CONTRASTIVE LEARNING OF CELL STATE DYNAMICS
IN RESPONSE TO PERTURBATIONS

ABSTRACT

We introduce dynaCLR, a self-supervised framework for modeling cell and
organelle dynamics via contrastive learning of representations of time-lapse
datasets. Live cell imaging of cells and organelles is widely used to analyze
cellular responses to perturbations. Supervised modeling of dynamic cell
states encoded in 3D time-lapse data is laborious and prone to bias. dy-
naCLR leverages single-cell tracking and time-aware contrastive sampling
to map images of cells at neighboring time points to neighboring embed-
dings. We illustrate the features and applications of dynaCLR with the
following experiments: analyzing the kinetics of viral infection in human
cells, detecting transient changes in cell morphology due to cell division,
and mapping the dynamics of organelles due to viral infection. Temporally
regularized embeddings computed with dynaCLR models enable efficient
and quantitative annotation, classification, clustering, or interpretation of
the cell states. The models reliably embed, i.e., generalize to, data from un-
seen experiments with different microscopes and imaging contrasts. Models
trained with dynaCLR consistently achieve > 95% accuracy in mitosis and
infection state classification, enable the detection of transient cell states and
reliably embed unseen experiments. dynaCLR provides a flexible framework
for comparative analysis of cell state dynamics due to perturbations, such
as infection, gene knockouts, and drugs. We provide PyTorch-based imple-
mentations of the model training and inference pipeline and a napari plugin
user interface for the visualization and annotation of trajectories of cells in
the real space and the embedding space.

1 INTRODUCTION

Learning biologically interpretable representations of changes in the cell and organelle
morphology captured by terabyte-scale time-lapse images is an open and essential problem.
The changes in the functions of cells and organelles caused by perturbations, such as
infection, modulation of gene expression, and drug treatments, alter the dynamics of cells
and organelles. Detecting the morphological changes across perturbations with engineered
features or human supervision is prone to bias and time-consuming. In contrast to supervised
methods, self-supervised learning of visual representations of morphological dynamics of cells
and organelles promises several advantages: it can enable statistically reliable measurements
of morphological states, quantification of discovered cell states across many experiments,
generalization across diverse datasets and conditions, and the discovery of causal relationships
between the cellular responses and the perturbations. Self-supervised representation learning
is a promising and scalable approach for analyzing cell state dynamics encountered in cell
biology and drug discovery.

We report a self-supervised learning framework to analyze the dynamic cell states using
multi-channel 3D time-lapse images. Unlike natural images, microscopy images have diverse
channels, e.g., fluorescence channels that encode the distribution of specific biomolecules and
phase channels that encode the material properties of cells and organelles. The distribution
of biomolecules provides a rich yet complex encoding of the cell’s functional states, such as
cell division, replication of pathogens, immune response, and cell death. Cell states observed
by single snapshots often appear highly variable due to the diverse responses of the cells
to perturbations and the lack of temporal synchronization between cellular responses. The
heterogeneity of cellular responses can be interpreted accurately by analyzing the dynamics
of cell states.



We report the following methodological advances to enable quantitative analysis of cell and
organelle dynamics in response to perturbations:

1. Self-supervised framework, dynaCLR, for mapping the 3D multi-channel images
of single cells to a temporally regularized embedding space, where the distance
between the embeddings reflects the temporal vicinity between the cell and organelle
morphology. dynaCLR models generalize to data from imaging systems and cell
types, making the learned embeddings useful for multiple downstream analyses.

2. Diverse downstream analyses of cells’ morphological states from their dynaCLR
embeddings: classification of the cell states in the embedding space with efficient
annotations, measurement of the dynamics of the abundance of annotated cell states,
and discovery of changes in cells and organelles due to perturbations.

3. A scalable PyTorch implementation for training models on GPU clusters and a
napari plugin GUI for annotating cell states in real and embedding spaces.

4. 3D multi-channel time-lapse datasets of infected cells that include a ground truth
reporter of infection at multiple spatial and temporal resolutions, suitable for
assessing the generalization of models of cell dynamics.

The development of dynaCLR is driven by the problem of mapping the complex dynamics of
cells and organelles in response to viral infection and cell cycle across multiple microscopes.
We evaluate the accuracy of visual representation learned by our method using both computer
vision and biologically relevant benchmarks, namely the distribution of distances in the
embedding space across a dataset of tracked cells and the accuracy of the classification of
the cell states using 3 hours of expert annotations.

2 BACKGROUND AND RELATED WORK

Self-supervised learning of visual representations of objects and scenes from videos (Wang
and Guptal, 2015; [Dentonl [2017; [Sermanet et al. 2018} [Qian et al., 2021} [Dave et al.,
2021) has been an active area of computer vision. A recent comparison of generative and
contrastive models for various prediction tasks by [Liu et al.| (2024a) suggests that both
approaches can perform similarly for diverse computer vision tasks. An attractive feature of
contrastive learning is that it can encode diverse prior knowledge about the relationships
between the data points and the desired structure of the learned embeddings. The concept of
contrastive learning was first introduced as dimensionality reduction via learning an invariant
mapping (Hadsell et al. [2006). Since then, the idea of contrastive learning (Chen et al., 2020;
He et al.l |2020) has been applied for training foundational models of images and multimodal
datasets (Radford et al., [2021). Contrastive optimization of the latent space of generative
models has been reported to improve the expressivity of the model (Aneja et al.l [2021]).

In cell biology, self-supervised generative models that leverage time-lapse microscopy data
have enabled analysis of immune response (Wu et all [2022; |Shannon et al., [2024), cell
division (Soelistyo et al., |2022), segmentation (Gallusser et al., |2023), and plant phenotyp-
ing (Marin Zapata et al., |2021). Contrastive self-supervised models are also widely used in
cell biology, for example, to learn diversity of mitochondrial shapes (Natekar et al., 2023)
in response to perturbations, detect cell division (Zyss et al.l |2024]) and learn relationships
between gene expression and images (Wang et al., 2024; Senbabaoglu et al., [2024]).

Viruses exploit the host cell’s machinery to produce new virions, reprogramming the structure
and function of the organelles and the whole cell. For example, flaviviruses, such as Zika
and Dengue, replicate on the Endoplasmic Reticulum (ER) derived membrane compart-
ments(Verhaegen and Vermeire} [2024), leading to changes in its morphology, morphology of
other organelles, and the morphology of the whole cell. The global impact of viral infection
on cells and organelles has been studied using RNA-sequencing(Gutiérrez and Elena), |2022])
and mass spectrometry(Bojkova et all 2020; Hein et al., [2023). The -omics modalities
have enabled the discovery of the changes in the molecular states of the cells due to pertur-
bations. However, they do not directly report the dynamic remodeling of organelles and
cells. Analyzing the cell and organelle dynamics in response to the perturbations requires
3D multi-channel (e.g., multiple fluorescent channels, phase only, or phase + fluorescence)
imaging. Extracting biological insights from these datasets requires eflicient models for



learning robust models that map 4D tensors in real space to embedding space that represents
cell types and cell states of interest.

Earlier work on temporally regularized variational autoencoder (VAE) models
demonstrated that incorporating weak priors about the temporal smoothness of
embeddings leads to models that generalize to unseen data. Contrastive learning is a flexible
framework for encoding priors of similarity and dissimilarity between objects in a dataset
across the dimensions of space, time, perturbations, and channels. Contrastive models also
tend to be more parameter-efficient for discriminating cell phenotypes due to the absence of
the decoder used in generative models, an essential feature for training models that embed 4D
tensors. Considering the above trade-offs, we encode complex cell and organelle morphology
with 3D multi-channel live cell imaging and decode the cell states using cell tracking and
time-aware contrastive sampling.

Large-scale benchmark datasets of static images of perturbed cells (Chandrasekaran et al.l
[2023} |Chen et al.| 2024) are available. However, benchmark datasets of time-lapse images of
perturbed cells are smaller in comparison (Edlund et al., 2021} [Antonelli et all, [2023) due to
the challenges of live imaging and annotations outlined earlier.
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Figure 1: Summary of dynaCLR: (a) Live cells are perturbed, e.g., infected, and time-lapse
images are acquired with correlative quantitative phase and fluorescence microscopy. Cell
nuclei are virtually stained and tracked. (b) Contrastive loss with three different sampling
strategies, classical (cell and time agnostic), cell-aware, and cell and time aware, is used to
map multi-channel 3D volumes to embedding vectors. (c) Cell state dynamics are analyzed
by classifying the cells from the embeddings, by measuring the abundance of cells in different
states, and by joint interpretation of tracks in the latent and real spaces.

3.1 TIME-AWARE AND CELL-AWARE CONTRASTIVE SAMPLING

dynaCLR pipeline, illustrated in consists of two main tasks: a pretext task of
learning temporally regularized embeddings and a task of identifying cell states from the
embeddings of patches of single cells.



We embed 3D multi-channel patches of single cells x € RE*Z*Y*X gybjected to different
perturbations, including the intrinsic perturbation of time, where dimension C' represents
channels. The cells x; are tracked across time 1, ts, ..., t, as they transition through different
states, e.g., division, infection, death, and innate immune response. dynaCLR models are
trained with a set {x;(¢)} of tracks using different contrastive sampling strategies, where i is
track id, and not a batch index.

We evaluate three sampling strategies ( [Figure 1b), summarized below, that can flexibly
leverage morphological information encoded at diverse spatial and temporal resolutions in
multiple channels.

We explore three sampling strategies:

e time-agnostic and cell-agnostic sampling (classical): This strategy is the
same as classical contrastive sampling of natural images and does not use tracking.
The pretext task embeds two augmented views of an anchor cell at a given time
x;(t) from all other images of the same or the other cells. The anchor x, = A;[x;(t)]
and positive x, = As[x;(t)] are created through augmentations A, while negative
examples are augmented views of random cells x,, = A3[x;] at random time points.

e cell-aware sampling: This strategy uses tracking to form the positive pairs from the
images of the same cell and negative pairs from the images of distinct cells. Similar to
the classical approach, the positive pairs {(x,, X,)} are created from augmentations of
the anchor image, but the negative pairs {(Xq,Xn), Xq = A1[Xi], X, = As[x;],1 # j}
are images of other cells at random times.

e time-aware and cell-aware sampling: Given an anchor image x, = A;[x;(t)] at
time ¢, this strategy uses tracking to sample an image of the same cell x, = As[x;(t +
7)] as a positive example. An image of a different cell z,, = As[z;(t +7)],i # j at
time point ¢ + 7 is sampled as a negative example. The pretext task is to minimize
the distance between embeddings of a given cell across the time interval 7 and,
simultaneously, maximize the distance between the embeddings of different cells over
the same time interval. The time offset 7 is a hyperparameter empirically chosen
based on the temporal sampling rate and the time scale of the biological processes
of interest. For the experiments in this paper, we report embeddings learned from
datasets acquired with diverse sampling rates and multiple time intervals.

We optimize dynaCLR models with triplet loss (Weinberger et al., [2005) among the embed-
dings of the batches B = {(x4,%p,%n)} of anchor, positive, or negative triplets, as well as
NT-Xent loss (Chen et al., [2020) among the embeddings of the batches B = {(x,,%,)} of
anchor and positive pairs. For each positive pair in the batch, NT-Xent loss effectively treats
all other samples as negative examples.

For downstream analysis( ), we embed images using dynaCLR models and visualize
them in low-dimensional space using PCA, UMAP, or PHATE (Moon et al., [2019)), overlaying
cell state annotations for infection and cell cycle. PHATE algorithm explicitly accounts
for transitions in embedding space during dimensionality reduction and preserves continual
progressions and branches better than UMAP. We use PHATE and UMAP transforms only
for visualization and not for measuring distances or classification.

3.2 DATA, ANNOTATIONS, AND METRICS

We explore the features and evaluate the generalization of dynaCLR models with two datasets:
an already published 2D time-lapse dataset that encodes cell cycle dynamics and a new 3D
time-lapse dataset that encodes infection and cell cycle.

3.2.1 ANNOTATED LABEL-FREE IMAGES (ALFI) or HELA, RPE1l, AND U20S CELLS

We use DIC movies of three cell types from this dataset (Antonelli et al.l 2023) in which
bounding boxes of a subset of cells were tracked with human annotation. The time points of
the tracks are also annotated with cell cycle state (mitosis vs interphase). DIC is a widely
used label-free microscopy method. Note that label-free in the context of microscopy implies
the absence of fluorescent labeling of cells and not the absence of human annotations of cell
states. We evaluate the ability of dynaCLR models to discriminate mitosis and interphase
stages of the cell cycle that generalize to unseen cell types. The training set consists of



unperturbed HeLa and RPE1 cells, and an independent test set consists of perturbed and
unperturbed U20S cells, all acquired in 2D with a time resolution of 7 min. We further
assess the generalization of the cell cycle embedding model to quantitative phase images of
infected A549 cells described next.

3.2.2 LABEL-FREE AND FLUORESCENCE IMAGES OF DENGUE VIRUS INFECTED A549
CELLS

A549 cells infected with live Dengue virus were used as a model system for self-supervised
discovery of cell states). We acquired 3D time-lapse datasets with two fluores-
cent channels and quantitative phase channel as described in on two distinct
microscopes: spinning disk confocal with phase imaging channel (Guo et al., [2020) and a
light-sheet microscope with phase imaging channel (Ivanov et al.| |2024)). We use virtual
staining of nuclei (Liu et al. [2024b) and multi-hypothesis tracking with Ultrack (Bragantini
et al., 2024).

The dataset used for model training was acquired with a 30 minute temporal resolution on
the light-sheet microscope. We used a subset of fields of view (FOVs) from the experiment,
including cells infected with a multiplicity of infection (MOI) of 5 viruses/cell and mock-
infected wells, for training. We used two independent test experiments to evaluate the
generalization of models: a) a dataset acquired with a 30-minute time resolution on the
spinning disk confocal and b) a dataset acquired with a 10-minute time resolution on
the light-sheet microscope. Both independent test datasets contained mock and MOI 5
conditions.

We trained models with two channels: the phase channel that encodes the global responses
of the cell and a fluorescent channel that either encodes the state of infection or the response
of an organelle. An infection reporter was imaged in a fluorescence channel. The infection
reporter construct used in this study consists of a fluorescent protein (mCherry) with a nuclear
localization signal (NLS) and ER anchor peptide separated by a cleavage site recognized
by a viral protein(Pahmeier et al., [2021]). This expressed protein is localized to the outer
membrane of the ER under normal conditions. Upon infection with the Dengue virus, which
expresses the viral protease, mCherry-NLS is freed from the ER anchor and translocates to
the nucleus. Thus, nuclear localization of viral sensor provides experimental annotation of
viral infection.

Cell division or mitosis is a significant event in the cell cycle that causes significant changes
in cell morphology. Mitosis is marked by the condensation of chromosomes and the rounding
of cells as genetic material separates, visible in the phase images (Guo et al., |2020). During
mitosis, the sensor is localized in the nucleus whether or not the cell is infected, which
confounds the detection of the infection state from the snapshot. In contrast to the transient
changes in morphology seen during mitosis, cells that become infected remain infected over
time, as captured in both label-free and fluorescence channels. Learning the image embedding
from neighboring time points enables the disambiguation of cell states in such cases.

3.2.3 ANNOTATIONS OF INFECTION AND CELL DIVISION

We evaluated the trained model with a manually curated test set with reliable annotations for
cell division and infection states. We validated the annotations and predictions by overlaying
them on the projected embeddings. We also tested the model on independent test data to
assess its generalization to new data.

Infection state annotation was based on manually revised annotations from a 2D-Unet model
(Liu et al., 2023)), adapted for semantic segmentation and three-class classification using
weighted cross-entropy loss. The model classified patches of pixels into three categories:
background (0), uninfected nuclei (1), and infected nuclei (2). The annotations were proofread
and edited using a custom napari (Chiu et al., [2022)) plugin. The proofreading of the semantic
segmentation model’s predictions was necessary due to the inability to accurately capture
late infection stages and cell death, as these states often resulted in a loss of fluorescence
signal and altered cell morphology.

Cell division is captured from cell tracking by Ultrack (Bragantini et al., 2024) and revised
manually. The cell division is indicated by a parent track splitting into two daughter tracks
with the same parent track IDs. The last time-point of the parent track is considered the



Table 1: Linear classification accuracy and macro-averaged F1 score for interphase vs. mitosis
classification. Results also include dynamic range and smoothness metrics as defined in
Appendix A.1

Experiments Accuracy (%) F1 (%) Dynamic Range Smoothness
Cell & Time Aware (7 = 0) 97.0 96.6 0.31 0.13
Cell & Time Aware (1 =T7) 97.7 974 0.39 0.12
Cell & Time Aware (7 = 21) 97.7 97.4 0.55 0.16
Cell & Time Aware (7 = 28) 97.8 97.5 0.55 0.17
Cell & Time Aware (7 = 56) 97.8 97.6 0.56 0.17
Cell & Time Aware (7 = 70) 97.1 96.8 0.51 0.16
Cell & Time Aware (7 = 91) 97.4 97.0 0.50 0.17
Classical (no tracking) 96.4 95.9 0.27 0.14
Cell Aware 98.0 97.7 0.46 0.14

division event. The human annotator proofread and corrected the cell division events through
visual inspection of the tracks in Ultrack GUI.

We developed the napari plugin to link the dynamics of cells in the embedding space
(visualized via UMAP, PHATE, or PCA projections) with dynamics in the real space in
multiple channels(Appendix Figure 1. This plugin enables inspection of the evolution of the
cell and organelle phenotypes and interactive annotations of clusters of phenotypes.

3.3 METRICS

Similar to other contrastive learning approaches, we evaluate the dynaCLR models with
linear classification accuracy. We use two binary classification tasks (mitotic vs interphase
cells and infected vs uninfected cells) to assess the discrimination of the cell states in the
embedding space. Half of the annotated test data was used to train a logistic regression
classifier from the embeddings, and the other half was used to evaluate the classification
accuracy using % accuracy and Fl-scores. At the time of inference and linear classification,
it is not necessary to use tracks of cells.

We evaluate the dynamic range and smoothness of the embedding space by analyzing temporal
changes in the distance (either Euclidean or cosine similarity) of tracks of embeddings
z;(t) € RE as described in [Section A.1

4 EXPERIMENTS

4.1 TEMPORAL REGULARIZATION VIA TIME-AWARE CONTRASTIVE SAMPLING

Using the ALFI dataset imaged with high time resolution (7 min), we analyzed the temporal
regularization of embeddings and classification of cell division state in the embedding space.
Models with classical, cell-aware, and cell & time-aware contrastive sampling strategies were
trained using HeLa and RPE1 cell types that were not perturbed by drugs using triplet loss.
The model architecture, training, and data augmentations are described in the

Section A.4] and [Table 2|

When unseen cells (U208 cells with and without drug treatment) were embedded with
trained models, the displacement of embeddings of a specific cell (Figure 2h) and mean
displacement of the embeddings over the test dataset (Appendix Figure 2|) showed that cell
and time-aware sampling increased the dynamic range of the embeddings relative to the
classical and cell-aware contrastive sampling.

Notably, the dynamic range and smoothness are maximized for the time intervals (7) of 28
to 56 minutes(Table 1f). The displacement of embeddings reduce for longer time intervals of
70 and 91 min (Appendix Figure 2). PHATE visualization of the embeddings of U208 cells
(Figure 2p and [Appendix Figure 3)) with classical and cell & time-aware contrastive sampling
show that time-aware sampling results in an embedding space that reflects the transitions
and branches in the cell shape due to cell division events. The time-aware sampling (56-min
interval) results in smoother embedding space (smaller local distances) with a larger dynamic
range (larger global distances) compared to the classical or cell-aware sampling for this
dataset and hyperparameters of the loss function.




Further, the linear classification accuracy is maximized by the model trained with
a time interval of 56 minutes, which is close to the typical duration of 1 hour of mitosis.
These experiments show that time-aware contrastive sampling improves the smoothness
and dynamic range of the embeddings relative to classical and cell-aware sampling, and the
time-interval hyperparameter enables tuning of the dynamic range per dataset.
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Figure 2: Time-regularized embedding: a) An example track of a mitotic U208 cell.
The displacement of the embedding of the cell at different time intervals is
shown for multiple contrastive sampling strategies (see legend). The dynamic range, i.e.,
the peak displacement across all At is the highest for cell & time aware sampling with time
interval 7 = 56min. b) Trajectories of a dividing cell are visualized with PHATE as the cell
transitions from the interphase cluster (parent, black track) to the mitosis cluster, followed
by the daughter cells (red and blue tracks) re-entering interphase clusters.

This property is helpful for the downstream analysis of cell dynamics. It is also a more
challenging pretext task that helps the model learn a richer representation of the cell state
due to the increased biological variation between positive pairs. This approach improves
embedding tolerance to batch effects like photobleaching, as demonstrated in (Figure 3()
and f), where our model trained on non-photobleached data generalizes to photobleached
test datasets.

Next, we evaluate the effect of the choice of the contrastive loss function (triplet vs. NT-Xent)
on the structure of the embedding space using the data from infected A549 cells. The models
were trained using data acquired with a time resolution of 30 minutes on the light-sheet
microscope and evaluated with an annotated independent test set (Section 3.2.3)) acquired on
the confocal microscope under similar experimental conditions. The PHATE visualization
of the embeddings of the annotated test set (Appendix Figure 4b) and the distribution of
distances (Appendix Figure 4) show that NT-Xent loss leads to slightly better dynamic
range and smoothness in embeddings.

Further computational experiments with infected A549 cells and triplet loss were performed
to benchmark the accuracy of infection classification with cell- and time-aware contrastive
sampling. The metrics are shown in The above data show that the classification of
the infection state of cells from dynaCLR embeddings consistently achieves ~ 95% accuracy
compared to the semantic segmentation baseline that achieves ~ 80% accuracy, given the
same amount of annotations. Further, time-aware contrastive sampling improves learned
embeddings’ rank (possible shape modes) as seen from [Appendix Figure 5

Taken together, the above results establish that the cell-aware and time-aware sampling
strategy improves the continuity and dynamic range of the embedding space independent of
the choice of contrastive loss.

4.2 DYNACLR MODELS GENERALIZE ACROSS EXPERIMENTS AND MICROSCOPES

In addition to the efficiency of annotation, an important advantage of self-supervised learning
with biologically informed pretext tasks is that such models generalize to unseen data. In
other words, they are robust to confounding factors in data collection. We conducted three
sets of computational experiments to assess the generalization of dynaCLR models for the
downstream analysis tasks of cell state classification, infection classification, and discovering
organelle remodeling due to infection. Cell division or mitosis is a rare event characterized
by large changes in the cell morphology, resulting in two daughter cells. The cell divisions
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Figure 3: dynaCLR models generalize across cell types and microscopes: (a and
b) PHATE maps from model trained with DIC timelapse images of HeLa and RPEL1 cells
clusters mitotic and interphase in other cell types: A549 imaged with quantitative phase
and U20S imaged with DIC. (c) Example images of HeLa, RPE1L, U20S, and A549 cells
progressing from interphase to mitosis, dividing into daughter cells. (d and e¢) PHATE maps
showing infection states clustering on predictions on images from a different microscope
and different time sampling. (f) The plot of the percentage of infected cells over hours
post-infection shows a similar trend between ground truth and prediction on data from
a different microscope, as well as with data with different temporal sampling. (g and h)
PHATE maps show the dynamic state of cells with the SEC61 organelle marker evolving
over time. (i) Phase and fluorescence images of cells from mock and infected conditions,
organelle remodeling evolving over time in the infected cell.

are distinctly visible in the label-free imaging channel and are independently detected by
the tracking algorithm. Many perturbations, including infection, modulate the rate of cell
division.

4.2.1 DYNAMICS OF DIVIDING CELLS IN EMBEDDING SPACE

We evaluated the joint embedding spaces of the cell types used for training the cell division
model (HeLa and RPE1 from ALFI datasets) with two independently imaged cell types:
U208 cells from ALFI imaged with DIC(Figure 3) and A549 cells from our dataset imaged

with quantitative phase (Figure 3p).

Notably, the embeddings separated cell types as well as cell states according to the similarity
of their shapes ) The embeddings of similar cell types and division states are
contiguous in the embedding space as visualized by PHATE. Further, the trajectory of a cell
in the embedding space is robust to occasional errors in tracking that may arise in dense
cell cultures (Appendix Figure 6). We think the dynaCLR cell division model generalizes
to unseen cell types because of the more challenging pretext task of discriminating the cell
shape in the future.




4.2.2 DYNAMICS OF INFECTED AND DIVIDING CELLS IN EMBEDDING SPACE

We used phase and sensor channels of light-sheet movies acquired with 30-minute time
resolution to train a time-aware dynaCLR model and evaluated with two independent test
sets acquired with 30-minute time resolution on a confocal microscope and 10-minute time
resolution on the light-sheet microscope. The embeddings were classified with a linear
classifier trained only on the small number of annotations from the confocal test dataset.
[Figure 3{-e shows the PHATE visualization of the embeddings of the test datasets with an
overlay of the predicted class. The computed percentage of infected cells from half of the test
data closely matched the infection percentages derived from human-revised infection dynamics
in both mock and MOI 5 conditions, with the number of infected cells rising exponentially
and plateauing at 12 HPI. A similar trend was observed in the independent test data,
where infections plateaued at 15 HPI ([Figure 3f). Thus, the infection classification model
trained with dynaCLR framework demonstrated robust generalization across microscopes
and multiple experiments.

We evaluated the possibility of detecting cell division using just the phase channel. dynaCLR
embeddings change measurably as cells transition from interphase to mitosis, as seen from the
tracks in the UMAP space (Appendix Figure 7)), particularly in models trained solely with
the phase channel and incorporating temporal regularization (Appendix Figure 7). Smooth
transitions and tight clustering of division events are also evident in models trained with
both channels (Appendix Figure 7g). In contrast, the cell trajectories exhibit random walks
in models trained without temporal regularization (Appendix Figure 7d), and clustering is
less distinct when using both channels (Appendix Figure 7f).

4.2.3 ORGANELLE REMODELING DURING INFECTION

Viral infection causes restructuring of organelles, such as the condensation of the endoplasmic
reticulum (ER) where replication sites are established(Cortese et al., 2020)). The range
of organelle responses to specific perturbations can be challenging to define a priori. By
tracking cells in the learned representation space, we can correlate the observed organelle
remodeling with the other cell states, such as infection and cell cycle.

We trained a time-aware dynaCLR model to explore these relationships using a 30-minute
temporal resolution dataset using the organelle fluorescence channel and phase. We evaluated
its ability to highlight the ER remodeling due to infection within and out of distribution using
the 30-minute and 10-minute time-resolution datasets, respectively (Figure 3g-h). Structural
changes of the ER are shown in (Figure 3j and |[Appendix Figure 8)), showcasing progressive
ER condensation through infection.

4.3 EXPLANATIONS OF THE CELL STATE CLASSIFICATION

We now explore explanations of the phenotypes learned by dynaCLR model trained with
infected cells using two approaches: a) rank correlation between principal components of
learned embeddings and engineered features, and b) feature attribution methods.

We observed robust clustering of infection states through principal component (PC) analysis
(Figure 4h). The cell patches along the PC axes were examined to interpret the principal
components ([Figure 4b-c). The PCs were correlated with the image features identified
from human inspection. The first few PCs were correlated with features such as the radial
intensity profile, area of the fluorescence of the infection sensor, interquartile range (IQR),
and standard deviation of the values in the phase channel, likely due to the change in density
distribution in cells during the progression of infection.

To explain which patterns in the input images influence the classification of cell states, we
use Captum’s implementation (Kokhlikyan et al.) of occlusion perturbation (Zeiler and
Fergus, [2014). These attribution methods identify pixels in the input space that are most
important for classifying the cell state. Classification heads for infection and division states
are attached to the same encoder trained with phase and sensor channels and time-and-cell-
aware sampling. Class attribution is then computed with occlusion perturbation ( [Figure 4))
for binary classification tasks of classifying the infection and cell division. Through self-
supervised training, the encoder learns meaningful features that describe cell state dynamics,
such as viral sensor translocation for infection and chromosome condensation for division.
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Figure 4: Explanation of embeddings learned by dynaCLR: (a) The first two principal
components (PCs) of the test data, colored by human annotation of the state of infection,
demonstrate that the largest variation in the embeddings is due to infection. (b) The
rank correlation between computed features (Y-axis) and the first five PCs (X-axis) assigns
meaning to the learned features. (c¢) The visual inspection of cells with the lowest and highest
values along the principal component axes confirms the interpretation of PCs. (d) Occlusion
attribution of a cell undergoing infection and division: The first row shows a center slice of
the input images at different time points, the second row shows attribution with an infection
classification head, and the third row shows attribution with a division classification head.
The titles show the predicted probability and true class.
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5 (CONCLUSION AND FUTURE WORK

The above results show that tracking cell dynamics and time-aware contrastive learning
(dynaCLR) leads to representations of cell and organelle morphology that encode smoothness
of changes in morphology that enables multiple downstream analyses: discovery of abundant
and rare cell and organelle states, classification of cell states with efficient annotations, and
quantification of cell state dynamics.

The above datasets, computational experiments, and analyses open the following avenues for
learning cell state dynamics:

e Learning a foundational model representing diverse cell states in many cell types is
an exciting area of research. Leveraging the time and perturbation-aware contrastive
sampling of time-lapse imaging datasets is a potential strategy for training such a
model.

e Our current models pair label-free and fluorescence channels to encode cell and
organelle states. Training channel-adaptive models that provide biologically inter-
pretable embeddings of datasets with heterogeneous channels is an exciting future
direction.

6 DATA AND CODE AVAILABILITY

We have attached an anonymized code to this submission. After the double-blind review,
the code, models, weights, and datasets will be available via public repositories on GitHub,
Huggingface, and Bioimage Archive.

10



REFERENCES

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using
videos. In Proceedings of the IEEE International Conference on Computer Vision, pages
2794-2802, 2015.

Emily L. Denton. Unsupervised learning of disentangled representations from video. Advances
in neural information processing systems, 30, 2017.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal,
and Sergey Levine. Time-Contrastive Networks: Self-Supervised Learning from Video,
March 2018.

Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng Wang, Serge
Belongie, and Yin Cui. Spatiotemporal Contrastive Video Representation Learning.
arXiw:2008.03800 [cs], April 2021.

Ishan Dave, Rohit Gupta, Mamshad Nayeem Rizve, and Mubarak Shah. TCLR: Temporal
Contrastive Learning for Video Representation. arXiv:2101.07974 [cs], April 2021.

Ziyu Liu, Azadeh Alavi, Minyi Li, and Xiang Zhang. Self-Supervised Learning for Time
Series: Contrastive or Generative?, March 2024a.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality Reduction by Learning an Invariant
Mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pages 1735-1742, June 2006. doi: 10.1109/CVPR.2006.
100.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework
for Contrastive Learning of Visual Representations. In Proceedings of the 37th International
Conference on Machine Learning, pages 1597-1607. PMLR, November 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum Contrast
for Unsupervised Visual Representation Learning, March 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision,
February 2021.

Jyoti Aneja, Alex Schwing, Jan Kautz, and Arash Vahdat. A Contrastive Learning Approach
for Training Variational Autoencoder Priors. In Advances in Neural Information Processing
Systems, volume 34, pages 480-493. Curran Associates, Inc., 2021.

Zhengin Wu, Bryant B. Chhun, Galina Popova, Syuan-Ming Guo, Chang N. Kim, Li-Hao
Yeh, Tomasz Nowakowski, James Zou, and Shalin B. Mehta. DynaMorph: Self-supervised

learning of morphodynamic states of live cells. Molecular Biology of the Cell, 33(6):ar59,
May 2022. ISSN 1059-1524. doi: 10.1091/mbc.E21-11-0561.

Michael J. Shannon, Shira E. Eisman, Alan R. Lowe, Tyler F. W. Sloan, and Emily M. Mace.
cellPLATO — an unsupervised method for identifying cell behaviour in heterogeneous cell
trajectory data. Journal of Cell Science, 137(20):jcs261887, June 2024. ISSN 0021-9533.
doi: 10.1242/jcs.261887.

Christopher J. Soelistyo, Giulia Vallardi, Guillaume Charras, and Alan R. Lowe. Learn-
ing biophysical determinants of cell fate with deep neural networks. Nature Machine
Intelligence, 4(7):636—644, July 2022. ISSN 2522-5839. doi: 10.1038/s42256-022-00503-6.

Benjamin Gallusser, Max Stieber, and Martin Weigert. Self-supervised Dense Representation
Learning for Live-Cell Microscopy with Time Arrow Prediction. In Hayit Greenspan,
Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-
Mahmood, and Russell Taylor, editors, Medical Image Computing and Computer Assisted
Intervention — MICCAI 2023, pages 537-547, Cham, 2023. Springer Nature Switzerland.
ISBN 978-3-031-43993-3. doi: 10.1007/978-3-031-43993-3 52.

11



Paula A Marin Zapata, Sina Roth, Dirk Schmutzler, Thomas Wolf, Erica Manesso, and
Djork-Arné Clevert. Self-supervised feature extraction from image time series in plant
phenotyping using triplet networks. Bioinformatics, 37(6):861-867, May 2021. ISSN
1367-4803, 1367-4811. doi: 10.1093/bioinformatics/btaa90s.

Parth Natekar, Zichen Wang, Mehul Arora, Hiroyuki Hakozaki, and Johannes Schéneberg.
Self-supervised deep learning uncovers the semantic landscape of drug-induced latent
mitochondrial phenotypes. bioRziv, 2023.

Daniel Zyss, Amritansh Sharma, Susana A. Ribeiro, Claire E. Repellin, Oliver Lai, Mary
J. C. Ludlam, Thomas Walter, and Amin Fehri. Contrastive learning for cell division
detection and tracking in live cell imaging data, August 2024.

Zitong Jerry Wang, Romain Lopez, Jan-Christian Hiitter, Takamasa Kudo, Heming Yao,
Philipp Hanslovsky, Burkhard Héckendorf, Rahul Moran, David Richmond, and Aviv
Regev. Multi-ContrastiveVAE disentangles perturbation effects in single cell images from
optical pooled screens, March 2024.

Yasin Senbabaoglu, Vignesh Prabhakar, Aminollah Khormali, Jeff Eastham, Evan Liu, Elisa
Warner, Barzin Nabet, Minu Srivastava, Marcus Ballinger, and Kai Liu. MOSBY enables
multi-omic inference and spatial biomarker discovery from whole slide images. Scientific
Reports, 14(1):18271, August 2024. ISSN 2045-2322. doi: 10.1038/s41598-024-69198-6.

Marijke Verhaegen and Kurt Vermeire. The endoplasmic reticulum (ER): A crucial cellular
hub in flavivirus infection and potential target site for antiviral interventions. npj Viruses,

2(1):24, June 2024. ISSN 2948-1767. doi: 10.1038/s44298-024-00031-7.

Pablo A. Gutiérrez and Santiago F. Elena. Single-cell RNA-sequencing data analysis
reveals a highly correlated triphasic transcriptional response to SARS-CoV-2 infection.
Communications Biology, 5(1):1302, November 2022. ISSN 2399-3642. doi: 10.1038/
$42003-022-04253-4.

Denisa Bojkova, Kevin Klann, Benjamin Koch, Marek Widera, David Krause, Sandra Ciesek,
Jindrich Cinatl, and Christian Miinch. Proteomics of SARS-CoV-2-infected host cells
reveals therapy targets. Nature, 583(7816):469-472, July 2020. ISSN 0028-0836, 1476-4687.
doi: 10.1038/s41586-020-2332-7.

Marco Y. Hein, Duo Peng, Verina Todorova, Frank McCarthy, Kibeom Kim, Chad Liu, Laura
Savy, Camille Januel, Rodrigo Baltazar-Nunez, Sophie Bax, Shivanshi Vaid, Madhuri
Vangipuram, Ivan E. Ivanov, Janie R. Byrum, Soorya Pradeep, Carlos G. Gonzalez,
Yttria Aniseia, Eileen Wang, Joseph S. Creery, Aidan H. McMorrow, James Burgess, Sara
Sunshine, Serena Yeung-Levy, Brian C. DeFelice, Shalin B. Mehta, Daniel N. Itzhak,
Joshua E. Elias, and Manuel D. Leonetti. Global organelle profiling reveals subcellular
localization and remodeling at proteome scale, December 2023.

Srinivas Niranj Chandrasekaran, Jeanelle Ackerman, Eric Alix, D. Michael Ando, John
Arevalo, Melissa Bennion, Nicolas Boisseau, Adriana Borowa, Justin D. Boyd, Laurent
Brino, Patrick J. Byrne, Hugo Ceulemans, Carolyn Ch’ng, Beth A. Cimini, Djork-Arne
Clevert, Nicole Deflaux, John G. Doench, Thierry Dorval, Regis Doyonnas, Vincenza
Dragone, Ola Engkvist, Patrick W. Faloon, Briana Fritchman, Florian Fuchs, Sakshi Garg,
Tamara J. Gilbert, David Glazer, David Gnutt, Amy Goodale, Jeremy Grignard, Judith
Guenther, Yu Han, Zahra Hanifehlou, Santosh Hariharan, Desiree Hernandez, Shane R.
Horman, Gisela Hormel, Michael Huntley, Ilknur Icke, Makiyo Iida, Christina B. Jacob,
Steffen Jaensch, Jawahar Khetan, Maria Kost-Alimova, Tomasz Krawiec, Daniel Kuhn,
Charles-Hugues Lardeau, Amanda Lembke, Francis Lin, Kevin D. Little, Kenneth R.
Lofstrom, Sofia Lotfi, David J. Logan, Yi Luo, Franck Madoux, Paula A. Marin Zapata,
Brittany A. Marion, Glynn Martin, Nicola Jane McCarthy, Lewis Mervin, Lisa Miller,
Haseeb Mohamed, Tiziana Monteverde, Elizabeth Mouchet, Barbara Nicke, Arnaud Ogier,
Anne-Laure Ong, Marc Osterland, Magdalena Otrocka, Pieter J. Peeters, James Pilling,
Stefan Prechtl, Chen Qian, Krzysztof Rataj, David E. Root, Sylvie K. Sakata, Simon Scrace,
Hajime Shimizu, David Simon, Peter Sommer, Craig Spruiell, Iffat Sumia, Susanne E.
Swalley, Hiroki Terauchi, Amandine Thibaudeau, Amy Unruh, Jelle Van de Waeter,

12



Michiel Van Dyck, Carlo van Staden, Michat Warchot, Erin Weisbart, Amélie Weiss,
Nicolas Wiest-Daessle, Guy Williams, Shan Yu, Bolek Zapiec, Marek Zyta, Shantanu
Singh, and Anne E. Carpenter. JUMP Cell Painting dataset: Morphological impact of
136,000 chemical and genetic perturbations, March 2023.

Zitong Chen, Chau Pham, Siqi Wang, Michael Doron, Nikita Moshkov, Bryan A. Plummer,
and Juan C. Caicedo. CHAMMI: A benchmark for channel-adaptive models in microscopy
imaging, January 2024.

Christoffer Edlund, Timothy R. Jackson, Nabeel Khalid, Nicola Bevan, Timothy Dale,
Andreas Dengel, Sheraz Ahmed, Johan Trygg, and Rickard Sjogren. LIVECell—A large-
scale dataset for label-free live cell segmentation. Nature Methods, 18(9):1038-1045,
September 2021. ISSN 1548-7105. doi: 10.1038/s41592-021-01249-6.

Laura Antonelli, Federica Polverino, Alexandra Albu, Aroj Hada, Italia A. Asteriti,
Francesca Degrassi, Giulia Guarguaglini, Lucia Maddalena, and Mario R. Guarracino.
ALFTI: Cell cycle phenotype annotations of label-free time-lapse imaging data from cul-
tured human cells. Scientific Data, 10(1):677, October 2023. ISSN 2052-4463. doi:
10.1038/s41597-023-02540-1.

Kilian Q Weinberger, John Blitzer, and Lawrence Saul. Distance Metric Learning for Large
Margin Nearest Neighbor Classification. In Advances in Neural Information Processing
Systems, volume 18. MIT Press, 2005.

Kevin R. Moon, David van Dijk, Zheng Wang, Scott Gigante, Daniel B. Burkhardt, William S.
Chen, Kristina Yim, Antonia van den Elzen, Matthew J. Hirn, Ronald R. Coifman,
Natalia B. Ivanova, Guy Wolf, and Smita Krishnaswamy. Visualizing structure and
transitions in high-dimensional biological data. Nature Biotechnology, 37(12):1482-1492,
December 2019. ISSN 1546-1696. doi: 10.1038/s41587-019-0336-3.

Syuan-Ming Guo, Li-Hao Yeh, Jenny Folkesson, Ivan E Ivanov, Anitha P Krishnan,
Matthew G Keefe, Ezzat Hashemi, David Shin, Bryant B Chhun, Nathan H Cho, Manuel D
Leonetti, May H Han, Tomasz Nowakowski, and Shalin B Mehta. Revealing architectural
order with quantitative label-free imaging and deep learning. eLife, 9:e55502, July 2020.
ISSN 2050-084X. doi: 10.7554/eLife.55502.

Ivan E Ivanov, Eduardo Hirata-Miyasaki, Talon Chandler, Rasmi Cheloor-Kovilakam, Ziwen
Liu, Soorya Pradeep, Chad Liu, Madhura Bhave, Sudip Khadka, Carolina Arias, Manuel D
Leonetti, Bo Huang, and Shalin B Mehta. Mantis: High-throughput 4D imaging and
analysis of the molecular and physical architecture of cells. PNAS Nezus, 3(9):pgae323,
September 2024. ISSN 2752-6542. doi: 10.1093/pnasnexus,/pgae323.

Ziwen Liu, Eduardo Hirata-Miyasaki, Soorya Pradeep, Johanna Rahm, Christian Foley,
Talon Chandler, Ivan Ivanov, Hunter Woosley, Tiger Lao, Akilandeswari Balasubramanian,
Chad Liu, Manu Leonetti, Carolina Arias, Adrian Jacobo, and Shalin B. Mehta. Robust
virtual staining of landmark organelles, June 2024b.

Jordao Bragantini, Ilan Theodoro, Xiang Zhao, Teun A. P. M. Huijben, Eduardo Hirata-
Miyasaki, Shruthi VijayKumar, Akilandeswari Balasubramanian, Tiger Lao, Richa Agrawal,
Sheng Xiao, Jan Lammerding, Shalin Mehta, Alexandre X. Falcao, Adrian Jacobo, Merlin
Lange, and Loic A. Royer. Ultrack: Pushing the limits of cell tracking across biological
scales, September 2024.

Felix Pahmeier, Christopher J. Neufeldt, Berati Cerikan, Vibhu Prasad, Costantin Pape,
Vibor Laketa, Alessia Ruggieri, Ralf Bartenschlager, and Mirko Cortese. A Versatile
Reporter System To Monitor Virus-Infected Cells and Its Application to Dengue Virus
and SARS-CoV-2. Journal of Virology, 95(4):€01715-20, January 2021. ISSN 1098-5514.
doi: 10.1128/JVI.01715-20.

Ziwen Liu, Eduardo Hirata-Miyasaki, Christian Foley, Johanna Rahm, Soorya Pradeep, and

Shalin B. Mehta. VisCy: Computer vision models for single-cell phenotyping. Computa-
tional Microscopy Platform (Mehta Lab), CZ Biohub San Francisco, December 2023.

13



Chi-Li Chiu, Nathan Clack, and the napari community. Napari: A Python Multi-Dimensional
Image Viewer Platform for the Research Community. Microscopy and Microanalysis, 28
(S1):1576-1577, August 2022. ISSN 1431-9276. doi: 10.1017,/S1431927622006328.

Mirko Cortese, Ji-Young Lee, Berati Cerikan, Christopher J. Neufeldt, Viola M.J. Oorschot,
Sebastian Kohrer, Julian Hennies, Nicole L. Schieber, Paolo Ronchi, Giulia Mizzon,
Inés Romero-Brey, Rachel Santarella-Mellwig, Martin Schorb, Mandy Boermel, Karel
Mocaer, Marianne S. Beckwith, Rachel M. Templin, Viktoriia Gross, Constantin Pape,
Christian Tischer, Jamie Frankish, Natalie K. Horvat, Vibor Laketa, Megan Stanifer, Steeve
Boulant, Alessia Ruggieri, Laurent Chatel-Chaix, Yannick Schwab, and Ralf Bartenschlager.
Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies.
Cell Host & Microbe, 28(6):853-866.e5, December 2020. ISSN 19313128. doi: 10.1016/j.
chom.2020.11.003.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, Orion Reblitz-
Richardson, and Facebook Ai. Captum: A unified and generic model interpretability
library for PyTorch.

Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks.
In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer
Vision — ECCV 2014, volume 8689, pages 818-833. Springer International Publishing,
Cham, 2014. ISBN 978-3-319-10589-5 978-3-319-10590-1. doi: 10.1007/978-3-319-10590-1 _
53.

Arthur Edelstein, Nenad Amodaj, Karl Hoover, Ron Vale, and Nico Stuurman. Computer
Control of Microscopes Using pManager. Current Protocols in Molecular Biology, 92(1):
14.20.1-14.20.17, 2010. ISSN 1934-3647. doi: 10.1002/0471142727.mb1420s92.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. A ConvNet for the 2020s. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 11966-11976, June 2022. doi: 10.1109/
CVPR52688.2022.01167.

Huggingface/pytorch-image-models. Hugging Face, May 2024.
Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, January 2019.

M. Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin
Murrey, Andriy Myronenko, Can Zhao, Dong Yang, Vishwesh Nath, Yufan He, Ziyue Xu,
Ali Hatamizadeh, Andriy Myronenko, Wentao Zhu, Yun Liu, Mingxin Zheng, Yucheng Tang,
Isaac Yang, Michael Zephyr, Behrooz Hashemian, Sachidanand Alle, Mohammad Zalbagi
Darestani, Charlie Budd, Marc Modat, Tom Vercauteren, Guotai Wang, Yiwen Li, Yipeng
Hu, Yunguan Fu, Benjamin Gorman, Hans Johnson, Brad Genereaux, Barbaros S. Erdal,
Vikash Gupta, Andres Diaz-Pinto, Andre Dourson, Lena Maier-Hein, Paul F. Jaeger,
Michael Baumgartner, Jayashree Kalpathy-Cramer, Mona Flores, Justin Kirby, Lee A. D.
Cooper, Holger R. Roth, Daguang Xu, David Bericat, Ralf Floca, S. Kevin Zhou, Haris
Shuaib, Keyvan Farahani, Klaus H. Maier-Hein, Stephen Aylward, Prerna Dogra, Sebastien
Ourselin, and Andrew Feng. MONAI: An open-source framework for deep learning in
healthcare, November 2022.

14



A APPENDIX

A.1 METRICS: DISPLACEMENT, DYNAMIC RANGE, SMOOTHNESS
To characterize the random walk of the cell in the embedding space, we compute the
squared Euclidean displacement (D) between time points ¢ and ¢ + At after normalizing the
embeddings at each time point, as follows:

z;(t) z(t + At) 1)
lz:(O)ll2 2t + At
The displacements relative to the start of individual tracks are used to compute the mean
displacement and the standard deviation over a population of tracks.

Dy(t, At) =

2

We assess the effect of the contrastive sampling method and the loss functions on the temporal
regularization of the embedding space using dynamic range and smoothness metrics: The
smoothness is defined as the opposite of the average distance between adjacent frames in the
dataset, i.e., 1 — p[{D;(t,t + 1) : Vi, Vt}]. Smoothness represents the temporal continuity of
embeddings. The dynamic range represents the maximum range occupied by the test dataset
in the embedding space. It is defined as the difference between the maximum and minimum

displacements (Equation 1)) across all time shifts (At).

A.2 IMAGE ACQUISITION AND PREPROCESSING

We acquired 5D images (time series of 3D volumes of phase and fluorescence images) of A549
cells infected with live Dengue viruses at a multiplicity of infection (MOI) of 5. The infected
and uninfected cells were imaged for over 24 hours in multi-well plates - the wells without
the virus are called mock-infected wells. We acquired the data as OME-TIFF stacks using
MicroMananger(Edelstein et al.| 2010) and converted it to OME-Zarr format using iohub for
high-performance handling of large image data.

The phase images are obtained from deconvolution of the brightfield images captured with
Kohler illumination(Guo et al.; |2020]). The phase images represent the density variation in
cells and inform the model on the overall changes in the morphology of cell(Guo et al., [2020;
Wu et al., [2022; [Ivanov et al. 2024)) during events like infection and cell division, as well as
the location of organelles like cell nucleus(Liu et al., [2024b)) and ER relative to the whole
cell.

A.3 MODEL ARCHITECTURE AND TRAINING

The model architecture has three main components: a spatial projection stem, an encoder
backbone, and a multi-layer perceptron (MLP) head. The stem begins with a convolution
layer with a kernel size of (5,4,4) and a stride of (5,4,4), followed by a reshaping operation.
This reshaping maps the down-sampled axial dimension to channels, efficiently projecting
the anisotropic 3D input into a 2D feature map for encoding. The backbone is adapted from
the ConvNeXt Tiny architecture (Liu et al.l [2022), using ImageNet pre-trained weights (noal,
2024)). The stem and head modules from ConvNeXt are removed, and the backbone outputs
a 768-dimensional embedding vector h. The 768-dimensional vector h is mapped into a lower
32-dimensional space through a 2-layer MLP head, which helps speed up training (Chen
et al., 2020).

The models are trained with a mini-batch size of 256, using the AdamW optimizer (Loshchilov,
and Hutter| 2019), and a learning rate of 2 x 10~°. The triplet margin objective is used with
a margin of 0.5.

A.4 SAMPLING AND AUGMENTATION OF PATCHES OF SINGLE CELLS

3D imaging volumes are cropped around the centroids of the tracking nodes to form single-cell
patches. We normalize the input image to reduce variability from experimental conditions.
For the sensor fluorescence channel, we rescale the image so that the median intensity is
0, and the 99th percentile intensity is 1. This normalization is more robust to extreme
highlights in the fluorescence image, as well as variation in background fluorescence levels.
The quantitative phase channel is normalized so that each field-of-view (FOV) has zero mean
and unit standard deviation. The phase image is already normalized during reconstruction
(Guo et all[2020), and this extra standardization step ensures proper input numerical range
for the model. We use a larger initial crop to ensure no padding is included in the final
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Appendix Figure 1: A napari workflow for interactive exploration and annotations. We
developed a napari plugin to load images, tracks, and learned features. Then napari-clusters-
plotter is used for the interactive annotation of the cell dynamics in latent space with
reference to the morphological changes in real space.

input patch after spatial augmentations. We apply extensive augmentations at
training time to simulate variations induced by the imaging system and other non-biological
conditions. The input patch size after augmentations is [15 x 128 x 128], which is optimal
for reducing the influence from background and neighboring cells while focusing on the
peri-nuclear region of the cell, where the majority of infection-related changes such as sensor
relocalization and ER remodeling are captured.

Table 2: Augmentations applied to image patches. Parameters are supplied to respective
MONALI (Cardoso et al., |2022|) transforms, where v denotes scaling factor, # denotes rotation
(radians), s denotes shearing, v denotes gamma value, o denotes standard deviation of the
Gaussian distribution, and p denotes the probability of applying the random transform.

TYPE PARAMETERS
Random Spatial Scaling Qg,ay € [—0.3,0.3],p = 0.8
Random Rotation 0, €0,7],p=0.8
Random Shearing Sz, 8y € [0,0.01]
Random Adjust Contrast v €10.8,1.2],p=0.5
Random Intensity Scaling a € [—0.5,0.5], pphase = 0.5, prrp = 0.7
Random Gaussian Smoothing o, 0, € [0.25,0.75]

[

Random Gaussian Noise OPhase €
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Table 3: Accuracy of classification of infection state with supervised semantic segmentation
model and self-supervised contrastive models trained with phase and sensor channels

Model Accuracy (%)
Supervised semantic segmentation model 83
Contrastive w/ Linear classifier (Cell & Time Aware sampling) 97.5
Contrastive w/ Linear classifier (Cell Aware sampling) 97.9
Contrastive w,/ Linear classifier (No tracking) 98.8
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Appendix Figure 2: Evaluation of embedding displacement and temporal smooth-
ness across sampling strategies. (a) Mean embedding displacement over time (At) for
various sampling strategies, showing the highest dynamic range at 7 = 56 and a decrease for
higher values. (b) Root Mean Square (RMS) of the rate of embedding change (time deriva-
tives) across different temporal sampling strategies, highlighting the temporal smoothness
achieved by each model. (¢) Individual mean embedding displacement plots over time for
each sampling strategy compared to the classical (no tracking) approach. Cell and time-aware
strategies consistently achieve a higher dynamic range than classical models showing their
effectiveness in capturing temporal relationships in embedding space.
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Appendix Figure 3: PHATE embeddings of cells under different sampling strategies.
These panels show the PHATE embeddings for cells across various time shifts (7) and
sampling strategies. Time-aware sampling (e.g., 7 min, 21 min, 28 min intervals) results in
embeddings where similar cell states are closer and more continuous in embedding space,
potentially reflecting improved temporal alignment. In contrast, classical sampling exhibits
greater scattering and discontinuity in cell state trajectories. The embedding continuity
highlights the ability of time-aware sampling to better preserve temporal relationships
between cell states compared to classical methods.
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Appendix Figure 4: Effect of loss function on learned embeddings: (a) Progression
of infection in a cell from the top to the bottom image shown by translocation of infection
sensor. (b) PHATE maps of Dengue-infected cells colored by ground truth infection state
from models with triplet loss (left) and NT-Xent loss (right) show similar clustering and
cell trajectories over time. (¢) The plot shows the measurement of smoothness. The cyan
histogram measures the dissimilarity of one track with respect to the subsequent timepoint
for all tracks, and the red distribution is for random tracks.
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Appendix Figure 5: Comparison of explained variance ratios across three different sampling
strategies: 1) Classical Contrastive Sampling (No Tracking): Rank of features is 125,
and projections is 32, showing that the classical approach without tracking captures less
variance, with the explained variance ratio dropping steeply within the first 10 components.
2) Cell Aware Sampling: Rank of features is 173 and projections is 32, showing a slightly
broader variance explained by initial components, indicating improved variance capture
when cells are tracked. 3) Cell and Time Aware Sampling: Rank of features is 464
and projections is 32, indicating the highest rank and broader variance explained across
components, which suggests that incorporating both cell and time information improves the
embedding space’s representational richness.
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Appendix Figure 6: dynaCLR embeddings are smooth even when tracking is
erroneous: (a) snapshots of a cell and its tracking labels over time. Note that the false
fusion in 14.5 and 17.5 HPI frames caused subsequent false division and identity jump of
the cell. (b) UMAP components 1 (solid line) and 2 (dashed line) over time for the falsely
assigned tracks. The gaps correspond to false fusion events which shifts the centroid of the
track towards the edge of the FOV, resulting in invalid patches. The UMAP components are
smoothly transitioning over time, even though they are assigned to different tracks.
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Appendix Figure 7: Detection of rare events, e.g., cell division:(a) The morphology of
the cell changes over time during the transition between interphase and mitosis. (b) Ultrack
tracks the cell over time and captures mitosis. White tracks indicate cell divisions. (c—f)
The trajectory of one parent cell (black track) dividing into two daughter cells (blue and red
tracks) overlaid on the UMAP from models using phase channel and a combination of phase
and sensor fluorescence channels, and with and without temporal regularization, illustrates
that temporal regularization leads to smooth trajectories and better clustering with just the
phase channel.
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Appendix Figure 8: Learned representation of the phase and sensor channels help
exploration of organelle remodeling during infection. (a) UMAP of learned features
computed for mock and Dengue infected cells in the independent test dataset where the
ER of cells is labeled with a fluorescent protein (SEC61-GFP). 1 track from the mock well
and tracks 2-4 from the Dengue infected well are highlighted. Cells other than the example
tracks are marked in gray. (b) Snapshots from example tracks in (a), showing max-intensity
projection of ER (green) and the viral sensor (magenta). In some of the infected cells (tracks
2 and 3), ER forms transient condensation.
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