite
matrices with M = M1 + M2. Furthermore, assume that µmin (M2) > 0 and rank(M1) < n.
Then,

Tr(M−2) ≥ n− rank(M1)

∥M2∥2
.
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Proof. First, we apply the identity

M−1 = (M2 +M1)
−1 = M−1

2 −M−1
2 M1(M2 +M1)

−1

︸ ︷︷ ︸
:=A

,

which holds since M2, and thus M, are full rank. Next, A is a product of matrices including
M1; hence, the rank of A is bounded by rank(M1) < n. Let now {v1, . . . , vrank(A)} be an
orthonormal basis of col(A), and let {vrank(A)+1, . . . , vn} be an orthonormal basis of col(A)⊥.
Thus, {v1, . . . , vn} is an orthonormal basis of Rn, and similarity invariance of the trace yields

Tr(M−2) =

n∑
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v⊺i M
−2vi =
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−2vi +
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)2
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−1 Avi︸︷︷︸
=0
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=0
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n∑

i=rank(A)+1

v⊺i M2
−2vi

(ii)

≥ (n− rank(A))µmin

(
M2

−2
)
= (n− rank(A))

1

∥M2∥2
(iii)

≥ n− rank(M1)

∥M2∥2
,

where (i) uses that, for all i > rank(A), vi is orthogonal to the column space of A, and A is
symmetric. Furthermore, (ii) uses that all vi have norm 1, and (iii) that rank(A) ≤ rank(M1).

Lemma 23 (Fixed-design training error). In the setting of Theorem 3, let m ∈ N such that r1 > 0,
Equation (5) holds, and the ground truth satisfies f⋆(x) =

∑m
k=1 akψk(x). Then,

λ2σ2

n
Tr
(
H−2

)
≤ Eϵ

[
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∑

i

(f̂λ(xi)− yi)
2

]
≤ λ2σ2
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+ 6λ2

r22
r21

∥D−1
≤ma∥2

n2
,

where H := K+ λIn.

Proof. The kernel ridge regression estimator is

f̂λ(x
∗) = y⊺H−1k(x∗),

where y := [y1, . . . , yn]
⊺ with yi = f⋆(xi) + ϵi, and k(x∗) := [K(x1, x

∗), . . . ,K(xn, x
∗)]⊺. Thus,

the estimator evaluated at x1, . . . , xn is KH−1y, which yields the following training error:

1
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(f̂λ(xi)− yi)
2 =

1

n
∥
(
In −KH−1

)
y∥2 (i)

=
λ2

n
∥H−1y∥2,

where (i) follows from

In −KH−1 = In −K(K+ λIn)
−1 = In − (K+ λIn − λIn)(K+ λIn)

−1 = λ(K+ λIn)
−1.

Next, by the assumptions on the ground truth, we can write y = ϵ +Ψ≤ma. Thus, the expected
training error with respect to the noise is

Eϵ
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:=T2

.

50



Published as a conference paper at ICLR 2023

First, T2 > 0 since H is positive semi-definite. Therefore, T1 already yields the desired lower bound
on the expected training error. For the upper bound, we bound T2 as follows:

T2 =
λ2

n
(D−1

≤ma)
⊺D≤mΨ⊺
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,

where H>m := K>m + λIn. Step (i) follows from Lemma 6, step (ii) uses Equation (5) and
matches the term B1 from the proof of Theorem 3, and step (iii) applies the bound on B1 achieved
in Theorem 3. This upper-bounds the expected training error and thereby concludes the proof.

E EXPERIMENTAL DETAILS

This section describes our experimental setup and includes additional details. We provide
the code to replicate all experiments and plots in https://github.com/michaelaerni/
iclr23-InductiveBiasesHarmlessInterpolation.

E.1 SETUP FOR FILTER SIZE EXPERIMENTS

The following describes the main filter size experiments presented in Section 4.1.

Network architecture We use a special CNN architecture that amplifies the role of filter size as
an inductive bias. Each model of the main filter size experiments in Figure 2 has the following
architecture:

1. Convolutional layer with 128 filters of varying size and no padding

2. Global max pooling over the spatial feature dimensions

3. ReLU activation

4. Linear layer with 256 output features

5. ReLU activation

6. Linear layer with 1 output feature

All convolutional and linear layers use a bias term. Since we employ a single convolutional layer
before global max pooling, the convolutional filter size directly determines the maximum size of an
input patch that can influence the CNN’s output. Note that this architecture reduces to an MLP if the
filter size equals the input image size.

Optimization procedure We use the same training procedure for all settings in Figure 2. Optimiza-
tion minimizes the logistic loss for 300 epochs of mini-batch SGD with momentum 0.9 and batch
size 100. We linearly increase the learning rate from 10−6 to a peak value of 0.2 during the first 50
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Figure 4: Example synthetic images used in the filter size experiments.

epochs, and then reduce the learning rate according to an inverse square-root decay every 20 epochs.
For peak learning rate γ0, a decay rate L, the inverse square-root decay schedule at epoch t ≥ 0 is

γ0√
1 + ⌊t/L⌋

. (46)

Learning rate warm-up helps to capture the early-stopped test error more precisely. Whenever
possible, we use deterministic training algorithms, so that our results are as reproducible as possible.
We selected all hyperparameters to minimize the training loss of the strongest inductive bias (filter
size 5) on noisy training data, with the constraint that all other settings still converge and interpolate.
Note that we do not use data augmentation, dropout, or weight decay.

Evaluation We observed that all models achieved their minimum test error either at the beginning
or very end of training. Hence, our experiments evaluate the test error every 2 epochs during the
first 150 epochs, and every 10 epochs afterwards to save computation time. We use an oracle, that
is, the true test error, to determine the optimal early stopping epoch in retrospective. The optimal
early stopping training error is always over the entire training set (including potential noise) for a
fixed model, not an average over mini-batches. To mitigate randomness in both the training data and
optimization procedure, we average over multiple dataset and training seeds. More precisely, we
sample 5 different pairs of training and test datasets. For each dataset, we fit 15 randomly initialized
models per filter size on the same dataset, and calculate average metrics. The plots then display the
mean and standard error over the 5 datasets.

Dataset All filter size experiments use synthetic images. For a fixed seed, the experiments generate
200 training and 100k test images, both having an equal amount of positive and negative classes.
Given a class, the sampling procedure iteratively scatters 10 shapes on a black 32 × 32 image. A
single shape is either a circle (negative class) or a cross (positive class), has a uniformly random
size in [3, 5], and a uniformly random center such that all shapes end up completely inside the target
image. We use a conceptual line width of 0.5 pixels, but discretize the shapes into a grid. See Figure 4
for examples. A single dataset seed fully determines the training data, test data, and all scattered
shapes.

Noise model In the noisy case, we select 20% of all training samples uniformly at random without
replacement, and flip their label. The noise is deterministic per dataset seed and does not change
between different optimization runs. Note that we never apply noise to the test data.

E.2 SETUP FOR ROTATIONAL INVARIANCE EXPERIMENTS

The following describes the rotational invariance experiments presented in Section 4.2.

Dataset We use the EuroSAT (Helber et al., 2018) training split and subsample it into 7680 raw
training and 10k raw test samples in a stratified way. For a fixed number of rotations k, we generate a
training dataset as follows:
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1. In the noisy case, select a random 20% subset of all training samples without replacement;
for each, change the label to one of the other 9 classes uniformly at random.

2. For the i-th training sample (i ∈ {1, . . . , 7680}):
(a) Determine a random offset angle αi.
(b) Rotate the original image by each angle in {αi + j · (360◦/k) | j = 0, . . . , k − 1}.
(c) Crop each of the k rotated 64× 64 images to 44× 44 so that no network sees black

borders from image interpolation.
3. Concatenate all k × 7680 samples into a single training dataset.
4. Shuffle this final dataset (at the beginning of training and every epoch).

To generate the actual test dataset, we apply a random rotation to each raw test sample independently,
and crop the rotated images to the same size as the training samples. This procedure rotates every
image exactly once, and uses random angle offsets to avoid distribution shift effects from image
interpolation. Note that all random rotations are independent of the label noise and the number of
training rotations. Hence, all experiments share the same test dataset. Furthermore, since we apply
label noise before rotating images, all rotations of an image consistently share the same label.

Network architecture All experiments use a Wide Residual Network (Zagoruyko & Komodakis,
2016) with 16 layers, widen factor 6, and default PyTorch weight initialization. We chose the width
and depth such that all networks are sufficiently overparameterized while still being manageable in
terms of computational cost.

Optimization procedure We use the same training procedure for all settings in Figure 3. Optimiza-
tion minimizes the softmax cross-entropy loss using mini-batch SGD with momentum 0.9 and batch
size 128. Since the training set size grows in the number of rotations, all experiments fix the number
of gradient updates to 144k. This corresponds to 200 epochs over a dataset with 12 rotations. Similar
to the filter size experiments, we linearly increase the learning rate from zero to a peak value of 0.15
during the first 4800 steps, and then reduce the learning rate according to an inverse square-root
decay (Equation (46)) every 960 steps. Whenever possible, we use deterministic training algorithms,
so that our results are as reproducible as possible. We selected all hyperparameters to minimize the
training loss of the strongest inductive bias (12 rotations) on noisy training data, with the constraint
that all other settings still converge and interpolate. As for all experiments in this paper, we do not
use additional data augmentation, dropout, or weight decay.

Evaluation Similar to the filter size experiments, we evaluate the test error more frequently during
early training iterations: every 480 steps for the first 9600 steps, every 1920 steps afterwards. The
experiments again use the actual test error to determine the best step for early-stopping, and calculate
the corresponding training error over the entire training dataset, including all rotations and potential
noise. Due to the larger training set size and increased computational costs, we only sample a single
training and test dataset, and report the mean and standard error of all metrics over five training seeds.

E.3 DIFFERENCE TO DOUBLE DESCENT

As mentioned in Section 4.1, our empirical observations resemble the double descent phenomenon.
This subsection expands on the discussion and provides additional details about how this paper’s
phenomenon differs from double descent.

While all models in all experiments interpolate the training data, we observe that both noisy labels
and stronger inductive biases increase the final training loss of an interpolating model: Smaller filter
size results in a decreasing number of model parameters. Enforcing invariance to more rotations
requires a model to interpolate more (correlated) training samples. Thus, in both cases, increasing
inductive bias strength decreases a model’s overparameterization in relation to the number of training
samples — shifting the setting closer to the interpolation threshold.

We argue that our choice of architecture and hyperparameter tuning ensures that no model in any
experiment is close to the corresponding interpolation threshold. If that is the case, then double
descent predicts that increasing the number of model parameters has a negligible effect on whether
regularization benefits generalization, and does therefore not explain our observations.
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Figure 5: Training losses of the models in this paper’s experiments as a function of (a) filter size and (b) the
number of training set rotations. Models with a stronger inductive bias generally exhibit larger losses. However,
in all instances, the numerical difference is small. Lines show the mean loss over 5 training set samples in (a)
and 5 different optimization runs in (b), shaded areas the corresponding standard error.

In the following, we first describe how our hyperparameter and model selection procedure ensures
that all models in all experiments are sufficiently overparameterized, so that double descent predicts
negligible effects from increasing the number of parameters. Then, we provide additional experimen-
tal evidence that supports our argument: We repeat a subset of the experiments in Section 4 while
upscaling the number of parameters in all models. For a fixed model scale and varying inductive bias,
we observe that all phenomena in Section 4 persist. For a fixed inductive bias strength, we further
see that the test error of interpolating models saturates at a value that matches our hypothesis. In
particular, for strong inductive biases, the gap in test error between interpolating models and their
optimally early-stopped version — harmful interpolation — persists.

Hyperparameter tuning We mitigate differences in model complexity for different inductive bias
strengths by tuning all hyperparameters on worst-case settings, that is, maximum inductive bias with
noisy training samples. To avoid optimizing on test data, we tune on dataset seeds and network
initializations that differ from the ones used in actual experiments. Figure 5 displays the final training
loss for all empirical settings in this paper. While models with a stronger inductive bias exhibit larger
training losses, all values are close to zero, and the numerical difference is small. Finally, we want to
stress again that this discussion is only about the training loss; all models in all experiments have
zero training error and perfectly fit the corresponding training data.

Increasing model complexity for varying filter size As additional evidence, we repeat the main
filter size experiments from Figure 2 in Section 4.1 using the same setup as before (see Appendix E.1),
but increase the convolutional layer width to 256, 512, 1024, and 2048. For computational reasons,
we evaluate a reduced number of filter sizes for widths 256 and 512, and only the smallest filter size
5 for widths 1024 and 2048. Since we found the original learning rate 0.2 to be too unstable for the
larger model sizes, we use a decreased peak learning rate 0.13 for widths 256 and 512, and 0.1 for
widths 1024 and 2048.

Figures 6a and 6b show the test errors for 20% and 0% training noise, respectively. With noisy
training data (Figure 6a), larger interpolating models yield a slightly smaller test error, but the overall
trends remain: the gap in test error between converged and optimally early-stopped models increases
with inductive bias strength, and the phase transition between harmless and harmful interpolation
persists. In particular, Figure 6a shows strong evidence that the number of model parameters does
not influence our phenomenon: for example, models with filter size 5 (strong inductive bias) and
width 512 (red) have more parameters than models with filter size 27 (weak inductive bias) and
width 128 (blue). Nevertheless, models with filter size 5 benefit significantly from early stopping,
while interpolation for models with filter size 27 is harmless. In the noiseless case (Figure 6b),
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Figure 6: An increase in convolutional layer width by factors 2 to 16 does not significantly alter the behavior of
(a) the test error when training on 20% label noise, (b) the test error when training on 0% label noise, and (c) the
training error when using optimal early stopping on 20% label noise. Despite significantly larger model size, the
phase transition between harmless and harmful interpolation persists. Lines show the mean over five random
datasets, shaded areas the standard error.

increasing model complexity does neither harm nor improve generalization, and all models achieve
their optimal performance after interpolating the entire training dataset. Similarly, Figure 6c reveals
that the fraction of training noise that optimally early-stopped models fit stays the same for larger
models. Finally, for a fixed inductive bias strength, the test errors saturate as model size increases,
making a different trend for models with more than 2048 filters unlikely. To increase legibility, we
present the numerical results for the largest two filter sizes in Table 1.

Table 1: Test errors for filter size 5 (strongest inductive bias) and very large width under 20% training noise.

width 1024 width 2048

early-stopped test error 0.0062% 0.0049%
interpolating test error 3.6251% 3.3664%
# parameters 289281 578049

Increasing model capacity for varying rotational invariance For completeness, we also repeat
the rotation invariance experiments from Figure 3 in Section 4.2 with twice as wide Wide Residual
Networks on a reduced number of rotations. More precisely, we increase the network widen-factor
from 6 to 12, and otherwise use the same setting as the main experiments (see Appendix E.2). Note
that this corresponds to a parameter increase from around 6 million to around 24 million parameters.

The results in Figure 7 provide additional evidence that our phenomenon is distinct from double
descent: both the test error (Figures 7a and 7b) and fraction of fitted noise under optimal early stopping
(Figure 7c) exhibit the same trend, despite the significant difference in number of parameters.
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Figure 7: Doubling Wide Residual Network width does not significantly alter the behavior of (a) the test error
when training on 20% label noise, (b) the test error when training on 0% label noise, and (c) the training error
when using optimal early stopping on 20% label noise. Despite significantly larger model size, the phase
transition between harmless and harmful interpolation persists. Lines show the mean over five random network
initializations, shaded areas the standard error.
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