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ABSTRACT

Adapting large-scale flow and diffusion models to downstream tasks through reward
optimization is essential for their adoption in real-world applications, including
scientific discovery and image generation. While recent fine-tuning methods
based on reinforcement learning and stochastic optimal control achieve compelling
performance, they face severe scalability challenges due to high memory demands
that scale with model complexity. In contrast, methods that disentangle reward
adaptation from base model complexity, such as Classifier Guidance (CG), offer
flexible control over computational resource requirements. However, CG suffers
from limited reward expressivity and a train-test distribution mismatch due to its
offline nature. To overcome the limitations of fine-tuning methods and CG, we
propose Value Matching (VM), an online algorithm for learning the value function
within an optimal control setting. VM provides tunable memory and compute
demands through flexible value network complexity, supports optimization of non-
differentiable rewards, and operates on-policy, which enables going beyond the
data distribution to discover high-reward regions. Experimentally, we evaluate VM
across image generation and molecular design tasks. We demonstrate improved
stability and sample efficiency over CG and achieve comparable performance to
fine-tuning approaches while requiring less than 5% of their memory usage.

1 INTRODUCTION

Large-scale generative foundation models SDXL (2024)
have recently made remarkable progress. & 750 - SPIM @020 e *
Among them, flow (Lipman et al., 2023; Al- & R~

bergo & Vanden-Eijnden, 2023; Liu et al., = 500 .

2023) and diffusion models (Ho et al., 2020; é SD2.1 (2022)

Sohl-Dickstein et al., 2015; Song et al., 2020) 5 250 7 .

stand out for their ability to generate high- 0 DIT (2023) o ® SD1.5 2022)

fidelity samples across a wide range of do- 0 i é 3

mains, including images (Ho et al., 2020),
chemistry (Hoogeboom et al., 2022), biology
(Corso et al., 2023), and robotics (Chi et al.,
2023). For many applications (e.g., control-
lable image editing and drug discovery (Olive-
crona et al., 2017)), adapting such large pre-
trained models to downstream rewards is essential. Existing approaches based on reinforcement learn-
ing (RL) (Zhao et al., 2025; Black et al., 2023; Fan et al., 2023; Hu et al., 2025) and stochastic optimal
control (SOC) (Domingo-Enrich et al., 2025; Uehara et al., 2024; Tang, 2024; Domingo-Enrich et al.,
2024) rely on backpropagating through the full model to update model weights. This makes them
increasingly memory-intensive as model sizes scale to billions of parameters, as illustrated in Figure 1.
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Figure 1: The recent trend toward more complex flow
and diffusion generative models leads to prohibitively
high fine-tuning memory (VRAM) requirements.

Despite their promising performance (e.g., Domingo-Enrich et al., 2025; Zhao et al., 2025), RL and
SOC-based fine-tuning methods remain fundamentally limited by resource requirements that scale
with model size. Moreover, many state-of-the-art approaches require the reward function to be differ-
entiable (e.g., Domingo-Enrich et al., 2025), which severely limits applicability to black-box optimiza-
tion settings where only function evaluations are available without access to structural information.
This constraint is problematic for real-world applications such as drug discovery, where molecular
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property prediction relies on complex simulators (Bannwarth et al., 2019; Sholl & Steckel, 2009;
Forli et al., 2016) or experimental measurements (Hughes et al., 2011). This raises a key question:

How can we leverage SOC (or RL) machinery to adapt flow and diffusion models to
non-differentiable rewards with controllable resource usage and competitive performance?

Limitations of fine-tuning methods suggest recon-
sidering approaches like classifier guidance (CG)
(Dhariwal & Nichol, 2021) that offer computational VM CG AM CT-PPO
advantages by avoiding updates to base model param-

Table 1: Algorithm capabilities.

eters and enables adaptation with non-differentiable NO fine-tuning o/ X X
rewards. However, we show that CG has notable ~Cradient-free o/ X v
limitations, such as limited expressivity and a Online data X/ 4
train-test distribution mismatch. We address these 1 Hyperparams. 1 1 1 5

shortcomings by proposing Value Matching (VM),

a control-theoretic algorithm that learns the value function online, enabling discovery of high-reward
regions beyond the data distribution. Further, we analyze how VM differs from fine-tuning approaches
such as Adjoint Matching (AM) (Domingo-Enrich et al., 2025) and Continuous-Time PPO (CT-PPO)
(Zhao et al., 2025), notably not requiring fine-tuning and avoiding reward gradients. Lastly, we show
that VM achieves performance competitive with CT-PPO at significantly lower resource requirements.

Our Contributions:

* A control-theoretic viewpoint shedding light on how the offline nature of classifier guidance hinders
the discovery of high-reward samples beyond the data distribution (Section 4).

* Value Matching (VM), a theoretically-grounded online method for reward adaptation of flow models
through value function learning, highlighting advantages compared to AM and CT-PPO (Section 5).

* An experimental evaluation across image and molecular generation tasks using non-differentiable
rewards, showing that VM (i) achieves superior stability and sample efficiency compared to classifier
guidance, (ii) reduces resource requirements by 95% relative to fine-tuning methods while main-
taining comparable performance, and (iii) enables effective adaptation of molecular and large-scale
text-to-image models through value networks significantly smaller than the base model (Section 6).

2 BACKGROUND AND NOTATION

Flow Models. In this work, we consider the problem of adapting flow (Lipman et al., 2023; Albergo
& Vanden-Eijnden, 2023; Liu et al., 2023) and diffusion models (Ho et al., 2020; Sohl-Dickstein et al.,
2015; Song et al., 2020), which have emerged as leading approaches for generative modeling across
various domains, including images (Rombach et al., 2022; Peebles & Xie, 2023; Podell et al., 2024;
Gupta et al., 2024; Esser et al., 2024), text (Gat et al., 2024), and molecular design (Hoogeboom et al.,
2022; Dunn & Koes, 2024a;b). Typically, flow models are sampled through an ordinary differential
equation (ODE) (Lipman et al., 2023), however, they can also be sampled via a stochastic differential
equation (SDE) with equal time marginals (Maoutsa et al., 2020). We sample by simulating an SDE:

dXt = b(Xt, t) dt —|— O'(t) d.Bt7 X0 ~ Po, (1)

where b : R? x [0, 1] — R< is the drift, o : [0, 1] — R?*4 is the diffusion, and B; is a Brownian mo-
tion. For unbiased adaptation, we use a memoryless parameterization (Domingo-Enrich et al., 2025):

« & .
bx,t) & x4+ 0(t)VIogpi(xi),  0*(t) = 26, (Cjﬂt - ﬁt>, @
t t
with (v, B;) defined as the flow schedule (Lipman et al., 2023) and (¢, 3;) being time derivatives.

Stochastic Optimal Control (SOC). For our approach, we frame KL-regularized adaptation as an
SOC problem (Bellman & Dreyfus, 2015; Fleming & Rishel, 2012), a general framework that deals
with optimization over stochastic processes. Specifically, we restrict ourselves to a quadratic cost
control-affine Bolza problem (Bolza, 1904) on a finite time horizon [0, 1] with dynamics:

dx; = (b(xy,t) + o(t)u(xy, t)) dt + o(t) dB, %o ~ po- 3)

Further, the cost functional .J is defined as the total cost of a control u starting from a point (x, t),
composed of a quadratic running cost 1 ||u(x;, t)||? and an arbitrary terminal cost g : RY — R. The
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control problem is to find the control u that minimizes the cost functional J at every point (x,t):

1 !
u* € argmin J(u;x,t) £ E,u {/ |u(xs, 8)||* ds + g(x1)
uel 2 t

X; = X:| . @

From here, the value function is defined as the optimal value of the cost functional:
V(x,t) = inzf4 J(uyx,t) = J(u*; %, ). 5)
ue

Further, V' can be defined through the base distribution (Domingo-Enrich et al., 2024, Appendix B):
V(x,t) = —log E,pre [exp(—g(x1)) | xt = x]. 6)

3 PROBLEM SETTING

We consider the generative optimization problem (Li et al., 2024b; De Santi et al., 2025a;b) of
adapting a pre-trained flow or diffusion model pP™® to maximize a reward function r : R — R
in expectation, weighted by A € R>¢, and remain close to pP™ in terms of Kullback-Leiber (KL)
divergence. Formally, we optimize over policies m with induced last-timestep marginal pT:

arg max B,z [A\r(x1)] — Dxr(p] || p7™°) st dxy = 0" (x4, t) dt 4 o(t) dB;. (7

The optimal solution 7* of Problem (7) induces the tilted distribution p} (x) o< p}™°(x) exp(Ar(x)) if
o follows a memoryless noise schedule (Domingo-Enrich et al., 2025). In flow models, this objective
is equivalent to the following quadratic cost control-affine control problem (Tang, 2024):

1t
argmin E [ / l|lu(xs, 8)||* ds — Ar(x;)
w:R?® x[0,1] R4 2/

s.t. dxy = (BP™(xy, t) + o(t)u(xy, t)) dt + o (t) dB;.

Xt :X:|

®)

Existing fine-tuning methods (e.g., Domingo-Enrich et al., 2025; Zhao et al., 2025) encounter scalabil-
ity challenges because they require updating the base model parameters. To perform these updates, the
gradients of the loss function must be backpropagated through the entire model. This process is highly
memory-intensive, as calculating the gradients requires storing all intermediate activations of the
model. As a result, the memory footprint scales with model size, posing a major bottleneck as these
models grow to billions of parameters. Next, we introduce an approach that addresses this issue.

4 DISENTANGLING OPTIMIZATION THROUGH VALUE FUNCTION LEARNING

In this work, we advocate for learning the value function V' of Equation (5) to solve Problem (7), which
offers compelling advantages over current fine-tuning methods: (1) support of non-differentiable
rewards (c¢f. Xu et al., 2023; Clark et al., 2024; Domingo-Enrich et al., 2025) and (2) controllable
resource usage. Once learned, the value function allows us to find the optimal control u* through
Pontryagin’s minimum principle (Pontryagin, 1962), where the first-order optimality condition gives:

u*(x,t) = =0T (t)VxV(x,t). )

A key insight for Problem (7) is that the value function retains differentiability even when the reward
function is not, ensuring well-defined optimal control. Intuitively, this occurs because stochastic noise
acts as a smoothing kernel; the value function V' at time ¢ averages over all noise realizations from x;
to x1, effectively regularizing reward discontinuities (see Figure 3). We formalize this as follows.

Proposition 1. Under the memoryless noise schedule and assuming that r is bounded and measurable,
the value function V is differentiable in x att < 1.

Proof outline. We write V (x,t) = —log ¢ (x,t) where ¢ (x,t) = Eppre[exp(Ar(x1)) | x¢ = x].
Then apply the chain rule and show that ¢/ > 0 and that v is differentiable (see Appendix A.3).

This proposition enables the optimization of non-differentiable reward functions commonly used in
practical applications, rendering this approach gradient-free. It proves particularly valuable in settings
where reward functions are treated as black boxes, providing only function evaluations without
access to gradients or structural information. For instance, in molecular generation, reward functions
often rely on external simulators (Bannwarth et al., 2019; Sholl & Steckel, 2009; Forli et al., 2016)
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(a) Base model p}™. (b) Reward r. (c) Optimal p;.  (d) CG training data. (¢) VM training data.

Figure 2: Training distribution evolution for VM and CG on a 2D environment, showing that VM
aligns its training distribution with the optimal distribution throughout training, whereas CG does not.
(2d, 2e) Points with lower opacity represent earlier training stages.

or experimental measurements (Hughes et al., 2011) that only
return scalar values. In such cases, value function learning
makes reward adaptation possible, as opposed to methods that
rely on reward gradients (e.g., Xu et al., 2023; Clark et al., 2024;
Domingo-Enrich et al., 2025).

Beyopd hapdling non-differentiable reyvards, learning the value t—=066 +=0.74~t=081
f}lnf:tlop disentangles reward adapt.atlo'n from base rpodel op- t—083et—=094et—=1.00
timization. Consequently, the dominating computational cost . .

shifts from base model training to base model inference and Elgure 3: E_VOlut%on of value func-
value function learning. This leads to controllable resource tion for a discontinuous reward.
usage by allowing for the flexible choice of a value network architecture. As we show in Section 6,
the value function can be made significantly smaller than the base model, resulting in a substantial
reduction in cost, while achieving comparable performance to fine-tuning methods. Because of this
significant cost reduction, the value function learning approach is highly practical for the adaptation
of large-scale models where fine-tuning would be prohibitively expensive.

Having established the advantages of value function learning, we next recall how classifier guidance
can be viewed as an offline algorithm to learn the value function V.

Classifier Guidance as Offline Value Function Learning. As previously established by Pandey
et al. (2025), Classifier Guidance (CG) (Dhariwal & Nichol, 2021) admits an interpretation as value
function learning. The approach involves training a classifier py;(y | x) over noisy samples x
at timesteps ¢ € [0, 1] and using its log-gradient V log py|:(y | x) to guide generation. This
procedure can be understood as leveraging Equation (6) to solve Problem (7) with the reward function
r(x) = log py|1(y | x) and value function V'(x,t) = —logpy:(y | x) (see Appendix A.5 for the
derivation), which in turn motivates a generalized loss function for arbitrary rewards:

1 1
La(Bix0) 2 5 [ lexp(~Vaoi, ) = exp(Or(xa)) P d,
0
dXt = bpre(Xt) t) dt + U(t) dBt, X0 ~ Po-

Throughout the remainder of this work, we use CG to refer to this loss formulation. Next, we discuss
issues with this approach for generative optimization (Li et al., 2024b; De Santi et al., 2025a;b).

(10)

Limitations of Classifier Guidance for Generative Optimization. The CG formulation in Equa-
tion (10) represents an offline value function learning approach because it trains on samples from the
fixed, pre-trained distribution p}"® rather than the current policy distribution pY. This offline nature is
inherent to the loss formulation itself: the expectation in Equation (6) is computed over the pre-trained
distribution, necessitating that the value function is trained on samples from this fixed source.

However, for generative optimization tasks such as reward maximization, we wish to sample high
reward designs beyond regions of high data availability (Li et al., 2024b; De Santi et al., 2025a;b).
This objective reveals a fundamental limitation of the offline approach: a distribution mismatch
arises between the fixed training distribution p{™® and the target distribution p} that the learned
policy encounters during inference (see Figure 2). As the policy shifts probability mass toward
higher-reward regions, the training samples from p}"® become increasingly less informative, reducing
sample efficiency and potentially limiting the method’s ability to discover optimal solutions.
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Algorithm 1 Value Matching algorithm.

Require: Pre-trained base model with sampling SDE dx; = b(x,t) dt+ o (t) d By, Reward function
r : R% — R, Untrained value function approximator Vp : R x [0,1] — R, Number of iterations
N € N, Trajectories per iteration m € N, Timestep-dependent weighting w : [0, 1] — Rxo.
1: for N iterations do
2: Sample m trajectories under the current policy:

dXi7t = (bpre(xi7t7 t) — UZ(t)VV§(XZ‘7t, t)) dt + O'(t) d.Bt7 Xi,0 ™~ Po, xS [m]

3: Estimate the cost functional for each timestep in each trajectory with @ = stopgrad(6):
. 1/t ) .
Jit = 3 lo(s)VVg(xis,s)||”ds — Ar(x;1), t€[0,1],7 € [m].
t
4: Compute the loss function:
1 & [t
L£(6) = — t) - |Va(xit, t) — Jie|? dt.
©)= 5 2 [ w0 Walriot) =

5: Make an optimization step with VL(8).
6: end for

Additionally, the exponential terms in Equation (10) create numerical stability issues during training,
due to overflows when Ar(x) > 90 under 32-bit floating-point precision. This constrains the method’s
expressivity to small reward scalings A, as we show in Section 6. To address these limitations, we
leverage the control-theoretic viewpoint to next introduce an online value function learning approach
that aligns the training and inference distributions while maintaining numerical stability.

5 VALUE MATCHING: SCALABLE AND GRADIENT-FREE REWARD-GUIDED
ADAPTATION

We introduce Value Matching (VM), an online method for learning the value function that overcomes
a fundamental limitation of CG by training on trajectories from the current policy. As detailed in
Algorithm 1, VM leverages Equations (5) and (9) to estimate the value function. This is achieved by it-
eratively regressing the approximator Vg onto the cost functional JJ, computed using the current policy.

1t .
Lon(Bixi0) 2 5 [ 0(®)- Vot ) = J(=o™V Vi 0., O dt,
0

. 1 [t _ 11
ﬂwmmﬁé§jnwmmW®—mwn,0=mwymw> (o

dx; = (bP"(x4, ) — 02 (t)VxVp(xt, 1)) dt + o(t) dBy, %o ~ po.

The VM algorithm follows a simple iterative procedure. Each iteration begins by sampling trajectories
using the control policy u(x, t) = —oT(t)VxVe(x, t), derived from the current value function approx-
imator Vp. These trajectories serve a dual purpose in the training loop. First, they are used to compute

single-sample Monte Carlo estimates Jy of the cost functional .J, which serves as the regression target:

1
Ji=5 [ T Valoxas) P ds = A, (12)
t

Here, & = stopgrad(@) prevents gradients from flowing through the target, ensuring that Jy is
treated as a fixed target value during backpropagation. Second, the states x; along these same
trajectories provide the input data for the value function. The network parameters @ are updated

by regressing the model’s prediction Vi (x¢,t) onto the target J; using an f5-loss:

1
£6) = 5 [ w(®): Voo t) = i (13)
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To stabilize training under the memoryless schedule where o(t) — oo as t — 0, we incorporate
a weighting w : [0, 1] — R (. Empirically, we find the following scheme effective (see Figure 10):

1
A2 (1 +1 ftl o?(s) ds) .
This scheme normalizes rewards by the scaling factor A and down-weights timesteps with high future
variance. For models employing multiple schedulers, weights are averaged across schedulers.

w(t) (14)

Finally, the weights 0 are updated using a gradient descent step with V£(8). For numerical imple-
mentation, the underlying SDE is simulated with the Euler-Maruyama method (Kloeden & Platen,
1992) using T steps, and the integrals are approximated as Riemann sums (Anton, 1999) over the
same discretization. The procedure to efficiently compute Equation (12) is outlined in Appendix B.3.
In the following result, we show that this approach converges to the true value function in expectation.

Proposition 2. The value function V is the unique critical point of E[Lv).

Proof outline. We first establish that V' is a stationary point by computing the functional derivative of
E[LyMm]. Uniqueness then follows as a standard result in SOC (see Appendix A.4).

This proposition provides theoretical justification for using gradient-based methods to optimize Vp,
ensuring that VM converges to the correct value function under appropriate conditions. To build
intuition for VM, we next show how it relates to current state-of-the-art fine-tuning algorithms.

Value Matching as the Gradient-Free Analogue of Adjoint Matching. Conceptually, Adjoint
Matching (AM) (Domingo-Enrich et al., 2025) can be understood as learning the value function
gradient V V' by iteratively matching it to single-sample Monte Carlo estimates of V.J. Our method
represents a zeroth-order analogue, where V' is learned by regressing onto estimates of .J, and the
gradient is obtained via backpropagation. Thus, AM and VM are procedurally very similar.

Value Matching Simplifies Continuous-Time PPO. Zhao et al. (2025) introduced a Continuous-
Time Proximal Policy Optimization (CT-PPO) algorithm that learns the optimal control by iteratively
alternating between training a value function and using it to optimize an actor network, starting from
the pre-trained model (see Algorithm 2). We argue that by setting the actor to sP™(x,t) — Vi Vo (x, t),
the actor optimization step becomes redundant and the VM algorithm emerges. This substantially
simplifies the algorithm and eliminates the need for fine-tuning the base model. Moreover, VM
requires fewer hyperparameters to achieve optimal performance, as shown in Appendix E.1.

6 RESULTS

We now evaluate Value Matching (VM), aiming to showcase four primary insights: (i) we verify
that VM recovers the correct tilted distribution in an illustrative environment; (ii) we demonstrate the
scalability of VM to high-dimensional image and molecular domains; (iii) we show that VM is more
sample efficient and expressive than CG; and (iv) we find that VM can reduce resource requirements
by over 95% compared to the fine-tuning method CT-PPO, while achieving comparable performance.

To ensure fairness, we limit the number of sampled trajectories to Capy — ) — i
128K in all direct comparisons. For CT-PPO, we conduct an extensive
hyperparameter search (Appendix E.1) and adopt the value network
from (Zhao et al., 2025) that defines the value function as a convex ‘ JA
combination between 1 o Xg, where Xg predicts x; from x;, and a ST/
residual network Fg. For Vp in VM and Fy in CT-PPO, we use a
1.8M-parameter CNN for images and a 2.5M-parameter GNN for
molecules. Additional training details in Appendix B.

VM recovers the tilted distribution with non-differentiable
rewards. To confirm that VM optimizes the intended objective,
we test it in a simple one-dimensional setting, where the base
distribution is a Gaussian mixture and the reward is binary and non- o

differentiable. As shown in Figure 4, VM successfully converges ~Figure 4: 1D toy experiment.
to the tilted distribution, the optimal solution. Moreover, it reveals the value function at intermediate
timesteps. Consistent with the theory, the diffusion introduces an attenuating effect: values blur out
and move to the origin as ¢ — 0. The blurring effect intuitively explains why the value function is
differentiable for timesteps ¢ < 1, even when r is not. Next, we consider high-dimensional domains.
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Figure 5: Resource requirements for adaptation methods across base models (16-bit, A100 GPUs).
We do not show requirements for AM on FlowMol, because molecular rewards are inherently
non-differentiable. LEFT: Memory requirements in GB. RIGHT: Training wall-clock time in hours.

VM is remarkably resource-efficient. As shown in Figure 5, VM demonstrates exceptional com-
putational efficiency in comparison to fine-tuning methods. It requires less than 12 GB of memory
across all evaluated models, whereas CT-PPO and AM demand up to 250 GB for SD2; a reduction of
over 95%. The time requirements show similar advantages: VM completes training in under 35 hours
for all models, while CT-PPO requires up to 800 GPU-hours for SD2. This efficiency gap widens with
model scale: while the resource cost for fine-tuning methods grows substantially from CIFAR to
SD2, VM maintains a consistently low overhead. These results establish that VM can be orders of
magnitude more efficient than fine-tuning alternatives. Next, we show that small value networks are
sufficient for effective reward adaptation and give comparable performance to fine-tuning methods.

VM effectively adapts large-scale image generation &
models. To demonstrate the general efficacy of VM, we |

apply it to the Diffusion Transformer (DiT) (Peebles & Xie,
2023) trained on the 256x256 ImageNet dataset (Deng
et al., 2009), and the text-to-image model Stable Diffusion
2 (SD2) (Rombach et al., 2022). For training prompts, we
randomly selected 40K captions from the LVIS dataset
(Schuhmann & Bevan, 2023). The reward functions are
compression and incompression, which correspond to
minimizing and maximizing the bits per pixel (BPP) of
the sample’s JPEG-compressed version, at quality level 85.  Figure 6: Samples with same random
By learning to exploit JPEG’s frequency-based method, geed. Top: SD2 base model. BOTTOM:
we find that VM generates less detailed, low-frequency vM with compression reward.

images under the compression reward and high-frequency

Moiré patterns under the incompression reward (see Appendix D). Further, quantitative evaluation of
DiT over 10K samples reveals that VM achieves 0.6 £ 0.3 and 3.1 & 1.1 BPP under the compression
and incompression rewards. Next, we investigate the performance of VM on molecular generation.

VM can effectively adapt molecular generation models. | % e $&45 o
In molecular design, we evaluate VM on the continuous : % "'3; || . b =
FlowMol model (Dunn & Koes, 2024b), pre-trained on

the GEOM-Drugs dataset (Axelrod & Gomez-Bombarelli, 6.50 4.86 5.12 8.63
2022). The reward function is the dipole moment, com-

puted using GFN2-xTB (Bannwarth et al., 2019) fol- @% ™ o®.2 g,
lowing geometry relaxation with GEN-FF (Spicher & : °&% 2 £L° q%
Grimme, 2020). Due to the discrete nature of molecules :g; ¢ -

and the geometry relaxation step, this reward func- 13.87 10.26 13.44 16.01

tion is non-differentiable. To prevent reward exploita-
tion, wherein FlowMol frequently generates fragmented
molecules, these outputs are assigned a zero reward. We
find that optimizing this reward increases the frequency
of heteroatoms and halogens, causing a 5-fold rise in highly electronegative fluorine (Figure 24).
Moreover, over 10K samples, VM increases the average dipole moment to 7.5 + 3.8 Debye from
the base model’s 6.4 £ 3.5 Debye, while simultaneously reducing the fragmentation rate from 31%
to 28%. From this, we conclude that VM can successfully optimize for the target property without
resorting to reward hacking. In the remainder of this section, we compare VM against CG and CT-PPO.

Figure 7: Samples with same random
seed. Top: FlowMol base model. BOT-
TOM: VM with dipole moment reward.
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Figure 8: Comparison between VM and CG in large- and small-scale settings. LEFT: On the CIFAR
image model with aesthetic reward, CG is unstable under moderate reward scaling. RIGHT: In a simple
1D environment, VM converges significantly faster than CG to the tilted distribution in terms of KL.
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Figure 9: Comparison between VM and CT-PPO across various reward functions and scalings. VM
demonstrates performance comparable to CT-PPO but with more predictable and stable behavior,
shown by a consistent reward improvement as A increases. In contrast, CT-PPO suffers from mode
collapse on the compression task. TOP: Mean reward. BOTTOM: FID to base model.

VM is more sample efficient and expressive than classifier guidance. In this comparison, we
demonstrate two key advantages of VM over CG: higher reward expressivity and greater sample
efficiency. To evaluate the first, we use a 32x32 CIFAR-10 base model and the LAION aesthetics
reward (Schuhmann, 2022). As shown in Figure 8 (left), the experiment reveals that CG becomes
unstable at moderate reward scales (A > 10), a significant practical limitation given that meaningful
optimization often requires higher A values. In contrast, VM maintains stable training and leads to
much higher rewards. We then evaluate sample efficiency in a one-dimensional environment by track-
ing the KL divergence to the optimal distribution during training. The results (Figure 8, right) show
VM consistently converging to superior optima, indicating a more effective use of training samples.
The combination of enhanced stability and improved sample efficiency makes VM a more robust and
practical alternative to CG for reward adaptation tasks, especially in resource-constrained settings.

VM demonstrates superior stability and controllability relative to CT-PPO while maintaining
comparable performance. In the comparison with the fine-tuning method CT-PPO, we use the same
base model as in the previous experiment across three reward functions: compression, incompression,
and LAION aesthetics. The results, shown in Figure 9, show that VM is more robust and practical.
While CT-PPO suffers from catastrophic mode collapse on the compression task (producing only
all-white and all-black samples), VM’s performance improves consistently as A increases. On the
other two rewards, their performance is comparable. However, achieving this with CT-PPO requires
an extensive hyperparameter search (Appendix E.1), a significant practical drawback from which
VM does not suffer. Finally, VM exhibits more controllability through the reward scaling, where it
maintains the expected behavior of deviating further from the base model, measured in FID (Heusel
et al., 2017) to the base model, in order to increase rewards. Taken together, VM represents a more
stable, efficient, and reliably controllable algorithm for reward adaptation.
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7 RELATED WORK

Reward-Guided Flow Fine-Tuning for Generative Optimization. Recent work has explored
fine-tuning flow and diffusion models for objectives beyond likelihood estimation, with leading
approaches formulating the problem through RL and SOC frameworks. In this view, the generation
process is a sequential decision problem where a policy is learned to steer the model toward desirable
outcomes. An early approach, DDPO (Black et al., 2023) applies a policy gradient method to directly
optimize for arbitrary rewards but often suffers from “reward collapse”, where it overfits to a few
high-reward samples at the cost of diversity. To counter this, DPOK (Fan et al., 2023) incorporated
KL regularization to preserve diversity, though the KL term was approximated by an upper bound.
A key insight was that the KL divergence can be computed with a quadratic running cost, enabling a
control-theoretic interpretation. Leveraging this insight, SOCM (Domingo-Enrich et al., 2024) casts
the control problem as an importance-weighted regression task. Further advancing this line, Adjoint
Matching (Domingo-Enrich et al., 2025) resolved a critical value function bias in earlier methods,
enabling provably unbiased reward adaptation. In an effort to address limitations of discretization,
Zhao et al. (2025) introduced a continuous-time RL framework. Recent work also renders it possible to
maximize rewards while preserving information from pP'® more generally than KL, as well as enabling
risk-averse and risk-sensitive reward optimization (De Santi et al., 2025a). Our work advances this
research line by introducing an algorithm that preserves the online nature of control-theoretic schemes,
while lowering the memory requirements significantly, thereby easing its practical adoption.

Classifier(-Free) Guidance. A widely used alternative to fine-tuning is to steer the generative
process at inference time. Classifier guidance (Dhariwal & Nichol, 2021) leverages the gradients
of a separately trained classifier to push the sampling trajectory toward samples that exhibit desired
attributes. To eliminate the need for an external model, classifier-free guidance (Ho & Salimans, 2022)
modifies the training of the generative model itself to learn both a conditional and an unconditional dis-
tribution. At inference, the model is guided by amplifying the difference between the two, effectively
steering generations toward the desired condition. These guidance mechanisms are foundational in
diffusion model research, and improving upon them has become an active field of study (e.g., Karras
et al., 2024; Sadat et al., 2024; 2025; Rajabi et al., 2025). In this work, we establish a connection to
these methods by showing that VM can be viewed as an online generalization of classifier guidance.

Inference-Time Schemes Beyond Guidance. Another family of methods performs reward op-
timization at inference-time through local, step-wise decisions. Many of these approaches can be
understood as approximating an optimal denoising process by leveraging the pre-trained model as a
look-ahead function to predict future rewards (Uehara et al., 2025). For instance, at each denoising
step, methods like SVDD (Li et al., 2024a) and SCG (Huang et al., 2024) evaluate multiple candidate
states and select the next state based on these predictions, employing strategies such as resampling or
greedy selection. In contrast to such local methods, OC-Flow (Wang et al., 2025) adopts a global
perspective, optimizing the entire trajectory at once by framing the task as an optimal control problem.
The downside of inference-time schemes is a substantially increased wall-clock time for generation.
Our method does not suffer from this by amortizing the optimization cost during training.

8 CONCLUSION AND OUTLOOK

We introduce Value Matching (VM), a scalable and efficient online method for adapting pre-trained
flow models to arbitrary reward functions. Drawing from fundamental insights in optimal control
theory, VM learns the value function, which yields several key advantages. First, the resource
requirements are controllable by a flexible choice of the value network architecture. Second, by
learning the value function, VM naturally handles non-differentiable rewards, a crucial capability for
black-box optimization problems.

Our experiments on image and molecular generation tasks demonstrate these benefits empirically.
VM reduces memory and compute requirements by up to 95% compared to fine-tuning methods while
achieving comparable performance. Furthermore, VM shows higher reward expressivity and proves
more sample efficient than classifier guidance. By providing a theoretically grounded and practical
framework for reward-guided adaptation, VM opens up promising opportunities for future research,
such as applying VM to more complex, real-world problems.
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REPRODUCIBILITY STATEMENT

We provide comprehensive details to ensure the reproducibility of our work. For all algorithms
introduced, pseudocode is included, and benchmarks are performed against existing, publicly
documented methods. In Appendix B.1, we detail the value network architectures used in this
work. Further, in Appendix B.3, we show how to compute the integrals in practice. Moreover, in
Appendix C, we give descriptions of the evaluation metrics, including how they are computed. Lastly,
in Appendix E, we report the hyperparameters used for the CT-PPO experiments.
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A PROOFS

A.1 ASSUMPTIONS

Assumption 1. a(t) £ o(t)o7(t) is uniformly elliptic.

Assumption 2. The base drift b : R x [0,1] — R is Lipschitz continuous in x and continuous in .
Assumption 3. The norm of the base drift ||b|| is bounded.

Assumption 4. The reward function r : R? — R is bounded.

A.2 USEFUL LEMMAS

Lemma 1 (Application of the Feynman-Kac formula (Kac, 1949)). Let V' be the value function
defined in Equation (5), then:

V(x,t) = —log Epere [exp(Ar(x1)) | x¢ = x]. (15)
Lemma 2 (Friedman (1975); Chapter 6, Theorem 4.5). Under Assumptions 1 to 3, the transition

density pg4(y | x) of the uncontrolled SDE satisfies the following upper bound on its norm for
0 <t<s< 1: 2
_d1 y—Xx
IVaply |01 < CCs = )% exp e X220, 16)
where C,c > 0 are constants and x,y € R Further, Vs (y | %), Vips‘t(y | x), and
Otps|¢(y | x) are uniformly continuous.

Lemma 3 (Fleming & Soner (2006), Chapter 5, Theorem 9.1). Consider the following Hamilton-
Jacobi-Bellman equation:

—O W (x,t) + H(x,t, VX W (x,t), ViW (x,t)) =0, 17)
where in our case the Hamiltonian, H, is:
1 1
H(x,t,p,A) = -5 tr(a(t)A) — (b(x,t),p) + 5||aT(t)p||2. (18)

Assume Assumptions I to 4. Let W be a bounded viscosity subsolution and V' be a bounded viscosity
supersolution. Then,

sup (W(Xa t) - V(th)) = Sup (W(X> 1) - V(X7 1)) (19)
(x,t)€RLx[0,1] x€ER4

Lemma 4 (Uniqueness). Under the assumptions of Lemma 3, the viscosity solution to Equation (17)
is unique.

Proof. We show this result by a comparison principle. Assume that Equation (17) has two viscosity
solutions V; and V, with terminal condition V7 (x, 1) = Va(x, 1) = —Ar(x). Since they are viscosity
solutions, they are also viscosity sub- and supersolutions. By their terminal condition, we know that:

sup (W(x,1) = V(x,1)) = sup —Ar(x) + Ar(x) = 0. (20)
x€ER? x€ER
We will first show that 1} < V,. Apply Lemma 3 with W = V; and V' = V5, then we have:
Vi(x,t) — Va(x,t) < sup(Vi(x,t) — Va(x,t)) = sup (Vi(x,1) — Va(x,1)) =0.  (21)
(x7t)

x€eR4
As such we have V;(x,t) < Va(x,t) for all (x,t).

Now we show that Vo < V;. Again, apply Lemma 3 with W = V5 and V' = V4, then we have:
Va(x,t) — Vi(x,t) < sup(Va(x,t) — Vi(x,t)) = sup (Va(x,1) — Vi(x,1)) =0. (22)
x€R

x,t

Thus we also have Va(x,t) < Vi(x,t) for all (x,1).

In conclusion, we have V; — V5 = 0, meaning that they are equal. O
Putting it all together, we have that the following HIB equation has a unique solution:
1 1
W (x,t) + 3 tr(a(t)ViW(x, t)) + (b(x,t), VW) — §||<7T(75)VXVV||2 =0,
W(x,1) = —Ar(x).

(23)
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A.3 PROPOSITION 1

Under Assumptions 1 to 4, the value function V : R? x [0,1] — R defined in Equation (5) is
differentiable in x for t < 1

Proof. Lett < 1. Define (x,t) £ Eppre[exp(Ar(x1)) | x; = x]. Then from Lemma 1, we have
V(x,t) = —log1(x,t). Thus, it suffices to show that (1) ¢» > 0 and (2) % is differentiable in x:

1. We assume that 7 is bounded, so exp(Ar(x)) > 0. Hence, t(x,t) > 0.

2. Writing v as an integral we have:

B(x,1) = / exp(Ar(y))pup(y | x) dy. (24)

Using that r is bounded such that exp(Ar) < M for some M and Lemma 2, we can show that the
gradient norm of the integrand is dominated by an integrable function:

IV exp(Ar(y))p1e(y | )| = exp(Ar(y)) [ Vaprje(y [ ¥ (25)

. 2
< MC’(l—t)_d% exp(—c'sll);”), (26)

where M, C, ¢,d > 0 are constants. Thus, we can differentiate under the integral:
Vo) = [ epOr(y) Vaprily | %) dy. @)

Further using Lemma 2, the transition density is continuously differentiable in x. Thus, % is
differentiable.

This fails for ¢ = 1 since r might be non-differentiable and we have V(x,1) = —\r(x). In
conclusion, by the chain rule:
Vip(x, 1)
VV(x,t) = ——F——= (28)
Therefore, V' is continuously differentiable in x for ¢ < 1. O

A.4 PROPOSITION 2

The value function V is the unique critical point of E[ Ly

Proof. Let W : R% x [0, 1] — R be a value function approximator and denote W = stopgrad (W)
where the argument of stopgrad is treated as constant w.r.t. differentiation. In this proof, assume
that any trajectory x| 1] is sampled from the current policy without gradients w.r.t. weights:

dx; = (b(Xt, t) — CT(t)UT(t)VW(Xt, t)) dt + O’(t) dB,. (29)

Critical point. In order to find the critical points, we will derive the functional derivative of E[Ly ]
Let C : R? x [0,1] — R be an arbitrary function, then:

d
di]E[EVM(W + GC, X[O,l])] (30)
€ e=0
d 1 ! R _ 2
dE 2 0 e=0
1 [t d . _ 2
:]E[/ w(t) - —‘(W—i—eC)(Xt,t) — J(t—oTVW;x| 1],75)‘ dt] (32)
2 0 dE ' 620
1
=E U C(xe,t) - w(t) - (W(xht) - JA(—JTVW;X[OJ],ISD dt} (33)
0
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Using the tower property of expectation:

) Uol C(xe,t) - wlt) - (W(xh ) —E [j(—UTVW; X0, 1) ‘ xtD dt] . (3%
So, the functional derivative is:
%E[EVM(W)(X, #)] = w(t) - (W(x, £) — E{j(fJTVW;X[O,l],t) ‘ X, = x]) (35)
Thus, any critical point (a point where the functional derivative equals zero) must satisfy:

W*(x,t) = E[j(—aTVW*;x[O}H,t) ‘ %, = x} (36)

1
=K B /t loT(s)VIW* (x4, 8)||> ds — Ar(x;)

X; = x] . 37

By plugging Equation (9) into Equation (5), we know that the value function can be written as:

V(x,t) = J(u*;x,t) (38)
=J(—0TVV;x,t) (39)
1 1
=E {2 / loT(s)VV (xs,5)||* ds — Ar(x1) | x; = x} . (40)
t
Therefore V' is a critical point of E[Ly].
Uniqueness. As shown, a critical point W must satisfy the fixed-point:
1 1
W(x,t) =E {2 / loT(s) VW (xs, s)||> ds — Ar(x1) | x; = x] , 41)
t

where the expectation is over trajectories from the controlled SDE:
dxs = (b(xs,8) —a(s)VW (xs,))ds + o(s)dBs, x: = x. (42)
By the Feynman-Kac formula, W satisfies the following PDE:

1 1
oW + (b — aVW, VW) + B tr(aV2W) + §||UTVW||2 =0, W(x,1)=-M(x). 43
Noticing that (VW,aVW) = ||oTVW||2, the PDE simplifies to:
1 1
OW + (b, VW) + 5tr(av2w) - 5||aTVW||2 =0, W(x,1)=-M(x). (44)

Using Lemma 4, we know that this HIB equation has a unique solution. This concludes the proof of
Proposition 2: V' is the unique critical point of E[Lvy]. O

A.5 DERIVATION OF CLASSIFIER GUIDANCE VALUE FUNCTION

In this setting, we have r(x) = log pg’/r‘el (y | x) for some class label y and A = 1. From Lemma 1,
we have:

V(x,t) = —log Eppre [exp(Ar(x1)) | x¢ = X] (45)
— —log Eyune [P (y | x1) | x; = x] 46)
——tog [ #8Ger [0 (v | 1) 7)
We have y 1 x; | X1, so by the chain rule:
= —tog [ #8000 | ) (48)
By marginalization:
= —logpy | (y | x). (49)

This concludes the derivation of the statement.
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B EXPERIMENTAL DETAILS

All VM experiments employ the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 1 x 107#,
a batch size of 128, and 100 SDE discretization steps. Unless otherwise specified, image experiments
utilize a 1.8M-parameter convolutional neural network (CNN) and molecular experiments employ a
2.5M-parameter graph neural network (GNN) to parameterize the value function approximator Vjp.
Additionally, to normalize the CG loss function (as we do for VM by adding the 1/x? term to w(t)),
we normalize Lc by dividing it by exp(2)).

B.1 VALUE NETWORK ARCHITECTURES

Convolutional Neural Network. We employ a standard CNN architecture consisting of an input
convolution, three downsampling stages, an adaptive average pool, and a final linear head. Timesteps
are embedded using a sinusoidal timestep embedder (Vaswani et al., 2017). Each downsampling
stage comprises two layers with the following structure: convolution with a 3x3 kernel — group
normalization (Wu & He, 2018) — FiLM (Perez et al., 2018) to incorporate timestep information
— sigmoid linear unit (Hendrycks & Gimpel, 2016) activation function. Finally, the input is added
residually and the result is downsampled using blur pool (Zhang, 2019). The convolutional layers in
the downsampling stages use a base hidden dimensionality of 64, which doubles at each stage.

Graph Neural Network. The GNN architecture follows a similar design to the CNN architecture
(excluding downsampling), where we replace the input convolution with a linear layer, convolutions
with graph convolutions (Kipf & Welling, 2017), and group normalization with layer normalization
(Baet al., 2016). We utilize all node information available from the FlowMol model: atom position,
atom type, and formal charge. We also incorporate edge data by linearly transforming the edge
features and adding the mean of all incoming edge features to the node features after the input linear
layer. Each block uses a hidden dimensionality of 256 across 6 stages.

B.2 EFFICIENTLY COMPUTING REWARDS

To efficiently compute reward functions for latent diffusion models, we decode samples individually.
This approach significantly reduces VRAM requirements, as decoded samples are typically very
large. We find that this strategy does not result in substantially increased wall-clock time.

B.3 EFFICIENTLY COMPUTING THE COST FUNCTIONAL ESTIMATE

We discretize the time horizon into 7" evenly spaced points. On this discretization, we perform the
Euler-Maruyama method for sampling. Thus, at each step, the gradient V4V is computed. Based on
this gradient, we compute the running cost at every step:

1
L; = §\|UT(t)VxV(xt,t)||2. (50)

At the final time step, the reward R = r(x1 ) is received. The estimated cost functional Jy is then com-
puted by summing the running costs from time ¢t onward and subtracting the scaled terminal reward:

T
.1
Jo= ; L./r — AR. (51)

In total, computing the cost functional estimate involves computing 7" d-dimensional norms and
adding T scalars using a reverse cumulative sum.
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B.4 WEIGHTING FUNCTIONS

Optimal Transport DDPM FlowMol
14 14 14
T 05 0.5 - 0.5
0 0 0

T T T [ B —
0 02040608 1 0 02040608 1

Timestep (t)

[ B —
0 02040608 1

Figure 10: Weighting function w(t¢) under various (v, 3¢)-schedules, A = 1, and the memoryless
noise schedule.

Figure 10 displays the weighting function defined in Equation (14) for the schedules of models
considered in this work. As can be seen, it down-weights earlier timesteps, which intuitively have the
highest variance.
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C EVALUATION METRICS

Throughout this work, we employ three key metrics to assess performance: average reward, Fréchet
inception distance (FID) (Heusel et al., 2017), and Vendi diversity (Friedman & Dieng, 2023; Pasarkar
& Dieng, 2024). The average reward measures an algorithm’s ability to exploit the reward function
effectively, while FID relative to the base model captures the extent of deviation from the base
model required to achieve this performance. Vendi diversity quantifies the variety within generated
samples. Our objective is to achieve high reward and diversity while maintaining low FID. However,
an inherent trade-off exists between reward optimization and sample diversity. In this section, we
detail the computation of these metrics. For each metric, we assume access to a dataset of n samples.

C.1 FRECHET INCEPTION DISTANCE

FID (Heusel et al., 2017) is computed by first embedding each data point through a pre-trained
Inception network (Szegedy et al., 2015) and extracting feature activations from the final layer. The
Fréchet distance computes the means (g4, tt5) and covariance matrices (3, X5) of both datasets,
then calculates:

dr(X1, X2) 2 [lpy — ol + tr(El iy, - 2(2122)1/2). (52)

Typically, X represents a reference dataset and X, contains samples from the generative model. In
this work, however, we set the reference dataset to samples from the base model and X5 to samples
from the reward-adapted model. This provides a measure of how much the reward-adapted version
has deviated from the base model.

C.2 VENDI SCORE

The Vendi score (Friedman & Dieng, 2023; Pasarkar & Dieng, 2024) is a diversity metric that
requires only a positive semi-definite similarity function k£ : X x X — R with k(x,x) = 1 for
all x € X. It computes pairwise similarities between all samples and organizes them into a matrix
K € R™*™ where k;; = k(x;,x;). The Vendi score is defined as the exponential of the entropy
of the eigenvalues of K/n:

VSe({x1,...,%xn}) £ exp (-ZA,» log /\> (53)
i=1

In this work, we employ the following similarity function:

k(x,y) = (clip(x), clip(y)), (54)

where clip(-) represents a CLIP image encoder (Radford et al., 2021) that produces normalized
embeddings.
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D SAMPLES AND TRAINING CURVES

The plotted costs reflect the deviation of the fine-tuned model from the base model; they correspond
to the KL divergence between the base and controlled processes p“, conditioned on the same initial
state (Domingo-Enrich et al., 2025):

1 1
Dia ("o | 50) | 270y | 50)) =By |5 [ BP9
0

D.1 DIFFUSION TRANSFORMER

(c) Incompression reward (A = 25; mean size: 3.31 bits/pixel).

Figure 11: Samples from Diffusion Transformer generated under the same random seed. Inference
with CFG weight 2, whereas training was done without CFG.
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Figure 12: Training curves for VM on the DiT model with compression reward (A = 25).
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Figure 13: Training curves for VM on the DiT model with incompression reward (A = 25).

D.2 STABLE DIFFUSION 2

Figure 14: Prompt: A chocolate cake on a plate with decorative pattern, a fork beside it, giving off a
sense of indulgence or celebration. Reward: Compression (A = 2500). CFG weight: 4.0.
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Figure 15: Prompt: Skiing scene with multiple individuals dressed in ski gear, engaging in skiing
activities amidst snowy surroundings, suggesting a resort or slope ambiance. Reward: Compression
(A = 2500). CFG weight: 4.0.

.

Figure 16: Prompt: Dog seated on a red lounge chair in a cozy, sophisticated room with a painting,
various decorations, and multiple lampshades while wearing a collar. Reward: Compression
(A = 2500). CFG weight: 4.0.

Figure 17: Prompt: A surfer in a wet suit performs a carving turn by a pier, on a beach break with no
other surfers or boats present. Reward: Incompression (A = 2500). CFG weight: 4.0.
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Figure 18: Prompt: An orange cat with a blue hat featuring a logo, resting on a dark-colored
background. Reward: Incompression (A = 2500). CFG weight: 4.0.

Figure 19: Prompt: A freight train with cargo containers passes through a railroad crossing. Reward:
Incompression (A = 2500). CFG weight: 4.0.

~0.5 ] = 2,000
o
° 1 O
5 e 1,000 -
 —1.5- g
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0 200 400 600 80 0 200 400 600 80
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Figure 20: Training curves for VM on the SD2 model with compression reward (A = 2500).
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Figure 21: Training curves for VM on the SD2 model with incompression reward (A = 2500).

D.3 GEOM-DRUGS

At

Fragmented

Fragmented 5.14

9.26

(a) Base model (mean reward: 4.56).

13.87
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5.35

6.41 13.44 3.21

4.55

(b) VM on dipole moment reward (A = 100; mean reward: 6.31).

Figure 22: Samples from the continuous GEOM-Drugs FlowMol base and VM model under the same

random seed.
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Figure 23: Training curves for VM on the continuous GEOM-Drugs FlowMol model with dipole
moment reward (A = 100).
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Base Model Value Matching
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Figure 24: Atom type frequency distributions for molecules generated by FlowMol base model and
VM with dipole moment reward (A = 100). Results shown for 10K generated samples.
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E PROXIMAL POLICY OPTIMIZATION ALGORITHM

Algorithm 2 Continuous-Time PPO (CT-PPO) algorithm.

Require: Initial policy parameters @ (pre-trained), Initial value function parameters ¢, Reward

function » : RY — R, Number of iterations N € N, Training steps per iteration K € N,
Trajectories per iteration m € N, Batch size B € N, Exploration level 0 € Ry, Scaling
parameter 7 € R+, Clipping parameter € € R.

1: for N iterations do

2: Fix current policy 8 = .
3: Sample m trajectories under the current policy:
dXt = (Oétxt +O’2(t)at> dt+0’(t) dBt, ar = Sé(Xt,t).
Qi
4: Compute returns:
1 ! 2 re 2
Ri=r(x1) = o7 [ 07°(s)llsg(xs,8) — 87 (xs, 8)[|7 ds.
5: Initialize dataset Dy = {(t, Xy, R¢) }+e[0,1) With all trajectories.
6: repeat K times
7: Sample B C Dy, with batch-size B.
8: Compute loss:
1
Lo)=5 D (Volxit)— R
(t,x¢,Ry)EB
9: Make an optimization step with V.L(¢).
10: end repeat
11: Sample exploration noise €; ~ N (0, I) independently for each timestep and trajectory.
12: Compute pseudo-samples and advantages:
é.t =a; + o€
1
g = ;(V(;)(xt +no”(t)er, t) — Vip(xe,1)).
13: Initialize dataset D = {(t,X¢, 8, q¢) }+ejo,1) With all trajectories.
14: repeat K times
15: Sample B C D, with batch-size B.
16: Compute likelihood ratio:
o _ To(a | X4,1)
=" 2 qme(al|x,t)=MN(a;se(x,t),cl).
o= e ol = Masse(x.).o)
17: Compute loss:
1 . .
L(8) = 3 Z mm{pfqt, chp(pf, 1—e1+ e)qt}.
(t,x¢,8¢,q:)EB
18: Make an optimization step with V.£(8).
19: end repeat
20: end for

We set K = [m/B] such that each point is seen once. For the actor and critic, we use learning rates
3x 107 and 1 x 1079, respectively. For data collection, we standardize the number of trajectories and
batch size using m = 512, B = 128, and N = 250. This configuration processes 128K trajectories
during training, consistent with other methods in this work.
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E.1

To ensure a fair comparison, we conduct comprehensive hyperparameter optimization for CT-PPO
through an extensive grid search over the clipping parameter €, exploration level o, and scale
7. Specifically, we conducted a grid search on (e,0,7n) € {0.05,0.1,0.2} x {0.01,0.1,0.2} x
{0.001,0.005,0.01}. While this additional tuning effort could be considered part of CT-PPO’s
computational overhead, it ensures optimal performance for our evaluation. In contrast, both VM and

HYPERPARAMETER ABLATIONS

AM do not have any hyperparameter search cost.

Scale (1)

Scale (n)

Scale (1)

e =0.05 e=0.1 e=0.2
0.01 4 6.5 - - 6.5
0.005 4 6.3 - - 6.3
0.001 4 6.1 | 6.6 6.7 < 6.1 4 6.1
O.bl Oil Oi2 O.bl Ojl 0.2 0.01 0.1 0.2
Exploration Level (o)
(a) Average reward.
e =0.05 e=0.1 e=0.2
0.01 - 28.4 PRGREEEREY - 26.6 PRI -4 30
0.005 - 24.6 BANRCINE - 23.1 BOONARCERCE - 23.5 BEGEINEIN
0.001 4175 32.6 39.7| - 177 40.1 475| - 17.5 47.7 56.9
O.bl OTI 0j2 0.61 OTI 0j2 0.61 OTI Oj2
Exploration Level (o)
(b) FID to the base model.
€ =0.05 e=0.1 e=0.2
0.01 27.1 27.5 PRGN 27.2 27.3 27.7 27.8
0.005 27.9 26.8 26.7 | 28.3 27.5 27.1
0.001 28.4 28.2 PRICN 28.1 27.3 27.5 27.4

0.01

0.1 02

Figure 25: Base model: CIFAR. Reward: Incompression (A = 100).

0.01
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(c) Vendi score (diversity).
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F FLow MODELS

For completeness, in this section we provide an overview of flow matching (Lipman et al., 2023;
Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) and how diffusion models (Ho et al., 2020;
Sohl-Dickstein et al., 2015; Song et al., 2020) can be viewed as an instance of it. Further, we show
how to sample flow matching models through an SDE with equivalent time marginals. Lastly, we
show how to sample flow matching or diffusion models from a common perspective through the score
function.

F.1 FLOW MATCHING

Given a source distribution p and a target distribution ¢, the flow matching framework aims to solve
the flow matching problem:

Find the velocity field v : R? x [0,1] — RY generating marginal distributions p;, where
po=pandpy = q.

The flow matching framework solves this problem by the following steps:

1. Identify a known source distribution p and unknown target distribution g, of which we have finite
samples.

2. Define a probability path p; that interpolates pg = p and p; = q.
3. Learn the velocity field by a neural network vg.
4. Sample the learned model by solving an ODE:
dx; = ve(xy, t) dt. (56)

In general, we could use a coupled data distribution xg,%; ~ po 1, however, we will only be
considering the case where xg ~ N (0,14). Further, g is unknown, but we do assume that we have
access to a dataset of samples from this distribution. E.g., we might want to model a distribution
of images and take the 32 x32 CIFAR-10 dataset (Krizhevsky et al., 2009) as samples from this
distribution.

Next, we need to define a probability path {pt}te[o,l] that interpolates between py = p and p; = q.
This is done by a conditional strategy, which involves defining p;;. We can then construct the
marginal probability path by:

pe(x) = /Pt|1(X | x1)q(x1) dx;. (57)
We will consider an affine parameterization of the conditional probability path:
P (x| x1) = N (x; auxy, 71a), (58)

where ay, 8¢ : [0,1] — [0,1] are smooth functions satisfying og = 1 = 0, a1 = Sy = 1, and
oy > 0> Bt for t € (0,1). (The dot-notation denotes the time-derivative.) We can sample from this
distribution as follows:

X¢1 = X1 + BiXo, X0 ~ Po- (59)
Commonly, the optimal transport schedule is used where oy = tand 5 = 1 — ¢.

Differentiating w.r.t. ¢ gives the associated marginal velocity field:
v(x,t) = E[dyx; + Bixo | x¢ = x]. (60)
Thus, we can train using the flow matching loss:
Lrn(0) £ Erx, [[[ve(xe,t) — v(xe,)|%],
t ~U([0,1]),x; ~ py.

However, this is (almost always) intractable, because we do not know the velocity field yet and
we cannot sample p;. In order to alleviate these issues, we can drastically simplify the loss by
conditioning on the target sample x:

Lorm(0) £ B x, x, [lve(x:,t) — v(x, t | x1)[1%],
t~U([0,1]),%x1 ~ p1, Xt ~ P (- | x1),

(61)

(62)
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Algorithm 3 Flow Matching training.

Require: Untrained velocity model vg, Schedule oy, §; : [0, 1] — [0, 1], Source distribution p, and
target distribution q.
1: while not converged do
2 Sample x¢ ~ p, x3 ~ ¢, and t ~ U(][0, 1]).
3 Compute x; = ayX1 + B;Xg and vy = dyx1 + 5Xo.
4: Compute the loss Lopy = |[ve (X, ) — vi|2.
5 Do an optimization step with Vg Lcpp.
6: end while
7: return vg

where the conditional velocity is

v(x,t | X1) = dux1 + Bixo, X =X (63)
= X1 + &(x — X1) (64)

B
= (dt - agf t)xl + %x. (65)

Amazingly, these two loss functions have the same gradient w.r.t. the parameters (Lipman et al.,
2023):

VeLrm = VoLcorm. (66)
This justifies applying gradient-based optimization methods on the conditional loss, which is tractable,
because it will lead to the same parameter updates. See Algorithm 3 for the training algorithm. Refer
to (Lipman et al., 2024) for an in-depth treatment of flow matching models.

Lastly, instead of sampling from a deterministic ODE, we can also consider sampling from a family

of SDEs: 2( )
o“(t

dx; = t
Xt (’U(Xt, )+ Qnt

where B, is a Brownian motion, o : [0,1] — R%*? is an arbitrary state-independent diffusion
coefficient, and

(U(Xt, t) — ntxt)> dt + O'(t) dBt, (67)

U £ 5t<at5t - Bt>’ Kt £ & (68)
Qi

Qi ’
It can be shown that the generative processes in Equation (56) and Equation (67) have equivalent
time marginals (Maoutsa et al., 2020). In the memoryless noise schedule, we have o (t) = /21,
(Domingo-Enrich et al., 2025).

F.2 DIFFUSION MODELS

Diffusion models take a (slightly) different perspective than flow matching. They view sampling
as the reversal of a data destruction (or noising) process. For this, we must first define the noising

process:
Xi41 = VXt + /1 — e, € ~N(0,1,), (69)

where 7, follows some schedule from 0 to 7" such that x ~ A(0,L,).! As such, starting from
X9 = X ~ ¢, the data gets progressively more like Gaussian noise. Using Gaussian arithmetic, the
above process can be computed in a closed form:

Xt = \/’%XO + V 1- Y€, €~ N(Ovln)a (70)

where 4, = HZ;E vs. The denoising process from time 7" to 0 can be computed as follows:

1 1=
= S e N(0,1). 71
Xi—1 \/%(Xt Met> + oz, zeN(0,1y) (71)

Here the only unknown is €;, so we will train a network to approximate it; see Algorithm 4

'Generally, (v¢, 7+ ) are denoted by (., & ). This notation is used here to avoid confusion with flow matching
schedules.
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Algorithm 4 Diffusion model training.

Require: Untrained epsilon model e, Schedule {v;}7_, Target distribution ¢
1: while not converged do
2: Sample xo ~ g, € ~ N (0,L,) and ¢ ~ U([T]).
3 Compute x; = /7xo + /1 — €.
4 Compute the loss Lpy = |lea (x¢, ) — €]|?.
5: Do an optimization step with Vg Lpy;.
6: end while
7: return eg

F.3 DIFFUSION MODELS AS AN INSTANCE OF FLOW MATCHING

We can sample a diffusion model with the DDIM schedule through the following SDE (Domingo-
Enrich et al., 2025):

(. (A ) exut)
dxt_(%txt (2%+ 5 ) 1_%)dt+a(t)dBt. (72)

In order to consolidate diffusion models and flow matching models into a common framework where
po = N(0,1;), we will be working with the score function:

5(x,t) = Vy log ps(x) (73)
s(x,t) = nl(v(x, t) — K¢X) (74)
t
e(x,t)
_ , 75
s(x,1) T, (75)

We can now sample either a diffusion model or flow matching model by converting their parametriza-
tion to the score function and sampling the following SDE:

o2(t
dx; = (fftxt + < 2( ) + nt)s(xt,t)> dt + o(t) dBt, (76)
In the case of diffusion models, we have
ar =V, Br=vV1—% an
with associated time derivatives:
. Yt : Yt
b= =, [i=—FTF7rr. (78)
SNV

We will use the convention of flow matching models. Generally, in diffusion models, we have that
time is discrete from 0—K and decreases when sampling. Thus, we have the following conversion
between the two conventions:

Ve =K1 —1)] (79)
Yo=K (yKQ-1t) - 1] =y K1 -1)]). (80)

One can easily verify that this is equivalent to sampling from DDIM.
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