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ABSTRACT

Weight averaging has become a standard technique for enhancing model perfor-
mance. However, methods such as Stochastic Weight Averaging (SWA) and Latest
Weight Averaging (LAWA) rely on manually designed checkpoint selection rules,
which struggle under unstable training dynamics. To minimize human bias, this
paper proposes Selective Weight Averaging (SeWA), which adaptively selects
checkpoints during the final stages of training for averaging. Both theoretically
and empirically, we show that SeWA achieves a better generalization. From an
algorithm implementation perspective, SeWA can be formulated as a discrete subset
selection problem, which is inherently challenging to solve. To address this, we
transform it into a continuous probabilistic optimization framework and employ
the Gumbel-Softmax estimator to learn the non-differentiable mask for each check-
point. Theoretically, we first prove that SeWA converges to a critical point with
flatter curvature, thereby explaining its underlying mechanism. We further derive
stability-based generalization bounds for SeWA, which are sharper than those
of SGD under both convex and non-convex assumptions, thus providing formal
guarantees of improved generalization. Finally, extensive empirical evaluations
across diverse domains, including behavior cloning, image classification, and text
classification, demonstrate the robustness and effectiveness of our approach.

1 INTRODUCTION

Model averaging has shown substantial benefits in deep learning, both in empirical performance
across practical applications and in theoretical analyses related to generalization and optimization.
From the perspective of generalization, averaging-based algorithms, such as SWA [[zmailov et al.
(2018), Exponential Moving Average (EMA) |Szegedy et al.|(2016), LAWA (Kaddour} 2022} |Sanyal
et al.,|2023)), and Trainable Weight Averaging (TWA) (Li et al.,|2022), have been empirically validated
to enhance generalization performance across various tasks. These methods have gained widespread
adoption in several domains, including large-scale network training (Izmailov et al., 2018} Lu et al.,
2022;Sanyal et al., 2023)) and adversarial learning (Xiao et al.,[2022). In theoretical research, Hardt,
et al.| (2016) and [Xiao et al.|(2022) successively give stability-based generalization bounds for SWA
in different application contexts, showing that under the convexity assumption, the generalization
bound of the SWA algorithm is half that of SGD. From an optimization perspective, model averaging
can facilitate convergence by stabilizing the trajectory of the optimizer when it oscillates near a
local minimum. [Polyak & Juditsky| (1992) demonstrate that averaging model weights improves
convergence speed in the setting of convex loss functions. More recently, [Sanyal et al.|(2023) have
empirically verified accelerated convergence using the LAWA in Large Language Models pre-training.

Despite their theoretical and empirical advantages, averaging-based algorithms often depend on man-
ually designed training frameworks and are sensitive to hyperparameter selection. For example, SWA
revisits historical model states at each step, which can slow convergence, and requires a cyclic learning
rate schedule to identify low-loss regions, introducing additional tuning overhead. In contrast, LAWA
selects the final averaging point from the last k epochs. However, Sanyal et al.|(2023)) have observed
that performance does not vary monotonically with respect to k; instead, it improves initially and then
degrades as k increases. TWA addresses some of these limitations by adaptively learning averaging
weights, but it incurs extra computational cost due to the need for orthogonalizing two subspaces.
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During the implementation and theoretical analysis of our algorithm, we encountered three key
challenges: (1) The adaptive selection of checkpoints can be formulated as a subset selection task, a
typical discrete optimization problem. Solving such problems requires handling discrete variables
that are often non-differentiable. (2) Establishing the stability-based generalization bound for SeWA
requires not only quantifying the impact of input perturbations on the output but also analyzing the
influence introduced by the adaptive learning process. (3) Although stability-based generalization
bounds provide theoretical guarantees of desirable properties, they do not explain the intrinsic
operational mechanisms of SeWA, leaving its functioning essentially a black box.

To address these challenges, we formulate the SeWA solving process as the coreset selection problem,
embedding the discrete optimization objective into a probabilistic space, which enables the utilization
of gradient-based continuous optimization methods. Furthermore, we employ the Gumbel-softmax
estimator to address the non-differentiability of binary variables. In generalization analysis, the
discrete selection problem of adaptive learning processes is transformed, in expectation, into a global
averaging process dependent on selection probabilities, establishing a theoretical bridge for building
SeWA’s stability bounds. We also derive generalization bounds for SeWA under different assumptions
based on stability, which are sharper than those of other algorithms (see Table[I). Furthermore, based
on the differential form of the derivative of our relaxation function, we establish that SeWA converges
to a critical point with flatter landscape. Finally, extensive experiments have been conducted across
various domains, including computer vision, natural language processing, and reinforcement learning,
confirming the algorithm’s generalization advantages. Our contributions are listed as follows.

e Our approach adaptively selects models for averaging in the final training stages, ensuring
strong generalization, lower manual cost, and reduced bias toward specific scenarios. No-
tably, the selection paradigm of SeWA is well-suited to unstable training processes (e.g.,
reinforcement learning), where it yields significant improvements in generalization.

e We propose a solvable optimization framework by transforming the discrete problem into a
continuous probabilistic space and addressing the non-differentiability of binary variables
using the Gumbel-Softmax estimator during optimization.

e We prove that the SeWA can converge to a critical point with flatter curvature, thereby
providing a theoretical foundation for understanding its underlying mechanism. Further, we
analyze the impact of masks on generalization theory in expectation and derive a stability-
based generalization upper bound for SeWA, showing advantages over SGD and other
averaging-based algorithms’ bounds under the different function assumptions.

e We empirically demonstrate the outstanding performance of our algorithm in multiple do-
mains, including behavior cloning, image classification, and text classification. In particular,
the SeWA achieves comparable performance using only a few selected points, matching or
exceeding the performance of other methods that require many times more points.

Related Work, Due to space limitations, the comprehensive literature review is placed in Appendix
[Al In particular, we present a detailed comparison of the generalization bounds for our proposed
SeWA and existing algorithms in Table
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Table 1: Comparison of SeWA with other algorithms on different settings. Here 7' represents
iterations, and n denotes the size of the datasets. L, 3, and c are constants. k is the number of
averages. § = SUPp_p41<;<71 Si» 5 € (0,1], s; corresponds to the probability of mask m = 1 and O;
means that this upper bound depends on 5. We can derive that SeWA has sharper bounds compared
to others in different settings, where FWA is the general form of LAWA.

SETTINGS \ LEARNING RATE \ ALGORITHM \ GENERALIZATION BOUND
SGD 2aLT /nHARDT ET AL.|(2016)
SWA aLT/n|XIAO ET AL.|(2022)
CONVEX o=« FWA 2aL(T — k/2)/n|WANG ET AL.|(2024B)
EMA —
SEWA 2aL5(T — k/2) /n THEOREM [4.6]
SGD O(TT%% /n) [HARDT ET AL./(2016)
cB
. SWA O(T'2+<F /n)[WANG ET AL.|(2024A)
NON-CONVEX oap = ¢ B 1
¢ FWA O(T'#<# /n)|WANG ET AL.|(2024B)
EMA —
cB
SEWA QO:(T*+<F /n) THEOREM |4.11

2 METHODOLOGY

In this section, we begin by formalizing the problem setup and introducing the foundational assump-
tions, definitions, and key properties. We then present the proposed SeWA algorithm along with the
essential terminology required for its understanding.

2.1 PROBLEM SETTING

Let F'(w, z) be a loss function that measures the loss of the predicted value of the network parameter
w at a given sample z. There is an unknown distribution D and a sample dataset S = (21, 22, ..., 2n)
of n examples i.i.d. drawn from D. Then the population risk and empirical risk are defined as

1 n
Population Risk: Rp[w] = E,.pF(w;z) and Empirical Risk:Rg[w] = — E F(w; z).
n
i=1

The generalization error of a model w is the difference €4e,, = Rp[w] — Rglw].

SGD. For the target function F' and the given dataset S = (21, 22, -+ , 2, ), we consider the SGD’s
general update rule as

Wiy = wy — aVy, F(wy, 2, ), (1
where « is the fixed learning rate, z;, is the sample chosen in iteration ¢. We choose z;, from dataset .S
in a standard way, picking ¢; ~ Uniform {1,--- ,n} at each step. This setting is commonly explored
in analyzing the stability [Hardt et al.|(2016); [X1ao et al.|(2022).

SeWA algorithm adaptively selects K points for
averaging among the last k points on the training
trajectory after 7" steps of the SGD iterations. It
is formulated as

Algorithm 1: Selective Weight Average
Input: Checkpoints w, hyper-parameters

t, M, max_iteration
Init: Mask probability s;

1 T 1 fori=1,..., max_iteration do
oK = — iy 2)2 Gumbel-softmax sampling for
wp = m;w, 2)

K m=1,...,Mdo

i=T—k+1
0 0 N (0.1} and L Sample u(™ ~ Uniform(0, 1);
where the mask m,; € s and m; = 1 1n- m )
dicating the ¢-th weight is selected for averag-4 Compute I (W(GS(S’ u™, t)>’

ing and otherwise excluded; the selection count 3 end . o

K = kp,=1 = E?:Tfkﬂ m; quantifies the ¢ L(e);tri;lilzrég mask probability
number of selected weights within the interval S 1 M (m) .
[T — k + 1,T], which equivalently represents F(s) = 37 2m=1 F (W(GS(S,U ,t)),
the number of candidate models incorporated 7 end

in averaging. In practice, the SeWA algorithm Output: Mask m based on K largest

selects the top-K highest-probability weights for probabilities in s

averaging, as outlined in Algorithm [T}
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2.2 BASIC ASSUMPTIONS

Moreover, we assume function F' satisfies the following Lipschitz and smoothness assumption.
Assumption 2.1 (L-Lipschitz). A differentiable function F' : R? — R satisfies the L-Lipschitz
property, i.e., for Vu,v € R, ||F(u) — F(v)|| < L||u — v||, which implies | VF(u)|| < L.

Assumption 2.2 (8-smooth). A differentiable function F' : RY 5 Ris [B-smooth, i.e., for Vu, v € R4,
we have |[VF(u) — VF(v)|| < Bllu — vl

Assumptions [2.T]and [2.2] are often used to establish stability bounds for algorithms and are crucial
conditions for analyzing the model’s generalization performance.

Assumption 2.3 (Convex function). A differentiable function F' : R? — R is convex, i.e., for
Yu,v € RY F(u) < F(v) + (VF(u),u — v).

Different functional assumptions correspond to different expansion properties, which determine the
different generalization bounds and will be discussed in Lemma [2.4]and Chapter [4}

2.3 THE EXPANSIVE PROPERTIES

Lemma 2.4. Assume that the function F is 3-smooth. Then,
(1). (non-expansive) If F is convex, for any o < 2, we have ||wri1 — wh || < lwr — wh|;
(2). ((1+aB)-expansive) If F' is non-convex, for any o, we have ||[wr1—wrp || < (14af) ||wr—w||.

Lemma 2.4]tells us that the gradient update becomes non-expansive when the function is convex and
the step size is small, which implies that the algorithm will always converge to the optimum in this
setting. However, although this is not guaranteed when the function is non-convex, it is required that
the gradient updates cannot be overly expansive if the algorithm is stable. The proof of Lemma[2.4]is
deferred to Appendix Q Additional dissuasion can be found in|[Hardt et al.|(2016); Xiao et al.| (2022]).

2.4  STABILITY AND GENERALIZATION DEFINITION

Hardt et al.| (2016) link the uniform stability of the learning algorithm with the expected generalization
error bound in research of SGD’s generalization. The expected generalization error of a model
w = Ag trained by a certain randomized algorithm A is defined as

Es . [Rs[As] — Rp [As]] - (3)
Here, expectation is taken over the internal randomness of A. Next, we introduce the uniform stability.

Definition 2.5 (e-Uniformly Stable). A randomized algorithm A is e-uniformly stable if for all data
sets S, 8" from D such that S and S’ differ in at most one example, we have
sup {EA[F(Ag;z) — F(Ag/;2)]} <e. @
z€S,S’
Theorem 2.6. (Generalization in Expectation (Hardt et al., 2016, Theorem 2.2)) Let A be e-uniformly
stable. Then,
|Es,a[Rs[As] — Rp [As]]| < e (5)

This theorem clearly states that if an algorithm has uniform stability, then its generalization error is
small. In other words, uniform stability implies generalization in expectation Hardt et al. (2016).
Above proof is based on Bousquet & Elisseeft] (2002, Lemma 7) and similar to Shalev-Shwartz et al.
(2010, Lemma 11).

3 PRACTICAL SEWA IMPLEMENTATION

Although the SeWA algorithm has simpler expressions, the difficulty is learning the mask m;. Inspired
by tasks such as coreset selection Zhou et al.|(2022), the discrete problem is relaxed to a continuous
one. We first formulate weight selection into the following discrete optimization paradigm:

min F(m) = F (w(m)) = 3" F (w(m);=) ©)

4
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where C'= {m:m; = Oor1,|m|o < K} and w(m) = + 31, _, ., mw;.

To transform the discrete Eq. [f]into a continuous one, we treat each mask m; as an independent
binary random variable and reparameterize it as a Bernoulli random variable, m; ~ Bern(s;), where
s; € [0, 1] represents the probability of m; taking the value 1, while 1 — s, corresponds to the
probability of m; being 0. Consequently, the joint probability distribution of m is expressed as
p(mls) =TT ;(s;)™ (1 — s;)'~™:. Then, the feasible domain of the target Eq. E] approximately

becomes C' = {s: 0 < s < 1,|s||y < K} since By, wpimys)lmllo = o1y si. As in the previous

definition, K > 0 in C is a constant that controls the size of the feasible domain. Then, Eq. Elcan be
naturally relaxed into the following excepted loss minimization problem:

min F(s) = Ep()s) F (W(m)) , (7
seC

where C' = {s:0 < s <1,]|s|; < K}. Optimizing Eqinvolves discrete random variables, which
are non-differentiable. One choice is using Policy Gradient Estimators (PGE) such as the REIN-
FORCE algorithm (Williams}, |1992; Sutton et al.| [1999)) to bypass the back-propagation of discrete
masks m,

VF(s) = Epims)F (W(m)) Vslogp(m | 5).

However, these algorithms suffer from the high variance of computing the expectation of the objective
function, hence may lead to slow convergence or sub-optimal results.

To overcome these issues, we resort to the reparameterization trick using Gumbel-softmax sampling
(Jang et al., [2017; [Maddison et al.,|2017). Instead of sampling discrete masks m, we get continuous
relaxations by,

e exp((logs; + gi1)/t) ®)
" exp((logsi + gi1)/t) + exp((log(1 — i) + gi0)/t)’

fori = 1,...,k, where g, o and g; ; are i.i.d. samples from the Gumbel(0, 1) distribution. The
hyperparameter ¢ > 0 controls the sharpness of this approximation. When it reaches zero, i.e., t — 0,
m converges to the true binary mask m. During training, we maintain ¢ > 0 to ensure the function is
continuous. For inference, we can sample from the Bernoulli distribution with probability s to get
sparse binary masks. In practice, the random variables g ~ Gumbel(0, 1) can be sampled from,

g = —log(—log(u)), w ~ Uniform(0,1).

For simplicity, we denote the Gumbel-softmax sampling in Eq. [8| as . = GS(s,u,t), where
u ~ Uniform(0, 1). Replacing the binary mask m in Eq. [7| with the continuous relaxation mn, the
optimization problem becomes,

min F(s) = Ey~tnitormo, nF (W(GS(s,u,1)), where O = {s:0< s <1,]|s|; < K}.
seC

The expectation can be approximated by Monte Carlo samples, i.e.,

M
- 1
min F(s) = — F(w GS s,u(m),t),
iy (s) =77 mz:% (GS( )
where u(") are i.i.d. samples drawn from Uniform(0, 1). Empirically, since the distribution of v is
fixed, this Monte Carlo approximation exhibits low variance and stable training |Kingma & Welling
(2013); Rezende et al.| (2014). Furthermore, since Eq. B] is continuous, we can optimize it using
back-propagation and gradient methods.

Remark 3.1. SeWA adaptively selects useful checkpoints, which implies that it does not require the
extra cost associated with manual design and avoids model biases introduced by prior knowledge,
thereby making our approach applicable to a broader range of tasks. In the following experiments,
SeWA algorithm demonstrates particular suitability for scenarios characterized by unstable training
trajectories, such as behavior cloning. By leveraging checkpoint averaging, SeWA effectively
stabilizes the training process, mitigating fluctuations and enhancing overall performance.
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4 THEORETICAL ANALYSIS OF SEWA

4.1 OPTIMIZATION ANALYSIS

Next, we show that the standard gradient descent algorithm will converge to a "flat" point. Prior to
this, we first revisit the definition of stationary points for the minimization problem, that is to say,

Definition 4.1. Given a differentiable function G : K — R and a domain C C /C, a pointx € C is
called as a stationary point for the function G over C if and only if minyec(y — x, VG(x)) > 0.

Then, we have the following result

Theorem 4.2. If the Bernoulli extension F in Eq[]|is 3-smooth, gradient descent with a step size
smaller than % will eventually converge to a stationary point.

Remark 4.3. The -smoothness of F'(s) has been verified in Appendix C of (Hassani et al., 2017).

From the definition of Bernoulli extension F'(s), we can show that (Calinescu et al.| 201 1)

oF
() 2 By (F (wlmim; — 1) = F (w(mim: = 0)) ), ©)
where s £ (s1,...,5,) € [0,1]", (m;m; — 1) means that we reset the i-th coordinate of m to 1

and (m;m; — 0) denotes setting m; to value 0.

According to Eq{9] we can infer that %i (s) corresponds to the expected marginal effect of the i-th
SGD iteration on mask m. Generally speaking, gradient descent algorithm only can be constrained
to a finite number of iterations. Consequently, the outcome s we finally obtain is an approximate
stationary point for Bernoulli extension F' with [(y — s, VF(s))| < ¢, Vy € C. Particularly, when
s is an interior point (near the boundary) of C, we can know, for any basic vector e;, there exists a
constant A such that s + Ae; € C, which implies that the following inequality holds:

I Epmis) (F (Wlm;m; — 1)) — F (w(m;m; — 0)) )\
(10)
— max (<(s Fhei) — 5, VE(s)), (5 — Mey) — s, VF(s))) < max|(y 5. VF(s) < e

Eq/10|implies that the expected marginal change of F'(w(m)) along any coordinate is bounded by .
In other words, the SeWA algorithm can converge to a critical point with flatter curvature.

4.2 GENERALIZATION ANALYSIS

This section provides the upper bounds on generalization in the convex and non-convex settings,
respectively. First, a critical lemma is provided for building a stability bound in the convex setting.

Lemma 4.4. Let u’):,If and u’):,If " denote the corresponding outputs of SeWA after SGD running T steps
on the datasets S and S’, which have n samples but only one different. Assume that function F (-, z)
satisfies Assumptions 2.1)for a fixed example z, then we have

E|F(wy;2) — F(wi'; 2)| < S8LE[67], (11)

where b1 = + Z?:T—k-u |w; —wi ||, w; and w; are the outputs of SGD, and § = Supp_j.1<;<7 Sis
where s; is the probability of m; = 1 and § € (0, 1].

Remark 4.5. The parameter § is the upper bound of the probability s; that selects a candidate model
w; for averaging. Notably, setting § # 0 carries practical significance: if § = 0, the algorithm would
result in the failure to select any weights for averaging, thereby collapsing model parameters to zero.
Such a scenario is incompatible with the algorithm’s design principles and fundamentally undermines
its intended purpose. Additionally, since the learned probability s; is inherently encoded within the
network parameters, S = 0 would force all parameters to zero, violating the algorithm’s operational
framework. Thus, our § € (0, 1] setting is theoretically and practically justified.

The Lemma [4.4] further decomposes the problem of selecting points for averaging within the last
k steps into averaging over the last k steps multiplied by the probability s; of each step by taking
an expectation over the mask, which makes it possible further to establish SeWA'’s stability bounds.
Next, we give the bound for SeWA in the convex setting combined with Lemma 4.4
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Theorem 4.6. Suppose that we first run SGD with constant step sizes o < % for T steps, where each

step samples z uniformly with replacement and learn the probability s; of each weight w; from k
checkpoints. If function F satisfies Assumptions[2.1} 2.2 and SeWA has uniform stability of

2025 k
%WS‘IS(T—)7 (12)

n 2
where § = supp_;. 1 <j<p Si and 5 € (0,1].
Remark 4.7. Theorem [.6 shows that the SeWA algorithm has a sharper stability bound of
2aL? (T — k/2) 8/n under the convex assumption than the bound 2« L>T'/n for SGD given by
Hardt et al.| (2016). The reason for improving the generalization comes from two main sources: (1)
the last k& checkpoints averaging improves the SGD bound O(T'/n) to O((T — k/2)/n). This result
degenerates to the SGD bound when k£ = 1. (2) The algorithm further improves the stability bound
20L?(T — k/2)/n to § times its size, which reflects the influence of selection on the bound.
Remark 4.8. The k in Theorem [4.6]implies that the more checkpoints involved in the averaging, the
better the generalization performance. In practice, k is set sufficiently large to ensure that the selected
checkpoints can comprehensively explore the solution space. In contrast, a small k leads to limited
improvement in generalization due to the similar performance of checkpoints collected in later stages.
Remark 4.9. Theorem4.6|introduces a scaling parameter §, which is confined to (0, 1] and linearly
modulates the bound 2aL*(T" — k/2)/n but remains independent of the number of selected weights.
Furthermore, our empirical analysis in Section [5] demonstrates that smaller numbers of selected
weights do not consistently yield better generalization performance.

Lemma 4.10. Let wqff and waf " denote the corresponding outputs of SeWA after SGD running T
steps on the datasets S and S’, which have n samples but only one different. Assume that function
F(-, z) satisfies Assumption or a fixed example z and every tg € {1,--- ,n}, then we have

t o
E|F(0%;2) — F(0%';2)] < = + 5LE [67|0:, = 0], (13)
n
where b = + ZiT:T_kH llw; —wil|, w; and w; are the outputs of SGD, and § = Supp_j, 1<, < Sis
where s; is the probability of m; = 1 and § € (0, 1].
Theorem 4.11. Suppose we first run SGD with decay step sizes o < § for T steps, where each

step samples z uniformly with replacement and learn the probability s; of each weight w; from k
checkpoints. Let function F' € [0, 1] satisfies Assumptionsand SeWA has uniform stability of

cB
k+cB
%m<@<ﬂ+>, (14)

n
where § = sUpp_j 1 <i<7 Si» § € (0,1], and ¢ > 0 is a constant.

Remark 4.12. Tn non-convex setting, Theorem 4.11]shows that SeWA has bound O(T°#/(¢<+F) /)
compared to the O(T<3/(¢8+1) /n) for SGD in Hardt et al.[(2016), showing its ability to improve
generalization significantly. Although the number k, closely related to the iterations 7', seems to
dominate the result, the direct influence of parameter § on the entire bound also plays a crucial role.
Remark 4.13. The assumption that F'(w; z) € [0, 1] in Theorem is adopted for simplicity.
Removing this condition does not affect the final results, as it merely introduces a constant scaling
factor. The same setting is commonly used and discussed in Hardt et al.|(2016); | Xiao et al.[(2022).

Remark 4.14. We derive the generalization bound of SeWA via stability analysis, following a standard
pipeline. As part of this, we establish the bound for averaging the last & iterates, similar to the paper
Wang et al.|(2024b), but with two key differences: (1) We obtain a tighter bound on the cumulative
gradient that depends on ¢, yielding an improved result for SGD without requiring strict assumptions
under decaying learning rates, consistent with empirical results. (2) Our focus is on the effect of
selection on generalization, so this task is only auxiliary and restricted to uniform averaging, while

existing work considers weighted averaging schemes. In Appendix [E] we provide the proofs of
Lemma.4)and[.10] The proofs of Theorems [.6]and [.T1] are provided in Appendix [F2]and [F.3]

5 EXPERIMENT

We systematically explore the effectiveness of our method across three distinct settings: behavior
cloning, image classification, and text classification. Details of the experimental setup, including
network architectures, hyperparameters, and additional results, are provided in Appendix [B]

7
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Table 2: Performance comparison of various methods on D4RL Gym tasks with K = 20. Each
result is evaluated as the mean of 60 random rollouts, based on 3 independently trained models with
20 trajectories per model. Detailed results are presented in Table[3]

| Task Dataset | SGD SWA EMA | LAWA Random SeWA (Ours)
Hopper medium 1245.039 1281.910 1302.400 1310.875 1312.166 1361.202
Hopper medium-expert 1460.785 1427.47 1373.268 1563.307 1482.012 1571.127
Walker2d medium 3290.248 3308.464 3420.257 3325.873 3324.557 3364.886
K=20 ‘Walker2d medium-expert 3458.693 3588.176 3667.809 3557.925 3650.846 3673.804
Halfcheetah medium 4850.490 4913.549 4848.006 4974.041 4924.613 5071.051
Halfcheetah medium-expert 5015.689 5024.723 4957.194 4993.524 4988.816 5085.628
Average 3220.157 3257.382 3261.489 3287.591 3280.502 3354.616

5.1 BEHAVIOR CLONING

Experimental Setups. We conduct comprehensive evaluations using the widely adopted D4RL
benchmark (Fu et al.| [2020; |Hu et al., [2024a)), focusing on Gym-MuJoCo locomotion tasks. These
tasks serve as standard benchmarks due to their well-defined structure, prevalence of near-optimal tra-
jectories, and smooth reward functions, making them particularly suitable for assessing reinforcement
learning algorithms. For evaluation, we employ cumulative reward as the primary metric.

Baselines. To evaluate SeWA, we compare it with estab-
lished baselines: SGD-based pre-training, SWA (Izmailov 336 /./
et al.| [2018), and EMA (Szegedy et al.,[2016), all adapted 334

for behavior cloning. EMA follows Kaddour| (2022), us-
ing a 0.9 decay and updating every K steps. SWA begins
after 75% of training with a cosine annealing scheduler,

averaging parameters every K steps. We also include
LAWA (Sanyal et al., 2023) and a Random baseline, both

w w
w W
8 8

Performance
w
N
3

3.26

324 —e— SGD —e— Random

of which average K checkpoints from the last £ = 1000 SwA e Lawa
pre-training steps. LAWA samples at intervals, Random ~ **L° T —
samples randomly. LAWA, Random, and our SeWA use K

only these checkpoints for evaluation, without retraining. Figure 2: Comparison of different meth-
SGD, SWA, and EMA report final results from their re- ods on the D4RL benchmark. Each data

spective training processes, ensuring fair comparison. point represents the average cumulative

Results. In Figure[2]and Table[2] all baselines demonstrate ~ reward across multiple tasks, averaged
superior performance compared to the original SGD op- over 3 random seeds and 20 trajectories
timizer, highlighting the effectiveness of weight averaging per seed. (Details in Appendix Bh
strategies in improving model performance. These results

confirm that weight averaging can serve as a valuable technique for stabilizing and enhancing model
training outcomes. Additionally, our analysis reveals that increasing the number of checkpoints K
used for averaging consistently improves performance across all methods. However, this improvement
tends to plateau beyond a certain threshold, indicating diminishing returns as the number of averaged
checkpoints increases. Notably, our SeWA consistently surpasses all baselines across experimental
settings. Even with only K = 10 checkpoints, it outperforms baselines using K = 100, demonstrat-
ing both efficiency and robustness. This highlights our approach’s efficiency and robustness, as it can
deliver significant improvements with a substantially smaller computational footprint.

5.2 IMAGE CLASSIFICATION

Experimental Setups. We assess SeWA on image classification using the CIFAR-100 dataset and
ResNet architecture (He et al.,|2016). With 100 diverse classes, CIFAR-100 presents a challenging
benchmark, and accuracy on the test set serves as our primary metric. In our experiments, we use
intermediate model checkpoints saved during the final stage of training, specifically after 10,000
training steps. Performance is evaluated at intervals of £ = 100 checkpoints, with the number of
checkpoints included in the averaging procedure within each interval controlled by the hyperparameter
K. This flexibility allows us to adjust the extent of checkpoint aggregation and analyze its impact.

Results. As illustrated in Figure [3] all baselines outperform the original SGD optimizer, underscoring
the effectiveness of weight averaging in enhancing model performance. Additionally, weight averag-
ing accelerates model convergence, with all baselines reaching performance levels that SGD requires
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Figure 3: From left to right, the figures illustrate the impact of the hyperparameter K on the CIFAR-
100 task. Each point corresponds to intervals of 100 checkpoints, with K checkpoints selected and
averaged from these intervals using different strategies.
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Figure 4: From left to right, the figures illustrate the impact of the hyperparameter K on the AG
News corpus. Each point corresponds to intervals of 100 checkpoints, with K checkpoints selected

and averaged from these intervals using different strategies.

17 steps to achieve. Our SeWA method consistently delivers the best performance, demonstrating
its effectiveness. Beyond 17 steps, where the model approaches convergence, further improvement
becomes minimal, as the checkpoints at this stage share highly similar weights.

5.3 TEXT CLASSIFICATION

Experimental Setups. For the text classification task, we use the AG News corpus, a widely used
benchmark dataset containing news articles categorized into four distinct classes. The classification
is performed using a transformer-based architecture [Vaswanti et al.| (2017}, which is known for its
effectiveness in handling natural language processing tasks. To preprocess the dataset, we tokenize
the entire corpus using the basic_english tokenizer. Any words not found in the vocabulary are
replaced with a special token, UNK, to handle out-of-vocabulary terms. This preprocessing ensures
that the dataset is standardized and ready for training. We save intermediate checkpoints throughout
the training process, starting from the initial stages. From this set of checkpoints, we systematically
select every k = 100 checkpoint for consideration in the averaging process. The hyperparameter
K controls the number of checkpoints used for averaging, allowing flexible experimentation with
different levels of checkpoint aggregation. This experimental design facilitates a comprehensive
evaluation of the effects of checkpoint averaging on model performance in NLP tasks.

Results. In Figure [d the improvement of weight averaging over the SGD baseline is minimal for
relatively simple tasks, primarily serving to stabilize training. However, our SeWA achieves the best
results regardless of task complexity, demonstrating its broad applicability across diverse settings.

6 CONCLUSION

We propose a new algorithm SeWA for adaptive selecting checkpoints to average, which improves
generalization and applies to a variety of tasks. In practical implementation, we employ probabilistic
reparameterization to transform the discrete optimization problem into a continuous objective solvable
by gradient-based methods. From a theoretical perspective, we prove that SeWA converges to a critical
point with flatter curvature, thereby explaining its inherent ability to achieve better generalization.
Moreover, under various assumptions, we derive its generalization bounds, which exhibit superior
results compared to other algorithms. Empirically, we verify that SeWA can achieve good performance
for unstable training processes, and a few checkpoints selected by SeWA can achieve results, while
other algorithms require several times as many points.

Limitation: The theoretical analysis of SeWA based on L-Lipschitz and S-smoothness, which do
not always hold in real-world deep learning models. Extending our framework through similar
assumption-free analyses presents an interesting direction for future research.
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The Use of Large Language Models. In this work, we exclusively employ large language models
(LLMs) to refine the writing and presentation of our manuscript.

A ADDITIONAL RELATED WORK

Weight averaging algorithm. Model averaging methods, initially introduced in convex optimization
Ruppert| (1988)); |[Polyak & Juditsky| (1992)); |Li et al.| (2023)), have been widely used in various areas
of deep learning and have shown their advantages in generalization and convergence. Subsequently,
the introduction of SWA |[zmailov et al.|(2018)), which averages the weights along the trajectory of
SGD, significantly improves the model’s generalization. Further modifications have been proposed,
including the Stochastic Weight Average Density (SWAD)|Cha et al.|(2021), which averages check-
points more densely, leading to the discovery of flatter minima associated with better generalization.
Trainable Weight Averaging (TWA)|L1i et al.|(2022) has improved the efficiency of SWA by employing
trainable averaging coefficients. What’s more, other approaches like Exponential Moving Average
(EMA) Szegedy et al.|(2016)) and finite averaging algorithms, such as LAWA |[Kaddour| (2022); Sanyal
et al.|(2023), which average the last k& checkpoints from running a moving window at a predetermined
interval, employ different strategies to average checkpoints. These techniques have empirically shown
faster convergence and better generalization. In meta-learning, Bayesian Model Averaging (BMA) is
used to reduce the uncertainty of the model Huang et al.| (2020). However, these algorithms often
require manual design of averaging strategies and are only applicable to some specific tasks, imposing
an additional cost on the training.

Stability Analysis. Stability analysis is a fundamental theoretical tool for studying the generalization
ability of algorithms by examining their stability (Devroye & Wagner, [1979; Bousquet & Elisseeff,
2002; Mukherjee et al., 2006; [Shalev-Shwartz et al., [2010). Based on this, Hardt et al.| (2016)
use the algorithm stability to derive generalization bounds for SGD, inspiring a series of works
Charles & Papailiopoulos| (2018); Zhou et al.|(2018)); |Yuan et al.[(2019); |Le1 & Ying (2020). This
analysis framework has been extended to various domains, such as online learning (Yang et al.,
2021)), adversarial training (Xiao et al.,[2022), decentralized learning (Zhu et al.} 2023)), and federated
learning (Sun et al.| 2023bfa). Although uniform sampling is a standard operation for building
stability boundaries, selecting the initial point and sampling without replacement also significantly
affects generalization and has been investigated in Shamir| (2016)); [Kuzborskij & Lampert (2018)).
For the averaging algorithm, |[Hardt et al.|(2016) and |Xiao et al.|(2022)) analyze the generalization
performance of SWA and establish stability bounds for the algorithm under the setting of convex and
sampling with replacement. The primary focus of this paper is the construction of stability bounds
for SeWA in both convex and non-convex settings.

Mask Learning. The general approach involves transforming the discrete optimization problem into a
continuous one using probabilistic reparameterization, thereby enabling gradient-based optimization.
Zhou et al.| (2022) solves the coreset selection problem based on this by using a Policy Gradient
Estimator (PGE) for a bilevel optimization objective. [Zhang et al.| (2024) propose a probabilistic
masking method that improves diffusion model efficiency by skipping redundant steps. While the
PGE method may suffer from high variance and unstable training, we solve the mask learning
problem using the Gumbel-softmax reparameterization (Jang et al., [2017; Maddison et al., [2017).
Mask learning has also been successfully applied across various domains to tackle diverse challenges
(Liu et al., 2018; Hu et al.| 2024cfb). In this paper, we aim to adaptively select checkpoints for model
averaging, with the goal of improving generalization performance and mitigating training instability.

B EXPERIMENT DETAILS

B.1 BEHAVIOR CLONING

Network Architecture. The network architecture comprises four layers, each consisting of a
sequence of ReLU activation, Dropout for regularization, and a Linear transformation. The final
layer includes an additional Tanh activation function to enhance the representation and capture
non-linearities in the output.

Results. Comprehensive results for each task across all datasets are presented in Table [3] Our
evaluation focuses specifically on the medium and medium-expert datasets, which offer a balanced
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Table 3: Performance comparison of various methods on D4RL Gym tasks. The left panel shows
results obtained using the final checkpoint under different update strategies, while the right panel
presents results from averaged checkpoints collected during the final training stage with SGD, using
different selection strategies. Each result is evaluated as the mean of 60 random rollouts, based on 3
independently trained models with 20 trajectories per model.

| Task Dataset | SGD SWA EMA | LAWA  Random SeWA (Ours)
Hopper medium 1245.039 1279.249 1297.270 | 1289.515 1291.478 1324.848
Hopper medium-expert | 1460.785 1468.893  1320.408 | 1462.452 1451.015 1509.317
Walker2d medium 3290.248 3328.121 3341.888 | 3341.437 3306.763 3371.202

K=10 Walker2d ~ medium-expert | 3458.693 3546.008 3681.504 | 3634.373 3609.611 3679.806
Halfcheetah medium 4850.490 4858.224 4894.204 | 5012.389 4896.104 5041.369
Halfcheetah medium-expert | 5015.689 4974.923 4857.562 | 4989.329  4962.719 5082.902

| Average | 3220.157 3242.570 3232.139 | 3288.249 3252.948 3334.907
Hopper medium 1245.039  1281.910 1302.400 | 1310.875 1312.166 1361.202
Hopper medium-expert | 1460.785  1427.47  1373.268 | 1563.307 1482.012 1571.127
Walker2d medium 3290.248 3308.464 3420.257 | 3325.873 3324.557 3364.886

K=20 Walker2d ~ medium-expert | 3458.693 3588.176 3667.809 | 3557.925 3650.846 3673.804
Halfcheetah medium 4850.490 4913.549 4848.006 | 4974.041 4924.613 5071.051
Halfcheetah medium-expert | 5015.689 5024.723 4957.194 | 4993.524 4988.816 5085.628

\ Average | 3220.157 3257.382 3261.489 | 3287.591 3280.502 3354.616
Hopper medium 1245.039 1294.884 1329.863 | 1336.33 1319.571 1389.280
Hopper medium-expert | 1460.785 1477.466 1485.696 | 1537.672 1496.045 1616.116
Walker2d medium 3290.248  3262.046 3341.767 | 3253.695  3352.12 3392.130

K=50 Walker2d ~ medium-expert | 3458.693 3577.509 3591.081 | 3584.468 3659.789 3672.560
Halfcheetah medium 4850.490 4927.951 4968.048 | 5022.097 5000.004 5035.631
Halfcheetah medium-expert | 5015.689 5061.688 5075.426 | 5011.232 4960.585 5044.886

\ Average | 3220.157 3280.833 3298.647 | 3290.916 3298.019 3358.434
Hopper medium 1245.039  1347.267 1322.625 | 1320.652 1319.727 1393.981
Hopper medium-expert | 1460.785 1527.206 1528.265 | 1496.266 1491.196 1568.025

Walker2d medium 3290.248 3324218 3393.646 | 3345913 3321.046 3424.078

K=100 | Walker2d  medium-expert | 3458.693 3575.621 3629.308 | 3613.274 3587.211 3710.347
Halfcheetah medium 4850.490 4939.629 4871.376 | 4974.220 5015.349 5021.948
Halfcheetah medium-expert | 5015.689 4919.624 5047.757 | 4991.007 5031.975 5063.546

| Average | 3220.157 3272.261 3298.830 | 3290.222 3294.417 3363.654

mix of trajectories with varying performance levels. This selection enables a thorough assessment
of our method’s ability to generalize across different reward distributions. For clarity and ease of
comparison, the main paper emphasizes the average performance across tasks, as illustrated in Figure
[2l This dual presentation ensures a detailed examination of individual tasks while providing an
accessible overview of overall performance.

B.2 IMAGE CLASSIFICATION OF CIFAR100

Network Architecture. The network architecture consists of three primary blocks, followed by an
average pooling layer and a linear layer for generating the final output. Each block contains two
convolutional layers, each accompanied by a corresponding batch normalization layer to improve
training stability and convergence. To address potential issues of vanishing gradients, each block
includes a shortcut connection that facilitates efficient gradient flow during backpropagation. The
output of each block is passed through a ReLU activation function to introduce non-linearity, enabling
the network to learn complex representations effectively.

Results. In addition to the results presented in Figure 3} we provide further analysis examining the
impact of network parameter variations to demonstrate the robustness of our method across networks
of different sizes. These results, shown in Figure 5] illustrate that as the number of layers or blocks
increases, the performance of SGD improves, following a similar training curve.

Notably, weight averaging consistently outperforms SGD during the upward phase of training. The
performance gains from weight averaging become more pronounced as the network size increases,
highlighting its potential in scaling effectively to larger models. This highlights the potential of
weight averaging to enhance the performance of larger models. Furthermore, regardless of changes
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Figure 5: From left to right, the figures illustrate the impact of the hyperparameter K on the CIFAR-
100 task. Each data point represents performance based on intervals of £ = 100 checkpoints, with
K checkpoints selected from these intervals using various strategies. The first row corresponds to a
network architecture with 1 block, the second row represents a network with 3 blocks, and the third
row depicts results for a network with 5 blocks.

in network parameters, our proposed method consistently achieves superior results, demonstrating its
adaptability and effectiveness across varying network configurations. These findings emphasize the
potential of weight averaging as a robust and scalable technique for optimizing model performance.

B.3 IMAGE CLASSIFICATION OF IMAGENET

Experimental Setups. To rigorously evaluate our method’s efficacy in image classification, we
employ the ImageNet dataset Deng et al.|(2009) in conjunction with the Vision Transformer (ViT)
architecture Han et al.| (2022). The ImageNet dataset, comprising 1000 diverse classes, serves as a
comprehensive benchmark for assessing image classification performance. We adopt classification
accuracy on the test dataset as our primary evaluation metric. Throughout our experimental protocols,
we systematically preserve model checkpoints after each training epoch. Performance evaluation is
conducted at intervals of £ = 5 checkpoints, with the number of checkpoints incorporated into the
averaging procedure within each interval regulated by the hyperparameter K = 3.

Network Architecture. Our implementation utilizes a ViT model (330.23MB), representing a
paradigm shift from conventional convolutional neural networks for image classification tasks. The
ViT architecture initially employs a patch embedding layer that segments input images into uniform
patches and projects them into a high-dimensional embedding space. A learnable classification token
is subsequently prepended to the sequence of embedded patches, and positional embeddings are
incorporated to preserve spatial information. The architectural core comprises 12 transformer blocks,
each integrating multi-head self-attention mechanisms with 12 attention heads and feed-forward
networks with an expansion ratio of 4. The resultant representations undergo normalization via
layer normalization before transmission to a linear classification head that generates output logits
corresponding to the 1000 ImageNet classes.

Results. We present a comprehensive analysis examining the efficacy of various weight averaging
strategies when applied to transformer-based architectures. The empirical results, illustrated in
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Figure 7: From left to right, the figures illustrate the impact of the hyperparameter K on the AG News
corpus. Each point corresponds to intervals of & = 100 checkpoints, with K checkpoints selected
from these intervals using different strategies. The first row corresponds to a network architecture with
a single TransformerEncoderLayer, the second row represents a network with three TransformerEn-
coderLayers, and the third row shows results for a network with five TransformerEncoderLayers.

Figure[6] demonstrate that our proposed SeWA consistently outperform standard SGD optimization
throughout the training trajectory.

Significantly, all weight averaging methods demonstrate 60
superior accuracy compared to SGD throughout training.
These findings highlight the particular effectiveness of
weight averaging. Moreover, while Random weight aver-
aging generally outperforms SGD, it shows inferior results

o
o

Accuracy
B
&

compared to our proposed SeWA and occasionally un- <, — sep
derperforms relative to SGD. In contrast, our approaches - 1o
maintain consistent performance advantages throughout T Sewa
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the learning process. This comparative analysis provides
compelling evidence that structured weight averaging sub-
stantially enhances Vision Transformer performance on
large-scale image classification tasks. The demonstrated
superiority of our methodologies over both baseline SGD
and Random underscores the importance of the adaptive
selection process in optimizing transformer networks, showing the effectiveness of our method.

E;och
Figure 6: Comparison of different meth-
ods on the ImageNet benchmark utiliz-
ing the ViT architecture.

B.4 TEXT CLASSIFICATION

Network Architectures. The network architecture comprises two embedding layers followed by
two layers of TransformerEncoderLayer. Each TransformerEncoderLayer includes a multi-head self-
attention mechanism and a position-wise feedforward network, along with layer normalization and
residual connections to enhance training stability and gradient flow. The output from the Transformer
layers is passed through a linear layer to produce the final predictions.

Results. In addition to the findings presented in Figure @] we conduct further analysis to evaluate
the impact of network parameter variations, demonstrating the robustness of our method across
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networks of varying sizes. These additional results, shown in Figure[/| indicate that as the number
of Transformer layers increases, the performance of SGD improves up to a certain point. However,
beyond this range - where two layers appear sufficient - performance begins to exhibit fluctuations,
suggesting diminishing returns and instability with additional layers.

While the improvement achieved by weight averaging is relatively modest due to the simplicity
of the task, it still plays a critical role in stabilizing the training process and reducing fluctuations
in the training curve. Among the averaging methods evaluated, our proposed method consistently
achieves the best performance, underscoring its effectiveness in maintaining stability and optimizing
performance, even in scenarios where task complexity is low.

B.5 ABLATIONS
B.5.1 HYPERPARAMETER SENSITIVITY

Our proposed algorithm introduces several new hyperparameters, and understanding their impact
is critical for both reproducibility and practical deployment. To this end, we perform comprehen-
sive sensitivity analyses on representative tasks, focusing primarily on the Hopper-medium and
Hopper-medium-expert environments from D4RL. All reported results are averaged over three
random seeds with 20 evaluations per seed, and we present both mean and standard deviation.

Table 4: Ablation on the Gumbel-Softmax temperature ¢ in Algorithm [2.1]
t 0.1 03 0.5 07 1.0

Hopper-medium 137211 +£48.01  1377.29 £47.12 1384.03 £46.56 1384.45 £47.02 1389.28 & 46.98
Hopper-medium-expert  1595.42 +12.51 1601.23 +11.87 1609.01 £11.35 1610.65 4+ 10.72 1616.12 £ 10.58

Effect of Gumbel-Softmax Temperature ¢. Table [4| reports the performance of SeWA under
different Gumbel-Softmax temperature values ¢. The results demonstrate that SeWA 1is generally
robust over a wide range of temperatures. Performance degradation is observed only at very small
temperatures (e.g., ¢ = 0.1), where the Gumbel-Softmax distribution becomes nearly discrete, result-
ing in high-variance gradients and challenging optimization. For moderate and large ¢, performance
remains stable and exhibits small variance, indicating that SeWA does not require fine-grained tuning
of this hyperparameter.

Table 5: Ablation on the number of MC samples M in Algorithm [2.1]

M 1 5 10 20
wall-clock time 0.25 s/iter 0.31 sfiter 0.33 sf/iter 0.36 sf/iter
Hopper-medium 1389.28 +46.98  1390.52 +37.06 1399.12 +30.95 1414.08 & 8.86

Hopper-medium-expert 1616.12 +£10.58  1621.11+9.33  1625.15£7.95 1632.37 £4.12

Effect of Monte Carlo Sample Size M. We further examine the impact of the number of Monte
Carlo (MC) samples M used for gradient estimation. In this ablation, we fix K = 50 (number of
selected checkpoints) and vary M from 1 to 20. Table[5|shows that increasing M consistently reduces
performance variance and yields slightly improved returns, which is expected as a result of more
accurate gradient estimation. Importantly, the computational overhead grows only mildly - using
20x samples results in merely 1.44x wall-clock time - making higher M values computationally
feasible. This suggests that practitioners can choose M flexibly based on their computational budget:
larger M improves performance but is not strictly necessary to achieve strong results.

Table 6: Ablation on the max iterations for mask optimization in Algorithm[2.1]
max iteration 100 500 1000 1500

Hopper-medium 1370.46 +48.90 1381.39 +47.23 1389.28 £46.98 1390.01 £ 46.92
Hopper-medium-expert  1590.51 +12.33 1607.22 £11.04 1616.12 +10.58 1616.53 + 10.56
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Effect of Maximum Iterations for Mask Optimization. We next investigate the influence of the
maximum number of iterations used in the mask optimization step. As shown in Table[6] performance
improves as the number of iterations increases, but the gain saturates at approximately 1000 iterations.
This indicates that SeWA converges quickly and does not require excessively long optimization
schedules to achieve near-optimal performance - an important property for practical efficiency.

Table 7: Ablation on the candidate pool size k£ (len(w)) in Algorithm
pool k 100 500 1000 1500

Hopper-medium 1362.88 £49.45 1375.20 =47.89 1389.28 £46.98 1389.30 £47.10
Hopper-medium-expert 1581.92 +13.42 1603.11 £11.58 1616.12 4+ 10.58 1616.80 + 10.71

Effect of Candidate Pool Size k. Finally, we examine the candidate pool size k, i.e., the number of
recent checkpoints retained in w. Table[7|shows that increasing k improves performance marginally,
with diminishing returns beyond & = 1000. Notably, even small pool sizes (e.g., k = 500) lead to
competitive results, suggesting that SeWA can be deployed efficiently without excessive memory
requirements for checkpoint storage.

B.5.2 EXTENDED ANALYSIS OF AVERAGING STRATEGIES

Table 8: Ablation study on averaging strategies for checkpoint selection.
SeWA All-k-Average Top-K-Average

Hopper-medium 1389.28 +46.98 1285.38 £42.33 1356.18 £ 40.44
Hopper-medium-expert 1616.12 + 10.58 1483.20 £ 10.33  1533.28 £ 9.32

To provide a comprehensive evaluation of our averaging methodology, we conduct additional ablation
studies examining alternative averaging strategies. Specifically, we compare SeWA against two
baseline approaches: All-k-Average, which computes the arithmetic mean of all candidate checkpoints
(where k = 1000 for both Hopper-medium and Hopper-medium-expert environments), and Top-K-
Average (K = 50), which requires evaluating all k£ candidate points before selecting and averaging
the top-performing subset. Due to the computational overhead associated with evaluating all k
checkpoints in the Top-K-Average approach, we limit this analysis to two representative environments.

The experimental results presented in Table[§|reveal several important insights. The All-k-Average
strategy demonstrates inferior performance compared to SeWA, which can be attributed to information
dilution effects. By indiscriminately averaging all candidate checkpoints, this approach fails to
prioritize high-quality solutions and incorporates potentially detrimental weights from suboptimal
checkpoints, ultimately leading to degraded performance.

Similarly, the Top-K-Average method yields lower performance than SeWA, despite its computational
expense in evaluating all candidate points. These findings provide compelling evidence that SeWA’s
effectiveness stems from its ability to identify and leverage checkpoints that genuinely contribute
to improved target performance, rather than simply aggregating high-performing individual models.
The results demonstrate that not all high-performance checkpoints are conducive to exploring flat
regions of the loss landscape when combined through averaging. This observation underscores the
critical importance of SeWA'’s intelligent selection mechanism in the averaging process, which goes
beyond naive performance-based selection to identify checkpoints that exhibit beneficial geometric
properties when aggregated.

C PROOF OF LEMMA 2.4]

(1 + aB)-expansive. According to triangle inequality and 3-smoothness,
lwris = wp gy || < lwr —wrll + o VF(wr) = VF(wy)||
< lwr = wrll + apfwr — wr| (15)

= (1+ af)|wr — wr|.
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Non-expansive. Function is convexity and S-smoothness that implies
(VE(w) — VF(v),w —v) > %HVF(w) —~VF©)|? (16)
We conclude that
lwr i1 = whe | = \/lwr — 0V F(wr) - wh + aVF(wf)|2

= \/IIwT —wpl? = 2a(VF(wr) = VF(wp), wr —wp) + 2| VF(wr) = VF(wr)|?

a7y
< \/ wr — w2 (25 - a?) IVF(wr) — VF(uw))|?

< Jlwr —wr .
D PROOF OF THEOREM [4.2]

We consider the new auxiliary function G(s) £ —F(s). By the smoothness of the function F, we
know that the auxiliary function G is also S-smoothness such that

G(si41) = G(st) + (VG(st), st41 — s¢) — §||5t+1 — s
Note that, in gradient descent, we have s;11 = P¢ (st + 1+ VG(st)) where i is learning rate and
thus using the properties of convex projections we have
<5t+1 — Sty St+1 — (St + ,UtVG(St)» <0 = ||St - 5t+1||2 < ,ut<5t+1 — St VG(St)>~
Plugging this into the latter inequality we conclude that for p; < %

1
Glor) > 6(s0) + (2 =5 ) s = 1lP = Gls0) + s = sl
t

Summing both sides we conclude that

oo
Z [[se1 — s¢l|,
t=1

is bounded, which implies that s; converges to a point s. This means that this point obeys
s=Pc(s+mVG(s)).
By definition of projection the latter implies that Po_ 1,1 (¢ VG(s)) = 0. A well known result in

convex analysis (Rockafellar, 2015) implies max,cc(VG(s),y —s) = —mingec(VF(s),y—s) <
0, concluding the proof.

E PROOF OF THE LEMMA [4.4] AND

We establish generalization bounds for the SeWA algorithm through uniform stability (Eq.[4). Let
w4 and WX’ denote the SeWA’s outputs under perturbations arising from two sources: (1) data
perturbation, where SeWA runs on two datasets S and S’ differing by exactly one sample; (2) weight
selection for averaging, an inherent algorithmic procedure. To analyze this, we first fix the selected
weights, ensuring identical selection probabilities at each step . We can apply stability theory to

achieve our research objectives based on the above.

E.1 PROOF OF LEMMA[4.4]

We now fix an example z and use the Lipschitz assumption, which transforms the problem into
bounding the parameter differences.

Ezm Al F(07 3 2) = F(07; 2)| < LEm,allwp — o7

1 < 1 <
!/
< L(k: E SiEAHwi_wiH—'_E E (1_3i)'0>

i=T—k+1 i=T—k+1
< 3LE4[67],
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where the second inequality is based on taking the expectation for mask m;, and the last inequality is
because of § = supp_j41<;<r Si-

E.2 PROOF OF LEMMA[4.10]

There are differences in the proof between convex and nonconvex assumptions.

We split the proof of Lemma into two parts. Let £ denote the event J;, = 0. Let z be an arbitrary
example and consider the random variable I assuming the index of the first time step using the
different sample. Then we have

E|VF (0% 2) — VF(0k';2)| = P{}E[VF(wk; 2) — VF(0k'; 2)|[¢]
+ P{€°} E[[VF(@f;2) - VF(@h'; 2)|[¢°]
gP{fzto}-EHVF(wT;) VFE@kz)g 18
+PAL < to} - sup F('2),

’U)
where £¢ denotes the complement of &.

Note that when I > %, then we must have that (5,50 = 0, since the execution on S and S’ is identical
until step 9. We can get LE[||wX — w'|||¢] combined the Lipschitz continuity of F'. Furthermore,
we know P {£¢} = P {6;, = 0} < P{I <o}, for the random selection rule, we have

to
to
P{I <t} < P{I=ty}=—. 19
{I <to} < Z U=t} = (19)
We can combine the above two parts and F' € [0, 1] to derive the stated bound

E|F(wf;z) — F(wf; )|<—+LE [log —wg'||[|@ff —of'| = 0]. (20)

Secondly, we take expectation for the m; of E[|w# — wX’||, which is similar to the proof of Lemma
E.4l Then we have

E|F(wy;2) — F(of'; 2)| < —+5LE[6T|6tO =0, 1)

where 67 = 1 ZiT:T_k,_H l|w; —wi||, w; and w; are the outputs of SGD, and 5 = sUpy_ 41 <;<7 Si»
where s; is the probability of m; = 1 and § € (0, 1].

F PROOF OF THE GENERALIZATION BOUNDS

By the Lemma 4.4 and [4.10] the proof of Theorem .6 and [4.T1| can be further decomposed into
bounding the difference of the parameters for the last £ points of the average algorithm.

F.1 UPDATE RULES OF THE LAST k POINTS OF THE AVERAGING ALGORITHM.

For the last k points of the averaging algorithm, we formulate it as

1 T
w:’;:k > wi (22)

i=T—k+1
It is not difficult to find the relationship between w%. and wk._,, i.e.,

T

Y aVF(wi1,z), (23)

i=T—k+1

1
~k ~k ~k
Wp = Wp_q + % (wr —wr_) = Wp_; —

??‘\»—t

where the second equality follows from the update of SGD.
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F.2 PROOF. THEOREM [4.6]

We finish the task using Lemma and Lemma |4.10, which divide the task of establishing the
SeWA’s generalization bound into two parts: (1) analyzing the impact of the selection process, and
(2) deriving the bound for averaging over the last k points. Then, we first establish the generalization
bound for averaging over the last k points.

First, using the relationship between . and %, in Eq. we consider that the different sample
zp and 2/ are selected to update with probability % at the step 7.

T
- 1
dr =br_1+ Y il VE(Ww)_y,2) — VF(wioy, z)|
i=T—k+1 (24)
. SQarL 1 2 )
<dr— T Z i |VE(wi_y, %) — VF(wi—1, 2],
i=T—k+1

where the proof follows from the triangle inequality and the L-Lipschitz condition. For

3 Z,L.TZ_Tl_,H_l ;|| VF(w;_q,2;) — VF(w;—1, 2;)|| will be controlled later.

Second, another situation needs to be considered in case of the same sample are selected(zy = 2/)
to update with probability 1 — % at the step 7.

T
- - 1
or =0r_1+ Z Z a;i||VE(w;_q,2i) — VF(wi—1, 2)||
e o
- 1
<op_1+ Z Z ;|| VF(wi_y, z) — VF(wi—1,2)],
i=T—k+1

where the second inequality comes from the non-expansive property of convex function.

For each |[VF(w]_,, z;) — VF(w;_1, 2;)|| in the sense of expectation, We consider two situations
using oL bound and the non-expansive property. Then, we get

= o T-1
% 4 Z OéiHVF(’wgfl,Zi) - VF(U)Z',l,ZZ‘)H S % 4 Z (67 (26)
i=T—k+1 i=T—k+1
Then we obtain the expectation based on the above analysis
T—1
_ 1 - 1 - QOZTL 2L
E <(A—-=)or-1+— _ — i
[or] < ( n)T1+n(5T 1+ — )+Nkiqz;€+1a
- 27
2L
<E [5T—1] + % Z o7}
i=T—k+1
recursively, we can get
9, T T—1 k
st ( o0 E o T
1=T—k+ 1=T— 1= (28)
of, (=1 k-2 1
—I-fk Z%-&-Z%-ﬁ- +Zaz
i=1 i=1 i=1
Let o ; = «, we get
- 2aL k
Elor|=—(T—=). 29
r) = 25 (7 5) 9
Plugging this back into Eq.[4.4]and combining the above and Lemma4.4] we obtain
2aL?3 k
€gen = B|F(0; 2) — F(wk'; 2)] < =22 (T - 2) : (30)
n
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And we finish the proof.

In fact, based on the above proof, the generalization bound can be readily extended to the case of a
decaying learning rate. However, we adopt a constant learning rate mainly for ease of comparison
with other methods. As discussed in the remark [4.14] our approach to establishing the generalization
bound of SeWA is similar to that of the paper[Wang et al.| (2024b), but with a fundamental difference.
Our focus lies in the effect of selection on generalization, while the generalization bound of the
averaged last k iterates serves only as a component of our study, where a uniform weighting scheme
suffices. In contrast, existing work concentrates on the paradigm of weighted averaging.

F.3 PROOF. THEOREM [4.11|(BASED ON THE CONSTANT LEARNING RATE)
F.3.1 LEMMA AND IT’S PROOF
Lemma F.1. Assume that F' is 3-smooth and non-convex. Let o = %, we have
|wh —wrl| < eT=*or, 31)

where o7 = + S0y lwh — will.

proof Lemma [F.1} By the triangle inequality and our assumption that F satisfies, we have

|wy — wr|l = 7k |wy — wr||
1
S%(HM/T —wrl|+ (1 +ar_1B)|wp_y —wr_a ||+ -+
32
(1+ar1B)(1+ar2B)- 1+ ar g1 B) Wy —wr xpal)  O2
T 1 T
!
< H (1+ aB) (k Z [lws —wz||> .
t=T—k+1 i=T—k+1
Let oy = % we have
k = cf b Bk~
lwr —wrll < ] (Q+aB)dr < (1+T—k) op < eT-For. (33)

F.3.2 PROOF. THEOREM [4.11]

In the non-convex setting, we build the SeWA’s generalization bound based on the Lemma[4.10]
Then, the last k points of the averaging algorithm’s stability bounds are provided as follows. Based
on the relationship between 5. and % _, in Eq. [23| We consider that the different samples 27 and
2} are selected to update with probability % at step T.

T

- - 1
dr =or-1+ _7;—%“ il VF(w]_y, 2) — VF(wi_1, 2)||
200L 1 — oY
<or-1+ kT + 5 Z [ VE(wi_y, 2i) = VF(wi—1,2)],
1=T—k+1
Next, the same sample z = 2’ is selected to update with probability 1 — % at step T.
1 T
O < 0r—1+ ¢ | > | VF(W_y,2) = VF(wi 1, %)
1=T—k+1
arB =
N T
< 01+ ——llwr_y —wr—ll + Y @l VE(wi_y,2) = VE(wi1,2)| (39
i=T—k+1
8 = 1 =
arpet— =
< (4 ———)or—1 + ¢ i_%ﬂ ai| VF(wi_y, 2) = VF(wi—1, %),
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where the proof follows from the [-smooth and Lemma Then, we bound the
a||VE(wh_s, 2r—1) — VF(wp_q, zp_1)|| with different sampling.

20{1'L 1
B VF () 2i11) — VF(wn )| = 2L (1 - n) sl — ]

2041'L
< — —tap (llwi—y — wi_y [+ VF(wi_y, z) = VF (wi1, z)]|)
20, L 2c;_1 L
<288 4 aop (222 4 (0 o)l - i) ) 66)
90, -1 i i /
< . I+ai1B+ Z H I+ aB)am | + a8 H (1 + auf3)||we, — wy, |,
m=tg t=m+1 t=to
where w;, = wj,. Therefore, we discuss the bound for %ZiT;Tl_k 1 @l VE(wi_y, 2) —
VF(w;_1,z;)|| based on the recursive relationship.
=
E Z OéiEHVF(”LU;_l, Zi) - VF(wi_l, Zz)”
i=T—k+1

T-1 i—1 i

% Z ZO,ZL <1 + ai_l’B + Z H (1 + atﬁ)anL)

i=T—k+1 m=tg t=m+1 (37)
T—1 T—1 T-1 i—1
2L (67 QﬂL Q001 2L Q5
=% X at X o tE 2 w2 I araden
1=T—k+1 i=T—k+1 i=T—k+1 m=tg t=m-+1
< 2¢cL n 26cL 2cLTP
Tl -k+1) n(T-K)? nptP(T—k+1)
where o; = ¢ and the proof of the last term in the first equality is provided as follows
T—1 T—1 T—1 T—1 T—1
B 1 1 (sr1e T 6 —(1+¢)
S ITa+P) <> (e t"”‘)fzmmﬁch/f mo T dm
m=tg t=m m=to m=to ‘0 (38)
TP (1 1 _ L (T
S\ (TP ) "B \to)
Taking M, = (1 +cB+ %), we can obtain the bound in the expectation sense.
T-1 1—cp
1 2cL M, 1
P eEIVFUL L) - Vel < 20t ()
i=T—k+1 0

Compared with the results in paper Wang et al,| (2024b), here we establish an upper bound on
the cumulative gradient that depends on ;. This enables us to derive a generalization bound that
surpasses the performance of SGD in the subsequent analysis, without requiring strict assumptions.

Then, we obtain the expectation considering the above analysis

cBk_ 1—cB
_ 1 T-Fk \ - 1 /- 2ap L 2cL M 1
]E[5T+1}§(1_)<1+O[Tﬁe>5T+n(5T+ ar )+ C.l'( >

n k k ntg’ T—k
(40)
let oy = %,then
Bk 1—cpB
1.cfet=* \ - 2cL(1+ kM) 1

<|1 1—-— 0

—( -0 ) 'Y Tkt — k)P (t—k)
(4D)

1. cB)\ - 2cLM 1\
< 1- )&=
<o (- D@ a2 (L)
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where M = 1+ kM, cf € (0,1), k < to and we used that lim (1 + 1)® = cand lim er = 1.

T—r00 T—r 00

Using the fact that Sto = 0, we can unwind this recurrence relation from 7" down to tg + 1.

e 3 (1 oe(0 D) a2 ()

t*to-‘rl m=t+1
(1— f)cﬁ T 2cLM 1 \'"
Z P 2w nk(to — k)8 \t—k
t=to+1 m=t+1 0
T 1 1—cp
(1-1)cp T 2L M 1
< T oe(— .
= t:%;rl exp ( % og( ; ) nk(ty — k)8 t—k o
1 T Gow)h iy g “
(1—Lye k
t—k nk(ty — k)<P

IA
w‘%

—1 %ﬁfcﬁ
cB 8 _ 2cLM 7L 1
k le(to - k)cﬁ to —k

cB

<2CLMT~T%~ 1 ’“7
- n—1 to*k

where 7 = m and ¢ € (0, 1). Plugging this back into Eq.|11} we obtain
cp
to  25cL’M7t s 1 &
E|F(0f;2) — F < _—.T%. . 43
(i) - Flaf:z) < 2 4 B0 =3 @)
By taking the extremum, we obtain the minimum
25c2L2BMT Tos e
to = — - TwFeB 4 k. (44)
Finally, this setting gets
1+ & _k . k
€gen = B|F (0l; 2) — F(wlf; 2)| < 7{’ (28c2L2Br Mk~) 77 . Taser 4 S (3
n— n—
To simplify, omitting constant factors that depend on 3, ¢ and L, this setting get
cB
Twres
E€stab < Oé ( > . (46)
n

And we finish the proof.
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