

000 SEWA: SELECTIVE WEIGHT AVERAGE VIA PROBA- 001 002 BILISTIC MASKING 003

004
005 **Anonymous authors**
006 Paper under double-blind review
007
008

009 ABSTRACT 010

011 Weight averaging has become a standard technique for enhancing model perfor-
012 mance. However, methods such as Stochastic Weight Averaging (SWA) and Latest
013 Weight Averaging (LAWA) rely on manually designed checkpoint selection rules,
014 which struggle under unstable training dynamics. To minimize human bias, this
015 paper proposes Selective Weight Averaging (SeWA), which adaptively selects
016 checkpoints during the final stages of training for averaging. Both theoretically
017 and empirically, we show that SeWA achieves a better generalization. From an
018 algorithm implementation perspective, SeWA can be formulated as a discrete subset
019 selection problem, which is inherently challenging to solve. To address this, we
020 transform it into a continuous probabilistic optimization framework and employ
021 the Gumbel-Softmax estimator to learn the non-differentiable mask for each check-
022 point. Theoretically, we first prove that SeWA converges to a critical point with
023 flatter curvature, thereby explaining its underlying mechanism. We further derive
024 stability-based generalization bounds for SeWA, which are sharper than those
025 of SGD under both convex and non-convex assumptions, thus providing formal
026 guarantees of improved generalization. Finally, extensive empirical evaluations
027 across diverse domains, including behavior cloning, image classification, and text
028 classification, demonstrate the robustness and effectiveness of our approach.
029
030

031 1 INTRODUCTION 032

033 Model averaging has shown substantial benefits in deep learning, both in empirical performance
034 across practical applications and in theoretical analyses related to generalization and optimization.
035 From the perspective of generalization, averaging-based algorithms, such as SWA Izmailov et al.
036 (2018), Exponential Moving Average (EMA) Szegedy et al. (2016), LAWA (Kaddour, 2022; Sanyal
037 et al., 2023), and Trainable Weight Averaging (TWA) (Li et al., 2022), have been empirically validated
038 to enhance generalization performance across various tasks. These methods have gained widespread
039 adoption in several domains, including large-scale network training (Izmailov et al., 2018; Lu et al.,
040 2022; Sanyal et al., 2023) and adversarial learning (Xiao et al., 2022). In theoretical research, Hardt
041 et al. (2016) and Xiao et al. (2022) successively give stability-based generalization bounds for SWA
042 in different application contexts, showing that under the convexity assumption, the generalization
043 bound of the SWA algorithm is half that of SGD. From an optimization perspective, model averaging
044 can facilitate convergence by stabilizing the trajectory of the optimizer when it oscillates near a
045 local minimum. Polyak & Juditsky (1992) demonstrate that averaging model weights improves
046 convergence speed in the setting of convex loss functions. More recently, Sanyal et al. (2023) have
047 empirically verified accelerated convergence using the LAWA in Large Language Models pre-training.
048

049 Despite their theoretical and empirical advantages, averaging-based algorithms often depend on man-
050 ually designed training frameworks and are sensitive to hyperparameter selection. For example, SWA
051 revisits historical model states at each step, which can slow convergence, and requires a cyclic learning
052 rate schedule to identify low-loss regions, introducing additional tuning overhead. In contrast, LAWA
053 selects the final averaging point from the last k epochs. However, Sanyal et al. (2023) have observed
054 that performance does not vary monotonically with respect to k ; instead, it improves initially and then
055 degrades as k increases. TWA addresses some of these limitations by adaptively learning averaging
056 weights, but it incurs extra computational cost due to the need for orthogonalizing two subspaces.
057

054 In this paper, we propose a novel aver-
 055 aging algorithm that minimizes the re-
 056 liance on manually designed training
 057 frameworks while balancing general-
 058 ization and training stability. SeWA
 059 adaptively learns aggregation weights
 060 from the last k steps of the SGD
 061 training trajectory, thereby mitigating
 062 the influence of early-stage informa-
 063 tion and enhancing the performance
 064 gains achieved through model averag-
 065 ing. This adaptive integration mech-
 066 anism not only reduces the need for
 067 extensive hyperparameter tuning but also mitigates performance degradation caused by redundant
 068 or suboptimal weight selections. As shown in Figure 1, SeWA achieves near-optimal performance,
 069 achieving flatter minima compared to existing approaches.

070 During the implementation and theoretical analysis of our algorithm, we encountered three key
 071 challenges: (1) The adaptive selection of checkpoints can be formulated as a subset selection task, a
 072 typical discrete optimization problem. Solving such problems requires handling discrete variables
 073 that are often non-differentiable. (2) Establishing the stability-based generalization bound for SeWA
 074 requires not only quantifying the impact of input perturbations on the output but also analyzing the
 075 influence introduced by the adaptive learning process. (3) Although stability-based generalization
 076 bounds provide theoretical guarantees of desirable properties, they do not explain the intrinsic
 077 operational mechanisms of SeWA, leaving its functioning essentially a black box.

078 To address these challenges, we formulate the SeWA solving process as the coresnet selection problem,
 079 embedding the discrete optimization objective into a probabilistic space, which enables the utilization
 080 of gradient-based continuous optimization methods. Furthermore, we employ the Gumbel-softmax
 081 estimator to address the non-differentiability of binary variables. In generalization analysis, the
 082 discrete selection problem of adaptive learning processes is transformed, in expectation, into a global
 083 averaging process dependent on selection probabilities, establishing a theoretical bridge for building
 084 SeWA’s stability bounds. We also derive generalization bounds for SeWA under different assumptions
 085 based on stability, which are sharper than those of other algorithms (see Table 1). Furthermore, based
 086 on the differential form of the derivative of our relaxation function, we establish that SeWA converges
 087 to a critical point with flatter landscape. Finally, extensive experiments have been conducted across
 088 various domains, including computer vision, natural language processing, and reinforcement learning,
 089 confirming the algorithm’s generalization advantages. Our contributions are listed as follows.

- 090 • Our approach adaptively selects models for averaging in the final training stages, ensuring
 091 strong generalization, lower manual cost, and reduced bias toward specific scenarios. Notably,
 092 the selection paradigm of SeWA is well-suited to unstable training processes (e.g.,
 093 reinforcement learning), where it yields significant improvements in generalization.
- 094 • We propose a solvable optimization framework by transforming the discrete problem into a
 095 continuous probabilistic space and addressing the non-differentiability of binary variables
 096 using the Gumbel-Softmax estimator during optimization.
- 097 • We prove that the SeWA can converge to a critical point with flatter curvature, thereby
 098 providing a theoretical foundation for understanding its underlying mechanism. Further, we
 099 analyze the impact of masks on generalization theory in expectation and derive a stability-
 100 based generalization upper bound for SeWA, showing advantages over SGD and other
 101 averaging-based algorithms’ bounds under the different function assumptions.
- 102 • We empirically demonstrate the outstanding performance of our algorithm in multiple do-
 103 mains, including behavior cloning, image classification, and text classification. In particular,
 104 the SeWA achieves comparable performance using only a few selected points, matching or
 105 exceeding the performance of other methods that require many times more points.

106 **Related Work.** Due to space limitations, the comprehensive literature review is placed in Appendix
 107 A. In particular, we present a detailed comparison of the generalization bounds for our proposed
 108 SeWA and existing algorithms in Table 1.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
Table 1: Comparison of SeWA with other algorithms on different settings. Here T represents iterations, and n denotes the size of the datasets. L , β , and c are constants. k is the number of averages. $\hat{s} = \sup_{T-k+1 \leq i \leq T} s_i$, $\hat{s} \in (0, 1]$, s_i corresponds to the probability of mask $m = 1$ and $\mathcal{O}_{\hat{s}}$ means that this upper bound depends on \hat{s} . We can derive that SeWA has sharper bounds compared to others in different settings, where FWA is the general form of LAWA.

SETTINGS	LEARNING RATE	ALGORITHM	GENERALIZATION BOUND
CONVEX	$\alpha_t = \alpha$	SGD	$2\alpha LT/n$ HARDT ET AL. (2016)
		SWA	$\alpha LT/n$ XIAO ET AL. (2022)
		FWA	$2\alpha L(T - k/2)/n$ WANG ET AL. (2024B)
		EMA	—
		SEWA	$2\alpha L\hat{s}(T - k/2)/n$ THEOREM 4.6
NON-CONVEX	$\alpha_t = \frac{c}{t}$	SGD	$\mathcal{O}(T^{\frac{c\beta}{1+c\beta}}/n)$ HARDT ET AL. (2016)
		SWA	$\mathcal{O}(T^{\frac{c\beta}{2+c\beta}}/n)$ WANG ET AL. (2024A)
		FWA	$\mathcal{O}(T^{\frac{c\beta}{k+c\beta}}/n)$ WANG ET AL. (2024B)
		EMA	—
		SEWA	$\mathcal{O}_{\hat{s}}(T^{\frac{c\beta}{k+c\beta}}/n)$ THEOREM 4.11

2 METHODOLOGY

In this section, we begin by formalizing the problem setup and introducing the foundational assumptions, definitions, and key properties. We then present the proposed SeWA algorithm along with the essential terminology required for its understanding.

2.1 PROBLEM SETTING

Let $F(w, z)$ be a loss function that measures the loss of the predicted value of the network parameter w at a given sample z . There is an unknown distribution \mathcal{D} and a sample dataset $S = (z_1, z_2, \dots, z_n)$ of n examples i.i.d. drawn from \mathcal{D} . Then the *population risk* and *empirical risk* are defined as

$$\text{Population Risk: } R_{\mathcal{D}}[w] = E_{z \sim \mathcal{D}} F(w; z) \quad \text{and} \quad \text{Empirical Risk: } R_S[w] = \frac{1}{n} \sum_{i=1}^n F(w; z_i).$$

The generalization error of a model w is the difference $\epsilon_{gen} = R_{\mathcal{D}}[w] - R_S[w]$.

SGD. For the target function F and the given dataset $S = (z_1, z_2, \dots, z_n)$, we consider the SGD's general update rule as

$$w_{t+1} = w_t - \alpha \nabla_w F(w_t, z_{i_t}), \quad (1)$$

where α is the fixed learning rate, z_{i_t} is the sample chosen in iteration t . We choose z_{i_t} from dataset S in a standard way, picking $i_t \sim \text{Uniform}\{1, \dots, n\}$ at each step. This setting is commonly explored in analyzing the stability Hardt et al. (2016); Xiao et al. (2022).

SeWA algorithm adaptively selects K points for averaging among the last k points on the training trajectory after T steps of the SGD iterations. It is formulated as

$$\bar{w}_T^K = \frac{1}{K} \sum_{i=T-k+1}^T m_i w_i, \quad (2)$$

where the mask $m_i \in \{0, 1\}$ and $m_i = 1$ indicating the i -th weight is selected for averaging and otherwise excluded; the selection count $K = k_{m_i=1} = \sum_{i=T-k+1}^T m_i$ quantifies the number of selected weights within the interval $[T - k + 1, T]$, which equivalently represents the number of candidate models incorporated in averaging. In practice, the SeWA algorithm selects the top- K highest-probability weights for averaging, as outlined in Algorithm 1.

Algorithm 1: Selective Weight Average

Input: Checkpoints \mathbf{w} , hyper-parameters $t, M, max_iteration$
Init: Mask probability s ;
1 **for** $i = 1, \dots, max_iteration$ **do**
2 Gumbel-softmax sampling **for** $m = 1, \dots, M$ **do**
3 Sample $u^{(m)} \sim \text{Uniform}(0, 1)$;
4 Compute $F(\mathbf{w}(\text{GS}(s, u^{(m)}, t)))$;
5 **end**
6 Learning mask probability
7 Optimize
8 $\hat{F}(s) = \frac{1}{M} \sum_{m=1}^M F(\mathbf{w}(\text{GS}(s, u^{(m)}, t)))$;
9 **end**
Output: Mask m based on K largest probabilities in s

162 2.2 BASIC ASSUMPTIONS
163164 Moreover, we assume function F satisfies the following *Lipschitz* and *smoothness* assumption.
165166 **Assumption 2.1** (*L*-Lipschitz). A differentiable function $F : R^d \rightarrow R$ satisfies the *L*-Lipschitz
167 property, i.e., for $\forall u, v \in R^d$, $\|F(u) - F(v)\| \leq L\|u - v\|$, which implies $\|\nabla F(u)\| \leq L$.
168169 **Assumption 2.2** (β -smooth). A differentiable function $F : R^d \rightarrow R$ is β -smooth, i.e., for $\forall u, v \in R^d$,
170 we have $\|\nabla F(u) - \nabla F(v)\| \leq \beta\|u - v\|$.
171172 Assumptions 2.1 and 2.2 are often used to establish stability bounds for algorithms and are crucial
173 conditions for analyzing the model's generalization performance.
174175 **Assumption 2.3** (Convex function). A differentiable function $F : R^d \rightarrow R$ is convex, i.e., for
176 $\forall u, v \in R^d$, $F(u) \leq F(v) + \langle \nabla F(u), u - v \rangle$.
177178 Different functional assumptions correspond to different expansion properties, which determine the
179 different generalization bounds and will be discussed in Lemma 2.4 and Chapter 4.
180181 2.3 THE EXPANSIVE PROPERTIES
182183 **Lemma 2.4.** Assume that the function F is β -smooth. Then,
184185 (1). (*non-expansive*) If F is convex, for any $\alpha \leq \frac{2}{\beta}$, we have $\|w_{T+1} - w'_{T+1}\| \leq \|w_T - w'_T\|$;
186 (2). ((1+ $\alpha\beta$)-*expansive*) If F is non-convex, for any α , we have $\|w_{T+1} - w'_{T+1}\| \leq (1+\alpha\beta)\|w_T - w'_T\|$.
187188 Lemma 2.4 tells us that the gradient update becomes *non-expansive* when the function is convex and
189 the step size is small, which implies that the algorithm will always converge to the optimum in this
190 setting. However, although this is not guaranteed when the function is non-convex, it is required that
191 the gradient updates cannot be overly expansive if the algorithm is stable. The proof of Lemma 2.4 is
192 deferred to Appendix C. Additional dissuation can be found in Hardt et al. (2016); Xiao et al. (2022).
193194 2.4 STABILITY AND GENERALIZATION DEFINITION
195196 Hardt et al. (2016) link the *uniform stability* of the learning algorithm with the expected generalization
197 error bound in research of SGD's generalization. The expected generalization error of a model
198 $w = A_S$ trained by a certain randomized algorithm A is defined as
199

200
$$\mathbb{E}_{S,A} [R_S [A_S] - R_{\mathcal{D}} [A_S]]. \quad (3)$$

201 Here, expectation is taken over the internal randomness of A . Next, we introduce the *uniform stability*.
202203 **Definition 2.5** (ϵ -Uniformly Stable). A randomized algorithm A is ϵ -uniformly stable if for all data
204 sets S, S' from \mathcal{D} such that S and S' differ in at most one example, we have
205

206
$$\sup_{z \in S, S'} \{ \mathbb{E}_A [F(A_S; z) - F(A_{S'}; z)] \} \leq \epsilon. \quad (4)$$

207 **Theorem 2.6.** (Generalization in Expectation (Hardt et al., 2016, Theorem 2.2)) Let A be ϵ -uniformly
208 stable. Then,
209

210
$$|\mathbb{E}_{S,A} [R_S [A_S] - R_{\mathcal{D}} [A_S]]| \leq \epsilon. \quad (5)$$

211 This theorem clearly states that if an algorithm has uniform stability, then its generalization error is
212 small. In other words, uniform stability implies *generalization in expectation* Hardt et al. (2016).
213 Above proof is based on Bousquet & Elisseeff (2002, Lemma 7) and similar to Shalev-Shwartz et al.
214 (2010, Lemma 11).
215216 3 PRACTICAL SEWA IMPLEMENTATION
217218 Although the SeWA algorithm has simpler expressions, the difficulty is learning the mask m_i . Inspired
219 by tasks such as coresets selection Zhou et al. (2022), the discrete problem is relaxed to a continuous
220 one. We first formulate weight selection into the following discrete optimization paradigm:
221

222
$$\min_{m \in C} F(m) = F(\mathbf{w}(m)) = \frac{1}{n} \sum_{i=1}^n F(\mathbf{w}(m); z), \quad (6)$$

216 where $C = \{\mathbf{m} : m_i = 0 \text{ or } 1, \|\mathbf{m}\|_0 \leq K\}$ and $\mathbf{w}(m) = \frac{1}{K} \sum_{i=T-k+1}^T m_i w_i$.
 217

218 To transform the discrete Eq. 6 into a continuous one, we treat each mask m_i as an independent
 219 binary random variable and reparameterize it as a Bernoulli random variable, $m_i \sim \text{Bern}(s_i)$, where
 220 $s_i \in [0, 1]$ represents the probability of m_i taking the value 1, while $1 - s_i$ corresponds to the
 221 probability of m_i being 0. Consequently, the joint probability distribution of m is expressed as
 222 $p(m|s) = \prod_{i=1}^n (s_i)^{m_i} (1 - s_i)^{1-m_i}$. Then, the feasible domain of the target Eq. 6 approximately
 223 becomes $\hat{C} = \{s : 0 \leq s \leq 1, \|s\|_1 \leq K\}$ since $\mathbb{E}_{m_i \sim p(m|s)} \|m\|_0 = \sum_{i=1}^n s_i$. As in the previous
 224 definition, $K > 0$ in \hat{C} is a constant that controls the size of the feasible domain. Then, Eq. 6 can be
 225 naturally relaxed into the following excepted loss minimization problem:
 226

$$\min_{s \in \hat{C}} F(s) = \mathbf{E}_{p(m|s)} F(\mathbf{w}(m)), \quad (7)$$

227 where $\hat{C} = \{s : 0 \leq s \leq 1, \|s\|_1 \leq K\}$. Optimizing Eq. 7 involves discrete random variables, which
 228 are non-differentiable. One choice is using Policy Gradient Estimators (PGE) such as the REIN-
 229 FORCE algorithm (Williams, 1992; Sutton et al., 1999) to bypass the back-propagation of discrete
 230 masks m ,
 231

$$\nabla_s F(s) = \mathbf{E}_{p(m|s)} F(\mathbf{w}(m)) \nabla_s \log p(m | s).$$

232 However, these algorithms suffer from the high variance of computing the expectation of the objective
 233 function, hence may lead to slow convergence or sub-optimal results.
 234

235 To overcome these issues, we resort to the reparameterization trick using Gumbel-softmax sampling
 236 (Jang et al., 2017; Maddison et al., 2017). Instead of sampling discrete masks m , we get continuous
 237 relaxations by,
 238

$$239 \tilde{m}_i = \frac{\exp((\log s_i + g_{i,1})/t)}{\exp((\log s_i + g_{i,1})/t) + \exp((\log(1 - s_i) + g_{i,0})/t)}, \quad (8)$$

240 for $i = 1, \dots, k$, where $g_{i,0}$ and $g_{i,1}$ are i.i.d. samples from the Gumbel(0, 1) distribution. The
 241 hyperparameter $t > 0$ controls the sharpness of this approximation. When it reaches zero, i.e., $t \rightarrow 0$,
 242 \tilde{m} converges to the true binary mask m . During training, we maintain $t > 0$ to ensure the function is
 243 continuous. For inference, we can sample from the Bernoulli distribution with probability s to get
 244 sparse binary masks. In practice, the random variables $g \sim \text{Gumbel}(0, 1)$ can be sampled from,
 245

$$246 g = -\log(-\log(u)), \quad u \sim \text{Uniform}(0, 1).$$

247 For simplicity, we denote the Gumbel-softmax sampling in Eq. 8 as $\tilde{m} = \text{GS}(s, u, t)$, where
 248 $u \sim \text{Uniform}(0, 1)$. Replacing the binary mask m in Eq. 7 with the continuous relaxation \tilde{m} , the
 249 optimization problem becomes,
 250

$$251 \min_{s \in \hat{C}} F(s) = \mathbf{E}_{u \sim \text{Uniform}(0, 1)} F(\mathbf{w}(\text{GS}(s, u, t))), \text{ where } \hat{C} = \{s : 0 \leq s \leq 1, \|s\|_1 \leq K\}.$$

252 The expectation can be approximated by Monte Carlo samples, i.e.,
 253

$$254 \min_{s \in \hat{C}} \hat{F}(s) = \frac{1}{M} \sum_{m=1}^M F(\mathbf{w}(\text{GS}(s, u^{(m)}, t))),$$

255 where $u^{(m)}$ are i.i.d. samples drawn from $\text{Uniform}(0, 1)$. Empirically, since the distribution of u is
 256 fixed, this Monte Carlo approximation exhibits low variance and stable training Kingma & Welling
 257 (2013); Rezende et al. (2014). Furthermore, since Eq. 8 is continuous, we can optimize it using
 258 back-propagation and gradient methods.
 259

260 *Remark 3.1.* SeWA adaptively selects useful checkpoints, which implies that it does not require the
 261 extra cost associated with manual design and avoids model biases introduced by prior knowledge,
 262 thereby making our approach applicable to a broader range of tasks. In the following experiments,
 263 SeWA algorithm demonstrates particular suitability for scenarios characterized by unstable training
 264 trajectories, such as behavior cloning. By leveraging checkpoint averaging, SeWA effectively
 265 stabilizes the training process, mitigating fluctuations and enhancing overall performance.
 266

270 4 THEORETICAL ANALYSIS OF SEWA
271272 4.1 OPTIMIZATION ANALYSIS
273274 Next, we show that the standard gradient descent algorithm will converge to a "flat" point. Prior to
275 this, we first revisit the definition of stationary points for the minimization problem, that is to say,276 **Definition 4.1.** Given a differentiable function $G : \mathcal{K} \rightarrow \mathbb{R}$ and a domain $\mathcal{C} \subseteq \mathcal{K}$, a point $\mathbf{x} \in \mathcal{C}$ is
277 called as a stationary point for the function G over \mathcal{C} if and only if $\min_{\mathbf{y} \in \mathcal{C}} \langle \mathbf{y} - \mathbf{x}, \nabla G(\mathbf{x}) \rangle \geq 0$.
278

279 Then, we have the following result

280 **Theorem 4.2.** If the Bernoulli extension F in Eq.7 is β -smooth, gradient descent with a step size
281 smaller than $\frac{1}{\beta}$ will eventually converge to a stationary point.282 *Remark 4.3.* The β -smoothness of $F(s)$ has been verified in Appendix C of (Hassani et al., 2017).283 From the definition of Bernoulli extension $F(s)$, we can show that (Calinescu et al., 2011)

284
$$\frac{\partial F}{\partial s_i}(s) \triangleq \mathbf{E}_{p(m|s)} \left(F(\mathbf{w}(m; m_i \rightarrow 1)) - F(\mathbf{w}(m; m_i \rightarrow 0)) \right), \quad (9)$$

285 where $s \triangleq (s_1, \dots, s_n) \in [0, 1]^n$, $(m; m_i \rightarrow 1)$ means that we reset the i -th coordinate of m to 1
286 and $(m; m_i \rightarrow 0)$ denotes setting m_i to value 0.
287288 According to Eq.9, we can infer that $\frac{\partial F}{\partial s_i}(s)$ corresponds to the expected marginal effect of the i -th
289 SGD iteration on mask m . Generally speaking, gradient descent algorithm only can be constrained
290 to a finite number of iterations. Consequently, the outcome s we finally obtain is an approximate
291 stationary point for Bernoulli extension F with $|\langle \mathbf{y} - s, \nabla F(s) \rangle| \leq \epsilon, \forall \mathbf{y} \in \mathcal{C}$. Particularly, when
292 s is an interior point (near the boundary) of \mathcal{C} , we can know, for any basic vector \mathbf{e}_i , there exists a
293 constant λ such that $s \pm \lambda \mathbf{e}_i \in \mathcal{C}$, which implies that the following inequality holds:
294

295
$$\begin{aligned} & |\lambda \cdot \mathbf{E}_{p(m|s)} \left(F(\mathbf{w}(m; m_i \rightarrow 1)) - F(\mathbf{w}(m; m_i \rightarrow 0)) \right)| \\ &= \max \left(\langle (s + \lambda \mathbf{e}_i) - s, \nabla F(s) \rangle, \langle (s - \lambda \mathbf{e}_i) - s, \nabla F(s) \rangle \right) \leq \max_{\mathbf{y} \in \mathcal{C}} |\langle \mathbf{y} - s, \nabla F(s) \rangle| \leq \epsilon. \end{aligned} \quad (10)$$

296 Eq.10 implies that the expected *marginal change of $F(\mathbf{w}(m))$ along any coordinate* is bounded by $\frac{\epsilon}{\lambda}$.
297 In other words, the SeWA algorithm can converge to a critical point with flatter curvature.
298300 4.2 GENERALIZATION ANALYSIS
301302 This section provides the upper bounds on generalization in the convex and non-convex settings,
303 respectively. First, a critical lemma is provided for building a stability bound in the convex setting.304 **Lemma 4.4.** Let \bar{w}_T^K and $\bar{w}_T^{K'}$ denote the corresponding outputs of SeWA after SGD running T steps
305 on the datasets S and S' , which have n samples but only one different. Assume that function $F(\cdot, z)$
306 satisfies Assumption 2.1 for a fixed example z , then we have

307
$$\mathbb{E} |F(\bar{w}_T^K; z) - F(\bar{w}_T^{K'}; z)| \leq \hat{s} L \mathbb{E} [\bar{\delta}_T], \quad (11)$$

308 where $\bar{\delta}_T = \frac{1}{k} \sum_{i=T-k+1}^T \|w_i - w'_i\|$, w_i and w'_i are the outputs of SGD, and $\hat{s} = \sup_{T-k+1 \leq i \leq T} s_i$,
309 where s_i is the probability of $m_i = 1$ and $\hat{s} \in (0, 1]$.310 *Remark 4.5.* The parameter \hat{s} is the upper bound of the probability s_i that selects a candidate model
311 w_i for averaging. Notably, setting $\hat{s} \neq 0$ carries practical significance: if $\hat{s} = 0$, the algorithm would
312 result in the failure to select any weights for averaging, thereby collapsing model parameters to zero.
313 Such a scenario is incompatible with the algorithm's design principles and fundamentally undermines
314 its intended purpose. Additionally, since the learned probability s_i is inherently encoded within the
315 network parameters, $\hat{s} = 0$ would force all parameters to zero, violating the algorithm's operational
316 framework. Thus, our $\hat{s} \in (0, 1]$ setting is theoretically and practically justified.
317318 The Lemma 4.4 further decomposes the problem of selecting points for averaging within the last
319 k steps into averaging over the last k steps multiplied by the probability s_i of each step by taking
320 an expectation over the mask, which makes it possible further to establish SeWA's stability bounds.
321 Next, we give the bound for SeWA in the convex setting combined with Lemma 4.4.

324 **Theorem 4.6.** Suppose that we first run SGD with constant step sizes $\alpha \leq \frac{2}{\beta}$ for T steps, where each
 325 step samples z uniformly with replacement and learn the probability s_i of each weight w_i from k
 326 checkpoints. If function F satisfies Assumptions 2.1, 2.2 and 2.3. SeWA has uniform stability of
 327

$$328 \quad \epsilon_{gen} \leq \frac{2\alpha L^2 \hat{s}}{n} \left(T - \frac{k}{2} \right), \quad (12)$$

330 where $\hat{s} = \sup_{T-k+1 \leq i \leq T} s_i$ and $\hat{s} \in (0, 1]$.

331 Remark 4.7. Theorem 4.6 shows that the SeWA algorithm has a sharper stability bound of
 332 $2\alpha L^2 (T - k/2) \hat{s}/n$ under the convex assumption than the bound $2\alpha L^2 T/n$ for SGD given by
 333 Hardt et al. (2016). The reason for improving the generalization comes from two main sources: (1)
 334 the last k checkpoints averaging improves the SGD bound $\mathcal{O}(T/n)$ to $\mathcal{O}((T - k/2)/n)$. This result
 335 degenerates to the SGD bound when $k = 1$. (2) The algorithm further improves the stability bound
 336 $2\alpha L^2 (T - k/2)/n$ to \hat{s} times its size, which reflects the influence of selection on the bound.

337 Remark 4.8. The k in Theorem 4.6 implies that the more checkpoints involved in the averaging, the
 338 better the generalization performance. In practice, k is set sufficiently large to ensure that the selected
 339 checkpoints can comprehensively explore the solution space. In contrast, a small k leads to limited
 340 improvement in generalization due to the similar performance of checkpoints collected in later stages.

341 Remark 4.9. Theorem 4.6 introduces a scaling parameter \hat{s} , which is confined to $(0, 1]$ and linearly
 342 modulates the bound $2\alpha L^2 (T - k/2)/n$ but remains independent of the number of selected weights.
 343 Furthermore, our empirical analysis in Section 5 demonstrates that smaller numbers of selected
 344 weights do not consistently yield better generalization performance.

344 **Lemma 4.10.** Let \bar{w}_T^K and $\bar{w}_T^{K'}$ denote the corresponding outputs of SeWA after SGD running T
 345 steps on the datasets S and S' , which have n samples but only one different. Assume that function
 346 $F(\cdot, z)$ satisfies Assumption 2.1 for a fixed example z and every $t_0 \in \{1, \dots, n\}$, then we have

$$347 \quad \mathbb{E}|F(\bar{w}_T^K; z) - F(\bar{w}_T^{K'}; z)| \leq \frac{t_0}{n} + \hat{s}L\mathbb{E}[\bar{\delta}_T | \bar{\delta}_{t_0} = 0], \quad (13)$$

349 where $\bar{\delta}_T = \frac{1}{k} \sum_{i=T-k+1}^T \|w_i - w'_i\|$, w_i and w'_i are the outputs of SGD, and $\hat{s} = \sup_{T-k+1 \leq i \leq T} s_i$,
 350 where s_i is the probability of $m_i = 1$ and $\hat{s} \in (0, 1]$.

351 **Theorem 4.11.** Suppose we first run SGD with decay step sizes $\alpha \leq \frac{c}{t}$ for T steps, where each
 352 step samples z uniformly with replacement and learn the probability s_i of each weight w_i from k
 353 checkpoints. Let function $F \in [0, 1]$ satisfies Assumptions 2.1 and 2.2. SeWA has uniform stability of
 354

$$355 \quad \epsilon_{gen} \leq \mathcal{O}_{\hat{s}} \left(\frac{T^{\frac{c\beta}{k+c\beta}}}{n} \right), \quad (14)$$

357 where $\hat{s} = \sup_{T-k+1 \leq i \leq T} s_i$, $\hat{s} \in (0, 1]$, and $c > 0$ is a constant.

359 Remark 4.12. In non-convex setting, Theorem 4.11 shows that SeWA has bound $\mathcal{O}(T^{c\beta/(c\beta+k)}/n)$
 360 compared to the $\mathcal{O}(T^{c\beta/(c\beta+1)}/n)$ for SGD in Hardt et al. (2016), showing its ability to improve
 361 generalization significantly. Although the number k , closely related to the iterations T , seems to
 362 dominate the result, the direct influence of parameter \hat{s} on the entire bound also plays a crucial role.

363 Remark 4.13. The assumption that $F(w; z) \in [0, 1]$ in Theorem 4.11 is adopted for simplicity.
 364 Removing this condition does not affect the final results, as it merely introduces a constant scaling
 365 factor. The same setting is commonly used and discussed in Hardt et al. (2016); Xiao et al. (2022).

366 Remark 4.14. We derive the generalization bound of SeWA via stability analysis, following a standard
 367 pipeline. As part of this, we establish the bound for averaging the last k iterates, similar to the paper
 368 Wang et al. (2024b), but with two key differences: (1) We obtain a tighter bound on the cumulative
 369 gradient that depends on t_0 , yielding an improved result for SGD without requiring strict assumptions
 370 under decaying learning rates, consistent with empirical results. (2) Our focus is on the effect of
 371 selection on generalization, so this task is only auxiliary and restricted to uniform averaging, while
 372 existing work considers weighted averaging schemes. In Appendix E, we provide the proofs of
 373 Lemma 4.4 and 4.10. The proofs of Theorems 4.6 and 4.11 are provided in Appendix F.2 and F.3.

374 5 EXPERIMENT

375 We systematically explore the effectiveness of our method across three distinct settings: behavior
 376 cloning, image classification, and text classification. Details of the experimental setup, including
 377 network architectures, hyperparameters, and additional results, are provided in Appendix B.

378

379
380
381
Table 2: Performance comparison of various methods on D4RL Gym tasks with $K = 20$. Each
result is evaluated as the mean of 60 random rollouts, based on 3 independently trained models with
20 trajectories per model. Detailed results are presented in Table 3.

	Task	Dataset	SGD	SWA	EMA	LAWA	Random	SeWA (Ours)
K=20	Hopper	medium	1245.039	1281.910	1302.400	1310.875	1312.166	1361.202
	Hopper	medium-expert	1460.785	1427.47	1373.268	1563.307	1482.012	1571.127
	Walker2d	medium	3290.248	3308.464	3420.257	3325.873	3324.557	3364.886
	Walker2d	medium-expert	3458.693	3588.176	3667.809	3557.925	3650.846	3673.804
	Halfcheetah	medium	4850.490	4913.549	4848.006	4974.041	4924.613	5071.051
	Halfcheetah	medium-expert	5015.689	5024.723	4957.194	4993.524	4988.816	5085.628
Average			3220.157	3257.382	3261.489	3287.591	3280.502	3354.616

387

388

389
390
5.1 BEHAVIOR CLONING

391

392
393
394
395
Experimental Setups. We conduct comprehensive evaluations using the widely adopted D4RL
benchmark (Fu et al., 2020; Hu et al., 2024a), focusing on Gym-MuJoCo locomotion tasks. These
tasks serve as standard benchmarks due to their well-defined structure, prevalence of near-optimal tra-
jectories, and smooth reward functions, making them particularly suitable for assessing reinforcement
learning algorithms. For evaluation, we employ cumulative reward as the primary metric.

396

397

398
399
400
401
402
403
404
405
406
407
408
Baselines. To evaluate SeWA, we compare it with estab-
lished baselines: SGD-based pre-training, SWA (Izmailov
et al., 2018), and EMA (Szegedy et al., 2016), all adapted
for behavior cloning. EMA follows Kaddour (2022), us-
ing a 0.9 decay and updating every K steps. SWA begins
after 75% of training with a cosine annealing scheduler,
averaging parameters every K steps. We also include
LAWA (Sanyal et al., 2023) and a Random baseline, both
of which average K checkpoints from the last $k = 1000$
pre-training steps. LAWA samples at intervals, Random
samples randomly. LAWA, Random, and our SeWA use
only these checkpoints for evaluation, without retraining.
SGD, SWA, and EMA report final results from their re-
spective training processes, ensuring fair comparison.

409

410

411
412
413
414
415
416
417
418
419
420
Results. In Figure 2 and Table 2, all baselines demon-
strate superior performance compared to the original SGD op-
timizer, highlighting the effectiveness of weight averaging
strategies in improving model performance. These results
confirm that weight averaging can serve as a valuable technique for stabilizing and enhancing model
training outcomes. Additionally, our analysis reveals that increasing the number of checkpoints K
used for averaging consistently improves performance across all methods. However, this improvement
tends to plateau beyond a certain threshold, indicating diminishing returns as the number of averaged
checkpoints increases. Notably, our SeWA consistently surpasses all baselines across experimental
settings. Even with only $K = 10$ checkpoints, it outperforms baselines using $K = 100$, demon-
strating both efficiency and robustness. This highlights our approach’s efficiency and robustness, as it can
deliver significant improvements with a substantially smaller computational footprint.

421

422

5.2 IMAGE CLASSIFICATION

423

424

425
426
427
428
429
Experimental Setups. We assess SeWA on image classification using the CIFAR-100 dataset and
ResNet architecture (He et al., 2016). With 100 diverse classes, CIFAR-100 presents a challenging
benchmark, and accuracy on the test set serves as our primary metric. In our experiments, we use
intermediate model checkpoints saved during the final stage of training, specifically after 10,000
training steps. Performance is evaluated at intervals of $k = 100$ checkpoints, with the number of
checkpoints included in the averaging procedure within each interval controlled by the hyperparameter
 K . This flexibility allows us to adjust the extent of checkpoint aggregation and analyze its impact.

430

431

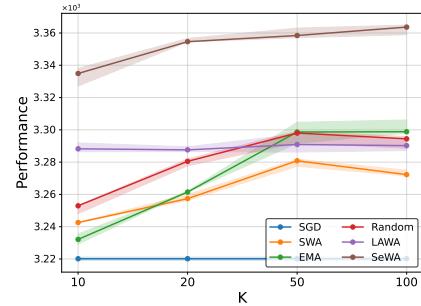
432
Results. As illustrated in Figure 3, all baselines outperform the original SGD optimizer, underscoring
the effectiveness of weight averaging in enhancing model performance. Additionally, weight averag-
ing accelerates model convergence, with all baselines reaching performance levels that SGD requires

Figure 2: Comparison of different methods on the D4RL benchmark. Each data point represents the average cumulative reward across multiple tasks, averaged over 3 random seeds and 20 trajectories per seed. (Details in Appendix B.)

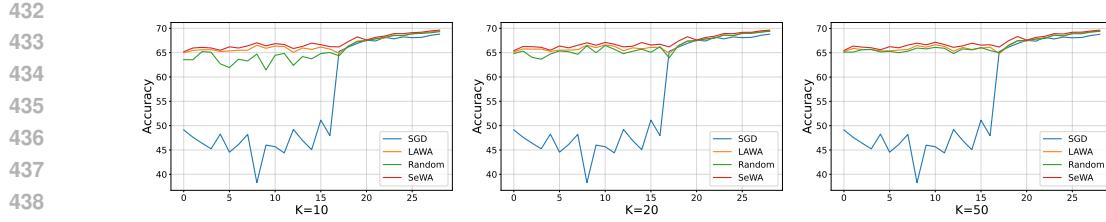


Figure 3: From left to right, the figures illustrate the impact of the hyperparameter K on the CIFAR-100 task. Each point corresponds to intervals of 100 checkpoints, with K checkpoints selected and averaged from these intervals using different strategies.

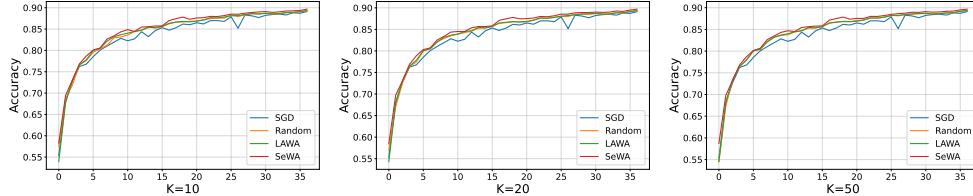


Figure 4: From left to right, the figures illustrate the impact of the hyperparameter K on the AG News corpus. Each point corresponds to intervals of 100 checkpoints, with K checkpoints selected and averaged from these intervals using different strategies.

17 steps to achieve. Our SeWA method consistently delivers the best performance, demonstrating its effectiveness. Beyond 17 steps, where the model approaches convergence, further improvement becomes minimal, as the checkpoints at this stage share highly similar weights.

5.3 TEXT CLASSIFICATION

Experimental Setups. For the text classification task, we use the AG News corpus, a widely used benchmark dataset containing news articles categorized into four distinct classes. The classification is performed using a transformer-based architecture Vaswani et al. (2017), which is known for its effectiveness in handling natural language processing tasks. To preprocess the dataset, we tokenize the entire corpus using the *basic_english* tokenizer. Any words not found in the vocabulary are replaced with a special token, *UNK*, to handle out-of-vocabulary terms. This preprocessing ensures that the dataset is standardized and ready for training. We save intermediate checkpoints throughout the training process, starting from the initial stages. From this set of checkpoints, we systematically select every $k = 100$ checkpoint for consideration in the averaging process. The hyperparameter K controls the number of checkpoints used for averaging, allowing flexible experimentation with different levels of checkpoint aggregation. This experimental design facilitates a comprehensive evaluation of the effects of checkpoint averaging on model performance in NLP tasks.

Results. In Figure 4, the improvement of weight averaging over the SGD baseline is minimal for relatively simple tasks, primarily serving to stabilize training. However, our SeWA achieves the best results regardless of task complexity, demonstrating its broad applicability across diverse settings.

6 CONCLUSION

We propose a new algorithm SeWA for adaptive selecting checkpoints to average, which improves generalization and applies to a variety of tasks. In practical implementation, we employ probabilistic reparameterization to transform the discrete optimization problem into a continuous objective solvable by gradient-based methods. From a theoretical perspective, we prove that SeWA converges to a critical point with *flatter* curvature, thereby explaining its inherent ability to achieve better generalization. Moreover, under various assumptions, we derive its generalization bounds, which exhibit superior results compared to other algorithms. Empirically, we verify that SeWA can achieve good performance for unstable training processes, and a few checkpoints selected by SeWA can achieve results, while other algorithms require several times as many points.

Limitation: The theoretical analysis of SeWA based on L -Lipschitz and β -smoothness, which do not always hold in real-world deep learning models. Extending our framework through similar assumption-free analyses presents an interesting direction for future research.

486 REFERENCES
487

488 Olivier Bousquet and André Elisseeff. Stability and generalization. *The Journal of Machine Learning*
489 *Research*, 2:499–526, 2002.

490 Gruiu Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone submodular
491 function subject to a matroid constraint. *SIAM Journal on Computing*, 40(6):1740–1766, 2011.

492

493 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
494 and Sungrae Park. Swad: Domain generalization by seeking flat minima. *Advances in Neural*
495 *Information Processing Systems*, 34:22405–22418, 2021.

496

497 Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of learning algorithms that
498 converge to global optima. In *International conference on machine learning*, pp. 745–754. PMLR,
499 2018.

500

501 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
502 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
503 pp. 248–255. Ieee, 2009.

504

505 Luc Devroye and Terry Wagner. Distribution-free performance bounds for potential function rules.
506 *IEEE Transactions on Information Theory*, 25(5):601–604, 1979.

507

508 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
509 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.

510

511 Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
512 An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. *IEEE transactions on*
513 *pattern analysis and machine intelligence*, 45(1):87–110, 2022.

514

515 Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
516 gradient descent. In *International conference on machine learning*, pp. 1225–1234. PMLR, 2016.

517

518 Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. Gradient methods for submodular
519 maximization. *Advances in Neural Information Processing Systems*, 30, 2017.

520

521 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
522 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
523 pp. 770–778, 2016.

524

525 Shengchao Hu, Ziqing Fan, Chaoqin Huang, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao.
526 Q-value regularized transformer for offline reinforcement learning. In *International Conference on*
527 *Machine Learning*, pp. 19165–19181. PMLR, 2024a.

528

529 Shengchao Hu, Ziqing Fan, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao. Harmodt: Harmony
530 multi-task decision transformer for offline reinforcement learning. In *International Conference on*
531 *Machine Learning*, pp. 19182–19197. PMLR, 2024b.

532

533 Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Learning multi-agent communication from
534 graph modeling perspective. In *The Twelfth International Conference on Learning Representations*,
535 2024c.

536

537 Yimin Huang, Weiran Huang, Liang Li, and Zhenguo Li. Meta-learning pac-bayes priors in model
538 averaging. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp.
539 4198–4205, 2020.

540

541 Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
542 Averaging weights leads to wider optima and better generalization. *arXiv preprint arXiv:1803.05407*,
543 2018.

544

545 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
546 *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=rkE3y85ee>.

540 Jean Kaddour. Stop wasting my time! saving days of imangenet and bert training with latest weight
 541 averaging. *arXiv preprint arXiv:2209.14981*, 2022.

542

543 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 544 *arXiv:1312.6114*, 2013.

545 Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In
 546 *International Conference on Machine Learning*, pp. 2815–2824. PMLR, 2018.

547

548 Yunwen Lei and Yiming Ying. Sharper generalization bounds for learning with gradient-dominated
 549 objective functions. In *International Conference on Learning Representations*, 2020.

550 Tao Li, Zhehao Huang, Qinghua Tao, Yingwen Wu, and Xiaolin Huang. Trainable weight averaging:
 551 Efficient training by optimizing historical solutions. In *The Eleventh International Conference on*
 552 *Learning Representations*, 2022.

553

554 Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A survey.
 555 *arXiv preprint arXiv:2309.15698*, 2023.

556

557 Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. *arXiv*
 558 *preprint arXiv:1806.09055*, 2018.

559

560 Peng Lu, Ivan Kobyzev, Mehdi Rezagholizadeh, Ahmad Rashid, Ali Ghodsi, and Philippe Langlais.
 561 Improving generalization of pre-trained language models via stochastic weight averaging. In
 562 *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp. 4948–4954, 2022.

563

564 Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
 565 relaxation of discrete random variables. In *International Conference on Learning Representations*,
 566 2017. URL <https://openreview.net/forum?id=S1jE5L5g1>.

567

568 Sayan Mukherjee, Partha Niyogi, Tomaso Poggio, and Ryan Rifkin. Learning theory: stability
 569 is sufficient for generalization and necessary and sufficient for consistency of empirical risk
 570 minimization. *Advances in Computational Mathematics*, 25:161–193, 2006.

571

572 Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. *SIAM*
 573 *journal on control and optimization*, 30(4):838–855, 1992.

574

575 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
 576 variational inference in deep latent gaussian models. In *International conference on machine*
 577 *learning*, volume 2, pp. 2, 2014.

578

579 Ralph Tyrell Rockafellar. Convex analysis:(pms-28). 2015.

580

581 David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical
 582 report, Cornell University Operations Research and Industrial Engineering, 1988.

583

584 Sunny Sanyal, Atula Tejaswi Neerkaje, Jean Kaddour, Abhishek Kumar, et al. Early weight averaging
 585 meets high learning rates for llm pre-training. In *Workshop on Advancing Neural Network Training:*
 586 *Computational Efficiency, Scalability, and Resource Optimization (WANT@ NeurIPS 2023)*, 2023.

587

588 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability
 589 and uniform convergence. *The Journal of Machine Learning Research*, 11:2635–2670, 2010.

590

591 Ohad Shamir. Without-replacement sampling for stochastic gradient methods. *Advances in neural*
 592 *information processing systems*, 29, 2016.

593

594 Yan Sun, Li Shen, and Dacheng Tao. Which mode is better for federated learning? centralized or
 595 decentralized. *arXiv preprint arXiv:2310.03461*, 2023a.

596

597 Yan Sun, Li Shen, and Dacheng Tao. Understanding how consistency works in federated learning via
 598 stage-wise relaxed initialization. *arXiv preprint arXiv:2306.05706*, 2023b.

599

600 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
 601 for reinforcement learning with function approximation. *Advances in neural information processing*
 602 *systems*, 12, 1999.

594 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
 595 the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer*
 596 *vision and pattern recognition*, pp. 2818–2826, 2016.

597

598 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 599 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 600 *systems*, 30, 2017.

601 Peng Wang, Li Shen, Zerui Tao, Shuaidi He, and Dacheng Tao. Generalization analysis of stochastic
 602 weight averaging with general sampling. In *Forty-first International Conference on Machine*
 603 *Learning*, 2024a.

604 Peng Wang, Li Shen, Zerui Tao, Guodong Sun, Yan Zheng, and Dacheng Tao. A unified analysis for
 605 finite weight averaging. *arXiv preprint arXiv:2411.13169*, 2024b.

606

607 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 608 learning. *Machine learning*, 8:229–256, 1992.

609

610 Jiancong Xiao, Yanbo Fan, Ruoyu Sun, Jue Wang, and Zhi-Quan Luo. Stability analysis and
 611 generalization bounds of adversarial training. *Advances in Neural Information Processing Systems*,
 612 35:15446–15459, 2022.

613

614 Zhenhuan Yang, Yunwen Lei, Puyu Wang, Tianbao Yang, and Yiming Ying. Simple stochastic
 615 and online gradient descent algorithms for pairwise learning. *Advances in Neural Information*
 616 *Processing Systems*, 34:20160–20171, 2021.

617

618 Zhuoning Yuan, Yan Yan, Rong Jin, and Tianbao Yang. Stagewise training accelerates convergence
 619 of testing error over sgd. *Advances in Neural Information Processing Systems*, 32, 2019.

620

621 Weizhong Zhang, Zhiwei Zhang, Renjie Pi, Zhongming Jin, Yuan Gao, Jieping Ye, and Kani Chen.
 622 Efficient denoising diffusion via probabilistic masking. In *Forty-first International Conference on*
 623 *Machine Learning*, 2024.

624

625 Xiao Zhou, Renjie Pi, Weizhong Zhang, Yong Lin, and Tong Zhang. Probabilistic bilevel coresets
 626 selection. In *International Conference on Machine Learning*. PMLR, 2022.

627

628 Yi Zhou, Yingbin Liang, and Huishuai Zhang. Generalization error bounds with probabilistic
 629 guarantee for sgd in nonconvex optimization. *arXiv preprint arXiv:1802.06903*, 2018.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **The Use of Large Language Models.** In this work, we exclusively employ large language models
 649 (LLMs) to refine the writing and presentation of our manuscript.
 650

651 A ADDITIONAL RELATED WORK
 652

653 **Weight averaging algorithm.** Model averaging methods, initially introduced in convex optimization
 654 Ruppert (1988); Polyak & Juditsky (1992); Li et al. (2023), have been widely used in various areas
 655 of deep learning and have shown their advantages in generalization and convergence. Subsequently,
 656 the introduction of SWA Izmailov et al. (2018), which averages the weights along the trajectory of
 657 SGD, significantly improves the model’s generalization. Further modifications have been proposed,
 658 including the Stochastic Weight Average Density (SWAD) Cha et al. (2021), which averages check-
 659 points more densely, leading to the discovery of flatter minima associated with better generalization.
 660 Trainable Weight Averaging (TWA) Li et al. (2022) has improved the efficiency of SWA by employing
 661 trainable averaging coefficients. What’s more, other approaches like Exponential Moving Average
 662 (EMA) Szegedy et al. (2016) and finite averaging algorithms, such as LAWA Kaddour (2022); Sanyal
 663 et al. (2023), which average the last k checkpoints from running a moving window at a predetermined
 664 interval, employ different strategies to average checkpoints. These techniques have empirically shown
 665 faster convergence and better generalization. In meta-learning, Bayesian Model Averaging (BMA) is
 666 used to reduce the uncertainty of the model Huang et al. (2020). However, these algorithms often
 667 require manual design of averaging strategies and are only applicable to some specific tasks, imposing
 668 an additional cost on the training.

669 **Stability Analysis.** Stability analysis is a fundamental theoretical tool for studying the generalization
 670 ability of algorithms by examining their stability (Devroye & Wagner, 1979; Bousquet & Elisseeff,
 671 2002; Mukherjee et al., 2006; Shalev-Shwartz et al., 2010). Based on this, Hardt et al. (2016)
 672 use the algorithm stability to derive generalization bounds for SGD, inspiring a series of works
 673 Charles & Papailiopoulos (2018); Zhou et al. (2018); Yuan et al. (2019); Lei & Ying (2020). This
 674 analysis framework has been extended to various domains, such as online learning (Yang et al.,
 675 2021), adversarial training (Xiao et al., 2022), decentralized learning (Zhu et al., 2023), and federated
 676 learning (Sun et al., 2023b;a). Although uniform sampling is a standard operation for building
 677 stability boundaries, selecting the initial point and sampling without replacement also significantly
 678 affects generalization and has been investigated in Shamir (2016); Kuzborskij & Lampert (2018).
 679 For the averaging algorithm, Hardt et al. (2016) and Xiao et al. (2022) analyze the generalization
 680 performance of SWA and establish stability bounds for the algorithm under the setting of convex and
 681 sampling with replacement. The primary focus of this paper is the construction of stability bounds
 682 for SeWA in both convex and non-convex settings.

683 **Mask Learning.** The general approach involves transforming the discrete optimization problem into a
 684 continuous one using probabilistic reparameterization, thereby enabling gradient-based optimization.
 685 Zhou et al. (2022) solves the coresnet selection problem based on this by using a Policy Gradient
 686 Estimator (PGE) for a bilevel optimization objective. Zhang et al. (2024) propose a probabilistic
 687 masking method that improves diffusion model efficiency by skipping redundant steps. While the
 688 PGE method may suffer from high variance and unstable training, we solve the mask learning
 689 problem using the Gumbel-softmax reparameterization (Jang et al., 2017; Maddison et al., 2017).
 690 Mask learning has also been successfully applied across various domains to tackle diverse challenges
 691 (Liu et al., 2018; Hu et al., 2024c;b). In this paper, we aim to adaptively select checkpoints for model
 692 averaging, with the goal of improving generalization performance and mitigating training instability.

693 B EXPERIMENT DETAILS
 694

695 B.1 BEHAVIOR CLONING

696 **Network Architecture.** The network architecture comprises four layers, each consisting of a
 697 sequence of ReLU activation, Dropout for regularization, and a Linear transformation. The final
 698 layer includes an additional Tanh activation function to enhance the representation and capture
 699 non-linearities in the output.

700 **Results.** Comprehensive results for each task across all datasets are presented in Table 3. Our
 701 evaluation focuses specifically on the medium and medium-expert datasets, which offer a balanced

702
 703 Table 3: Performance comparison of various methods on D4RL Gym tasks. The left panel shows
 704 results obtained using the final checkpoint under different update strategies, while the right panel
 705 presents results from averaged checkpoints collected during the final training stage with SGD, using
 706 different selection strategies. Each result is evaluated as the mean of 60 random rollouts, based on 3
 707 independently trained models with 20 trajectories per model.

	Task	Dataset	SGD	SWA	EMA	LAWA	Random	SeWA (Ours)
709 710 711 712 713 714	K=10	Hopper	medium	1245.039	1279.249	1297.270	1289.515	1291.478 1324.848
		Hopper	medium-expert	1460.785	1468.893	1320.408	1462.452	1451.015 1509.317
		Walker2d	medium	3290.248	3328.121	3341.888	3341.437	3306.763 3371.202
		Walker2d	medium-expert	3458.693	3546.008	3681.504	3634.373	3609.611 3679.806
		Halfcheetah	medium	4850.490	4858.224	4894.204	5012.389	4896.104 5041.369
		Halfcheetah	medium-expert	5015.689	4974.923	4857.562	4989.329	4962.719 5082.902
Average			3220.157	3242.570	3232.139	3288.249	3252.948	3334.907
715 716 717 718 719 720	K=20	Hopper	medium	1245.039	1281.910	1302.400	1310.875	1312.166 1361.202
		Hopper	medium-expert	1460.785	1427.47	1373.268	1563.307	1482.012 1571.127
		Walker2d	medium	3290.248	3308.464	3420.257	3325.873	3324.557 3364.886
		Walker2d	medium-expert	3458.693	3588.176	3667.809	3557.925	3650.846 3673.804
		Halfcheetah	medium	4850.490	4913.549	4848.006	4974.041	4924.613 5071.051
		Halfcheetah	medium-expert	5015.689	5024.723	4957.194	4993.524	4988.816 5085.628
Average			3220.157	3257.382	3261.489	3287.591	3280.502	3354.616
721 722 723 724 725 726	K=50	Hopper	medium	1245.039	1294.884	1329.863	1336.33	1319.571 1389.280
		Hopper	medium-expert	1460.785	1477.466	1485.696	1537.672	1496.045 1616.116
		Walker2d	medium	3290.248	3262.046	3341.767	3253.695	3352.12 3392.130
		Walker2d	medium-expert	3458.693	3577.509	3591.081	3584.468	3659.789 3672.560
		Halfcheetah	medium	4850.490	4927.951	4968.048	5022.097	5000.004 5035.631
		Halfcheetah	medium-expert	5015.689	5061.688	5075.426	5011.232	4960.585 5044.886
Average			3220.157	3280.833	3298.647	3290.916	3298.019	3358.434
727 728 729 730 731 732	K=100	Hopper	medium	1245.039	1347.267	1322.625	1320.652	1319.727 1393.981
		Hopper	medium-expert	1460.785	1527.206	1528.265	1496.266	1491.196 1568.025
		Walker2d	medium	3290.248	3324.218	3393.646	3345.913	3321.046 3424.078
		Walker2d	medium-expert	3458.693	3575.621	3629.308	3613.274	3587.211 3710.347
		Halfcheetah	medium	4850.490	4939.629	4871.376	4974.220	5015.349 5021.948
		Halfcheetah	medium-expert	5015.689	4919.624	5047.757	4991.007	5031.975 5063.546
Average			3220.157	3272.261	3298.830	3290.222	3294.417	3363.654

733
 734 mix of trajectories with varying performance levels. This selection enables a thorough assessment
 735 of our method’s ability to generalize across different reward distributions. For clarity and ease of
 736 comparison, the main paper emphasizes the average performance across tasks, as illustrated in Figure
 737 2. This dual presentation ensures a detailed examination of individual tasks while providing an
 738 accessible overview of overall performance.

740 B.2 IMAGE CLASSIFICATION OF CIFAR100

741
 742 **Network Architecture.** The network architecture consists of three primary blocks, followed by an
 743 average pooling layer and a linear layer for generating the final output. Each block contains two
 744 convolutional layers, each accompanied by a corresponding batch normalization layer to improve
 745 training stability and convergence. To address potential issues of vanishing gradients, each block
 746 includes a shortcut connection that facilitates efficient gradient flow during backpropagation. The
 747 output of each block is passed through a ReLU activation function to introduce non-linearity, enabling
 748 the network to learn complex representations effectively.

749 **Results.** In addition to the results presented in Figure 3, we provide further analysis examining the
 750 impact of network parameter variations to demonstrate the robustness of our method across networks
 751 of different sizes. These results, shown in Figure 5, illustrate that as the number of layers or blocks
 752 increases, the performance of SGD improves, following a similar training curve.

753 Notably, weight averaging consistently outperforms SGD during the upward phase of training. The
 754 performance gains from weight averaging become more pronounced as the network size increases,
 755 highlighting its potential in scaling effectively to larger models. This highlights the potential of
 weight averaging to enhance the performance of larger models. Furthermore, regardless of changes

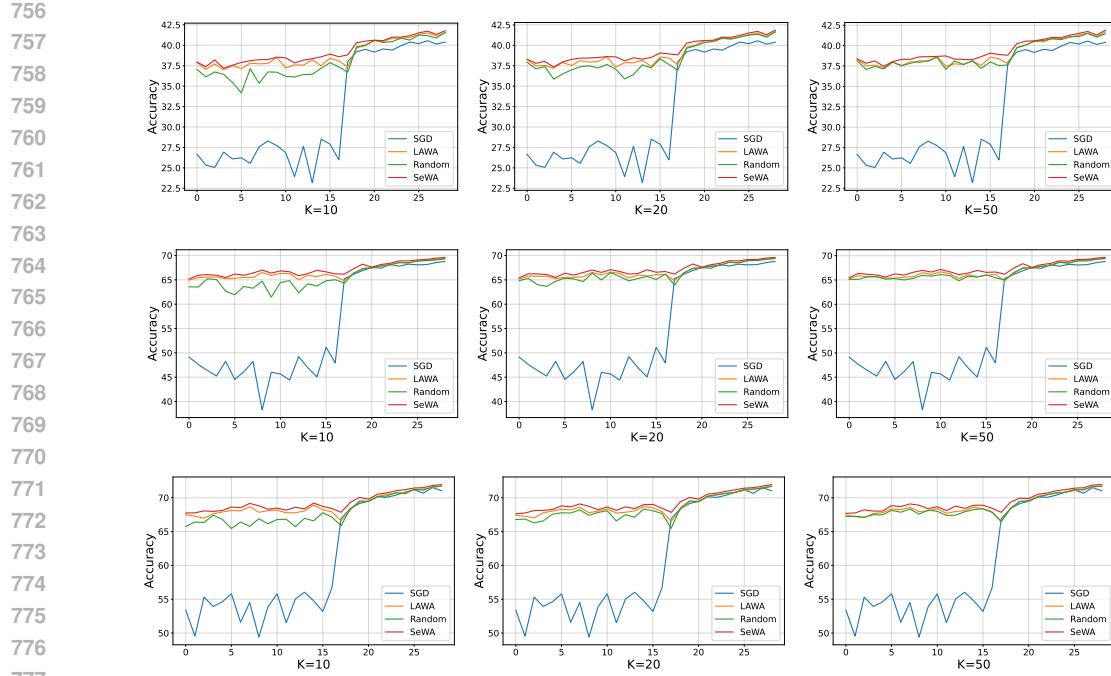


Figure 5: From left to right, the figures illustrate the impact of the hyperparameter K on the CIFAR-100 task. Each data point represents performance based on intervals of $k = 100$ checkpoints, with K checkpoints selected from these intervals using various strategies. The first row corresponds to a network architecture with 1 block, the second row represents a network with 3 blocks, and the third row depicts results for a network with 5 blocks.

in network parameters, our proposed method consistently achieves superior results, demonstrating its adaptability and effectiveness across varying network configurations. These findings emphasize the potential of weight averaging as a robust and scalable technique for optimizing model performance.

B.2.1 COMPARISON OF DIFFERENT METHODS ON THE CIFAR100

We conduct experiments on CIFAR100 using the VGG16 network, and compare with SGD, SWA, LAWA, and EMA. The SGD achieves an accuracy of 72.9%. In the following table, we present the accuracy improvements of each method over SGD. It shows that our method achieves considerable gain over other averaging methods.

Table 4: Comparison of different methods on the Cifar100.

	$K = 10$	$K = 20$	$K = 30$	$K = 40$	$K = 50$
SWA	-0.05	+0.03	+0.09	+0.12	+0.06
LAWA	-0.01	+0.01	+0.01	+0.05	+0.04
EMA	-0.10	+0.08	+0.06	0.00	-0.20
SeWA	+0.26	+0.26	+0.41	+0.51	+0.49

As shown in the above table, our method shows considerable gain over other averaging methods, including SWA and EMA. In the image classification task, the training dynamics are very stable; therefore, we think that averaging methods are not so significant here. For example, SWA, LAWA, and EMA do not improve the performance much. Therefore, when the base model performs well and training proceeds steadily, limited improvement is not a weakness unique to the SeWA algorithm in such tasks, but rather a characteristic shared by all algorithms.

810 B.3 IMAGE CLASSIFICATION OF IMAGENET
811

812 **Experimental Setups.** To rigorously evaluate our method’s efficacy in image classification, we
813 employ the ImageNet dataset Deng et al. (2009) in conjunction with the Vision Transformer (ViT)
814 architecture Han et al. (2022). The ImageNet dataset, comprising 1000 diverse classes, serves as a
815 comprehensive benchmark for assessing image classification performance. We adopt classification
816 accuracy on the test dataset as our primary evaluation metric. Throughout our experimental protocols,
817 we systematically preserve model checkpoints after each training epoch. Performance evaluation is
818 conducted at intervals of $k = 5$ checkpoints, with the number of checkpoints incorporated into the
819 averaging procedure within each interval regulated by the hyperparameter $K = 3$.

820 **Network Architecture.** Our implementation utilizes a ViT model (330.23MB), representing a
821 paradigm shift from conventional convolutional neural networks for image classification tasks. The
822 ViT architecture initially employs a patch embedding layer that segments input images into uniform
823 patches and projects them into a high-dimensional embedding space. A learnable classification token
824 is subsequently prepended to the sequence of embedded patches, and positional embeddings are
825 incorporated to preserve spatial information. The architectural core comprises 12 transformer blocks,
826 each integrating multi-head self-attention mechanisms with 12 attention heads and feed-forward
827 networks with an expansion ratio of 4. The resultant representations undergo normalization via
828 layer normalization before transmission to a linear classification head that generates output logits
829 corresponding to the 1000 ImageNet classes.

830 **Results.** We present a comprehensive analysis examining the efficacy of various weight averaging
831 strategies when applied to transformer-based architectures. The empirical results, illustrated in
832 Figure 6, demonstrate that our proposed SeWA consistently outperforms standard SGD optimization
833 throughout the training trajectory.

834 Significantly, all weight averaging methods demonstrate
835 superior accuracy compared to SGD throughout training.
836 These findings highlight the particular effectiveness of
837 weight averaging. Moreover, while Random weight aver-
838 aging generally outperforms SGD, it shows inferior results
839 compared to our proposed SeWA and occasionally un-
840 derperforms relative to SGD. In contrast, our approaches
841 maintain consistent performance advantages throughout
842 the learning process. This comparative analysis provides
843 compelling evidence that structured weight averaging sub-
844 stantially enhances Vision Transformer performance on
845 large-scale image classification tasks. The demonstrated
846 superiority of our methodologies over both baseline SGD
847 and Random underscores the importance of the adaptive
848 selection process in optimizing transformer networks, showing the effectiveness of our method.

849 B.4 TEXT CLASSIFICATION
850

851 **Network Architectures.** The network architecture comprises two embedding layers followed by
852 two layers of *TransformerEncoderLayer*. Each *TransformerEncoderLayer* includes a multi-head self-
853 attention mechanism and a position-wise feedforward network, along with layer normalization and
854 residual connections to enhance training stability and gradient flow. The output from the Transformer
855 layers is passed through a linear layer to produce the final predictions.

856 **Results.** In addition to the findings presented in Figure 4, we conduct further analysis to evaluate
857 the impact of network parameter variations, demonstrating the robustness of our method across
858 networks of varying sizes. These additional results, shown in Figure 7, indicate that as the number
859 of Transformer layers increases, the performance of SGD improves up to a certain point. However,
860 beyond this range - where two layers appear sufficient - performance begins to exhibit fluctuations,
861 suggesting diminishing returns and instability with additional layers.

862 While the improvement achieved by weight averaging is relatively modest due to the simplicity
863 of the task, it still plays a critical role in stabilizing the training process and reducing fluctuations
864 in the training curve. Among the averaging methods evaluated, our proposed method consistently

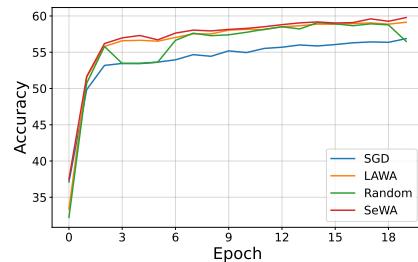


Figure 6: Comparison of different methods on the ImageNet benchmark utilizing the ViT architecture.

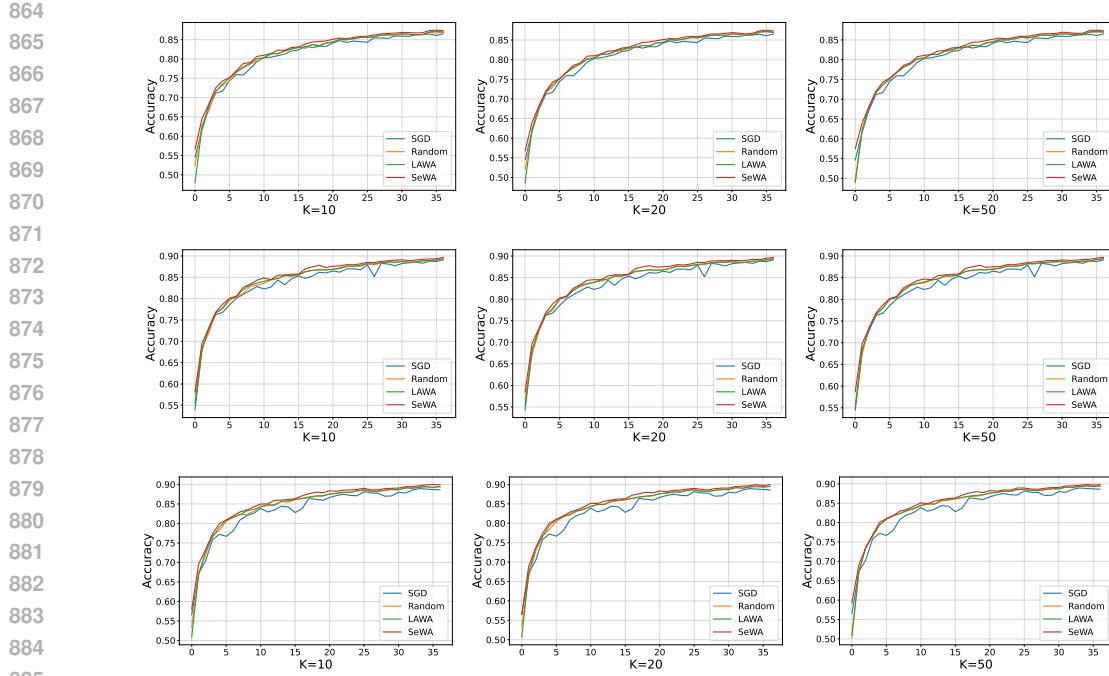


Figure 7: From left to right, the figures illustrate the impact of the hyperparameter K on the AG News corpus. Each point corresponds to intervals of $k = 100$ checkpoints, with K checkpoints selected from these intervals using different strategies. The first row corresponds to a network architecture with a single *TransformerEncoderLayer*, the second row represents a network with three *TransformerEncoderLayers*, and the third row shows results for a network with five *TransformerEncoderLayers*.

achieves the best performance, underscoring its effectiveness in maintaining stability and optimizing performance, even in scenarios where task complexity is low.

B.5 EXTENDED EXPERIMENTS ON THE NYUV2 DATASET

To further verify whether the SeWA algorithm fails in specific tasks, we additionally compared the SGD and SeWA algorithms in a regression task. We conducted extended experiments on the NYUV2 dataset using the ViT model, achieving average improvements of +4.89% on the training set and +1.88% on the validation set.

Table 5: Comparison of the SGD and SeWA on the NYUV2 dataset.

Method	2300	4300	6300	8300 (iterations)
SGD (Train)	0.1668	0.1343	0.1237	0.1235
SeWA (Train)	0.1463	0.1324	0.1207	0.1160
SGD (Val)	0.1970	0.1719	0.1683	0.1680
SeWA (Val)	0.1813	0.1689	0.1674	0.1648

In extended experiments, we reached identical conclusions. First, as a post-training algorithm, SeWA enhances the generalization capability of the base model even when the base model has already converged. Second, due to the relatively stable task training process, the SeWA algorithm demonstrates equally marginal improvements when applied to additional regression problems. However, in behavior cloning experiments (Section 5.1), where the training process is significantly more unstable, our method demonstrates even more pronounced improvements.

918
919

B.6 ABLATIONS

920
921

B.6.1 HYPERPARAMETER SENSITIVITY

922
923

Our proposed algorithm introduces several new hyperparameters, and understanding their impact is critical for both reproducibility and practical deployment. To this end, we perform comprehensive sensitivity analyses on representative tasks, focusing primarily on the Hopper-medium and Hopper-medium-expert environments from D4RL. All reported results are averaged over three random seeds with 20 evaluations per seed, and we present both mean and standard deviation.

924
925926
927
Table 6: Ablation on the Gumbel-Softmax temperature t in Algorithm 2.1.

t	0.1	0.3	0.5	0.7	1.0
Hopper-medium	1372.11 ± 48.01	1377.29 ± 47.12	1384.03 ± 46.56	1384.45 ± 47.02	1389.28 ± 46.98
Hopper-medium-expert	1595.42 ± 12.51	1601.23 ± 11.87	1609.01 ± 11.35	1610.65 ± 10.72	1616.12 ± 10.58

928
929

Effect of Gumbel-Softmax Temperature t . Table 6 reports the performance of SeWA under different Gumbel-Softmax temperature values t . The results demonstrate that SeWA is generally robust over a wide range of temperatures. Performance degradation is observed only at very small temperatures (e.g., $t = 0.1$), where the Gumbel-Softmax distribution becomes nearly discrete, resulting in high-variance gradients and challenging optimization. For moderate and large t , performance remains stable and exhibits small variance, indicating that SeWA does not require fine-grained tuning of this hyperparameter.

930
931932
933
Table 7: Ablation on the number of MC samples M in Algorithm 2.1

M	1	5	10	20
wall-clock time	0.25 s/iter	0.31 s/iter	0.33 s/iter	0.36 s/iter
Hopper-medium	1389.28 ± 46.98	1390.52 ± 37.06	1399.12 ± 30.95	1414.08 ± 8.86
Hopper-medium-expert	1616.12 ± 10.58	1621.11 ± 9.33	1625.15 ± 7.95	1632.37 ± 4.12

934
935

Effect of Monte Carlo Sample Size M . We further examine the impact of the number of Monte Carlo (MC) samples M used for gradient estimation. In this ablation, we fix $K = 50$ (number of selected checkpoints) and vary M from 1 to 20. Table 7 shows that increasing M consistently reduces performance variance and yields slightly improved returns, which is expected as a result of more accurate gradient estimation. Importantly, the computational overhead grows only mildly - using $20 \times$ samples results in merely $1.44 \times$ wall-clock time - making higher M values computationally feasible. This suggests that practitioners can choose M flexibly based on their computational budget: larger M improves performance but is not strictly necessary to achieve strong results.

936
937938
939
Table 8: Ablation on the max iterations for mask optimization in Algorithm 2.1

max iteration	100	500	1000	1500
Hopper-medium	1370.46 ± 48.90	1381.39 ± 47.23	1389.28 ± 46.98	1390.01 ± 46.92
Hopper-medium-expert	1590.51 ± 12.33	1607.22 ± 11.04	1616.12 ± 10.58	1616.53 ± 10.56

940
941

Effect of Maximum Iterations for Mask Optimization. We next investigate the influence of the maximum number of iterations used in the mask optimization step. As shown in Table 8, performance improves as the number of iterations increases, but the gain saturates at approximately 1000 iterations. This indicates that SeWA converges quickly and does not require excessively long optimization schedules to achieve near-optimal performance - an important property for practical efficiency.

942
943

Effect of Candidate Pool Size k . Finally, we examine the candidate pool size k , i.e., the number of recent checkpoints retained in w . Table 9 shows that increasing k improves performance marginally, with diminishing returns beyond $k = 1000$. Notably, even small pool sizes (e.g., $k = 500$) lead to competitive results, suggesting that SeWA can be deployed efficiently without excessive memory requirements for checkpoint storage.

972

973

Table 9: Ablation on the candidate pool size k ($\text{len}(\mathbf{w})$) in Algorithm 2.1

974

975

976

977

978

979 B.6.2 EXTENDED ANALYSIS OF AVERAGING STRATEGIES

980

981

Table 10: Ablation study on averaging strategies for checkpoint selection.

982

983

984

985

986

To provide a comprehensive evaluation of our averaging methodology, we conduct additional ablation studies examining alternative averaging strategies. Specifically, we compare SeWA against two baseline approaches: All-k-Average, which computes the arithmetic mean of all candidate checkpoints (where $k = 1000$ for both *Hopper-medium* and *Hopper-medium-expert* environments), and Top-K-Average ($K = 50$), which requires evaluating all k candidate points before selecting and averaging the top-performing subset. Due to the computational overhead associated with evaluating all k checkpoints in the Top-K-Average approach, we limit this analysis to two representative environments.

The experimental results presented in Table 10 reveal several important insights. The All-k-Average strategy demonstrates inferior performance compared to SeWA, which can be attributed to information dilution effects. By indiscriminately averaging all candidate checkpoints, this approach fails to prioritize high-quality solutions and incorporates potentially detrimental weights from suboptimal checkpoints, ultimately leading to degraded performance.

Similarly, the Top-K-Average method yields lower performance than SeWA, despite its computational expense in evaluating all candidate points. These findings provide compelling evidence that SeWA’s effectiveness stems from its ability to identify and leverage checkpoints that genuinely contribute to improved target performance, rather than simply aggregating high-performing individual models. The results demonstrate that not all high-performance checkpoints are conducive to exploring flat regions of the loss landscape when combined through averaging. This observation underscores the critical importance of SeWA’s intelligent selection mechanism in the averaging process, which goes beyond naive performance-based selection to identify checkpoints that exhibit beneficial geometric properties when aggregated.

1008

1009

B.6.3 COMPARISON UNDER EQUAL CALCULATIONS

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Unlike prior approaches that rely on extensive hyperparameter sweeps (e.g., determining which models to average), SeWA introduces a lightweight post-hoc mask optimization procedure (Algorithm 2.1). This additional phase incurs only modest computational overhead—approximately 10% of the pretraining cost (e.g., 1,000 vs. 10,000 steps)—while substantially reducing manual tuning effort.

To further address the equal-compute comparison, we performed an SGD-extended baseline in which SGD is allowed to continue training for the same number of extra steps as SeWA, including all evaluations of F during mask optimization. Even under this enlarged budget, the SGD-extended baseline consistently underperforms SeWA, as shown below.

Table 11: Ablation study on equal calculations.

1020

1021

1022

1023

1024

1025

Although selecting the best single SGD checkpoint provides a competitive baseline, it typically exhibits high variance and limited robustness across tasks. Extending training alone does not reliably

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2

1080 Note that, in gradient descent, we have $s_{t+1} = \mathcal{P}_C(s_t + \mu_t \nabla G(s_t))$ where μ_t is learning rate and
 1081 thus using the properties of convex projections we have
 1082

$$1083 \langle s_{t+1} - s_t, s_{t+1} - (s_t + \mu_t \nabla G(s_t)) \rangle \leq 0 \Rightarrow \|s_t - s_{t+1}\|^2 \leq \mu_t \langle s_{t+1} - s_t, \nabla G(s_t) \rangle.$$

1084 Plugging this into the latter inequality we conclude that for $\mu_t \leq \frac{1}{\beta}$
 1085

$$1086 G(s_{t+1}) \geq G(s_t) + \left(\frac{1}{\mu_t} - \frac{\beta}{2} \right) \|s_{t+1} - s_t\|^2 \geq G(s_t) + \frac{\beta}{2} \|s_{t+1} - s_t\|^2.$$

1089 Summing both sides we conclude that
 1090

$$1091 \sum_{t=1}^{\infty} \|s_{t+1} - s_t\|^2,$$

1093 is bounded, which implies that s_t converges to a point s . This means that this point obeys
 1094

$$1095 s = \mathcal{P}_C(s + \mu_t \nabla G(s)).$$

1096 By definition of projection the latter implies that $\mathcal{P}_{C-\{s\}}(\mu_t \nabla G(s)) = 0$. A well known result in
 1097 convex analysis (Rockafellar, 2015) implies $\max_{y \in C} \langle \nabla G(s), y - s \rangle = -\min_{y \in C} \langle \nabla F(s), y - s \rangle \leq$
 1098 0, concluding the proof.
 1099

1100 E PROOF OF THE LEMMA 4.4 AND 4.10

1101 We establish generalization bounds for the SeWA algorithm through uniform stability (Eq. 4). Let
 1102 \bar{w}_T^K and $\bar{w}_T^{K'}$ denote the SeWA’s outputs under perturbations arising from two sources: (1) data
 1103 perturbation, where SeWA runs on two datasets S and S' differing by exactly one sample; (2) weight
 1104 selection for averaging, an inherent algorithmic procedure. To analyze this, we first fix the selected
 1105 weights, ensuring identical selection probabilities at each step i . We can apply stability theory to
 1106 achieve our research objectives based on the above.
 1107

1109 E.1 PROOF OF LEMMA 4.4

1111 We now fix an example z and use the Lipschitz assumption, which transforms the problem into
 1112 bounding the parameter differences.

$$1113 \mathbb{E}_{z,m,A} |F(\bar{w}_T^K; z) - F(\bar{w}_T^{K'}; z)| \leq L \mathbb{E}_{m,A} \|\bar{w}_T^K - \bar{w}_T^{K'}\| \\ 1114 \leq L \left(\frac{1}{k} \sum_{i=T-k+1}^T s_i \mathbb{E}_A \|w_i - w'_i\| + \frac{1}{k} \sum_{i=T-k+1}^T (1 - s_i) \cdot 0 \right) \\ 1115 \leq \hat{s} L \mathbb{E}_A [\bar{\delta}_T],$$

1116 where the second inequality is based on taking the expectation for mask m_i , and the last inequality is
 1117 because of $\hat{s} = \sup_{T-k+1 \leq i \leq T} s_i$.
 1118

1122 E.2 PROOF OF LEMMA 4.10

1124 There are differences in the proof between convex and nonconvex assumptions.
 1125

1126 We split the proof of Lemma 4.10 into two parts. Let ξ denote the event $\bar{\delta}_{t_0} = 0$. Let z be an arbitrary
 1127 example and consider the random variable I assuming the index of the first time step using the
 1128 different sample. Then we have
 1129

$$1130 \mathbb{E} |\nabla F(\bar{w}_T^K; z) - \nabla F(\bar{w}_T^{K'}; z)| = P\{\xi\} \mathbb{E} [|\nabla F(\bar{w}_T^K; z) - \nabla F(\bar{w}_T^{K'}; z)| | \xi] \\ 1131 + P\{\xi^c\} E [|\nabla F(\bar{w}_T^K; z) - \nabla F(\bar{w}_T^{K'}; z)| | \xi^c] \\ 1132 \leq P\{I \geq t_0\} \cdot \mathbb{E} [|\nabla F(\bar{w}_T^K; z) - \nabla F(\bar{w}_T^{K'}; z)| | \xi] \\ 1133 + P\{I \leq t_0\} \cdot \sup_{\bar{w}^K, z} F(\bar{w}^K; z), \quad (18)$$

1134 where ξ^c denotes the complement of ξ .
 1135

1136 Note that when $I \geq t_0$, then we must have that $\bar{\delta}_{t_0} = 0$, since the execution on S and S' is identical
 1137 until step t_0 . We can get $LE[\|\bar{w}_T^K - \bar{w}_T^{K'}\| | \xi]$ combined the Lipschitz continuity of F . Furthermore,
 1138 we know $P\{\xi^c\} = P\{\bar{\delta}_{t_0} = 0\} \leq P\{I \leq t_0\}$, for the random selection rule, we have

$$1139 \quad P\{I \leq t_0\} \leq \sum_{t=1}^{t_0} P\{I = t_0\} = \frac{t_0}{n}. \quad (19)$$

1142 We can combine the above two parts and $F \in [0, 1]$ to derive the stated bound
 1143

$$1144 \quad \mathbb{E}|F(\bar{w}_T^K; z) - F(\bar{w}_T^{K'}; z)| \leq \frac{t_0}{n} + L\mathbb{E}[\|\bar{w}_T^K - \bar{w}_T^{K'}\| | \|\bar{w}_{t_0}^K - \bar{w}_{t_0}^{K'}\| = 0]. \quad (20)$$

1146 Secondly, we take expectation for the m_i of $\mathbb{E}\|\bar{w}_T^K - \bar{w}_T^{K'}\|$, which is similar to the proof of Lemma
 1147 4.4. Then we have

$$1148 \quad \mathbb{E}|F(\bar{w}_T^K; z) - F(\bar{w}_T^{K'}; z)| \leq \frac{t_0}{n} + \hat{s}L\mathbb{E}[\bar{\delta}_T | \bar{\delta}_{t_0} = 0], \quad (21)$$

1150 where $\bar{\delta}_T = \frac{1}{k} \sum_{i=T-k+1}^T \|w_i - w'_i\|$, w_i and w'_i are the outputs of SGD, and $\hat{s} = \sup_{T-k+1 \leq i \leq T} s_i$,
 1151 where s_i is the probability of $m_i = 1$ and $\hat{s} \in (0, 1]$.
 1152

1154 F PROOF OF THE GENERALIZATION BOUNDS

1156 By the Lemma 4.4 and 4.10, the proof of Theorem 4.6 and 4.11 can be further decomposed into
 1157 bounding the difference of the parameters for the last k points of the average algorithm.
 1158

1159 F.1 UPDATE RULES OF THE LAST k POINTS OF THE AVERAGING ALGORITHM.

1161 For the last k points of the averaging algorithm, we formulate it as

$$1162 \quad \hat{w}_T^k = \frac{1}{k} \sum_{i=T-k+1}^T w_i. \quad (22)$$

1165 It is not difficult to find the relationship between \hat{w}_T^k and \hat{w}_{T-1}^k , i.e.,
 1166

$$1167 \quad \hat{w}_T^k = \hat{w}_{T-1}^k + \frac{1}{k} (w_T - w_{T-k}) = \hat{w}_{T-1}^k - \frac{1}{k} \sum_{i=T-k+1}^T \alpha_i \nabla F(w_{i-1}, z_i), \quad (23)$$

1170 where the second equality follows from the update of SGD.
 1171

1172 F.2 PROOF. THEOREM 4.6

1174 We finish the task using Lemma 4.4 and Lemma 4.10, which divide the task of establishing the
 1175 SeWA's generalization bound into two parts: (1) analyzing the impact of the selection process, and
 1176 (2) deriving the bound for averaging over the last k points. Then, we first establish the generalization
 1177 bound for averaging over the last k points.

1178 First, using the relationship between \hat{w}_T^k and \hat{w}_{T-1}^k in Eq. 23, we consider that the different sample
 1179 z_T and z'_T are selected to update with probability $\frac{1}{n}$ at the step T .
 1180

$$1181 \quad \bar{\delta}_T = \bar{\delta}_{T-1} + \frac{1}{k} \sum_{i=T-k+1}^T \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\| \\ 1182 \\ 1183 \quad \leq \bar{\delta}_{T-1} + \frac{2\alpha_T L}{k} + \frac{1}{k} \sum_{i=T-k+1}^{T-1} \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\|, \quad (24)$$

1186 where the proof follows from the triangle inequality and the L -Lipschitz condition. For
 1187 $\frac{1}{k} \sum_{i=T-k+1}^{T-1} \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\|$ will be controlled later.

1188
1189 Second, another situation needs to be considered in case of the same sample are selected($z_T = z'_T$)
1190 to update with probability $1 - \frac{1}{n}$ at the step T .

$$\begin{aligned} 1191 \bar{\delta}_T &= \bar{\delta}_{T-1} + \frac{1}{k} \sum_{i=T-k+1}^T \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\| \\ 1192 &\leq \bar{\delta}_{T-1} + \frac{1}{k} \sum_{i=T-k+1}^{T-1} \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\|, \\ 1193 \end{aligned} \quad (25)$$

1194 where the second inequality comes from the non-expansive property of convex function.
1195

1196 For each $\|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\|$ in the sense of expectation, We consider two situations
1197 using αL bound and the non-expansive property. Then, we get
1198

$$1201 \frac{1}{k} \sum_{i=T-k+1}^{T-1} \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\| \leq \frac{2L}{nk} \sum_{i=T-k+1}^{T-1} \alpha_i. \quad (26)$$

1202 Then we obtain the expectation based on the above analysis
1203

$$\begin{aligned} 1204 \mathbb{E} [\bar{\delta}_T] &\leq (1 - \frac{1}{n}) \bar{\delta}_{T-1} + \frac{1}{n} \left(\bar{\delta}_{T-1} + \frac{2\alpha_T L}{k} \right) + \frac{2L}{nk} \sum_{i=T-k+1}^{T-1} \alpha_i \\ 1205 &\leq \mathbb{E} [\bar{\delta}_{T-1}] + \frac{2L}{nk} \sum_{i=T-k+1}^T \alpha_i \\ 1206 \end{aligned} \quad (27)$$

1207 recursively, we can get
1208

$$\begin{aligned} 1209 \mathbb{E} [\bar{\delta}_T] &\leq \frac{2L}{nk} \left(\sum_{i=T-k+1}^T \alpha_i + \sum_{i=T-k}^{T-1} \alpha_i + \cdots + \sum_{i=1}^k \alpha_i \right) \\ 1210 &\quad + \frac{2L}{nk} \left(\sum_{i=1}^{k-1} \alpha_i + \sum_{i=1}^{k-2} \alpha_i + \cdots + \sum_{i=1}^1 \alpha_i \right). \\ 1211 \end{aligned} \quad (28)$$

1212 Let $\alpha_{i,j} = \alpha$, we get
1213

$$\mathbb{E} [\bar{\delta}_T] = \frac{2\alpha L}{n} \left(T - \frac{k}{2} \right). \quad (29)$$

1214 Plugging this back into Eq. 4.4 and combining the above and Lemma 4.4, we obtain
1215

$$\epsilon_{gen} = \mathbb{E} |F(\bar{w}_T^K; z) - F(\bar{w}_T^{K'}; z)| \leq \frac{2\alpha L^2 \hat{s}}{n} \left(T - \frac{k}{2} \right). \quad (30)$$

1216 And we finish the proof.
1217

1218 In fact, based on the above proof, the generalization bound can be readily extended to the case of a
1219 decaying learning rate. However, we adopt a constant learning rate mainly for ease of comparison
1220 with other methods. As discussed in the remark 4.14, our approach to establishing the generalization
1221 bound of SeWA is similar to that of the paper Wang et al. (2024b), but with a fundamental difference.
1222 Our focus lies in the effect of selection on generalization, while the generalization bound of the
1223 averaged last k iterates serves only as a component of our study, where a uniform weighting scheme
1224 suffices. In contrast, existing work concentrates on the paradigm of weighted averaging.
1225

1226 F.3 PROOF. THEOREM 4.11 (BASED ON THE CONSTANT LEARNING RATE)

1227 F.3.1 LEMMA F.1 AND IT'S PROOF

1228 **Lemma F.1.** Assume that F is β -smooth and non-convex. Let $\alpha = \frac{c}{t}$, we have
1229

$$\|w'_T - w_T\| \leq e^{\frac{c\beta k}{T-k}} \bar{\delta}_T, \quad (31)$$

1242 where $\bar{\delta}_T = \frac{1}{k} \sum_{i=T-k+1}^T \|w'_i - w_i\|$.
 1243

1244 **proof Lemma F.1.** By the triangle inequality and our assumption that F satisfies, we have
 1245

$$\begin{aligned} \|w'_T - w_T\| &= \frac{1}{k} \cdot k \cdot \|w'_T - w_T\| \\ &\leq \frac{1}{k} (\|w'_T - w_T\| + (1 + \alpha_{T-1}\beta) \|w'_{T-1} - w_{T-1}\| + \dots + \\ &\quad (1 + \alpha_{T-1}\beta)(1 + \alpha_{T-2}\beta) \dots (1 + \alpha_{T-k+1}\beta) \|w'_{T-k+1} - w_{T-k+1}\|) \\ &\leq \prod_{t=T-k+1}^T (1 + \alpha_t\beta) \left(\frac{1}{k} \sum_{i=T-k+1}^T \|w'_i - w_i\| \right). \end{aligned} \quad (32)$$

1254 Let $\alpha_t = \frac{c}{t}$, we have
 1255

$$\|w'_T - w_T\| \leq \prod_{t=T-k+1}^T (1 + \alpha_t\beta) \bar{\delta}_T \leq \left(1 + \frac{c\beta}{T-k} \right)^k \bar{\delta}_T \leq e^{\frac{c\beta k}{T-k}} \bar{\delta}_T. \quad (33)$$

1259 F.3.2 PROOF. THEOREM 4.11

1261 In the non-convex setting, we build the SeWA's generalization bound based on the Lemma 4.10.
 1262

1263 Then, the last k points of the averaging algorithm's stability bounds are provided as follows. Based
 1264 on the relationship between \hat{w}_T^k and \hat{w}_{T-1}^k in Eq. 23. We consider that the different samples z_T and
 1265 z'_T are selected to update with probability $\frac{1}{n}$ at step T.

$$\begin{aligned} \bar{\delta}_T &= \bar{\delta}_{T-1} + \frac{1}{k} \sum_{i=T-k+1}^T \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\| \\ &\leq \bar{\delta}_{T-1} + \frac{2\alpha_T L}{k} + \frac{1}{k} \sum_{i=T-k+1}^{T-1} \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\|, \end{aligned} \quad (34)$$

1272 Next, the same sample $z = z'$ is selected to update with probability $1 - \frac{1}{n}$ at step T.
 1273

$$\begin{aligned} \bar{\delta}_T &\leq \bar{\delta}_{T-1} + \frac{1}{k} \sum_{i=T-k+1}^T \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\| \\ &\leq \bar{\delta}_{T-1} + \frac{\alpha_T \beta}{k} \|w'_{T-1} - w_{T-1}\| + \frac{1}{k} \sum_{i=T-k+1}^{T-1} \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\| \\ &\leq (1 + \frac{\alpha_T \beta e^{\frac{c\beta k}{T-k}}}{k}) \bar{\delta}_{T-1} + \frac{1}{k} \sum_{i=T-k+1}^{T-1} \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\|, \end{aligned} \quad (35)$$

1283 where the proof follows from the β -smooth and Lemma F.1. Then, we bound the
 1284 $\alpha \|\nabla F(w'_{T-2}, z_{T-1}) - \nabla F(w_{T-2}, z_{T-1})\|$ with different sampling.
 1285

$$\begin{aligned} \alpha_i \mathbb{E} \|\nabla F(w'_i, z_{i+1}) - \nabla F(w_i, z_{i+1})\| &= \frac{2\alpha_i L}{n} + \left(1 - \frac{1}{n} \right) \alpha_i \beta \|w_i - w'_i\| \\ &\leq \frac{2\alpha_i L}{n} + \alpha_i \beta (\|w_{i-1} - w'_{i-1}\| + \alpha_{i-1} \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\|) \\ &\leq \frac{2\alpha_i L}{n} + \alpha_i \beta \left(\frac{2\alpha_{i-1} L}{n} + (1 + \alpha_{i-1} \beta) \|w_{i-1} - w'_{i-1}\| \right) \\ &\dots \\ &\leq \frac{2\alpha_i L}{n} \left(1 + \alpha_{i-1} \beta + \sum_{m=t_0}^{i-1} \prod_{t=m+1}^i (1 + \alpha_t \beta) \alpha_m \right) + \alpha_i \beta \prod_{t=t_0}^i (1 + \alpha_t \beta) \|w_{t_0} - w'_{t_0}\|, \end{aligned} \quad (36)$$

where $w_{t_0} = w'_{t_0}$. Therefore, we discuss the bound for $\frac{1}{k} \sum_{i=T-k+1}^{T-1} \alpha_i \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\|$ based on the recursive relationship.

$$\begin{aligned}
& \frac{1}{k} \sum_{i=T-k+1}^{T-1} \alpha_i \mathbb{E} \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\| \\
& \leq \frac{1}{k} \sum_{i=T-k+1}^{T-1} \frac{2\alpha_i L}{n} \left(1 + \alpha_{i-1} \beta + \sum_{m=t_0}^{i-1} \prod_{t=m+1}^i (1 + \alpha_t \beta) \alpha_m \right) \\
& = \frac{2L}{k} \sum_{i=T-k+1}^{T-1} \frac{\alpha_i}{n} + \frac{2\beta L}{k} \sum_{i=T-k+1}^{T-1} \frac{\alpha_i \alpha_{i-1}}{n} + \frac{2L}{k} \sum_{i=T-k+1}^{T-1} \frac{\alpha_i}{n} \sum_{m=t_0}^{i-1} \prod_{t=m+1}^i (1 + \alpha_t \beta) \alpha_m \\
& \leq \frac{2cL}{n(T-k+1)} + \frac{2\beta c^2 L}{n(T-K)^2} + \frac{2cLT^{c\beta}}{n\beta t_0^{c\beta}(T-k+1)}, \tag{37}
\end{aligned}$$

where $\alpha_i = \frac{c}{i}$ and the proof of the last term in the first equality is provided as follows

$$\begin{aligned}
& \sum_{m=t_0}^{T-1} \prod_{t=m}^{T-1} \left(1 + \frac{c\beta}{t}\right) \frac{1}{m} \leq \sum_{m=t_0}^{T-1} \frac{1}{m} \left(e^{\sum_{t=m}^{T-1} \frac{c\beta}{t}}\right) \leq \sum_{m=t_0}^{T-1} \frac{T^{c\beta}}{m^{1+c\beta}} \leq T^{c\beta} \int_{t_0}^{T-1} m^{-(1+c\beta)} dm \\
& = \frac{T^{c\beta}}{c\beta} \left(\frac{1}{t_0^{c\beta}} - \frac{1}{(T-1)^{c\beta}} \right) \leq \frac{1}{c\beta} \cdot \left(\frac{T}{t_0} \right)^{c\beta}.
\end{aligned} \tag{38}$$

Taking $M_1 = \left(1 + c\beta + \frac{1}{\beta}\right)$, we can obtain the bound in the expectation sense.

$$\frac{1}{k} \sum_{i=T-k+1}^{T-1} \alpha_i \mathbb{E} \|\nabla F(w'_{i-1}, z_i) - \nabla F(w_{i-1}, z_i)\| \leq \frac{2cLM_1}{nt_0^{c\beta}} \cdot \left(\frac{1}{T-k} \right)^{1-c\beta}. \quad (39)$$

Compared with the results in paper Wang et al. (2024b), here we establish an upper bound on the cumulative gradient that depends on t_0 . This enables us to derive a generalization bound that surpasses the performance of SGD in the subsequent analysis, without requiring strict assumptions.

Then, we obtain the expectation considering the above analysis

$$\mathbb{E} [\bar{\delta}_{T+1}] \leq (1 - \frac{1}{n}) \left(1 + \frac{\alpha_T \beta e^{\frac{c\beta k}{T-k}}}{k} \right) \bar{\delta}_T + \frac{1}{n} \left(\bar{\delta}_T + \frac{2\alpha_T L}{k} \right) + \frac{2cLM_1}{nt_0^{c\beta}} \cdot \left(\frac{1}{T-k} \right)^{1-c\beta} \quad (40)$$

let $\alpha_t = \frac{c}{t}$, then

$$\begin{aligned}
& \leq \left(1 + \left(1 - \frac{1}{n}\right) \frac{c\beta e^{\frac{c\beta k}{t-k}}}{kt}\right) \bar{\delta}_t + \frac{2cL(1+kM_1)}{nk(t_0-k)^{c\beta}} \left(\frac{1}{t-k}\right)^{1-c\beta} \\
& \leq \exp\left(\left(1 - \frac{1}{n}\right) \frac{c\beta}{kt}\right) \bar{\delta}_t + \frac{2cLM}{nk(t_0-k)^{c\beta}} \left(\frac{1}{t-k}\right)^{1-c\beta}, \tag{41}
\end{aligned}$$

where $M = 1 + kM_1$, $c\beta \in (0, 1)$, $k < t_0$ and we used that $\lim_{x \rightarrow \infty} (1 + \frac{1}{x})^x = e$ and $\lim_{x \rightarrow \infty} e^{\frac{1}{x}} = 1$.

1350 Using the fact that $\bar{\delta}_{t_0} = 0$, we can unwind this recurrence relation from T down to $t_0 + 1$.
 1351

$$\begin{aligned}
 1352 \mathbb{E}\bar{\delta}_{t+1} &\leq \sum_{t=t_0+1}^T \left(\prod_{m=t+1}^T \exp\left((1 - \frac{1}{n}) \frac{c\beta}{km}\right) \right) \frac{2cLM}{nk(t_0 - k)^{c\beta}} \cdot \left(\frac{1}{t - k}\right)^{1-c\beta} \\
 1353 &= \sum_{t=t_0+1}^T \exp\left(\frac{(1 - \frac{1}{n})c\beta}{k} \sum_{m=t+1}^T \frac{1}{m}\right) \frac{2cLM}{nk(t_0 - k)^{c\beta}} \cdot \left(\frac{1}{t - k}\right)^{1-c\beta} \\
 1354 &\leq \sum_{t=t_0+1}^T \exp\left(\frac{(1 - \frac{1}{n})c\beta}{k} \cdot \log\left(\frac{T}{t}\right)\right) \frac{2cLM}{nk(t_0 - k)^{c\beta}} \cdot \left(\frac{1}{t - k}\right)^{1-c\beta} \\
 1355 &\leq T^{\frac{(1 - \frac{1}{n})c\beta}{k}} \cdot \sum_{t=t_0+1}^T \left(\frac{1}{t - k}\right)^{\frac{(1 - \frac{1}{n})c\beta}{k} + 1 - c\beta} \cdot \frac{2cLM}{nk(t_0 - k)^{c\beta}} \\
 1356 &\leq \left(\frac{c\beta}{k} + 1 - c\beta\right)^{-1} \cdot \frac{2cLM}{nk(t_0 - k)^{c\beta}} \cdot T^{\frac{c\beta}{k}} \cdot \left(\frac{1}{t_0 - k}\right)^{\frac{c\beta}{k} - c\beta} \\
 1357 &\leq \frac{2cLM\tau}{n-1} \cdot T^{\frac{c\beta}{k}} \cdot \left(\frac{1}{t_0 - k}\right)^{\frac{c\beta}{k}}, \\
 1358 \end{aligned} \tag{42}$$

1359 where $\tau = \frac{1}{k+c\beta-kc\beta}$ and $c\beta \in (0, 1)$. Plugging this back into Eq. 11, we obtain
 1360

$$\mathbb{E}|F(\bar{w}_T^k; z) - F(\bar{w}_T'^k; z)| \leq \frac{t_0}{n} + \frac{2\hat{s}cL^2M\tau}{n-1} \cdot T^{\frac{c\beta}{k}} \cdot \left(\frac{1}{t_0 - k}\right)^{\frac{c\beta}{k}}. \tag{43}$$

1361 By taking the extremum, we obtain the minimum
 1362

$$t_0 = \left(\frac{2\hat{s}c^2L^2\beta M\tau}{k}\right)^{\frac{k}{k+c\beta}} \cdot T^{\frac{c\beta}{k+c\beta}} + k. \tag{44}$$

1363 Finally, this setting gets
 1364

$$\epsilon_{gen} = \mathbb{E}|F(\bar{w}_T^k; z) - F(\bar{w}_T'^k; z)| \leq \frac{1 + \frac{k}{c\beta}}{n-1} (2\hat{s}c^2L^2\beta\tau M k^{-1})^{\frac{k}{c\beta+k}} \cdot T^{\frac{c\beta}{c\beta+k}} + \frac{k}{n-1}. \tag{45}$$

1365 To simplify, omitting constant factors that depend on β , c and L , this setting get
 1366

$$\epsilon_{stab} \leq \mathcal{O}_{\hat{s}}\left(\frac{T^{\frac{c\beta}{k+c\beta}}}{n}\right). \tag{46}$$

1367 And we finish the proof.
 1368

1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403