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ABSTRACT

Recent work on graph-based imputation methods for missing features has garnered
significant attention, largely due to the effectiveness of their ability to aggregate
and propagate information through graph structures. However, these methods
generally assume that the graph structure is readily available and manually mask
the original features to simulate the scenario of missing features. This set of
assumptions narrows the applicability of such techniques to real-world bio-medical
tabular data, where graph structure is not readily available and missing data is a
prevalent issue, such as in cases involving confidential patient information. In light
of this situation, and with the aim of enhancing generalizability in bio-medical
domain, we propose GRASS that bridges the gap between recent graph-based
imputation methods and real-world scenarios involving missing data in their initial
states. Specifically, our approach begins with tabular data and employs a simple
Multi-Layer Perceptron (MLP) layer to extract feature gradient, which serves as an
additional resource for generating graph structures. Leveraging these gradients, we
construct a graph from a feature (i.e., column) perspective and carry out column-
wise feature propagation to impute missing values based on their similarity to
other features. Once the feature matrix is imputed, we generate a second graph,
but this time from a sample-oriented (i.e., row) perspective, which serves as the
input for existing graph-based imputation models. We evaluate GRASS using
real-world medical and bio-domain datasets, demonstrating their effectiveness and
generalizability in handling versatile missing scenarios. The source code for our
proposed method is available at https://anonymous.4open.science/
r/grass-iclr-41D5.

1 INTRODUCTION

Missing data imputation (MDI) is a longstanding and pivotal research challenge across multiple
disciplines (Schafer & Graham, 2002; Jerez et al., 2010). While traditional methods primarily rely on
statistical techniques to leverage the distribution of non-missing data (Efron, 1994; Little & Rubin,
2019), recent advances in Graph Neural Networks (GNNs) (Kipf & Welling, 2016a; Hamilton et al.,
2017; Veličković et al., 2017) have opened new avenues for MDI. Unlike conventional approaches that
operate on tabular data, GNN-based methods employ a message-passing framework that effectively
addresses the problem of missing features by aggregating information from neighboring samples. This
proves especially useful in downstream tasks, often referred to as the ultimate goals of MDI (Taguchi
et al., 2021; Jiang & Zhang, 2020; Chen et al., 2020b; Rossi et al., 2021; Um et al., 2023).

Despite the significant advancements in model design for GNNs in MDI, the generalizability of
these GNN-based techniques across varied domains, especially those frequently encountering real-
world missing data, bio-medical domain, remains under-explored. We undertook a comparative
analysis between the widely-researched citation network domain and the bio-medical domain, where
generalizability is paramount. As illustrated in Figure 1, within the citation network where a graph
structure is readily available, the performance of both the pioneering Gaussian Mixture Model-
based GCNMF (Taguchi et al., 2021) and the recently proposed Dirichlet energy-minimizing Feature
Propagation (FP) (Rossi et al., 2021) demonstrates remarkable resilience across an extensive spectrum
of missing feature rates (spanning 0.1 to 0.9). Notably, they outperform the gold standard tabular-
based imputation technique Mean (Little & Rubin, 2019) and the popular Generative Adversarial
Network-based approach, GAIN (Yoon et al., 2018). The efficacy of these graph-based techniques
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Figure 1: Comparison of citation network and bio-medical domain regarding their input data and
performance. The Cora dataset focuses on node classification, while the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset emphasizes patient diagnosis classification. Unlike the Cora
dataset, the ADNI dataset has an initial missing feature rate of 30%.

stems from their ability to leverage the graph structure, incorporating a message-passing scheme that
allows similar nodes to inform their imputation, leading to a smoother representation. In essence,
when a suitable graph structure is available, the adoption of graph-based imputation techniques
becomes imperative.

In contrast, the bio-medical domain presents unique challenges. Frequently encountering missing
data scenarios—often seen in patient information datasets (Wiens, 2003; Cismondi et al., 2013b)—the
majority of the available data is tabular. This tabular format, rife with initial missing values and
devoid of any inherent graph structure, induces graph-based imputation works to struggle to achieve
the same efficacy they exhibit in aforementioned domains like citation networks. Evidence from
Figure 1 (b) underscores this distinction: the performance disparity between imputation methods
utilizing graphs1 (e.g., GCNMF, FP) and methods without relying on graphs (e.g., Mean, GAIN) is
marginal. Alarmingly, we note that, under severe missing rates (e.g., 0.9), graph-based techniques
like GCNMF and FP exhibit performance degradation, even underperforming the rudimentary Mean
baseline. This limitation primarily stems from the lack of a graph structure relevant to downstream
tasks, a staple in previously successful applications of graph-based imputation. These observations
spotlight that modern graph-based imputation techniques are yet to achieve generalization in the
bio-medical realm, where missing data challenges are ubiquitous. It naturally posits the central
question: Is it feasible to craft a more insightful feature matrix and associated graph structure,
thereby leveraging the potential of graph-based imputation techniques in the bio-medical domain?

Here, we introduce GRASS, a novel approach that offers an orthogonal way to leverage and generalize
existing graph-based imputation methods to real-world missing scenarios—such as those in the bio-
medical domain—where both initially missing features and graph structure are prevalent. Instead
of directly constructing a graph structure based on the current incomplete features, which would be
suboptimal, we commence with training on the tabular data using Multi-Layer Perceptron (MLP)
layers. During this training process, a valuable task-relevant byproduct that naturally emerges is
gradient information with respect to the features. This gradient information serves as a direct indicator
of how variations in features impact the prediction of the downstream tasks at hand. We utilize this
gradient information by concatenating it to the original feature matrix, thereby creating a feature
perspective graph. Subsequently, we apply column-wise feature propagation to produce a warmed-up
feature matrix. At this moment, we create a similarity-based adjacency matrix of samples derived
from this updated feature matrix. Now, equipped with this warmed-up feature matrix and the new
graph structure, we stand ready to harness the potential of cutting-edge graph-based imputation
techniques, extending our reach to real-world missing data scenarios.

In summary, our contributions are three-fold:

• We, for the first time, explore the generalizability of recent graph-based imputation models in the
context of real-world bio-medical tabular data with missing values.

• We propose a novel approach for constructing a graph structure that does not solely depend on the
initially incomplete feature matrix by utilizing feature gradient information.

• We demonstrate that GRASS can serve as an effective initial starting point in a model-agnostic
fashion, thereby enhancing performance in downstream tasks across multiple bio-medical datasets.

1We generate a similarity-based kNN graph due to the absence of given graphs.
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2 RELATED WORKS

Tabular-based Data Imputation. The challenge of missing data imputation has a long history and
many early approaches for tabular data are rooted in statistical methods (Efron, 1994; Little & Rubin,
2019). These methods often leverage the distribution of non-missing values to impute missing ones.
Recent machine learning-based imputation techniques include kNN-based approaches (Troyanskaya
et al., 2001; Keerin et al., 2012; Malarvizhi & Thanamani, 2012), GAIN (Yoon et al., 2018), which
employs Generative Adversarial Networks (Goodfellow et al., 2020), and MIWAE (Mattei & Frellsen,
2019), which utilizes a Deep Latent Variable model (Kingma & Welling, 2013). There have also been
efforts to adapt graph structures to tabular data for imputation; for example, GRAPE (You et al., 2020)
introduces a bipartite graph connecting samples and features, while the more recent IGRM (Zhong
et al., 2023) extends GRAPE by adding a friend network to capture relationships between samples.
However, as these methods heavily rely on the input feature matrix as a main resource, in cases
where a significant proportion of data is missing, the imputation quality tends to degrade, negatively
affecting downstream tasks’ performance. Notably, compared to the graph domain, most of these
studies emphasize either imputation or regression. This is because the task of imputing continuous
values closely aligns with regression, simplifying both training and evaluation. However, another
pivotal downstream task, i.e., classification, remains underexplored in the realm of tabular data with
missing features.

Graph-based Data Imputation. From the viewpoint of graph-based imputation, GCNMF (Taguchi
et al., 2021) tackles missing features by assuming a Gaussian distribution for each feature channel
while aligning it with Graph Convolutional Networks (GCN) (Kipf & Welling, 2016a). PaGNN (Jiang
& Zhang, 2020) proposes a partial aggregation scheme derived from neighborhood reconstruction.
FP (Rossi et al., 2021) iteratively diffuses known features to unknown features, followed by GNN
layers. Recently, PCFI (Um et al., 2023) builds upon FP to introduce channel-wise diffusion
confidence to handle scenarios with higher missing feature rates. However, channel-wise diffusion
operates on fully connected graphs, potentially incorporating irrelevant or noisy information between
channels. Additionally, they carry a strong inductive bias toward readily available graph structures,
limiting their generalizability. As mentioned above, the application domain of these works primarily
focuses on Citation (Sen et al., 2008) and Co-Purchase networks (Shchur et al., 2018) where features
are text-based, a situation less reflective of realistic cases where features are initially missing.

Bio-medical Data Imputation. In the medical domain, several research efforts have been made
to address missing data. Multiple imputation techniques are suggested by (Janssen et al., 2010),
while (Cismondi et al., 2013a) employs statistical approaches for imputation. The MICE algo-
rithm (Van Buuren & Groothuis-Oudshoorn, 2011) is also widely applied in this context. On the
biology side, a prominent issue related to missing data is the occurrence of dropout events in single-
cell RNA-sequencing datasets, where zero values are often falsely recorded as missing. Among the
various methods proposed (Li & Li, 2018; van Dijk et al., 2018; Wang et al., 2021; Yun et al., 2023),
scGNN (Wang et al., 2021) and scFP (Yun et al., 2023) employ Graph Auto-Encoders (GAE)(Kipf
& Welling, 2016b) and FP(Rossi et al., 2021) to impute these false zeros. Despite these efforts, the
use of graph-based data imputation techniques remains underexplored. This is largely due to the
absence of a network structure and a reliance on input feature matrices. Such limitations widen the
gap between recent advances in graph-based imputation and real-world applications where data is
often missing.

3 METHODOLOGY

In this section, we introduce GRASS, a novel algorithm designed to bridge the gap between recent
graph-based imputation methods and real-world missing data scenarios. Initially, we employ a Multi-
Layer Perceptron (MLP) to extract the feature gradient, a crucial supplement for graph structure used
for imputation (Sec 3.1). Subsequently, we implement a Column-wise Feature Propagation grounded
on the gradient-informed graph (Sec 3.2). Then, we derive a warmed-up feature matrix alongside with
a kNN graph, setting the stage for seamless integration with contemporary graph-based imputation
techniques (Sec 3.3). The comprehensive framework of GRASS is depicted in Figure 3.

Task: Classification with Tabular Data Containing Initial Missing Features. Given an initially
missing feature matrix X ∈ RN×F , where N denotes the total samples and F the feature dimensions,
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Figure 2: Overall framework of GRASS. Given an initially missing feature matrix, we first train
a simple MLP to obtain the feature gradient. By concatenating these gradients with the initial
matrix, we create a graph from a feature-wise perspective. After employing Column-wise Feature
Propagation, we obtain a warmed-up feature matrix and an adjacency matrix. These serve as the
foundational feature and adjacency matrices for current graph-based imputation methods.

the goal of GRASS is to produce a warmed-up feature matrix accompanied by a sample-wise
graph structure. This enhanced matrix corresponding graph structure enables existing graph-based
imputation methods to seamlessly utilize them as an initial reference point.

3.1 FEATURE GRADIENT AS A SUPPLEMENT

While facing the challenge of initially missing feature matrix, the direct utilization of this matrix for
downstream tasks can lead to suboptimal results. Prior imputation is imperative. Naturally, one might
consider the latest graph-based imputation techniques (Taguchi et al., 2021; Jiang & Zhang, 2020;
Rossi et al., 2021; Um et al., 2023) given their prowess in receiving messages (or representations)
from neighboring samples. However, as depicted in Figure 1, constructing a graph based only
on given features becomes increasingly challenging with high feature missing rates, at times even
counteracting the imputation process. While it might be tempting to first address missing values
simply by employing Mean (Little & Rubin, 2019), kNN (Troyanskaya et al., 2001), or other statistical
methods (Van Buuren & Groothuis-Oudshoorn, 2011; White et al., 2011) prior to constructing a graph,
this approach remains constrained by the use of incomplete features. Furthermore, it often lacks task-
specific insights, which is particularly crucial when targeting downstream tasks like classification. In
light of this, we identify feature gradient, obtained during backpropagation, as a pivotal, task-aligned
resource. These gradients indicate how subtle shifts in features impact the model’s predictions,
highlighting the salience of individual features in loss minimization. By leveraging these gradients,
we can devise a graph structure that encapsulates not just observed feature information from an initial
state but also the feature saliency in relation to our targeted downstream task. Consequently, we begin
with a formal definition of a feature gradient.

Definition 3.1. The feature gradient, denoted as ∇X, represents the partial derivatives of the loss
function concerning each feature in the input matrix and is mathematically defined as ∇X = ∂L

∂X .

Building upon Definition 3.1, we derive feature gradient through the training of a straightforward
MLP 2. During this training process, the ensuing proposition emerges:

2While training the MLP layers, we utilized zero imputation for the initially missing values, capitalizing on
its computational efficiency and steering clear of presumptions associated with missing completely at random
(MCAR).
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Proposition 1. Consider a 2-layer Multi-Layer Perceptron (MLP). The output for each layer is
formulated as: Z

′
= σ(XW

′
+ b

′
),Z

′′
= Z

′
W

′′
+ b

′′
where the trainable weight matrices are

denoted as W
′ ∈ RF×D and W

′′ ∈ RD×C , and bias vectors are represented by b
′ ∈ RD and

b2 ∈ RC . The activation function, σ, is chosen as the ReLU function, F is the feature dimension,
and D specifies the dimension. Upon applying the softmax function, we derive the prediction
probability matrix Ŷ ∈ RN×C , with C indicating the number of classes. Y ∈ RN×C is a label
matrix. Using cross-entropy as the loss function, the feature gradient, represented as ∇X ∈ RN×F ,
can be computed as:

∇X = ((Ŷ −Y) ·W
′′⊤)⊙ (XW

′
+ b

′
> 0) ·W

′⊤

Please refer to Appendix A.1 for the detailed proof.

A central observation from Proposition1 is the dynamic nature of the feature gradient matrix across
MLP training epochs, despite the static nature of the initially provided missing feature matrix X.
This dynamic is attributed to adjustments in trainable weight parameters (e.g., W1,W2), which
in turn influence feature gradient variations. Although the imparted information undergoes change
every epoch, persistently storing these gradients across epochs incurs substantial memory overhead,
O(NF ). Moreover, there’s no guarantee of consistent gradient quality improvement with each epoch.
To address this, we selectively store feature gradient3 only when the MLP’s performance on predicting
the validation set improves, leveraging them as pivotal cues to enhance downstream task efficacy. In
essence, after training MLP, we consolidate the stacked feature gradient, averaging them to yield
∇X ∈ RN×F , a matrix accordant in shape with the original feature matrix. This then acts as an
adjunct to the initially missing feature matrix, as elucidated in the following section.

3.2 COLUMN-WISE FEATURE PROPAGATION

In the context of classification, post-imputation matrices often undergo message-passing, especially
when adopting GNNs as classifiers. While GNNs typically employ adjacency matrices constructed
from a node’s perspective, they might neglect significant inter-feature relationships. For example, in
the ADNI dataset (Petersen et al., 2010), the relationship between attributes like ’Age’ and ’Ventricles’
has been documented to indicate potential brain volume loss as one ages (Nestor et al., 2008; Bjork
et al., 2003). To capture such crucial inter-feature dynamics, we introduce a column-wise graph
structure. Here, given that the initial columns (i.e., features) have missing values, we address this
challenge by a supplement, the feature gradient we derived earlier, as follows:

Afeat = kcol-nearest-neighbor(∇⊤
X∥X⊤) (1)

where kcol-nearest-neighbor(·) denotes the connection of kcol neighbors for each feature channel,
established using cosine similarity, with kcol as a hyperparameter. Given the feature-wise graph, we
employ FP (Rossi et al., 2021) to estimate missing features across iterations by capturing inter-feature
relationships in a column-wise fashion while preserving known values, which is depicted as follows:

X(i+1)⊤ = ÃfeatX(i)⊤,

X(i+1)⊤
v,d = X(0)⊤

v,d ,∀v ∈ Vknown,d,∀d ≤ F
(2)

where Ãfeat = D−1/2AfeatD−1/2 ∈ RF×F is symmetrically normalized weighted adjacency,
having cosine similarity as a weight, with a self-loop with added degree matrix D. At iteration i, the
matrix is represented as X(i)⊤ ∈ RF×N . The set Vknown,d contains nodes with known feature values
for the d-th channel. After K iterations and another transposition, we obtain the imputed output
X̂ = X(K) ∈ RN×F , which we term the warmed-up matrix. Given our approach uses a custom kNN
graph, discussions about convergence can be found in Appendix A.2.

3L2-normalization was applied during feature gradient storage to maintain consistent feature scales and retain
the original vector’s directionality.
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3.3 WARMED-UP FEATURE MATRIX AND ADJACENCY MATRIX

Real-world tabular datasets often contain a blend of numerical (e.g., Age, Blood pressure) and
categorical features (e.g., Gender, Blood type). To address the variability, we introduce a clamping
method tailored for categorical features that aligns with our Column-wise Feature Propagation
approach. Given iterative multiplications with the normalized adjacency matrix, one-hot encoded
categorical columns can yield continuous imputed values. In the bio-medical field, consideration
of such continuous value-based imputation can be vital, especially when examining samples from
different tissues or cell types. For instance, if a tissue type is labeled ‘0’ for “epithelial” and ‘1’ for
“mesenchymal”, an imputed value of 0.5 would be biologically meaningless and not represent any
known tissue type. Thus, to preserve the original scale of these features, for a categorical index c
which we obtain during the preprocessing of numerical and categorical mixed type tabular data, with
corresponding bin count cb for the original column, the predicted probability vector for a sample j

from the continuous imputed matrix is given by: x̃c = softmax(X̂j,c:c+cb) ∈ Rcb Subsequently, the
clamping process is as below:

X̂j,c:c+cb =


OneHot(argmax(x̃c)), if max(x̃c) ≥ θ

[?, . . . , ?︸ ︷︷ ︸
cb times

], otherwise (3)

where OneHot(·) function represents one-hot encoding based on a threshold, θ. The symbol ?
indicates retained initial missing values, emphasizing our aim to preserve inherent uncertainties.
Using this method, we aptly handle categorical columns, ensuring imputations align with their
original format. After obtaining the clamped matrix X̂, we create a row-wise (i.e., sample-wise)
graph structure, deriving edge indices to be aligned with samples using the imputed warmed-up
matrix as a resource. This serves as the foundational graph for contemporary graph-based imputation
methods, which can be described as:

Â = krow-nearest-neighbor(X̂),

where krow-nearest-neighbor(·) denotes the connection of kcol neighbors for each sample using cosine
similarity, with krow as a hyperparameter. With the clamped matrix and sample-wise graph structure,
we offer a refined starting point for current graph-based imputation methods. It is essential to
recognize that our approach still provides room for contemporary graph-based imputation methods
for their own imputations, as shown in Figure 3. Column-wise FP might not always impute all missing
values, especially when nodes are not connected to the nodes containing known values. Additionally,
if the clamping process doesn’t meet a set threshold (Equation 3), this situation would occur. Our
goal is to enhance the potential of current graph-based imputation techniques. By introducing a
warmed-up matrix (X̂) using feature gradient and a related graph structure (Â), we strengthen the
performance of current imputation strategies in classification tasks. We present the detailed algorithm
for the overall process of GRASS in Appendix A.4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate GRASS on nine datasets in total containing initial missing data. Four bio
datasets are from the single-cell RNA-seq domain: Mouse ES (Klein et al., 2015), Pancreas (Luecken
et al., 2022), Baron Human (Baron et al., 2016), and Mouse Bladder (Han et al., 2018). Five of
these are from the medical domain: Hepatitis from the UCI Machine Learning repository, related
to liver diseases (hep, 1988). Alzheimer’s Disease Neuroimaging Initiative (ADNI) related to brain
diseases (Petersen et al., 2010). Autism Brain Imaging Data Exchange (ABIDE) is also related to
brain diseases (Di Martino et al., 2014; 2017). Dynamic contrast-enhanced magnetic resonance
images of breast cancer patients with tumor locations (Duke Breast) (Saha et al., 2018; 2021). Breast
Cancer from the UCI repository, related to breast diseases (Zwitter & Soklic, 1988). For the dataset
split, we randomly generated 5 different splits with train/val/test ratio in 10%, 10%, 80% 4. Statistics
for each dataset and details are provided in Appendix A.3.

4It is noteworthy that while the scRNA-seq domain has traditionally been unsupervised, the increasing
availability of public scRNA-seq datasets has shifted the trend towards supervised machine learning models in
recent research (Cao et al., 2022).
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Compared Methods. To verify whether our algorithm enhances current graph-based imputation
methods, we compare it with established baselines such as Label Propagation (LP) (Zhu, 2005),
GCNMF (Taguchi et al., 2021), PaGNN (Jiang & Zhang, 2020), Neighborhood Mean (NM), Zero
Imputation with GCN layers (Zero) (Rossi et al., 2021), FP (Rossi et al., 2021), and PCFI (Um et al.,
2023). Given our focus on tabular data, we also include common methods like Mean (Little & Rubin,
2019), kNN (Troyanskaya et al., 2001), GAIN (Yoon et al., 2018), MIWAE (Mattei & Frellsen, 2019),
and bipartite graph-based approaches like GRAPE (You et al., 2020) and its recent enhanced version,
IGRM (Zhong et al., 2023). To align with our focus on downstream tasks, we appended a logistic
classifier to methods that exclusively target imputation.

Hyper-parameters. For graph-based imputation methods, we generated a kNN graph, selecting k
from 1, 3, 5, 10. We set a consistent dropout rate of 0.5 and a dimension of 64 across all methods.
While other hyperparameters were tuned based on the original paper’s recommendations, for our
model, we similarly explored values for kcol and krow within 1, 3, 5, 10. The clamping process’s
threshold, θ, was tested among 0.0, 0.2, 0.4, 0.6, 0.8. We set the number of iterations, K, to 40,
as advised in the FP paper. Optimal hyperparameters for the best and most improved models are
detailed in Appendix A.3.
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Figure 3: Classification performance on Medical/Bio dataset with initially missing rate (IMR). (B)
denotes the “Best” performing baseline while (M) denotes the “Most Improved” baseline with their
relative improvement percentage. A percentage is underlined if it surpasses 80%.

4.2 CLASSIFICATION PERFORMANCE

As depicted in Figure 3, graph-based imputation methods (e.g., FP, PCFI) naturally excel in classifi-
cation tasks compared to tabular-based models, largely due to their message-passing mechanisms.
The bio domain, which only comprises numerical data, showed notable performance improvement
compared to the mixed-type medical domain. Yet, in certain datasets like Mouse ES, advanced
graph-based imputations like PaGNN and FP occasionally do not surpass basic methods tailored
to tabular data, a trend also noticed in Figure 1. However, when integrated with the warmed-up
matrix and adjacency matrix from GRASS, their performance significantly improves, even surpassing
tabular-based models. It’s noteworthy that while recent methods like FP and PCFI outperform
GCNMF in citation networks with up to a 99% missing rate, GCNMF’s potential remains significant
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in the bio-medical domain. The appropriate graph structure, combined with the Gaussian Mixture
Model, can significantly enhance performance, leading to a remarkable 133.90% improvement in
the Mouse Bladder dataset. Although our model was primarily developed to refine and offer a more
tailored adjacency matrix, tabular-based methods also benefit from using a warmed-up matrix as
their starting point, as seen in the ABIDE dataset. In summary, while the adaptability of current
graph-based imputation models hasn’t been thoroughly explored, and they occasionally underperform
simpler tabular methods, incorporating GRASS from the beginning can maximize their capabilities.

COL1A1

PDGFRB

TGFBI

T1MP1

RAB31

PLIN2

(b) Pairwise maker gene cosine similarity comparison (d) Expression of 𝐗 and "𝐗(c) Resulting A!"#$

GCNMF (Macro-F1: 0.575) GRASS Init. + GCNMF (Macro-F1: 0.698)

(a) Comparison of the confusion matrix between GCNMF and GRASS Init. + GCNMF

𝛁𝐗𝐗

Figure 4: Exploring the influence of feature gradient. (a) Confusion matrix comparison between
original GCNMF and its GRASS initialized version, illustrating the latter capturing more rare cell-
type. (b) Pairwise marker gene cosine similarity comparison between original feature matrix (X and
feature gradient(∇X), resource for the column-wise graph. (c) Resulting Afeat via utilizing feature
gradient as a supplement. (d) Expression of four marker genes being amplified after column-wise
Feature Propagation. All experiments were conducted on the Pancreas dataset. Marker genes, which
are key factors for classifying “activated stellate” cell type, were identified based on existing research
linking these genes to the activated hepatic stellate cell (HSC).

4.3 WHY FEATURE GRADIENT MATTERS?

We investigate the contributions of feature gradients in addressing the missing feature problem. We
first analyze the underlying information of feature gradients with class (cell-type) representations in
Figure 5. The class representations of feature gradients (Figure 5 (b)) are more discriminative than
the original input matrix (Figure 5 (a)). Then, with the use of feature gradients, the final warmed-up
matrix (Figure 5 (c)) can further enhance the intra-class distinction. The observations indicate that
the feature gradients are beneficial for learning more distinct class representations than the original
input features. It is worth noting that we can extract the feature gradients based solely on the input
matrix without any external information, demonstrating the broad application of the proposed model.

We delved deeper into the predictions made by GRASS to elucidate the impact of feature gradients.
Figure 4 (a) showcases confusion matrices comparing GCNMF, the model showing the most im-
provement, with our warmed-up matrix. A significant factor in this enhanced performance is the
better recognition of rare cell types like ‘activated stellate’. Figure 4 (b) illustrates that expression of
marker genes for ‘activated stellate’ such as COL1A1, TIMP1, TGFBI, and PDGFRB exhibit higher
cosine similarity in feature gradient compared to its original matrix. This was achievable owing
to its ability to incorporate task-relevant information, i.e., ‘activated stellate’ cell-type information,
which is brought from the label supervision. By leveraging this task-relevant gradient information,
in Figure 4 (c), direct connections (i.e., 1-hop neighbors) have been formed among three marker
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genes, while one displays 2-hop relationships. Consequently, after feature propagation iterations,
these genes exhibit increased expression levels owing to neighborhood aggregation. This crucially
pinpoints the ‘activated stellate’ cell type, as demonstrated in Figure 4 (d), surpassing the average
expression value across all genes (gray line). Table 1 underscores the importance of each module in
terms of AUROC, showing the effectiveness of column-wise feature propagation. Utilizing feature
gradients with clamping techniques proves especially beneficial in bio-medical domains.

(b) Feature Gradient: 𝛁𝐗 (c) Warmed-up Matrix: "𝐗(a) Input Matrix: 𝐗

Figure 5: t-SNE of cell-type representation in Pancreas data
with input matrix, feature gradient, and warmed-up matrix.

Table 1: Ablation study of GRASS.
Two best-performing models, GCNMF
and PaGNN, are used for the backbone
model. (w/o room) denotes the remain-
ing missing values are imputed as zeros.
Model Variants Breast Cancer Hepatitis

Row only 0.500+0.00 0.667+0.10
Col only 0.524+0.08 0.603+0.20
Col+∇X 0.540+0.10 0.627+0.11
Col+∇X+Clamp (w/o room) 0.577+0.05 0.736+0.07

Col+∇X+Clamp (w/ room) 0.579+0.08 0.742+0.058

4.4 SENSITIVITY ANALYSIS

Figure 6 (a) illustrates the sensitivity of hyperparameters kcol and krow, which are responsible for the
generation of neighboring edges for column-wise (feature-wise) and row-wise (sample-wise) graphs,
respectively. Our observations suggest that GRASS exhibits relative robustness to variations in the
number of neighbors within the recommended range {1, 3, 5, 10}. Nonetheless, in situations with
extensive missing data, such as the ABIDE dataset, which has an initial missing rate of 69.74%, opting
for a larger k for column-wise graphs might be inadvisable. This is because the resulting connected
components may be more uncertain, heavily populated with missing data, and potentially prone to
the over-smoothing issue. The implications of selecting a higher k value, especially concerning
convergence and over-smoothing, are further discussed in Appendix A.2. Meanwhile, Figure 6 (b)
emphasizes the significance of selecting an appropriate clamping threshold. A larger θ tends to retain
more uncertainties, preserving more original missing values. Conversely, a smaller θ might prompt
premature imputation by GRASS, possibly limiting the subsequent graph-based imputation methods’
ability to further refine using the warmed-up matrix and adjacency matrix offered by GRASS, as
showcased in Table 1.

𝑘!"#

𝑘$"%
𝜃

AU
RO

C

𝜃

AU
RO

C

(a) Sensitivity on 𝑘!"# and 𝑘$"% (b) Sensitivity on clamping threshold 𝜃

𝑘!"#

𝑘$"%

ADNI (IMR: 30.02%)ABIDE (IMR: 69.74%) ADNI (IMR: 30.02%)ABIDE (IMR: 69.74%)

Figure 6: Sensitivity analysis on hyperparameters used in GRASS. AUROC is measured in both
datasets.

5 CONCLUSION

Graph-based imputation approaches have gained increasing popularity to fill in the missing feature by
aggregating the information from its neighborhood nodes. However, most real-world scenarios do not
satisfy their pre-assumption of a readily available graph structure, which limits the partial usage of
current methods. To tackle the bottleneck, we propose an innovative GRASS algorithm to generalize
graph-based imputation to realistic cases like medical and bio-domain datasets. GRASS begins
with tabular data and leverages their feature gradients to construct graph structures from both
feature- and sample-oriented perspectives. Extensive empirical investigations consistently validate
the effectiveness of our proposal. We believe GRASS can serve as an attractive starting point for
future graph-based imputation works.
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Ethical Statement. In accordance with the ICLR Code of Ethics, we confirm that our research
adheres to its prescribed guidelines. While our proposed algorithm can recover missing features,
particularly in the bio-medical domain, we advise not using it for actions that might lead to negative
societal consequences, such as the unauthorized sharing of private information.

Reproducibility Statement. For clarity and reproducibility, we’ve detailed the three proposed
modules in Sections 3.1, 3.2, and 3.3. A theoretical proof for deriving the feature gradient can be
found in Appendix A.1, while the complete pseudocode is available in Appendix A.4. Information
regarding the experimental settings is laid out in Appendix A.3. The code can be accessed at
https://anonymous.4open.science/r/grass-iclr-41D5.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proposition 1. Consider a 2-layer Multi-Layer Perceptron (MLP). The output for each layer is
formulated as: Z

′
= σ(XW

′
+ b

′
),Z

′′
= Z

′
W

′′
+ b

′′
where the trainable weight matrices are

denoted as W
′ ∈ RF×D and W

′′ ∈ RD×C , and bias vectors are represented by b
′ ∈ RD and

b2 ∈ RC . The activation function, σ, is chosen as the ReLU function, and D specifies the dimension.
Upon applying the softmax function, we derive the prediction probability matrix Ŷ ∈ RN×C , with
C indicating the number of classes. Using cross-entropy as the loss function, the feature gradient,
represented as ∇X ∈ RN×F , can be computed as:

∇X = ((Ŷ −Y) ·W
′′⊤)⊙ (XW

′
+ b

′
> 0) ·W

′⊤

Proof. Given a row-vector, x ∈ R1×F , consider the following application of the chain rule:

∂L
∂x

=
∂L
∂z′′ ·

∂z
′′

∂z′ · ∂z
′

∂x

To compute ∂L
∂z′′ , let’s begin by considering a specific class index n, when n ranges from 1 to C, the

total number of classes.

∂L
∂z′′

n

=
∂L
∂ŷn

· ŷn
∂z′′

n

= −
C∑
i=1

yi ∗
∂ log (ŷi)

∂ŷi
∗ ∂ŷi
∂z′′

n

= −
C∑
i=1

yi
ŷi

∗ ∂ŷi
∂z′′

n

To determine ∂ŷi

∂z′′
n

, the gradient with respect to the softmax function for each class i in total C classes
can be computed:

I. When i = n,

∂ŷi
∂z

′′
i

=
∂

∂z
′′
i

(
ez

′′
i∑C

j=1 e
z
′′
j

)

=
ez

′′
i ∗

∑C
j=1 e

z
′′
j −

(
ez

′′
i

)2

(∑C
j=1 e

z
′′
j

)2

=
ez

′′
i∑C

j=1 e
z
′′
j

∗
∑C

j=1 e
z
′′
j − ez

′′
i∑C

j=1 e
z
′′
j

= ŷi ∗ (1− ŷi)

II. When i ̸= n,
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∂ŷi
∂z′′
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=
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j=1 e

z
′′
j − ez

′′
i ∗ ez
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)2

= − ez
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We can subsequently consolidate two separate cases as follows:

∂L

∂z′′
n

= −
C∑
i=1

yi
ŷi

∗ ∂ŷi
∂z′′

n

= −yn
ŷn

∗ ŷn ∗ (1− ŷn) +

c∑
i ̸=n

yi
ŷi

∗ ŷi ∗ ŷn

= −yn + yn ∗ ŷn +

c∑
i ̸=n

yi ∗ ŷn

= −yn +

C∑
i=1

yi ∗ ŷn

= ŷn − yn

The vector form for the same is:

∂ŷ

∂z′′ = ŷ − y

Now, the gradient with respect to the output of the hidden layer, ∂z
′′

∂z′ is directly given by:

∂z
′′

∂z′ = W
′′⊤

Lastly, to obtain ∂z
′

∂x , we need to consider the ReLU activation in the hidden layer:

∂z
′

∂x
=

∂z
′

∂σ(xW′ + b′)
· ∂σ(xW

′
+ b

′
)

∂x
= (xW

′
+ b

′
> 0) · W

′⊤

Combining these results yields the feature gradient in row-vector (R1×F ) format:

∂L
∂x

=
∂L
∂z′′ ·

∂z
′′

∂z′ · ∂z
′

∂x

= ((ŷ − y) ·W
′′⊤)⊙ (xW

′
+ b

′
> 0) ·W

′⊤

where ⊙ represents the element-wise multiplication (Hadamard product).

When generalized for the entire dataset, the matrix (RN×F ) format becomes:

∇X =
∂L
∂X

=
∂L
∂Z′′ ·

∂Z
′′

∂Z′ · ∂Z
′

∂X

= ((Ŷ −Y) ·W
′′⊤)⊙ (XW

′
+ b

′
> 0) ·W

′⊤
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A.2 DISCUSSION ON CONVERGENCE OF COLUMN-WISE FEATURE PROPAGATION

One of the hallmark advantages of FP is its ability to guarantee convergence of feature representations
for missing nodes, provided the graph is undirected and maintains strong connectivity (Berman &
Plemmons, 1994). In contrast to graph domains where the initial graph structure is given without any
missing elements and can thereby extract a strongly connected component, our situation, defined by
initially missing features devoid of a graph structure, requires manual graph construction, such as the
kNN graph as detailed in Equation 2. This approach does not ensure strong connectivity, making the
convergence of imputed values for missing features uncertain. Nonetheless, we argue that within our
context of missing features, simply increasing the number of neighbors, k, to achieve the convergence
property might not always be advantageous.

Claim: Elevating k to attain strong connectivity (which increases the likelihood, albeit without
guarantees) and consequently secure the convergence property can sometimes be detrimental to
performance. This might inadvertently introduce a primary drawback inherent to graph-based
learning: over-smoothing. ⇔ Rationale: As the value of k escalates, the adjacency matrix Afeat

becomes increasingly dense. However, considering our scenario of missing features where feature
representation remains incomplete, the veracity of the new connections becomes dubious. For the
representation of missing nodes in the feature matrix used in Equation 2, denoted as X⊤ ∈ RF×N

and represented by xu ∈ RN , a high missing rate combined with an extensive k implies that the
feature representation of the majority node, xu, will evolve via feature propagation. As the number
of layers increases and k approaches the total number of nodes F , these nodes end up with almost
identical representations.

Given this perspective, we aim to avert ambiguous node connections and counteract over-smoothing,
which could potentially degrade classification performance. To this end, we commit to using a
relatively modest and smaller value of k when crafting the graph from the feature’s perspective.

Discussion on the Convergence and Performance Gain Relationship. To further investigate
whether the convergence property contributes to performance gain, we conducted an empirical
analysis to validate our claims. In Figure 7, we extended our proposed range of kcol and krow values,
{1,3,5,10}, up to 50, and tested the resulting graph’s connectivity. We observed that when kcol
and krow exceed 10, the generated graph becomes strongly connected, meaning that every node is
reachable from every other node. Interestingly, while strong connectivity provides convenience in
choosing the number of neighbors and satisfies the necessary condition for FP to converge, it does
not necessarily translate to performance gains. Optimal performance was, in fact, achieved within
a smaller range of k values, as initially proposed. Upon further investigation, we discovered that
increasing kcol leads to an oversmoothing issue in the resulting output, particularly in the warmed-up
matrix. This effect was quantified using the MADGap metric (Chen et al., 2020a), which measures the
representational difference between remote and neighboring nodes. In summary, our findings suggest
that when dealing with bio-medical tabular data, where an initial graph structure is not provided
and a kNN graph must be manually generated, selecting a large k value to leverage the convergence
property of FP may not be the most effective strategy in scenarios with severe missing.
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Figure 7: Performance comparison upon increasing the values of kcol and krow, which are responsible
for generating the column-wise and row-wise graphs, respectively. This increase ensures convergence
in (a) the Mouse ES dataset and (b) a Medical dataset. For each dataset, the best-performing models,
FP and NM, with GRASS initialized, are utilized to assess performance. The MADGap metric,
calculated as the normalized distance in the warmed-up matrix (X̂) between remote nodes within an
8-hop distance and neighboring nodes within a 3-hop distance (as suggested in the original paper), is
used to measure oversmoothing. A smaller MADGap value indicates a more severe oversmoothing.
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A.3 EXPERIMENTAL DETAILS

Table 2 provides an overview of dataset statistics. In the medical domain, where features can be both
numerical and categorical, we employed MinMaxScaler for numerical columns and one-hot encoding
for categorical ones. For the bio domain, we employed datasets from the single-cell RNA-sequencing
domain. In this domain, both false-zeros and biologically true zeros coexist (van Dijk et al., 2018; Li
& Li, 2018). However, since we cannot distinguish whether a given zero is a false-zero or a true-zero,
we treat this situation as a missing data scenario. Accordingly, we consider zeros as missing values,
aligning with the approach taken in the recent work, scFP (Yun et al., 2023). The initial missing
rate (IMR) represents the absence of data in the original table before any preprocessing. The final
column of Table 2 indicates the extent of missing data even after obtaining the warmed-up feature
matrix and adjacency matrix. This phenomenon is particularly evident in datasets with categorical
features. Yet, the designed allowance for subsequent graph-based imputation methods has proven to
complement effectively, as illustrated in Table 1. Tables 3 and 4 detail the optimal hyperparameter
settings when GRASS and existing graph-based imputation models are best aligned.

Table 2: Statistics of datasets. IMR: Initially Missing Rate
Dataset Domain N F Num. Cat. Preprocessed C IMR GRASS Init.

Mouse ES Bio 2717 24047 24047 0 2000 4 27.21% 0.00%
Pancreas Bio 1937 15575 15575 0 2000 14 56.65% 0.00%
Baron Human Bio 8569 17499 17499 0 2000 14 57.25% 0.00%
Mouse Bladder Bio 2746 19771 19771 0 2000 16 69.05% 0.14%
Breast Cancer Medical 286 9 1 8 39 2 0.35% 0.00%
Hepatitis Medical 155 19 4 15 298 2 5.67% 5.53%
Duke Breast Medical 907 93 34 59 3364 3 11.94% 9.42%
ADNI Medical 2419 113 92 21 2741 5 30.02% 4.18%
ABIDE Medical 1112 72 64 8 284 2 69.74% 3.39%

Table 3: Hyperparameter setting of Best Performing models.

Dataset Best Performing θ kcol krow OG GRASS Improvement

Mouse ES FP - 10 5 0.900 0.983 9.17%
Pancreas LP - 3 3 0.656 0.799 21.66%
Baron Human scFP - 1 10 0.809 0.853 5.43%
Mouse Bladder PaGNN - 3 5 0.713 0.760 8.78%
Breast Cancer GCNMF 0.2 3 5 0.552 0.580 5.02%
Hepatitis PaGNN 0.6 5 1 0.729 0.742 1.74%
Duke Breast GAIN 0.4 5 10 0.699 0.700 0.09%
ADNI Zero 0.4 10 10 0.956 0.960 0.16%
ABIDE NM 0.2 1 3 0.905 0.919 1.48%

Table 4: Hyperparameter setting of Most Improved models.

Dataset Most Improved θ kcol krow OG GRASS Improvement

Mouse ES GCNMF - 5 1 0.525 0.973 85.31%
Pancreas GCNMF - 10 1 0.527 0.708 34.27%
Baron Human GCNMF - 5 3 0.350 0.818 133.30%
Mouse Bladder GCNMF - 1 3 0.300 0.702 133.90%
Breast Cancer NM 0.6 10 10 0.539 0.565 5.07%
Hepatitis GAIN 0.0 1 10 0.579 0.646 11.63%
Duke Breast FP 0.4 3 5 0.661 0.689 5.07%
ADNI GCNMF 0.0 3 10 0.898 0.945 5.25%
ABIDE Mean 0.2 5 10 0.608 0.906 49.09%
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Preprocessing of Datasets. In the bio datasets, we make use of cell-gene matrices to predict the
relevant annotated cell types for each cell. This cell type information serves as the supervisory
signal during training. For preprocessing, we typically filter out cells and genes that have not been
transcribed in each row and column, respectively, and apply a log transformation to normalize the
count values.

• The Mouse ES (Klein et al., 2015) dataset employs a droplet-microfluidic approach for
parallel barcoding. We used concatenated data originally separated by different days post-
leukemia inhibitory factor (LIF) withdrawal, treating the day of withdrawal as the annotation
for the cell type.

• The Pancreas (Luecken et al., 2022) dataset, obtained via the inDrop method, captures the
transcriptomes of individual pancreatic cells from four human donors and two mouse strains.
It includes 14 annotated cell types.

• The Baron Human (Baron et al., 2016) dataset focuses on individual pancreatic cells from
human donors, sequenced using a droplet-based method. It features 14 annotated cell types.

• The Mouse Bladder (Han et al., 2018) dataset, sourced from the Mouse Cell Atlas (MCA)
project and sequenced via the Microwell-seq platform, includes cell types as defined by the
original authors’ annotations.

In our medical datasets, we focused on datasets that originally include missing values and feature a
mix of categorical and numerical features. During preprocessing, we removed rows and columns if
all features were missing in each sample or if all samples were missing in each feature, respectively.
We selected the most representative feature column related to the patient’s diagnosis as the class label
for prediction.

• Breast Cancer (Asuncion & Newman, 2007): Published in the UCI repository and provided
by the Oncology Institute, this dataset contains tumour-related features. We use ’recurrence’,
a binary attribute, as the class label.

• Hepatitis (Asuncion & Newman, 2007): Also published in the UCI repository, this dataset
includes data on hepatitis occurrences in individuals, with attributes related to liver char-
acteristics. The binary annotation of the patient’s outcome (die or live) is used as the class
label.

• Duke Breast (Saha et al., 2018): Made available by The Cancer Imaging Archive (TCIA),
this dataset consists of medical images and non-image clinical data for tumor prediction.
From the tabular data provided, we use the ‘Tumor Grade’ feature, which indicates the
grade of the tumor, as the class label.

• ADNI (Petersen et al., 2010): This collection includes various types of medical images and
non-image clinical data related to Alzheimer’s disease. We utilize the ‘DX bl’ feature from
the clinical data, indicating the patient’s diagnosis, as the class label.

• ABIDE (Di Martino et al., 2014): Containing data on autism spectrum disorder based on
brain imaging and clinical data, this dataset uses the ‘DX Group’ feature from the clinical
data, which represents the diagnostic group of the patient, as the class label.

Baselines. To tackle the challenge of generalizing graph-based imputation methods to bio-medical
tabular data, we have adopted two types of baseline approaches. For graph-based imputation methods,
which typically target downstream tasks like classification, we adopted widely-used methods as
follows. For GNN-based methods, we utilized a 2-layer GCN as a classifier.

• LP (Zhu, 2005) is a semi-supervised algorithm that spreads known labels to similar data
points in an unlabeled dataset, based on the given graph structure.

• GCNMF (Taguchi et al., 2021) is an end-to-end GNN-based model that imputes missing
features by assuming a Gaussian Mixture Model aligned with GCN.

• PaGNN (Jiang & Zhang, 2020) is a GNN-based method that implements a partial message-
passing scheme, propagating only observed features.

• GCN-Zero (Rossi et al., 2021) is a simple 2-layer Graph Convolution Network. We impute
missing features with zeros in this model.
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• GCN-NM (Rossi et al., 2021) imputes missing features by averaging the features of one-hop
neighboring nodes, followed by GCN layers.

• GCN-FP (Rossi et al., 2021) propagates given features through neighbors, replacing observed
ones with their original values to minimize Dirichlet energy.

• PFCI (Um et al., 2023) improves upon FP by considering propagation among feature
channels with pseudo confidence, defined by the shortest path to the known feature.

Additionally, as our primary focus is on tabular data, we include common table-based imputation
methods as follows.

• Mean (Little & Rubin, 2019) replaces missing values in a dataset with the mean value of the
available data for the same feature.

• kNN (Troyanskaya et al., 2001) imputes missing data by finding the k nearest neighbors
based on cosine similarity and then averaging their features.

• GAIN (Yoon et al., 2018) uses a generative adversarial network to impute missing values,
where one network generates candidates and another evaluates them.

• MIWAE (Mattei & Frellsen, 2019) employs a type of autoencoder for multiple imputations,
capturing the data’s underlying distribution to provide multiple plausible values for missing
data.

• GRAPE (You et al., 2020) adopts a bipartite graph framework, viewing observations and
features as two node types, and imputes missing values through edge-level prediction.

• IGRM (Zhong et al., 2023) enhances the bipartite graph framework by introducing the
concept of a friend network, which denotes relationships between samples.

A.4 PSEUDOCODE OF GRASS

Algorithm 1 presents the pseudocode for our proposed algorithm, GRASS. By training the MLP,
we derive the feature gradient, which is utilized to generate a column-wise graph (see line 1). We
then execute Column-wise Feature Propagation (line 3) and clamp the categorical columns (line
4). Consequently, we produce the warmed-up feature matrix and the adjacency matrix, which will
seamlessly align with existing graph-based imputation methods in lines 5 and 6, respectively. It’s
worth noting that the feature gradient mentioned in line 13 can be readily obtained using AutoGrad in
PyTorch (Paszke et al., 2017). More precisely, we provide a PyTorch-style pseudocode in Listing 1,
detailing the function for obtaining the feature gradient. In training the 2-layer MLP, as shown in
Line 21, we activate the ‘requires grad’ attribute by setting it to True. This enables AutoGrad in
PyTorch to automatically calculate the feature gradient following backpropagation, a value that is
then accessible in Line 28. It is crucial to note that there is no update to the original feature matrix;
it remains static, with only the classifier’s weights being updated. This process dynamically alters
the value of the feature gradient through these modified weights, as demonstrated in Proposition 1.
Additionally, as indicated in Line 37, we save the feature gradient only when there is an improvement
in validation performance, which is an efficient approach to memory usage. After training the MLP,
which typically involves early stopping, we compute the average of the gradients to obtain the final
feature gradient.
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Algorithm 1 Pseudocode of the proposed algorithm
Input: Initially missing feature matrix X, train label matrix Y

Output: Warmed-up feature matrix X̂, adjacency matrix Â

1: ∇X ← TRAINMLP(X, V alidationSet) ▷ Train MLP & Obtain Feature Gradient
2: Afeat ← kcol-nearest-neighbor(∇⊤

X∥X⊤) ▷ Column-wise Graph Generation
3: X(K)⊤ ← PROPAGATION(Afeat,X

(0)⊤,Vknown,K) ▷ Column-wise FP
4: X̂← CLAMPER(X(K)⊤) ▷ Clamping categorical columns
5: Â← krow-nearest-neighbor(X̂)
6: function TRAINMLP(X, V alidationSet)
7: Initialize highest validation performance as Vhighest = 0
8: Initialize empty list G = []
9: while not converged do

10: Train MLP for one epoch using training data
11: Compute validation performance Vcurrent
12: if Vcurrent > Vhighest then
13: ∇X ← ((Ŷ −Y) ·W

′′⊤)⊙ (XW
′
+ b

′
> 0) ·W

′⊤

14: Append the ∇X to list G
15: Update Vhighest ← Vcurrent
16: end if
17: end while
18: ∇X ← 1

length(G)

∑
g∈G g

19: return ∇X

20: end function
21: function PROPAGATION(A,W,Known,K)
22: M←W
23: for k ← 1 to K do
24: W← AW
25: WKnown ←MKnown

26: end for
27: return W
28: end function
29: function CLAMPER(X̂)
30: for i← 1 to N do
31: for j ← c to length(CategoricalColumns) do
32: x̃c ← softmax(X̂j,c:c+cb)

33: X̂j,c:c+cb =


OneHot(argmax(x̃c)), if max(x̃c) ≥ θ

[?, . . . , ?︸ ︷︷ ︸
cb times

], otherwise

34: end for
35: end for
36: return X̂
37: end function
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1 def obtain_feature_gradient(
2 x, # initially missing feature matrix
3 classifier, # 2-layer MLP
4 labels, # supervisions
5 train_mask, # indices for training set
6 val_mask, # indices for validation set
7 epochs # training epochs
8 )
9

10 # Initialize missing features as zeros
11 x = torch.nan_to_num(x, 0)
12

13 optimizer = optim.Adam(classifier.parameters())
14 best_val_performance = 0
15 grads = []
16

17 for epoch in range(0, epochs):
18 classifier.train()
19 optimizer.zero_grad()
20

21 x.requires_grad=True # allow tracking gradients for x
22 out = classifier(x)
23 loss = F.CrossEntropy(out[train_mask], labels[train_mask])
24

25 loss.backward()
26 optimizer.step()
27

28 grad = x.grad # automatically calculates Proposition 1.
29 x.requires_grad=False
30

31 classifier.eval()
32 out = classifier(x)
33

34 val_performance = roc_auc_score(out[val_mask], labels[val_mask])
35

36 # Save gradient if validation performance improves
37 if best_val_performance <= val_performance:
38 best_val_performance = val_performance
39 grads.append(F.normalize(grad, dim=0, p=2).cpu())
40

41 # Average gradients
42 feature_gradient = torch.mean(torch.stack(grads), dim=0)
43

44 return feature_gradient

Listing 1: PyTorch-style pseudocode for obtaining feature gradient via training 2-layer MLP.
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A.5 CLASSIFICATION PERFORMANCE ON TABLE FORMAT

Figure 3 illustrates the performance of various baselines across four biological and five medical
datasets, highlighting the enhancement achieved when utilizing GRASS for initialization. In this
context, we provide a detailed numerical analysis to quantify the performance gains and their relative
improvements. For the biological datasets (Mouse ES, Pancreas, Baron Human, Mouse Bladder),
Macro-F1 scores are employed as the performance metric, whereas AUROC scores are used for
the medical datasets (Breast Cancer, Hepatitis, Duke Breast, ADNI, ABIDE). In each table, the
best-performing model’s performance is bolded while the most improved model’s performance is
underlined.

Table 5: Bio-Mouse ES.
Mouse ES (IMR: 27.21%)

OG + GRASS init. Impr. (%)

LP 0.878±0.005 0.979±0.003 11.43
GCNMF 0.525±0.238 0.972±0.008 85.31
PaGNN 0.899±0.072 0.980±0.002 9.03
GCN-zero 0.960±0.005 0.982±0.004 2.30
GCN-nm 0.885±0.098 0.982±0.004 10.99
GCN-FP 0.900±0.100 0.982±0.003 9.17
PCFI 0.949±0.004 0.955±0.006 0.57
Mean 0.979±0.006 0.979±0.004 0.08
kNN 0.969±0.011 0.977±0.005 0.83
GAIN 0.978±0.011 0.982±0.007 0.39
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.952±0.004 0.976±0.003 2.52

Table 6: Bio-Pancreas.
Pancreas (IMR: 56.65%)

OG + GRASS init. Impr. (%)

LP 0.656±0.039 0.798±0.068 21.66
GCNMF 0.527±0.210 0.708±0.087 34.27
PaGNN 0.701±0.044 0.768±0.040 9.58
GCN-zero 0.687±0.066 0.783±0.062 14.02
GCN-nm 0.679±0.047 0.788±0.068 16.09
GCN-FP 0.716±0.046 0.788±0.068 10.08
PCFI 0.673±0.055 0.686±0.040 1.95
Mean 0.616±0.044 0.619±0.032 0.44
kNN 0.652±0.047 0.706±0.048 8.34
GAIN 0.638±0.075 0.738±0.024 15.66
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.743±0.044 0.788±0.085 6.05

Table 7: Bio-Baron Human.
Baron Human (IMR: 57.25%)

OG + GRASS init. Impr. (%)

LP 0.736±0.022 0.828±0.055 12.46
GCNMF 0.350±0.130 0.817±0.066 133.30
PaGNN 0.777±0.043 0.820±0.057 5.53
GCN-zero 0.812±0.030 0.842±0.049 3.71
GCN-nm 0.758±0.045 0.801±0.084 5.71
GCN-FP 0.789±0.039 0.802±0.084 1.61
PCFI 0.769±0.036 0.792±0.038 2.96
Mean 0.672±0.010 0.694±0.023 3.41
kNN 0.746±0.048 0.760±0.053 1.82
GAIN 0.728±0.041 0.745±0.033 2.39
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.809±0.067 0.853±0.0.031 5.43

Table 8: Bio-Mouse Bladder.
Mouse Bladder (IMR: 69.05%)

OG + GRASS init. Impr. (%)

LP 0.556±0.030 0.643±0.053 15.57
GCNMF 0.300±0.182 0.701±0.042 133.90
PaGNN 0.713±0.056 0.775±0.028 8.78
GCN-zero 0.712±0.015 0.768±0.031 7.83
GCN-nm 0.721±0.050 0.775±0.030 7.38
GCN-FP 0.686±0.048 0.772±0.036 12.48
PCFI 0.710±0.046 0.727±0.028 2.41
Mean 0.555±0.074 0.569±0.062 2.39
kNN 0.587±0.038 0.674±0.059 14.82
GAIN 0.585±0.030 0.649±0.038 10.84
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.653±0.024 0.759±0.022 16.23

Table 9: Medical-Breast Cancer.
Breast Cancer (IMR: 0.35%)

OG + GRASS init. Impr. (%)

LP 0.561±0.038 0.562±0.041 0.14
GCNMF 0.551±0.033 0.579±0.049 5.02
PaGNN 0.540±0.037 0.562±0.032 3.98
GCN-zero 0.542±0.048 0.557±0.039 2.71
GCN-nm 0.538±0.049 0.566±0.052 5.07
GCN-FP 0.543±0.047 0.565±0.052 4.05
PCFI 0.545±0.039 0.547±0.040 0.44
Mean 0.562±0.045 0.562±0.045 0.00
kNN 0.552±0.041 0.556±0.041 0.67
GAIN 0.566±0.044 0.567±0.043 0.21
MIWAE 0.558±0.033 0.563±0.035 0.93
GRAPE 0.572±0.029 0.573±0.017 0.26
IGRM 0.548±0.039 0.552±0.037 0.66
scFP 0.554±0.047 0.563±0.055 1.62

Table 10: Medical-Hepatitis.
Hepatitis (IMR: 5.67%)

OG + GRASS init. Impr. (%)

LP 0.573±0.078 0.608±0.053 6.06
GCNMF 0.685±0.097 0.707±0.088 3.22
PaGNN 0.729±0.074 0.741±0.058 1.74
GCN-zero 0.713±0.090 0.714±0.088 0.14
GCN-nm 0.702±0.071 0.702±0.071 0.00
GCN-FP 0.705±0.085 0.707±0.092 0.20
PCFI 0.728±0.108 0.728±0.108 0.00
Mean 0.691±0.072 0.711±0.081 2.86
kNN 0.612±0.097 0.626±0.105 2.15
GAIN 0.578±0.093 0.646±0.080 11.63
MIWAE 0.573±0.080 0.608±0.077 6.25
GRAPE 0.701±0.033 0.706±0.032 0.63
IGRM 0.668±0.087 0.703±0.109 5.26
scFP 0.691±0.077 0.691±0.077 0.00

Table 11: Medical-Duke Breast.
Duke Breast (IMR: 11.94%)

OG + GRASS init. Impr. (%)

LP 0.672±0.021 0.678±0.026 0.98
GCNMF 0.664±0.035 0.688±0.032 3.61
PaGNN 0.685±0.033 0.690±0.029 0.69
GCN-zero 0.673±0.022 0.694±0.021 3.13
GCN-nm 0.678±0.033 0.691±0.025 1.96
GCN-FP 0.661±0.031 0.688±0.028 4.21
PCFI 0.693±0.029 0.696±0.030 0.40
Mean 0.687±0.018 0.687±0.019 0.04
kNN 0.692±0.026 0.697±0.014 0.74
GAIN 0.699±0.018 0.699±0.017 0.09
MIWAE 0.692±0.013 0.693±0.012 0.13
GRAPE OOM - -
IGRM OOM - -
scFP 0.678±0.031 0.690±0.030 1.76

Table 12: Medical-ADNI.
ADNI (IMR: 30.02%)

OG + GRASS init. Impr. (%)

LP 0.928±0.005 0.943±0.005 1.56
GCNMF 0.897±0.045 0.944±0.004 5.25
PaGNN 0.953±0.003 0.955±0.003 0.27
GCN-zero 0.956±0.003 0.957±0.003 0.17
GCN-nm 0.955±0.003 0.956±0.003 0.19
GCN-FP 0.955±0.003 0.957±0.003 0.18
PCFI 0.951±0.004 0.955±0.003 0.46
Mean 0.939±0.002 0.943±0.003 0.46
kNN 0.943±0.003 0.943±0.004 0.01
GAIN 0.937±0.003 0.944±0.003 0.67
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.953±0.003 0.954±0.002 0.10

Table 13: Medical-ABIDE.
ABIDE (IMR: 69.74%)

OG + GRASS init. Impr. (%)

LP 0.894±0.009 0.895±0.011 0.13
GCNMF 0.819±0.042 0.913±0.010 11.49
PaGNN 0.907±0.009 0.914±0.008 0.82
GCN-zero 0.902±0.008 0.915±0.008 1.38
GCN-nm 0.905±0.011 0.918±0.007 1.48
GCN-FP 0.908±0.014 0.915±0.005 0.86
PCFI 0.915±0.008 0.917±0.010 0.26
Mean 0.607±0.027 0.905±0.007 49.09
kNN 0.896±0.009 0.907±0.010 1.16
GAIN 0.793±0.010 0.910±0.009 14.70
MIWAE 0.623±0.015 0.898±0.008 44.10
GRAPE 0.889±0.010 0.906±0.006 1.90
IGRM 0.747±0.019 0.908±0.004 21.54
scFP 0.894±0.010 0.903±0.007 1.00
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A.6 DISCUSSION COMPARING SCFP WITH GRASS

As GRASS integrates FP with the aim of enhancing generalizability in the bio-medical domain, it is
necessary to compare it with the recently proposed single-cell Feature Propagation (scFP), which
also adopts FP, specifically targeting the single-cell RNA-seq domain.

• (1) Target Domain: While scFP focuses on the single-cell RNA-seq (scRNA-seq) domain,
particularly from a biological perspective, GRASS adopts a more general approach for the
broader ‘bio-medical’ domain, as indicated in the paper’s title. This distinction is crucial as
scRNA-seq datasets typically comprise numerical features where each element represents
the count of a gene’s RNA transcript sequenced by the sequencing machine. In contrast,
medical datasets often include both numerical and categorical features, such as patient
information. This versatility underscores the broader applicability of GRASS, capable of
handling both numerical and categorical features, the latter through the clamping technique
as discussed in Section 3.3. Therefore, we argue that the target domain of scFP, primarily
focused on numerical matrix imputation in scRNA-seq, differs from that of GRASS, which
extends to handling categorical data often encountered in patient data.

• (2) Target Task and Imputation Methodology: Unlike scFP, which is unsupervised with
its primary goal being effective imputation in sparse and noisy cell-gene count matrices,
this work concentrates on supervised tasks, specifically on downstream applications like
classification. Notably, the objective of imputation is often to enhance performance in
relevant downstream tasks (Rossi et al., 2021; van Dijk et al., 2018; Wang et al., 2021).
In this context, while the unsupervised approach of scFP can align with supervised tasks
through probing (i.e., attaching a classifier), it is important to note that since its imputation
occurs prior to probing, scFP cannot incorporate any downstream task-related knowledge
during the imputation process, potentially leading to shortcomings in classification tasks.
Conversely, as GRASS is directly designed with downstream tasks in mind, it incorporates
knowledge pertinent to these tasks during imputation. This is achieved by utilizing the
feature gradient, which is obtained during training 2-layer MLP. This fundamental difference
in the target task (classification vs. imputation) and the imputation process (incorporating
relevant downstream knowledge or not) distinctly sets the two methodologies apart.

• (3) Usage of FP: Although both scFP and GRASS employ FP, their applications of this
process differ significantly. Specifically, scFP utilizes FP from a row-wise perspective, i.e.,
focusing on cell-cell relationships while assuming gene-gene relationship independence.
Although beneficial for smoothing similar and relevant samples, this approach does not
capture interactions between columns (features), which are pivotal in the bio-medical domain.
For instance, in scRNA-seq, gene-gene relationships, such as co-expression networks,
play a critical role in identifying key regulatory genes or pathways, offering insights into
underlying biological or disease mechanisms (Cochain et al., 2018; Chowdhury et al., 2019;
Galfre et al., 2021). Acknowledging this, GRASS initially employs column-wise FP to
capture potential feature interactions, e.g., gene-gene relationships. It’s also noteworthy
that GRASS incorporates not only the feature matrix but also the feature gradient relevant
to downstream tasks when generating the column-wise kNN graph. Consequently, before
initiating row-wise (sample-wise) smoothing in the relevant GNN model, GRASS is able to
consider feature relationships that scFP does not capture. This distinction is illustrated in
Figure 8 and significantly differentiates the two methodologies.
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Figure 8: Comparison of scFP and GRASS. (a) scFP constructs a Row-wise kNN graph using only the
input feature matrix (X). In contrast, (b) GRASS constructs a Column-wise kNN graph incorporating
both the input feature matrix (X) and the supplementary feature gradient (∇X).
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A.7 DISCUSSION ON THE COMPUTATIONAL DEMAND OF GRASS

As GRASS serves as a preprocessing step that can be integrated with existing baselines to enhance
their performance, it is crucial to consider its computational demand alongside its performance
benefits in two perspectives: Memory and Time.

• Memory cost: From a memory perspective, the primary resource utilized by GRASS is
the feature gradient (∇X ∈ RN×F ), which plays a supplemental role in constructing a
column-wise graph. This feature gradient shares the same shape as the original feature
matrix, with dimensions corresponding to the total number of nodes (N ) and features (F ).
However, it is important to note that in the context of graph-based imputation models,
which inherently employ a row-wise (sample-wise) adjacency matrix (A ∈ RN×N ), the
complexity associated with the adjacency matrix often surpasses that of the feature matrix,
i.e., O(NF )+O(N2) = O(N2). This is particularly true in the bio-medical domain where
datasets are typically tabular and the number of samples significantly exceeds the number of
features (N >> F ). Therefore, the additional memory requirement for storing the feature
gradient is not prohibitively large. Furthermore, the complexity of the generated column-
wise graph (Afeat ∈ RF×F ) is also lower compared to the row-wise adjacency matrix,
allowing GRASS to align with existing graph-based models without incurring excessive
memory costs. Once the warmed-up matrix (X̂) and adjacency matrix (Â) are computed, the
memory allocated for the feature gradient and column-wise graph can be released, leaving
only the cost of training the original baseline model for the downstream task.

• Time cost: From a time complexity perspective, the process is almost identical to training a
conventional 2-layer MLP, which is efficient for tabular data and involves training two weight
matrices: one that transforms the raw feature space to a hidden space, and another that maps
the hidden space to the output space for final predictions. Despite the apparent complexity
of calculating the feature gradient as outlined in Proposition 1, the actual computation,
as demonstrated in Listing 1, is straightforward in terms of implementation. By enabling
the ‘requires grad’ switch, the gradient information is automatically saved, making the
time complexity for computing the feature gradient equivalent to training a 2-layer MLP.
Additionally, the column-wise Feature Propagation can be efficiently executed via sparse
multiplication of the adjacency matrix and the feature matrix, as detailed in (Rossi et al.,
2021). Thus, the overall time required to obtain the warmed-up matrix and adjacency matrix
is not substantial.
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A.8 FURTHER EXTENSION AND GENERALIZABILITY OF GRASS

To explore the scalability of GRASS to larger datasets, we conducted evaluations using the single-cell
RNA-seq Macosko dataset, which comprises 44,808 cells, 22,452 genes, and 14 distinct cell types,
with an initial missing rate of 81.41%. Among these genes, we preprocessed 2,000 highly variable
genes, a common technique in scRNA-seq (Yun et al., 2023). We noted that GRASS integrates
smoothly with existing methods, except in cases where initial baselines, such as GCNMF and GRAPE,
encounter Out-Of-Memory (OOM) issues due to the weights associated with the Gaussian Mixture
Model and the construction of a heterogeneous node-feature graph, respectively. In Table 14, it is
observed that graph-based methods can enhance their performance when combined with GRASS. In
large graphs, since the feature dimension typically does not surpass the number of samples (which is
usually the case), GRASS aligns well with current graph-based imputation methods.

Additionally, while GRASS is primarily designed for the bio-medical domain, we also assessed its
applicability to other domains. For this purpose, we utilized the Wine dataset (Asuncion & Newman,
2007), which consists of 178 samples with 14 numerical features and 3 classes. As the Wine dataset
initially lacks missing values, we introduced a 30% uniform missing scenario by manually dropping
features. Table 15 demonstrates that using GRASS as an initializer, enabling existing models to start
with a warmed-up feature matrix and adjacency matrix, effectively benefits other domains as well.
This highlights the potential of GRASS for broader generalizability beyond the bio-medical sphere.

Table 14: Scalability-Macosko dataset.
Macosko (IMR: 81.41%)

OG + GRASS init. Impr. (%)

LP 0.853±0.025 0.870±0.025 7.19
GCNMF OOM - -
PaGNN 0.938±0.008 0.939±0.001 0.17
GCN-zero 0.920±0.031 0.929±0.006 0.92
GCN-nm 0.923±0.017 0.930±0.071 0.71
GCN-FP 0.937±0.006 0.941±0.045 0.43
PCFI 0.932±0.017 0.939±0.005 0.75
Mean 0.819±0.042 0.835±0.048 1.87
kNN 0.904±0.021 0.910±0.012 0.62
GAIN 0.891±0.039 0.898±0.012 0.86
MIWAE OOM - -
GRAPE OOM - -
IGRM OOM - -
scFP 0.934±0.011 0.941±0.020 0.72

Table 15: Generalizability-Wine dataset.
Wine (IMR: 0.00%)

OG + GRASS init. Impr. (%)

LP 0.647±0.017 0.647±0.017 0.00
GCNMF 0.656±0.027 0.657±0.023 0.11
PaGNN 0.650±0.030 0.661±0.023 1.65
GCN-zero 0.637±0.043 0.648±0.033 1.68
GCN-nm 0.629±0.034 0.660±0.030 4.93
GCN-FP 0.642±0.032 0.647±0.042 0.79
PCFI 0.650±0.042 0.670±0.031 3.06
Mean 0.585±0.028 0.600±0.021 2.46
kNN 0.629±0.012 0.640±0.012 1.75
GAIN 0.618±0.012 0.640±0.018 3.61
MIWAE 0.514±0.027 0.591±0.024 14.93
GRAPE 0.567±0.064 0.587±0.045 3.52
IGRM 0.573±0.022 0.579±0.044 0.96
scFP 0.620±0.022 0.620±0.026 0.10
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A.9 FLEXIBILITY IN SETTING HYPERPARAMETERS IN GRASS

Considering the diversity and complexity inherent in machine learning, optimal hyperparameter
selection can significantly enhance model training for downstream tasks. Specifically, crucial
hyperparameters like dimension size and dropout rate play a vital role in determining a model’s
stability and effectiveness. In this context, we conducted a sensitivity analysis on hyperparameters to
ascertain if flexibility in their selection yields benefits in subsequent tasks. We explored dimension
sizes of 16, 64, and 256, alongside dropout rates of 0.0, 0.25, and 0.5. Our findings, as detailed in
Table 16, reveal that a hidden dimension size of 256 with a dropout rate of 0.25 is more advantageous
than the conventional setting of a 64-dimensional hidden layer with a 0.5 dropout rate. Furthermore,
in Table 17 and Table 18, case of an imputation model equipped solely with a logistic classifier (i.e., a
1-layer MLP) and thus invariant to hyperparameter flexibility, we found performance gains when using
our proposed method as an initializer. This improvement is attributed to the trainable parameters
in a 2-layer MLP and the incorporation of feature gradient. In summary, while setting constant
hyperparameters ensures reproducibility and consistency across different datasets in the biomedical
domain, allowing flexibility in these parameters can potentially enhance overall performance.

Table 16: Pancreas-GCNMF.
Pancreas (IMR: 56.65%)

GCNMF + GRASS init. Impr. (%)

D: 16 / do: 0.0 0.173±0.129 0.144±0.100 -16.76
D: 16 / do: 0.25 0.058±0.007 0.329±0.252 467.24
D: 16 / do: 0.5 0.098±0.054 0.340±0.296 246.94
D: 64 / do: 0.0 0.671±0.056 0.680±0.067 1.34
D: 64 / do: 0.25 0.360±0.247 0.662±0.048 83.89
D: 64 / do: 0.5 0.443±0.026 0.677±0.065 52.82
D: 256 / do: 0.0 0.603±0.008 0.671±0.053 11.28
D: 256 / do: 0.25 0.611±0.009 0.692±0.049 13.26
D: 256 / do: 0.5 0.617±0.023 0.667±0.051 8.10

Table 17: Pancreas-Mean.
Pancreas (IMR: 56.65%)

Mean + GRASS init. Impr. (%)

D: 16 / do: 0.0 0.564±0.004 0.627±0.044 11.17
D: 16 / do: 0.25 0.564±0.004 0.636±0.048 12.77
D: 16 / do: 0.5 0.564±0.004 0.613±0.026 8.69
D: 64 / do: 0.0 0.564±0.004 0.617±0.014 9.40
D: 64 / do: 0.25 0.564±0.004 0.617±0.014 9.40
D: 64 / do: 0.5 0.564±0.004 0.624±0.039 10.64
D: 256 / do: 0.0 0.564±0.004 0.639±0.056 13.30
D: 256 / do: 0.25 0.564±0.004 0.638±0.052 13.12
D: 256 / do: 0.5 0.564±0.004 0.640±0.064 13.48

Table 18: Pancreas-scFP.
Pancreas (IMR: 56.65%)

scFP + GRASS init. Impr. (%)

D: 16 / do: 0.0 0.748±0.055 0.764±0.056 2.14
D: 16 / do: 0.25 0.748±0.055 0.764±0.059 2.14
D: 16 / do: 0.5 0.748±0.055 0.786±0.080 5.08
D: 64 / do: 0.0 0.748±0.055 0.799±0.095 6.82
D: 64 / do: 0.25 0.748±0.055 0.798±0.095 6.68
D: 64 / do: 0.5 0.748±0.055 0.799±0.095 6.82
D: 256 / do: 0.0 0.748±0.055 0.800±0.094 6.95
D: 256 / do: 0.25 0.748±0.055 0.799±0.094 6.82
D: 256 / do: 0.5 0.748±0.055 0.799±0.095 6.82

A.10 EDGE HOMOPHILY IMPROVEMENT OF GRASS

In this section, we further explore how the performance enhancement is achieved by initializing
current graph-based imputation methods with GRASS. Specifically, using GRASS as an initializer
provides a warmed-up matrix along with a refined adjacency matrix. We assessed this adjacency
matrix(Â) in terms of the homophily ratio, a crucial inductive bias in the graph domain. As shown in
Table A.10, employing GRASS leads to an improved edge homophily ratio, indicating an increase in
edges connecting nodes with the same labels. This improvement is attributed to the incorporation of
feature gradients, which introduce task-relevant information through supervision signals from training
the MLP. Consequently, a more refined graph structure, enriched with task-relevant information,
allows current graph-based imputation methods to further enhance their performance by smoothing
the representation of their nearest neighbors. In summary, this improvement in the graph structure is
a key factor contributing to the performance boost observed with GRASS.

Table 19: Edge homophily ratio comparison between original adjacency matrix with refined adjacency
matrix obtained via GRASS. Edge homophily ratio: number of edges connecting two nodes with same labels

number of total edges

A Â Impr. (%)

Mouse ES 0.8591 0.9770 13.724
Pancreas 0.9319 0.9579 2.790
Baron Human 0.9557 0.9696 1.454
Mouse Bladder 0.5672 0.7559 33.269
Breast Cancer 0.6698 0.6701 0.045
Hepatitis 0.7902 0.8035 1.683
Duke Breast 0.6887 0.6915 0.407
ADNI 0.7130 0.7336 2.889
ABIDE 0.9142 0.9166 0.263
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