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ABSTRACT

Weight averaging has become a standard technique for enhancing model perfor-
mance. However, methods such as Stochastic Weight Averaging (SWA) and Latest
Weight Averaging (LAWA) rely on manually designed checkpoint selection rules,
which struggle under unstable training dynamics. To minimize human bias, this
paper proposes Selective Weight Averaging (SeWA), which adaptively selects
checkpoints during the final stages of training for averaging. Both theoretically
and empirically, we show that SeWA achieves a better generalization. From an
algorithm implementation perspective, SeWA can be formulated as a discrete subset
selection problem, which is inherently challenging to solve. To address this, we
transform it into a continuous probabilistic optimization framework and employ
the Gumbel-Softmax estimator to learn the non-differentiable mask for each check-
point. Theoretically, we first prove that SeWA converges to a critical point with
flatter curvature, thereby explaining its underlying mechanism. We further derive
stability-based generalization bounds for SeWA, which are sharper than those
of SGD under both convex and non-convex assumptions, thus providing formal
guarantees of improved generalization. Finally, extensive empirical evaluations
across diverse domains, including behavior cloning, image classification, and text
classification, demonstrate the robustness and effectiveness of our approach.

1 INTRODUCTION

Model averaging has shown substantial benefits in deep learning, both in empirical performance
across practical applications and in theoretical analyses related to generalization and optimization.
From the perspective of generalization, averaging-based algorithms, such as SWA Izmailov et al.
(2018), Exponential Moving Average (EMA) Szegedy et al. (2016), LAWA (Kaddour, 2022; Sanyal
et al., 2023), and Trainable Weight Averaging (TWA) (Li et al., 2022), have been empirically validated
to enhance generalization performance across various tasks. These methods have gained widespread
adoption in several domains, including large-scale network training (Izmailov et al., 2018; Lu et al.,
2022; Sanyal et al., 2023) and adversarial learning (Xiao et al., 2022). In theoretical research, Hardt
et al. (2016) and Xiao et al. (2022) successively give stability-based generalization bounds for SWA
in different application contexts, showing that under the convexity assumption, the generalization
bound of the SWA algorithm is half that of SGD. From an optimization perspective, model averaging
can facilitate convergence by stabilizing the trajectory of the optimizer when it oscillates near a
local minimum. Polyak & Juditsky (1992) demonstrate that averaging model weights improves
convergence speed in the setting of convex loss functions. More recently, Sanyal et al. (2023) have
empirically verified accelerated convergence using the LAWA in Large Language Models pre-training.

Despite their theoretical and empirical advantages, averaging-based algorithms often depend on man-
ually designed training frameworks and are sensitive to hyperparameter selection. For example, SWA
revisits historical model states at each step, which can slow convergence, and requires a cyclic learning
rate schedule to identify low-loss regions, introducing additional tuning overhead. In contrast, LAWA
selects the final averaging point from the last k epochs. However, Sanyal et al. (2023) have observed
that performance does not vary monotonically with respect to k; instead, it improves initially and then
degrades as k increases. TWA addresses some of these limitations by adaptively learning averaging
weights, but it incurs extra computational cost due to the need for orthogonalizing two subspaces.
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Figure 1: Comparison of SeWA with different models on
convergence performance.

In this paper, we propose a novel aver-
aging algorithm that minimizes the re-
liance on manually designed training
frameworks while balancing general-
ization and training stability. SeWA
adaptively learns aggregation weights
from the last k steps of the SGD
training trajectory, thereby mitigating
the influence of early-stage informa-
tion and enhancing the performance
gains achieved through model averag-
ing. This adaptive integration mech-
anism not only reduces the need for
extensive hyperparameter tuning but also mitigates performance degradation caused by redundant
or suboptimal weight selections. As shown in Figure 1, SeWA achieves near-optimal performance,
achieving flatter minima compared to existing approaches.

During the implementation and theoretical analysis of our algorithm, we encountered three key
challenges: (1) The adaptive selection of checkpoints can be formulated as a subset selection task, a
typical discrete optimization problem. Solving such problems requires handling discrete variables
that are often non-differentiable. (2) Establishing the stability-based generalization bound for SeWA
requires not only quantifying the impact of input perturbations on the output but also analyzing the
influence introduced by the adaptive learning process. (3) Although stability-based generalization
bounds provide theoretical guarantees of desirable properties, they do not explain the intrinsic
operational mechanisms of SeWA, leaving its functioning essentially a black box.

To address these challenges, we formulate the SeWA solving process as the coreset selection problem,
embedding the discrete optimization objective into a probabilistic space, which enables the utilization
of gradient-based continuous optimization methods. Furthermore, we employ the Gumbel-softmax
estimator to address the non-differentiability of binary variables. In generalization analysis, the
discrete selection problem of adaptive learning processes is transformed, in expectation, into a global
averaging process dependent on selection probabilities, establishing a theoretical bridge for building
SeWA’s stability bounds. We also derive generalization bounds for SeWA under different assumptions
based on stability, which are sharper than those of other algorithms (see Table 1). Furthermore, based
on the differential form of the derivative of our relaxation function, we establish that SeWA converges
to a critical point with flatter landscape. Finally, extensive experiments have been conducted across
various domains, including computer vision, natural language processing, and reinforcement learning,
confirming the algorithm’s generalization advantages. Our contributions are listed as follows.

• Our approach adaptively selects models for averaging in the final training stages, ensuring
strong generalization, lower manual cost, and reduced bias toward specific scenarios. No-
tably, the selection paradigm of SeWA is well-suited to unstable training processes (e.g.,
reinforcement learning), where it yields significant improvements in generalization.

• We propose a solvable optimization framework by transforming the discrete problem into a
continuous probabilistic space and addressing the non-differentiability of binary variables
using the Gumbel-Softmax estimator during optimization.

• We prove that the SeWA can converge to a critical point with flatter curvature, thereby
providing a theoretical foundation for understanding its underlying mechanism. Further, we
analyze the impact of masks on generalization theory in expectation and derive a stability-
based generalization upper bound for SeWA, showing advantages over SGD and other
averaging-based algorithms’ bounds under the different function assumptions.

• We empirically demonstrate the outstanding performance of our algorithm in multiple do-
mains, including behavior cloning, image classification, and text classification. In particular,
the SeWA achieves comparable performance using only a few selected points, matching or
exceeding the performance of other methods that require many times more points.

Related Work, Due to space limitations, the comprehensive literature review is placed in Appendix
A. In particular, we present a detailed comparison of the generalization bounds for our proposed
SeWA and existing algorithms in Table 1.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of SeWA with other algorithms on different settings. Here T represents
iterations, and n denotes the size of the datasets. L, β, and c are constants. k is the number of
averages. ŝ = supT−k+1≤i≤T si, ŝ ∈ (0, 1], si corresponds to the probability of mask m = 1 and Oŝ

means that this upper bound depends on ŝ. We can derive that SeWA has sharper bounds compared
to others in different settings, where FWA is the general form of LAWA.

SETTINGS LEARNING RATE ALGORITHM GENERALIZATION BOUND

CONVEX αt = α

SGD 2αLT/n HARDT ET AL. (2016)
SWA αLT/n XIAO ET AL. (2022)
FWA 2αL(T − k/2)/n WANG ET AL. (2024B)
EMA −
SEWA 2αLŝ(T − k/2)/n THEOREM 4.6

NON-CONVEX αt =
c
t

SGD O(T
cβ

1+cβ /n) HARDT ET AL. (2016)
SWA O(T

cβ
2+cβ /n) WANG ET AL. (2024A)

FWA O(T
cβ

k+cβ /n) WANG ET AL. (2024B)
EMA −
SEWA Oŝ(T

cβ
k+cβ /n) THEOREM 4.11

2 METHODOLOGY

In this section, we begin by formalizing the problem setup and introducing the foundational assump-
tions, definitions, and key properties. We then present the proposed SeWA algorithm along with the
essential terminology required for its understanding.

2.1 PROBLEM SETTING

Let F (w, z) be a loss function that measures the loss of the predicted value of the network parameter
w at a given sample z. There is an unknown distribution D and a sample dataset S = (z1, z2, ..., zn)
of n examples i.i.d. drawn from D. Then the population risk and empirical risk are defined as

Population Risk:RD[w] = Ez∼DF (w; z) and Empirical Risk:RS [w] =
1

n

n∑
i=1

F (w; zi).

The generalization error of a model w is the difference ϵgen = RD[w]−RS [w].

SGD. For the target function F and the given dataset S = (z1, z2, · · · , zn), we consider the SGD’s
general update rule as

wt+1 = wt − α∇wF (wt, zit), (1)
where α is the fixed learning rate, zit is the sample chosen in iteration t. We choose zit from dataset S
in a standard way, picking it ∼ Uniform {1, · · · , n} at each step. This setting is commonly explored
in analyzing the stability Hardt et al. (2016); Xiao et al. (2022).

Algorithm 1: Selective Weight Average
Input: Checkpoints w, hyper-parameters

t,M,max_iteration
Init: Mask probability s;

1 for i = 1, . . . ,max_iteration do
2 Gumbel-softmax sampling for

m = 1, . . . ,M do
3 Sample u(m) ∼ Uniform(0, 1);

4 Compute F
(

w(GS(s, u(m), t)
)

;

5 end
6 Learning mask probability

Optimize
F̂ (s) = 1

M

∑M
m=1 F

(
w(GS(s, u(m), t)

)
;

7 end
Output: Mask m based on K largest

probabilities in s

SeWA algorithm adaptively selects K points for
averaging among the last k points on the training
trajectory after T steps of the SGD iterations. It
is formulated as

w̄K
T =

1

K

T∑
i=T−k+1

miwi, (2)

where the mask mi ∈ {0, 1} and mi = 1 in-
dicating the i-th weight is selected for averag-
ing and otherwise excluded; the selection count
K = kmi=1 =

∑T
i=T−k+1 mi quantifies the

number of selected weights within the interval
[T − k + 1, T ], which equivalently represents
the number of candidate models incorporated
in averaging. In practice, the SeWA algorithm
selects the top-K highest-probability weights for
averaging, as outlined in Algorithm 1.
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2.2 BASIC ASSUMPTIONS

Moreover, we assume function F satisfies the following Lipschitz and smoothness assumption.
Assumption 2.1 (L-Lipschitz). A differentiable function F : Rd → R satisfies the L-Lipschitz
property, i.e., for ∀u, v ∈ Rd, ∥F (u)− F (v)∥ ≤ L∥u− v∥, which implies ∥∇F (u)∥ ≤ L.
Assumption 2.2 (β-smooth). A differentiable function F : Rd → R is β-smooth, i.e., for ∀u, v ∈ Rd,
we have ∥∇F (u)−∇F (v)∥ ≤ β∥u− v∥.

Assumptions 2.1 and 2.2 are often used to establish stability bounds for algorithms and are crucial
conditions for analyzing the model’s generalization performance.
Assumption 2.3 (Convex function). A differentiable function F : Rd → R is convex, i.e., for
∀u, v ∈ Rd, F (u) ≤ F (v) + ⟨∇F (u), u− v⟩.

Different functional assumptions correspond to different expansion properties, which determine the
different generalization bounds and will be discussed in Lemma 2.4 and Chapter 4.

2.3 THE EXPANSIVE PROPERTIES

Lemma 2.4. Assume that the function F is β-smooth. Then,
(1). (non-expansive) If F is convex, for any α ≤ 2

β , we have ∥wT+1 − w′
T+1∥ ≤ ∥wT − w′

T ∥;
(2). ((1+αβ)-expansive) If F is non-convex, for any α, we have ∥wT+1−w′

T+1∥≤(1+αβ)∥wT−w′
T ∥.

Lemma 2.4 tells us that the gradient update becomes non-expansive when the function is convex and
the step size is small, which implies that the algorithm will always converge to the optimum in this
setting. However, although this is not guaranteed when the function is non-convex, it is required that
the gradient updates cannot be overly expansive if the algorithm is stable. The proof of Lemma 2.4 is
deferred to Appendix C. Additional dissuasion can be found in Hardt et al. (2016); Xiao et al. (2022).

2.4 STABILITY AND GENERALIZATION DEFINITION

Hardt et al. (2016) link the uniform stability of the learning algorithm with the expected generalization
error bound in research of SGD’s generalization. The expected generalization error of a model
w = AS trained by a certain randomized algorithm A is defined as

ES,A [RS [AS ]−RD [AS ]] . (3)

Here, expectation is taken over the internal randomness of A. Next, we introduce the uniform stability.
Definition 2.5 (ϵ-Uniformly Stable). A randomized algorithm A is ϵ-uniformly stable if for all data
sets S, S′ from D such that S and S′ differ in at most one example, we have

sup
z∈S,S′

{EA [F (AS ; z)− F (AS′ ; z)]} ≤ ϵ. (4)

Theorem 2.6. (Generalization in Expectation (Hardt et al., 2016, Theorem 2.2)) Let A be ϵ-uniformly
stable. Then,

|ES,A [RS [AS ]−RD [AS ]] | ≤ ϵ. (5)

This theorem clearly states that if an algorithm has uniform stability, then its generalization error is
small. In other words, uniform stability implies generalization in expectation Hardt et al. (2016).
Above proof is based on Bousquet & Elisseeff (2002, Lemma 7) and similar to Shalev-Shwartz et al.
(2010, Lemma 11).

3 PRACTICAL SEWA IMPLEMENTATION

Although the SeWA algorithm has simpler expressions, the difficulty is learning the mask mi. Inspired
by tasks such as coreset selection Zhou et al. (2022), the discrete problem is relaxed to a continuous
one. We first formulate weight selection into the following discrete optimization paradigm:

min
m∈C

F (m) = F (w(m)) =
1

n

n∑
i=1

F (w(m); z) , (6)

4
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where C = {m : mi = 0 or 1, ∥m∥0 ≤ K} and w(m) = 1
K

∑T
i=T−k+1 miwi.

To transform the discrete Eq. 6 into a continuous one, we treat each mask mi as an independent
binary random variable and reparameterize it as a Bernoulli random variable, mi ∼ Bern(si), where
si ∈ [0, 1] represents the probability of mi taking the value 1, while 1 − si corresponds to the
probability of mi being 0. Consequently, the joint probability distribution of m is expressed as
p(m|s) =

∏n
i=1(si)

mi(1 − si)
1−mi . Then, the feasible domain of the target Eq. 6 approximately

becomes Ĉ = {s : 0 ≤ s ≤ 1, ∥s∥1 ≤ K} since Emi∼p(m|s)∥m∥0 =
∑n

i=1 si. As in the previous
definition, K > 0 in Ĉ is a constant that controls the size of the feasible domain. Then, Eq. 6 can be
naturally relaxed into the following excepted loss minimization problem:

min
s∈Ĉ

F (s) = Ep(m|s)F (w(m)) , (7)

where Ĉ = {s : 0 ≤ s ≤ 1, ∥s∥1 ≤ K}. Optimizing Eq.7 involves discrete random variables, which
are non-differentiable. One choice is using Policy Gradient Estimators (PGE) such as the REIN-
FORCE algorithm (Williams, 1992; Sutton et al., 1999) to bypass the back-propagation of discrete
masks m,

∇sF (s) = Ep(m|s)F (w(m))∇s log p(m | s).

However, these algorithms suffer from the high variance of computing the expectation of the objective
function, hence may lead to slow convergence or sub-optimal results.

To overcome these issues, we resort to the reparameterization trick using Gumbel-softmax sampling
(Jang et al., 2017; Maddison et al., 2017). Instead of sampling discrete masks m, we get continuous
relaxations by,

m̃i =
exp((log si + gi,1)/t)

exp((log si + gi,1)/t) + exp((log(1− si) + gi,0)/t)
, (8)

for i = 1, . . . , k, where gi,0 and gi,1 are i.i.d. samples from the Gumbel(0, 1) distribution. The
hyperparameter t > 0 controls the sharpness of this approximation. When it reaches zero, i.e., t → 0,
m̃ converges to the true binary mask m. During training, we maintain t > 0 to ensure the function is
continuous. For inference, we can sample from the Bernoulli distribution with probability s to get
sparse binary masks. In practice, the random variables g ∼ Gumbel(0, 1) can be sampled from,

g = − log(− log(u)), u ∼ Uniform(0, 1).

For simplicity, we denote the Gumbel-softmax sampling in Eq. 8 as m̃ = GS(s, u, t), where
u ∼ Uniform(0, 1). Replacing the binary mask m in Eq. 7 with the continuous relaxation m̃, the
optimization problem becomes,

min
s∈Ĉ

F (s) = Eu∼Uniform(0, 1)F (w(GS(s, u, t)) , where Ĉ = {s : 0 ≤ s ≤ 1, ∥s∥1 ≤ K} .

The expectation can be approximated by Monte Carlo samples, i.e.,

min
s∈Ĉ

F̂ (s) =
1

M

M∑
m=1

F
(

w(GS(s, u(m), t)
)
,

where u(m) are i.i.d. samples drawn from Uniform(0, 1). Empirically, since the distribution of u is
fixed, this Monte Carlo approximation exhibits low variance and stable training Kingma & Welling
(2013); Rezende et al. (2014). Furthermore, since Eq. 8 is continuous, we can optimize it using
back-propagation and gradient methods.
Remark 3.1. SeWA adaptively selects useful checkpoints, which implies that it does not require the
extra cost associated with manual design and avoids model biases introduced by prior knowledge,
thereby making our approach applicable to a broader range of tasks. In the following experiments,
SeWA algorithm demonstrates particular suitability for scenarios characterized by unstable training
trajectories, such as behavior cloning. By leveraging checkpoint averaging, SeWA effectively
stabilizes the training process, mitigating fluctuations and enhancing overall performance.

5
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4 THEORETICAL ANALYSIS OF SEWA

4.1 OPTIMIZATION ANALYSIS

Next, we show that the standard gradient descent algorithm will converge to a "flat" point. Prior to
this, we first revisit the definition of stationary points for the minimization problem, that is to say,
Definition 4.1. Given a differentiable function G : K → R and a domain C ⊆ K, a point x ∈ C is
called as a stationary point for the function G over C if and only if miny∈C⟨y − x,∇G(x)⟩ ≥ 0.

Then, we have the following result
Theorem 4.2. If the Bernoulli extension F in Eq.7 is β-smooth, gradient descent with a step size
smaller than 1

β will eventually converge to a stationary point.

Remark 4.3. The β-smoothness of F (s) has been verified in Appendix C of (Hassani et al., 2017).

From the definition of Bernoulli extension F (s), we can show that (Calinescu et al., 2011)

∂F

∂si
(s) ≜ Ep(m|s)

(
F (w(m;mi → 1))− F (w(m;mi → 0))

)
, (9)

where s ≜ (s1, . . . , sn) ∈ [0, 1]n, (m;mi → 1) means that we reset the i-th coordinate of m to 1
and (m;mi → 0) denotes setting mi to value 0.

According to Eq.9, we can infer that ∂F
∂si

(s) corresponds to the expected marginal effect of the i-th
SGD iteration on mask m. Generally speaking, gradient descent algorithm only can be constrained
to a finite number of iterations. Consequently, the outcome s we finally obtain is an approximate
stationary point for Bernoulli extension F with |⟨y − s,∇F (s)⟩| ≤ ϵ, ∀y ∈ C. Particularly, when
s is an interior point (near the boundary) of C, we can know, for any basic vector ei, there exists a
constant λ such that s± λei ∈ C, which implies that the following inequality holds:

|λ ·Ep(m|s)

(
F (w(m;mi → 1))− F (w(m;mi → 0))

)
|

= max
(
⟨(s+ λei)− s,∇F (s)⟩, ⟨(s− λei)− s,∇F (s)⟩

)
≤ max

y∈C
|⟨y − s,∇F (s)⟩ ≤ ϵ.

(10)

Eq.10 implies that the expected marginal change of F (w(m)) along any coordinate is bounded by ϵ
λ .

In other words, the SeWA algorithm can converge to a critical point with flatter curvature.

4.2 GENERALIZATION ANALYSIS

This section provides the upper bounds on generalization in the convex and non-convex settings,
respectively. First, a critical lemma is provided for building a stability bound in the convex setting.
Lemma 4.4. Let w̄K

T and w̄K′
T denote the corresponding outputs of SeWA after SGD running T steps

on the datasets S and S′, which have n samples but only one different. Assume that function F (·, z)
satisfies Assumptions 2.1 for a fixed example z, then we have

E|F (w̄K
T ; z)− F (w̄K′

T ; z)| ≤ ŝLE[δ̄T ], (11)

where δ̄T = 1
k

∑T
i=T−k+1 ∥wi−w′

i∥, wi and w′
i are the outputs of SGD, and ŝ = supT−k+1≤i≤T si,

where si is the probability of mi = 1 and ŝ ∈ (0, 1].
Remark 4.5. The parameter ŝ is the upper bound of the probability si that selects a candidate model
wi for averaging. Notably, setting ŝ ̸= 0 carries practical significance: if ŝ = 0, the algorithm would
result in the failure to select any weights for averaging, thereby collapsing model parameters to zero.
Such a scenario is incompatible with the algorithm’s design principles and fundamentally undermines
its intended purpose. Additionally, since the learned probability si is inherently encoded within the
network parameters, ŝ = 0 would force all parameters to zero, violating the algorithm’s operational
framework. Thus, our ŝ ∈ (0, 1] setting is theoretically and practically justified.

The Lemma 4.4 further decomposes the problem of selecting points for averaging within the last
k steps into averaging over the last k steps multiplied by the probability si of each step by taking
an expectation over the mask, which makes it possible further to establish SeWA’s stability bounds.
Next, we give the bound for SeWA in the convex setting combined with Lemma 4.4.
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Theorem 4.6. Suppose that we first run SGD with constant step sizes α ≤ 2
β for T steps, where each

step samples z uniformly with replacement and learn the probability si of each weight wi from k
checkpoints. If function F satisfies Assumptions 2.1, 2.2 and 2.3. SeWA has uniform stability of

ϵgen ≤ 2αL2ŝ

n

(
T − k

2

)
, (12)

where ŝ = supT−k+1≤i≤T si and ŝ ∈ (0, 1].
Remark 4.7. Theorem 4.6 shows that the SeWA algorithm has a sharper stability bound of
2αL2 (T − k/2) ŝ/n under the convex assumption than the bound 2αL2T/n for SGD given by
Hardt et al. (2016). The reason for improving the generalization comes from two main sources: (1)
the last k checkpoints averaging improves the SGD bound O(T/n) to O((T − k/2)/n). This result
degenerates to the SGD bound when k = 1. (2) The algorithm further improves the stability bound
2αL2(T − k/2)/n to ŝ times its size, which reflects the influence of selection on the bound.
Remark 4.8. The k in Theorem 4.6 implies that the more checkpoints involved in the averaging, the
better the generalization performance. In practice, k is set sufficiently large to ensure that the selected
checkpoints can comprehensively explore the solution space. In contrast, a small k leads to limited
improvement in generalization due to the similar performance of checkpoints collected in later stages.
Remark 4.9. Theorem 4.6 introduces a scaling parameter ŝ, which is confined to (0, 1] and linearly
modulates the bound 2αL2(T − k/2)/n but remains independent of the number of selected weights.
Furthermore, our empirical analysis in Section 5 demonstrates that smaller numbers of selected
weights do not consistently yield better generalization performance.
Lemma 4.10. Let w̄K

T and w̄K′
T denote the corresponding outputs of SeWA after SGD running T

steps on the datasets S and S′, which have n samples but only one different. Assume that function
F (·, z) satisfies Assumption 2.1 for a fixed example z and every t0 ∈ {1, · · · , n}, then we have

E|F (w̄K
T ; z)− F (w̄K′

T ; z)| ≤ t0
n

+ ŝLE
[
δ̄T |δ̄t0 = 0

]
, (13)

where δ̄T = 1
k

∑T
i=T−k+1 ∥wi−w′

i∥, wi and w′
i are the outputs of SGD, and ŝ = supT−k+1≤i≤T si,

where si is the probability of mi = 1 and ŝ ∈ (0, 1].
Theorem 4.11. Suppose we first run SGD with decay step sizes α ≤ c

t for T steps, where each
step samples z uniformly with replacement and learn the probability si of each weight wi from k
checkpoints. Let function F ∈ [0, 1] satisfies Assumptions 2.1 and 2.2. SeWA has uniform stability of

ϵgen ≤ Oŝ

(
T

cβ
k+cβ

n

)
, (14)

where ŝ = supT−k+1≤i≤T si, ŝ ∈ (0, 1], and c > 0 is a constant.

Remark 4.12. In non-convex setting, Theorem 4.11 shows that SeWA has bound O(T cβ/(cβ+k)/n)
compared to the O(T cβ/(cβ+1)/n) for SGD in Hardt et al. (2016), showing its ability to improve
generalization significantly. Although the number k, closely related to the iterations T , seems to
dominate the result, the direct influence of parameter ŝ on the entire bound also plays a crucial role.
Remark 4.13. The assumption that F (w; z) ∈ [0, 1] in Theorem 4.11 is adopted for simplicity.
Removing this condition does not affect the final results, as it merely introduces a constant scaling
factor. The same setting is commonly used and discussed in Hardt et al. (2016); Xiao et al. (2022).
Remark 4.14. We derive the generalization bound of SeWA via stability analysis, following a standard
pipeline. As part of this, we establish the bound for averaging the last k iterates, similar to the paper
Wang et al. (2024b), but with two key differences: (1) We obtain a tighter bound on the cumulative
gradient that depends on t0, yielding an improved result for SGD without requiring strict assumptions
under decaying learning rates, consistent with empirical results. (2) Our focus is on the effect of
selection on generalization, so this task is only auxiliary and restricted to uniform averaging, while
existing work considers weighted averaging schemes. In Appendix E, we provide the proofs of
Lemma 4.4 and 4.10. The proofs of Theorems 4.6 and 4.11 are provided in Appendix F.2 and F.3.

5 EXPERIMENT

We systematically explore the effectiveness of our method across three distinct settings: behavior
cloning, image classification, and text classification. Details of the experimental setup, including
network architectures, hyperparameters, and additional results, are provided in Appendix B.
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Table 2: Performance comparison of various methods on D4RL Gym tasks with K = 20. Each
result is evaluated as the mean of 60 random rollouts, based on 3 independently trained models with
20 trajectories per model. Detailed results are presented in Table 3.

Task Dataset SGD SWA EMA LAWA Random SeWA (Ours)

K=20

Hopper medium 1245.039 1281.910 1302.400 1310.875 1312.166 1361.202
Hopper medium-expert 1460.785 1427.47 1373.268 1563.307 1482.012 1571.127

Walker2d medium 3290.248 3308.464 3420.257 3325.873 3324.557 3364.886
Walker2d medium-expert 3458.693 3588.176 3667.809 3557.925 3650.846 3673.804

Halfcheetah medium 4850.490 4913.549 4848.006 4974.041 4924.613 5071.051
Halfcheetah medium-expert 5015.689 5024.723 4957.194 4993.524 4988.816 5085.628

Average 3220.157 3257.382 3261.489 3287.591 3280.502 3354.616

5.1 BEHAVIOR CLONING

Experimental Setups. We conduct comprehensive evaluations using the widely adopted D4RL
benchmark (Fu et al., 2020; Hu et al., 2024a), focusing on Gym-MuJoCo locomotion tasks. These
tasks serve as standard benchmarks due to their well-defined structure, prevalence of near-optimal tra-
jectories, and smooth reward functions, making them particularly suitable for assessing reinforcement
learning algorithms. For evaluation, we employ cumulative reward as the primary metric.
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Figure 2: Comparison of different meth-
ods on the D4RL benchmark. Each data
point represents the average cumulative
reward across multiple tasks, averaged
over 3 random seeds and 20 trajectories
per seed. (Details in Appendix B.)

Baselines. To evaluate SeWA, we compare it with estab-
lished baselines: SGD-based pre-training, SWA (Izmailov
et al., 2018), and EMA (Szegedy et al., 2016), all adapted
for behavior cloning. EMA follows Kaddour (2022), us-
ing a 0.9 decay and updating every K steps. SWA begins
after 75% of training with a cosine annealing scheduler,
averaging parameters every K steps. We also include
LAWA (Sanyal et al., 2023) and a Random baseline, both
of which average K checkpoints from the last k = 1000
pre-training steps. LAWA samples at intervals, Random
samples randomly. LAWA, Random, and our SeWA use
only these checkpoints for evaluation, without retraining.
SGD, SWA, and EMA report final results from their re-
spective training processes, ensuring fair comparison.

Results. In Figure 2 and Table 2, all baselines demonstrate
superior performance compared to the original SGD op-
timizer, highlighting the effectiveness of weight averaging
strategies in improving model performance. These results
confirm that weight averaging can serve as a valuable technique for stabilizing and enhancing model
training outcomes. Additionally, our analysis reveals that increasing the number of checkpoints K
used for averaging consistently improves performance across all methods. However, this improvement
tends to plateau beyond a certain threshold, indicating diminishing returns as the number of averaged
checkpoints increases. Notably, our SeWA consistently surpasses all baselines across experimental
settings. Even with only K = 10 checkpoints, it outperforms baselines using K = 100, demonstrat-
ing both efficiency and robustness. This highlights our approach’s efficiency and robustness, as it can
deliver significant improvements with a substantially smaller computational footprint.

5.2 IMAGE CLASSIFICATION

Experimental Setups. We assess SeWA on image classification using the CIFAR-100 dataset and
ResNet architecture (He et al., 2016). With 100 diverse classes, CIFAR-100 presents a challenging
benchmark, and accuracy on the test set serves as our primary metric. In our experiments, we use
intermediate model checkpoints saved during the final stage of training, specifically after 10,000
training steps. Performance is evaluated at intervals of k = 100 checkpoints, with the number of
checkpoints included in the averaging procedure within each interval controlled by the hyperparameter
K. This flexibility allows us to adjust the extent of checkpoint aggregation and analyze its impact.

Results. As illustrated in Figure 3, all baselines outperform the original SGD optimizer, underscoring
the effectiveness of weight averaging in enhancing model performance. Additionally, weight averag-
ing accelerates model convergence, with all baselines reaching performance levels that SGD requires

8
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Figure 3: From left to right, the figures illustrate the impact of the hyperparameter K on the CIFAR-
100 task. Each point corresponds to intervals of 100 checkpoints, with K checkpoints selected and
averaged from these intervals using different strategies.
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Figure 4: From left to right, the figures illustrate the impact of the hyperparameter K on the AG
News corpus. Each point corresponds to intervals of 100 checkpoints, with K checkpoints selected
and averaged from these intervals using different strategies.

17 steps to achieve. Our SeWA method consistently delivers the best performance, demonstrating
its effectiveness. Beyond 17 steps, where the model approaches convergence, further improvement
becomes minimal, as the checkpoints at this stage share highly similar weights.

5.3 TEXT CLASSIFICATION

Experimental Setups. For the text classification task, we use the AG News corpus, a widely used
benchmark dataset containing news articles categorized into four distinct classes. The classification
is performed using a transformer-based architecture Vaswani et al. (2017), which is known for its
effectiveness in handling natural language processing tasks. To preprocess the dataset, we tokenize
the entire corpus using the basic_english tokenizer. Any words not found in the vocabulary are
replaced with a special token, UNK, to handle out-of-vocabulary terms. This preprocessing ensures
that the dataset is standardized and ready for training. We save intermediate checkpoints throughout
the training process, starting from the initial stages. From this set of checkpoints, we systematically
select every k = 100 checkpoint for consideration in the averaging process. The hyperparameter
K controls the number of checkpoints used for averaging, allowing flexible experimentation with
different levels of checkpoint aggregation. This experimental design facilitates a comprehensive
evaluation of the effects of checkpoint averaging on model performance in NLP tasks.

Results. In Figure 4, the improvement of weight averaging over the SGD baseline is minimal for
relatively simple tasks, primarily serving to stabilize training. However, our SeWA achieves the best
results regardless of task complexity, demonstrating its broad applicability across diverse settings.

6 CONCLUSION

We propose a new algorithm SeWA for adaptive selecting checkpoints to average, which improves
generalization and applies to a variety of tasks. In practical implementation, we employ probabilistic
reparameterization to transform the discrete optimization problem into a continuous objective solvable
by gradient-based methods. From a theoretical perspective, we prove that SeWA converges to a critical
point with flatter curvature, thereby explaining its inherent ability to achieve better generalization.
Moreover, under various assumptions, we derive its generalization bounds, which exhibit superior
results compared to other algorithms. Empirically, we verify that SeWA can achieve good performance
for unstable training processes, and a few checkpoints selected by SeWA can achieve results, while
other algorithms require several times as many points.

Limitation: The theoretical analysis of SeWA based on L-Lipschitz and β-smoothness, which do
not always hold in real-world deep learning models. Extending our framework through similar
assumption-free analyses presents an interesting direction for future research.
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The Use of Large Language Models. In this work, we exclusively employ large language models
(LLMs) to refine the writing and presentation of our manuscript.

A ADDITIONAL RELATED WORK

Weight averaging algorithm. Model averaging methods, initially introduced in convex optimization
Ruppert (1988); Polyak & Juditsky (1992); Li et al. (2023), have been widely used in various areas
of deep learning and have shown their advantages in generalization and convergence. Subsequently,
the introduction of SWA Izmailov et al. (2018), which averages the weights along the trajectory of
SGD, significantly improves the model’s generalization. Further modifications have been proposed,
including the Stochastic Weight Average Density (SWAD) Cha et al. (2021), which averages check-
points more densely, leading to the discovery of flatter minima associated with better generalization.
Trainable Weight Averaging (TWA) Li et al. (2022) has improved the efficiency of SWA by employing
trainable averaging coefficients. What’s more, other approaches like Exponential Moving Average
(EMA) Szegedy et al. (2016) and finite averaging algorithms, such as LAWA Kaddour (2022); Sanyal
et al. (2023), which average the last k checkpoints from running a moving window at a predetermined
interval, employ different strategies to average checkpoints. These techniques have empirically shown
faster convergence and better generalization. In meta-learning, Bayesian Model Averaging (BMA) is
used to reduce the uncertainty of the model Huang et al. (2020). However, these algorithms often
require manual design of averaging strategies and are only applicable to some specific tasks, imposing
an additional cost on the training.

Stability Analysis. Stability analysis is a fundamental theoretical tool for studying the generalization
ability of algorithms by examining their stability (Devroye & Wagner, 1979; Bousquet & Elisseeff,
2002; Mukherjee et al., 2006; Shalev-Shwartz et al., 2010). Based on this, Hardt et al. (2016)
use the algorithm stability to derive generalization bounds for SGD, inspiring a series of works
Charles & Papailiopoulos (2018); Zhou et al. (2018); Yuan et al. (2019); Lei & Ying (2020). This
analysis framework has been extended to various domains, such as online learning (Yang et al.,
2021), adversarial training (Xiao et al., 2022), decentralized learning (Zhu et al., 2023), and federated
learning (Sun et al., 2023b;a). Although uniform sampling is a standard operation for building
stability boundaries, selecting the initial point and sampling without replacement also significantly
affects generalization and has been investigated in Shamir (2016); Kuzborskij & Lampert (2018).
For the averaging algorithm, Hardt et al. (2016) and Xiao et al. (2022) analyze the generalization
performance of SWA and establish stability bounds for the algorithm under the setting of convex and
sampling with replacement. The primary focus of this paper is the construction of stability bounds
for SeWA in both convex and non-convex settings.

Mask Learning. The general approach involves transforming the discrete optimization problem into a
continuous one using probabilistic reparameterization, thereby enabling gradient-based optimization.
Zhou et al. (2022) solves the coreset selection problem based on this by using a Policy Gradient
Estimator (PGE) for a bilevel optimization objective. Zhang et al. (2024) propose a probabilistic
masking method that improves diffusion model efficiency by skipping redundant steps. While the
PGE method may suffer from high variance and unstable training, we solve the mask learning
problem using the Gumbel-softmax reparameterization (Jang et al., 2017; Maddison et al., 2017).
Mask learning has also been successfully applied across various domains to tackle diverse challenges
(Liu et al., 2018; Hu et al., 2024c;b). In this paper, we aim to adaptively select checkpoints for model
averaging, with the goal of improving generalization performance and mitigating training instability.

B EXPERIMENT DETAILS

B.1 BEHAVIOR CLONING

Network Architecture. The network architecture comprises four layers, each consisting of a
sequence of ReLU activation, Dropout for regularization, and a Linear transformation. The final
layer includes an additional Tanh activation function to enhance the representation and capture
non-linearities in the output.

Results. Comprehensive results for each task across all datasets are presented in Table 3. Our
evaluation focuses specifically on the medium and medium-expert datasets, which offer a balanced
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Table 3: Performance comparison of various methods on D4RL Gym tasks. The left panel shows
results obtained using the final checkpoint under different update strategies, while the right panel
presents results from averaged checkpoints collected during the final training stage with SGD, using
different selection strategies. Each result is evaluated as the mean of 60 random rollouts, based on 3
independently trained models with 20 trajectories per model.

Task Dataset SGD SWA EMA LAWA Random SeWA (Ours)

K=10

Hopper medium 1245.039 1279.249 1297.270 1289.515 1291.478 1324.848
Hopper medium-expert 1460.785 1468.893 1320.408 1462.452 1451.015 1509.317

Walker2d medium 3290.248 3328.121 3341.888 3341.437 3306.763 3371.202
Walker2d medium-expert 3458.693 3546.008 3681.504 3634.373 3609.611 3679.806

Halfcheetah medium 4850.490 4858.224 4894.204 5012.389 4896.104 5041.369
Halfcheetah medium-expert 5015.689 4974.923 4857.562 4989.329 4962.719 5082.902

Average 3220.157 3242.570 3232.139 3288.249 3252.948 3334.907

K=20

Hopper medium 1245.039 1281.910 1302.400 1310.875 1312.166 1361.202
Hopper medium-expert 1460.785 1427.47 1373.268 1563.307 1482.012 1571.127

Walker2d medium 3290.248 3308.464 3420.257 3325.873 3324.557 3364.886
Walker2d medium-expert 3458.693 3588.176 3667.809 3557.925 3650.846 3673.804

Halfcheetah medium 4850.490 4913.549 4848.006 4974.041 4924.613 5071.051
Halfcheetah medium-expert 5015.689 5024.723 4957.194 4993.524 4988.816 5085.628

Average 3220.157 3257.382 3261.489 3287.591 3280.502 3354.616

K=50

Hopper medium 1245.039 1294.884 1329.863 1336.33 1319.571 1389.280
Hopper medium-expert 1460.785 1477.466 1485.696 1537.672 1496.045 1616.116

Walker2d medium 3290.248 3262.046 3341.767 3253.695 3352.12 3392.130
Walker2d medium-expert 3458.693 3577.509 3591.081 3584.468 3659.789 3672.560

Halfcheetah medium 4850.490 4927.951 4968.048 5022.097 5000.004 5035.631
Halfcheetah medium-expert 5015.689 5061.688 5075.426 5011.232 4960.585 5044.886

Average 3220.157 3280.833 3298.647 3290.916 3298.019 3358.434

K=100

Hopper medium 1245.039 1347.267 1322.625 1320.652 1319.727 1393.981
Hopper medium-expert 1460.785 1527.206 1528.265 1496.266 1491.196 1568.025

Walker2d medium 3290.248 3324.218 3393.646 3345.913 3321.046 3424.078
Walker2d medium-expert 3458.693 3575.621 3629.308 3613.274 3587.211 3710.347

Halfcheetah medium 4850.490 4939.629 4871.376 4974.220 5015.349 5021.948
Halfcheetah medium-expert 5015.689 4919.624 5047.757 4991.007 5031.975 5063.546

Average 3220.157 3272.261 3298.830 3290.222 3294.417 3363.654

mix of trajectories with varying performance levels. This selection enables a thorough assessment
of our method’s ability to generalize across different reward distributions. For clarity and ease of
comparison, the main paper emphasizes the average performance across tasks, as illustrated in Figure
2. This dual presentation ensures a detailed examination of individual tasks while providing an
accessible overview of overall performance.

B.2 IMAGE CLASSIFICATION OF CIFAR100

Network Architecture. The network architecture consists of three primary blocks, followed by an
average pooling layer and a linear layer for generating the final output. Each block contains two
convolutional layers, each accompanied by a corresponding batch normalization layer to improve
training stability and convergence. To address potential issues of vanishing gradients, each block
includes a shortcut connection that facilitates efficient gradient flow during backpropagation. The
output of each block is passed through a ReLU activation function to introduce non-linearity, enabling
the network to learn complex representations effectively.

Results. In addition to the results presented in Figure 3, we provide further analysis examining the
impact of network parameter variations to demonstrate the robustness of our method across networks
of different sizes. These results, shown in Figure 5, illustrate that as the number of layers or blocks
increases, the performance of SGD improves, following a similar training curve.

Notably, weight averaging consistently outperforms SGD during the upward phase of training. The
performance gains from weight averaging become more pronounced as the network size increases,
highlighting its potential in scaling effectively to larger models. This highlights the potential of
weight averaging to enhance the performance of larger models. Furthermore, regardless of changes
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Figure 5: From left to right, the figures illustrate the impact of the hyperparameter K on the CIFAR-
100 task. Each data point represents performance based on intervals of k = 100 checkpoints, with
K checkpoints selected from these intervals using various strategies. The first row corresponds to a
network architecture with 1 block, the second row represents a network with 3 blocks, and the third
row depicts results for a network with 5 blocks.

in network parameters, our proposed method consistently achieves superior results, demonstrating its
adaptability and effectiveness across varying network configurations. These findings emphasize the
potential of weight averaging as a robust and scalable technique for optimizing model performance.

B.3 IMAGE CLASSIFICATION OF IMAGENET

Experimental Setups. To rigorously evaluate our method’s efficacy in image classification, we
employ the ImageNet dataset Deng et al. (2009) in conjunction with the Vision Transformer (ViT)
architecture Han et al. (2022). The ImageNet dataset, comprising 1000 diverse classes, serves as a
comprehensive benchmark for assessing image classification performance. We adopt classification
accuracy on the test dataset as our primary evaluation metric. Throughout our experimental protocols,
we systematically preserve model checkpoints after each training epoch. Performance evaluation is
conducted at intervals of k = 5 checkpoints, with the number of checkpoints incorporated into the
averaging procedure within each interval regulated by the hyperparameter K = 3.

Network Architecture. Our implementation utilizes a ViT model (330.23MB), representing a
paradigm shift from conventional convolutional neural networks for image classification tasks. The
ViT architecture initially employs a patch embedding layer that segments input images into uniform
patches and projects them into a high-dimensional embedding space. A learnable classification token
is subsequently prepended to the sequence of embedded patches, and positional embeddings are
incorporated to preserve spatial information. The architectural core comprises 12 transformer blocks,
each integrating multi-head self-attention mechanisms with 12 attention heads and feed-forward
networks with an expansion ratio of 4. The resultant representations undergo normalization via
layer normalization before transmission to a linear classification head that generates output logits
corresponding to the 1000 ImageNet classes.

Results. We present a comprehensive analysis examining the efficacy of various weight averaging
strategies when applied to transformer-based architectures. The empirical results, illustrated in
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Figure 7: From left to right, the figures illustrate the impact of the hyperparameter K on the AG News
corpus. Each point corresponds to intervals of k = 100 checkpoints, with K checkpoints selected
from these intervals using different strategies. The first row corresponds to a network architecture with
a single TransformerEncoderLayer, the second row represents a network with three TransformerEn-
coderLayers, and the third row shows results for a network with five TransformerEncoderLayers.

Figure 6, demonstrate that our proposed SeWA consistently outperform standard SGD optimization
throughout the training trajectory.

0 3 6 9 12 15 18
Epoch

35

40

45

50

55

60

Ac
cu

ra
cy

SGD
LAWA
Random
SeWA

Figure 6: Comparison of different meth-
ods on the ImageNet benchmark utiliz-
ing the ViT architecture.

Significantly, all weight averaging methods demonstrate
superior accuracy compared to SGD throughout training.
These findings highlight the particular effectiveness of
weight averaging. Moreover, while Random weight aver-
aging generally outperforms SGD, it shows inferior results
compared to our proposed SeWA and occasionally un-
derperforms relative to SGD. In contrast, our approaches
maintain consistent performance advantages throughout
the learning process. This comparative analysis provides
compelling evidence that structured weight averaging sub-
stantially enhances Vision Transformer performance on
large-scale image classification tasks. The demonstrated
superiority of our methodologies over both baseline SGD
and Random underscores the importance of the adaptive
selection process in optimizing transformer networks, showing the effectiveness of our method.

B.4 TEXT CLASSIFICATION

Network Architectures. The network architecture comprises two embedding layers followed by
two layers of TransformerEncoderLayer. Each TransformerEncoderLayer includes a multi-head self-
attention mechanism and a position-wise feedforward network, along with layer normalization and
residual connections to enhance training stability and gradient flow. The output from the Transformer
layers is passed through a linear layer to produce the final predictions.

Results. In addition to the findings presented in Figure 4, we conduct further analysis to evaluate
the impact of network parameter variations, demonstrating the robustness of our method across

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

networks of varying sizes. These additional results, shown in Figure 7, indicate that as the number
of Transformer layers increases, the performance of SGD improves up to a certain point. However,
beyond this range - where two layers appear sufficient - performance begins to exhibit fluctuations,
suggesting diminishing returns and instability with additional layers.

While the improvement achieved by weight averaging is relatively modest due to the simplicity
of the task, it still plays a critical role in stabilizing the training process and reducing fluctuations
in the training curve. Among the averaging methods evaluated, our proposed method consistently
achieves the best performance, underscoring its effectiveness in maintaining stability and optimizing
performance, even in scenarios where task complexity is low.

B.5 ABLATIONS

B.5.1 HYPERPARAMETER SENSITIVITY

Our proposed algorithm introduces several new hyperparameters, and understanding their impact
is critical for both reproducibility and practical deployment. To this end, we perform comprehen-
sive sensitivity analyses on representative tasks, focusing primarily on the Hopper-medium and
Hopper-medium-expert environments from D4RL. All reported results are averaged over three
random seeds with 20 evaluations per seed, and we present both mean and standard deviation.

Table 4: Ablation on the Gumbel-Softmax temperature t in Algorithm 2.1.
t 0.1 0.3 0.5 0.7 1.0

Hopper-medium 1372.11± 48.01 1377.29± 47.12 1384.03± 46.56 1384.45± 47.02 1389.28± 46.98
Hopper-medium-expert 1595.42± 12.51 1601.23± 11.87 1609.01± 11.35 1610.65± 10.72 1616.12± 10.58

Effect of Gumbel-Softmax Temperature t. Table 4 reports the performance of SeWA under
different Gumbel-Softmax temperature values t. The results demonstrate that SeWA is generally
robust over a wide range of temperatures. Performance degradation is observed only at very small
temperatures (e.g., t = 0.1), where the Gumbel-Softmax distribution becomes nearly discrete, result-
ing in high-variance gradients and challenging optimization. For moderate and large t, performance
remains stable and exhibits small variance, indicating that SeWA does not require fine-grained tuning
of this hyperparameter.

Table 5: Ablation on the number of MC samples M in Algorithm 2.1
M 1 5 10 20

wall-clock time 0.25 s/iter 0.31 s/iter 0.33 s/iter 0.36 s/iter
Hopper-medium 1389.28± 46.98 1390.52± 37.06 1399.12± 30.95 1414.08± 8.86

Hopper-medium-expert 1616.12± 10.58 1621.11± 9.33 1625.15± 7.95 1632.37± 4.12

Effect of Monte Carlo Sample Size M . We further examine the impact of the number of Monte
Carlo (MC) samples M used for gradient estimation. In this ablation, we fix K = 50 (number of
selected checkpoints) and vary M from 1 to 20. Table 5 shows that increasing M consistently reduces
performance variance and yields slightly improved returns, which is expected as a result of more
accurate gradient estimation. Importantly, the computational overhead grows only mildly - using
20× samples results in merely 1.44× wall-clock time - making higher M values computationally
feasible. This suggests that practitioners can choose M flexibly based on their computational budget:
larger M improves performance but is not strictly necessary to achieve strong results.

Table 6: Ablation on the max iterations for mask optimization in Algorithm 2.1
max iteration 100 500 1000 1500

Hopper-medium 1370.46± 48.90 1381.39± 47.23 1389.28± 46.98 1390.01± 46.92
Hopper-medium-expert 1590.51± 12.33 1607.22± 11.04 1616.12± 10.58 1616.53± 10.56
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Effect of Maximum Iterations for Mask Optimization. We next investigate the influence of the
maximum number of iterations used in the mask optimization step. As shown in Table 6, performance
improves as the number of iterations increases, but the gain saturates at approximately 1000 iterations.
This indicates that SeWA converges quickly and does not require excessively long optimization
schedules to achieve near-optimal performance - an important property for practical efficiency.

Table 7: Ablation on the candidate pool size k (len(w)) in Algorithm 2.1
pool k 100 500 1000 1500

Hopper-medium 1362.88± 49.45 1375.20± 47.89 1389.28± 46.98 1389.30± 47.10
Hopper-medium-expert 1581.92± 13.42 1603.11± 11.58 1616.12± 10.58 1616.80± 10.71

Effect of Candidate Pool Size k. Finally, we examine the candidate pool size k, i.e., the number of
recent checkpoints retained in w. Table 7 shows that increasing k improves performance marginally,
with diminishing returns beyond k = 1000. Notably, even small pool sizes (e.g., k = 500) lead to
competitive results, suggesting that SeWA can be deployed efficiently without excessive memory
requirements for checkpoint storage.

B.5.2 EXTENDED ANALYSIS OF AVERAGING STRATEGIES

Table 8: Ablation study on averaging strategies for checkpoint selection.
SeWA All-k-Average Top-K-Average

Hopper-medium 1389.28± 46.98 1285.38± 42.33 1356.18± 40.44
Hopper-medium-expert 1616.12± 10.58 1483.20± 10.33 1533.28± 9.32

To provide a comprehensive evaluation of our averaging methodology, we conduct additional ablation
studies examining alternative averaging strategies. Specifically, we compare SeWA against two
baseline approaches: All-k-Average, which computes the arithmetic mean of all candidate checkpoints
(where k = 1000 for both Hopper-medium and Hopper-medium-expert environments), and Top-K-
Average (K = 50), which requires evaluating all k candidate points before selecting and averaging
the top-performing subset. Due to the computational overhead associated with evaluating all k
checkpoints in the Top-K-Average approach, we limit this analysis to two representative environments.

The experimental results presented in Table 8 reveal several important insights. The All-k-Average
strategy demonstrates inferior performance compared to SeWA, which can be attributed to information
dilution effects. By indiscriminately averaging all candidate checkpoints, this approach fails to
prioritize high-quality solutions and incorporates potentially detrimental weights from suboptimal
checkpoints, ultimately leading to degraded performance.

Similarly, the Top-K-Average method yields lower performance than SeWA, despite its computational
expense in evaluating all candidate points. These findings provide compelling evidence that SeWA’s
effectiveness stems from its ability to identify and leverage checkpoints that genuinely contribute
to improved target performance, rather than simply aggregating high-performing individual models.
The results demonstrate that not all high-performance checkpoints are conducive to exploring flat
regions of the loss landscape when combined through averaging. This observation underscores the
critical importance of SeWA’s intelligent selection mechanism in the averaging process, which goes
beyond naive performance-based selection to identify checkpoints that exhibit beneficial geometric
properties when aggregated.

C PROOF OF LEMMA 2.4

(1 + αβ)-expansive. According to triangle inequality and β-smoothness,

∥wT+1 − w′
T+1∥ ≤ ∥wT − w′

T ∥+ α∥∇F (wT )−∇F (w′
T )∥

≤ ∥wT − w′
T ∥+ αβ∥wT − w′

T ∥
= (1 + αβ)∥wT − w′

T ∥.
(15)
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Non-expansive. Function is convexity and β-smoothness that implies

⟨∇F (w)−∇F (v), w − v⟩ ≥ 1

β
∥∇F (w)−∇F (v)∥2. (16)

We conclude that

∥wT+1 − w′
T+1∥ =

√
∥wT − α∇F (wT )− w′

T + α∇F (w′
T )∥2

=
√

∥wT − w′
T ∥2 − 2α⟨∇F (wT )−∇F (w′

T ), wT − w′
T ⟩+ α2∥∇F (wT )−∇F (w′

T )∥2

≤

√
∥wT − w′

T ∥2 −
(
2α

β
− α2

)
∥∇F (wT )−∇F (w′

T )∥2

≤ ∥wT − w′
T ∥.

(17)

D PROOF OF THEOREM 4.2

We consider the new auxiliary function G(s) ≜ −F (s). By the smoothness of the function F , we
know that the auxiliary function G is also β-smoothness such that

G(st+1) ≥ G(st) + ⟨∇G(st), st+1 − st⟩ −
β

2
∥st+1 − st∥2.

Note that, in gradient descent, we have st+1 = PC (st + µt∇G(st)) where µt is learning rate and
thus using the properties of convex projections we have

⟨st+1 − st, st+1 − (st + µt∇G(st))⟩ ≤ 0 ⇒ ∥st − st+1∥2 ≤ µt⟨st+1 − st,∇G(st)⟩.
Plugging this into the latter inequality we conclude that for µt ≤ 1

β

G(st+1) ≥ G(st) +

(
1

µt
− β

2

)
∥st+1 − st∥2 ≥ G(st) +

β

2
∥st+1 − st∥2.

Summing both sides we conclude that
∞∑
t=1

∥st+1 − st∥2,

is bounded, which implies that st converges to a point s. This means that this point obeys
s = PC (s+ µt∇G(s)) .

By definition of projection the latter implies that PC−{s}(µt∇G(s)) = 0. A well known result in
convex analysis (Rockafellar, 2015) implies maxy∈C⟨∇G(s), y−s⟩ = −miny∈C⟨∇F (s), y−s⟩ ≤
0, concluding the proof.

E PROOF OF THE LEMMA 4.4 AND 4.10

We establish generalization bounds for the SeWA algorithm through uniform stability (Eq. 4). Let
w̄K

T and w̄K′
T denote the SeWA’s outputs under perturbations arising from two sources: (1) data

perturbation, where SeWA runs on two datasets S and S′ differing by exactly one sample; (2) weight
selection for averaging, an inherent algorithmic procedure. To analyze this, we first fix the selected
weights, ensuring identical selection probabilities at each step i. We can apply stability theory to
achieve our research objectives based on the above.

E.1 PROOF OF LEMMA 4.4

We now fix an example z and use the Lipschitz assumption, which transforms the problem into
bounding the parameter differences.

Ez,m,A|F (w̄K
T ; z)− F (w̄K′

T ; z)| ≤LEm,A∥w̄K
T − w̄K′

T ∥

≤ L

(
1

k

T∑
i=T−k+1

siEA∥wi − w′
i∥+

1

k

T∑
i=T−k+1

(1− si)·0

)
≤ ŝLEA[δ̄T ],
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where the second inequality is based on taking the expectation for mask mi, and the last inequality is
because of ŝ = supT−k+1≤i≤T si.

E.2 PROOF OF LEMMA 4.10

There are differences in the proof between convex and nonconvex assumptions.

We split the proof of Lemma 4.10 into two parts. Let ξ denote the event δ̄t0 = 0. Let z be an arbitrary
example and consider the random variable I assuming the index of the first time step using the
different sample. Then we have

E|∇F (w̄K
T ; z)−∇F (w̄K′

T ; z)| = P {ξ}E[|∇F (w̄K
T ; z)−∇F (w̄K′

T ; z)||ξ]
+ P {ξc}E[|∇F (w̄K

T ; z)−∇F (w̄K′
T ; z)||ξc]

≤ P {I ≥ t0} · E[|∇F (w̄K
T ; z)−∇F (w̄K′

T ; z)||ξ]
+ P {I ≤ t0} · sup

w̄K ,z

F (w̄K ; z),

(18)

where ξc denotes the complement of ξ.

Note that when I ≥ t0, then we must have that δ̄t0 = 0, since the execution on S and S′ is identical
until step t0. We can get LE[∥w̄K

T − w̄K′
T ∥|ξ] combined the Lipschitz continuity of F . Furthermore,

we know P {ξc} = P
{
δ̄t0 = 0

}
≤ P {I ≤ t0}, for the random selection rule, we have

P {I ≤ t0} ≤
t0∑
t=1

P {I = t0} =
t0
n
. (19)

We can combine the above two parts and F ∈ [0, 1] to derive the stated bound

E|F (w̄K
T ; z)− F (w̄K′

T ; z)| ≤ t0
n

+ LE
[
∥w̄K

T − w̄K′
T ∥|∥w̄K

t0 − w̄K′
t0 ∥ = 0

]
. (20)

Secondly, we take expectation for the mi of E∥w̄K
T − w̄K′

T ∥, which is similar to the proof of Lemma
4.4. Then we have

E|F (w̄K
T ; z)− F (w̄K′

T ; z)| ≤ t0
n

+ ŝLE[δ̄T |δ̄t0 = 0], (21)

where δ̄T = 1
k

∑T
i=T−k+1 ∥wi−w′

i∥, wi and w′
i are the outputs of SGD, and ŝ = supT−k+1≤i≤T si,

where si is the probability of mi = 1 and ŝ ∈ (0, 1].

F PROOF OF THE GENERALIZATION BOUNDS

By the Lemma 4.4 and 4.10, the proof of Theorem 4.6 and 4.11 can be further decomposed into
bounding the difference of the parameters for the last k points of the average algorithm.

F.1 UPDATE RULES OF THE LAST k POINTS OF THE AVERAGING ALGORITHM.

For the last k points of the averaging algorithm, we formulate it as

ŵk
T =

1

k

T∑
i=T−k+1

wi. (22)

It is not difficult to find the relationship between ŵk
T and ŵk

T−1, i.e.,

ŵk
T = ŵk

T−1 +
1

k
(wT − wT−k) = ŵk

T−1 −
1

k

T∑
i=T−k+1

αi∇F (wi−1, zi), (23)

where the second equality follows from the update of SGD.
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F.2 PROOF. THEOREM 4.6

We finish the task using Lemma 4.4 and Lemma 4.10, which divide the task of establishing the
SeWA’s generalization bound into two parts: (1) analyzing the impact of the selection process, and
(2) deriving the bound for averaging over the last k points. Then, we first establish the generalization
bound for averaging over the last k points.

First, using the relationship between ŵk
T and ŵk

T−1 in Eq. 23, we consider that the different sample
zT and z′T are selected to update with probability 1

n at the step T .

δ̄T = δ̄T−1 +
1

k

T∑
i=T−k+1

αi∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥

≤ δ̄T−1 +
2αTL

k
+

1

k

T−1∑
i=T−k+1

αi∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥,

(24)

where the proof follows from the triangle inequality and the L-Lipschitz condition. For
1
k

∑T−1
i=T−k+1 αi∥∇F (w′

i−1, zi)−∇F (wi−1, zi)∥ will be controlled later.

Second, another situation needs to be considered in case of the same sample are selected(zT = z′T )
to update with probability 1− 1

n at the step T .

δ̄T = δ̄T−1 +
1

k

T∑
i=T−k+1

αi∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥

≤ δ̄T−1 +
1

k

T−1∑
i=T−k+1

αi∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥,

(25)

where the second inequality comes from the non-expansive property of convex function.

For each ∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥ in the sense of expectation, We consider two situations

using αL bound and the non-expansive property. Then, we get

1

k

T−1∑
i=T−k+1

αi∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥ ≤ 2L

nk

T−1∑
i=T−k+1

αi. (26)

Then we obtain the expectation based on the above analysis

E
[
δ̄T
]
≤ (1− 1

n
)δ̄T−1 +

1

n

(
δ̄T−1 +

2αTL

k

)
+

2L

nk

T−1∑
i=T−k+1

αi

≤ E
[
δ̄T−1

]
+

2L

nk

T∑
i=T−k+1

αi

(27)

recursively, we can get

E
[
δ̄T
]
≤ 2L

nk

(
T∑

i=T−k+1

αi +

T−1∑
i=T−k

αi + · · ·+
k∑

i=1

αi

)

+
2L

nk

(
k−1∑
i=1

αi +

k−2∑
i=1

αi + · · ·+
1∑

i=1

αi

)
.

(28)

Let αi,j = α, we get

E
[
δ̄T
]
=

2αL

n

(
T − k

2

)
. (29)

Plugging this back into Eq. 4.4 and combining the above and Lemma 4.4, we obtain

ϵgen = E|F (w̄K
T ; z)− F (w̄K′

T ; z)| ≤ 2αL2ŝ

n

(
T − k

2

)
. (30)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

And we finish the proof.

In fact, based on the above proof, the generalization bound can be readily extended to the case of a
decaying learning rate. However, we adopt a constant learning rate mainly for ease of comparison
with other methods. As discussed in the remark 4.14, our approach to establishing the generalization
bound of SeWA is similar to that of the paper Wang et al. (2024b), but with a fundamental difference.
Our focus lies in the effect of selection on generalization, while the generalization bound of the
averaged last k iterates serves only as a component of our study, where a uniform weighting scheme
suffices. In contrast, existing work concentrates on the paradigm of weighted averaging.

F.3 PROOF. THEOREM 4.11 (BASED ON THE CONSTANT LEARNING RATE)

F.3.1 LEMMA F.1 AND IT’S PROOF

Lemma F.1. Assume that F is β-smooth and non-convex. Let α = c
t , we have

∥w′
T − wT ∥ ≤ e

cβk
T−k δ̄T , (31)

where δ̄T = 1
k

∑T
i=T−k+1 ∥w′

i − wi∥.

proof Lemma F.1. By the triangle inequality and our assumption that F satisfies, we have

∥w′
T − wT ∥ =

1

k
· k · ∥w′

T − wT ∥

≤1

k
(∥w′

T − wT ∥+ (1 + αT−1β)∥w′
T−1 − wT−1∥+ · · ·+

(1 + αT−1β)(1 + αT−2β) · · · (1 + αT−k+1β)∥w′
T−k+1 − wT−k+1∥)

≤
T∏

t=T−k+1

(1 + αtβ)

(
1

k

T∑
i=T−k+1

∥w′
i − wi∥

)
.

(32)

Let αt =
c
t , we have

∥w′
T − wT ∥ ≤

T∏
t=T−k+1

(1 + αtβ)δ̄T ≤
(
1 +

cβ

T − k

)k

δ̄T ≤ e
cβk
T−k δ̄T . (33)

F.3.2 PROOF. THEOREM 4.11

In the non-convex setting, we build the SeWA’s generalization bound based on the Lemma 4.10.

Then, the last k points of the averaging algorithm’s stability bounds are provided as follows. Based
on the relationship between ŵk

T and ŵk
T−1 in Eq. 23. We consider that the different samples zT and

z′T are selected to update with probability 1
n at step T.

δ̄T = δ̄T−1 +
1

k

T∑
i=T−k+1

αi∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥

≤ δ̄T−1 +
2αTL

k
+

1

k

T−1∑
i=T−k+1

αi∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥,

(34)

Next, the same sample z = z′ is selected to update with probability 1− 1
n at step T.

δ̄T ≤ δ̄T−1 +
1

k

T∑
i=T−k+1

αi∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥

≤ δ̄T−1 +
αTβ

k
∥w′

T−1 − wT−1∥+
1

k

T−1∑
i=T−k+1

αi∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥

≤ (1 +
αTβe

cβk
T−k

k
)δ̄T−1 +

1

k

T−1∑
i=T−k+1

αi∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥,

(35)
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where the proof follows from the β-smooth and Lemma F.1. Then, we bound the
α∥∇F (w′

T−2, zT−1)−∇F (wT−2, zT−1)∥ with different sampling.

αiE∥∇F (w′
i, zi+1)−∇F (wi, zi+1)∥ =

2αiL

n
+

(
1− 1

n

)
αiβ∥wi − w′

i∥

≤ 2αiL

n
+ αiβ

(
∥wi−1 − w′

i−1∥+αi−1∥∇F (w′
i−1, zi)−∇F ′(wi−1, zi)∥

)
≤ 2αiL

n
+ αiβ

(
2αi−1L

n
+ (1 + αi−1β)∥wi−1 − w′

i−1∥
)

· · ·

≤ 2αiL

n

(
1 + αi−1β +

i−1∑
m=t0

i∏
t=m+1

(1 + αtβ)αm

)
+ αiβ

i∏
t=t0

(1 + αtβ)∥wt0 − w′
t0∥,

(36)

where wt0 = w′
t0 . Therefore, we discuss the bound for 1

k

∑T−1
i=T−k+1 αi∥∇F (w′

i−1, zi) −
∇F (wi−1, zi)∥ based on the recursive relationship.

1

k

T−1∑
i=T−k+1

αiE∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥

≤ 1

k

T−1∑
i=T−k+1

2αiL

n

(
1 + αi−1β +

i−1∑
m=t0

i∏
t=m+1

(1 + αtβ)αm

)

=
2L

k

T−1∑
i=T−k+1

αi

n
+

2βL

k

T−1∑
i=T−k+1

αiαi−1

n
+

2L

k

T−1∑
i=T−k+1

αi

n

i−1∑
m=t0

i∏
t=m+1

(1 + αtβ)αm

≤ 2cL

n(T − k + 1)
+

2βc2L

n(T −K)2
+

2cLT cβ

nβtcβ0 (T − k + 1)
,

(37)

where αi =
c
i and the proof of the last term in the first equality is provided as follows

T−1∑
m=t0

T−1∏
t=m

(1 +
cβ

t
)
1

m
≤

T−1∑
m=t0

1

m

(
e
∑T−1

t=m
cβ
t

)
≤

T−1∑
m=t0

T cβ

m1+cβ
≤ T cβ

∫ T−1

t0

m−(1+cβ)dm

=
T cβ

cβ

(
1

tcβ0
− 1

(T − 1)cβ

)
≤ 1

cβ
·
(
T

t0

)cβ

.

(38)

Taking M1 =
(
1 + cβ + 1

β

)
, we can obtain the bound in the expectation sense.

1

k

T−1∑
i=T−k+1

αiE∥∇F (w′
i−1, zi)−∇F (wi−1, zi)∥ ≤ 2cLM1

ntcβ0
·
(

1

T − k

)1−cβ

. (39)

Compared with the results in paper Wang et al. (2024b), here we establish an upper bound on
the cumulative gradient that depends on t0. This enables us to derive a generalization bound that
surpasses the performance of SGD in the subsequent analysis, without requiring strict assumptions.

Then, we obtain the expectation considering the above analysis

E
[
δ̄T+1

]
≤ (1− 1

n
)

(
1 +

αTβe
cβk
T−k

k

)
δ̄T +

1

n

(
δ̄T +

2αTL

k

)
+

2cLM1

ntcβ0
·
(

1

T − k

)1−cβ

(40)
let αt =

c
t , then

≤

(
1 + (1− 1

n
)
cβe

cβk
t−k

kt

)
δ̄t +

2cL(1 + kM1)

nk(t0 − k)cβ

(
1

t− k

)1−cβ

≤ exp

(
(1− 1

n
)
cβ

kt

)
δ̄t +

2cLM

nk(t0 − k)cβ

(
1

t− k

)1−cβ

,

(41)
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where M = 1 + kM1, cβ ∈ (0, 1), k < t0 and we used that lim
x→∞

(1 + 1
x )

x = e and lim
x→∞

e
1
x = 1.

Using the fact that δ̄t0 = 0, we can unwind this recurrence relation from T down to t0 + 1.

Eδ̄t+1 ≤
T∑

t=t0+1

(
T∏

m=t+1

exp

(
(1− 1

n
)
cβ

km

))
2cLM

nk(t0 − k)cβ
·
(

1

t− k

)1−cβ

=

T∑
t=t0+1

exp

(
(1− 1

n )cβ

k

T∑
m=t+1

1

m

)
2cLM

nk(t0 − k)cβ
·
(

1

t− k

)1−cβ

≤
T∑

t=t0+1

exp

(
(1− 1

n )cβ

k
· log(T

t
)

)
2cLM

nk(t0 − k)cβ
·
(

1

t− k

)1−cβ

≤ T
(1− 1

n
)cβ

k ·
T∑

t=t0+1

(
1

t− k

) (1− 1
n

)cβ

k +1−cβ

· 2cLM

nk(t0 − k)cβ

≤
(
cβ

k
+ 1− cβ

)−1

· 2cLM

nk(t0 − k)cβ
· T

cβ
k ·
(

1

t0 − k

) cβ
k −cβ

≤ 2cLMτ

n− 1
· T

cβ
k ·
(

1

t0 − k

) cβ
k

,

(42)

where τ = 1
k+cβ−kcβ and cβ ∈ (0, 1). Plugging this back into Eq. 11, we obtain

E|F (w̄k
T ; z)− F (w̄′k

T ; z)| ≤ t0
n

+
2ŝcL2Mτ

n− 1
· T

cβ
k ·
(

1

t0 − k

) cβ
k

. (43)

By taking the extremum, we obtain the minimum

t0 =

(
2ŝc2L2βMτ

k

) k
k+cβ

· T
cβ

k+cβ + k. (44)

Finally, this setting gets

ϵgen = E|F (w̄k
T ; z)− F (w̄′k

T ; z)| ≤
1 + k

cβ

n− 1

(
2ŝc2L2βτMk−1

) k
cβ+k · T

cβ
cβ+k +

k

n− 1
. (45)

To simplify, omitting constant factors that depend on β, c and L, this setting get

ϵstab ≤ Oŝ

(
T

cβ
k+cβ

n

)
. (46)

And we finish the proof.
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