
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VALUE MATCHING: SCALABLE AND GRADIENT-FREE
REWARD-GUIDED FLOW ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adapting large-scale flow and diffusion models to downstream tasks through reward
optimization is essential for their adoption in real-world applications, including
scientific discovery and image generation. While recent fine-tuning methods
based on reinforcement learning and stochastic optimal control achieve compelling
performance, they face severe scalability challenges due to high memory demands
that scale with model complexity. In contrast, methods that disentangle reward
adaptation from base model complexity, such as Classifier Guidance (CG), offer
flexible control over computational resource requirements. However, CG suffers
from limited reward expressivity and a train-test distribution mismatch due to its
offline nature. To overcome the limitations of fine-tuning methods and CG, we
propose Value Matching (VM), an online algorithm for learning the value function
within an optimal control setting. VM provides tunable memory and compute
demands through flexible value network complexity, supports optimization of non-
differentiable rewards, and operates on-policy, which enables going beyond the
data distribution to discover high-reward regions. Experimentally, we evaluate VM
across image generation and molecular design tasks. We demonstrate improved
stability and sample efficiency over CG and achieve comparable performance to
fine-tuning approaches while requiring less than 5% of their memory usage.

1 INTRODUCTION

0 1 2 3
0

250

500

750

DiT (2023) SD1.5 (2022)

SD2.1 (2022)

SSD-1B (2024)

SD3-M (2024)
SDXL (2024)

Parameters (B)

V
R

A
M

(G
B

)

Figure 1: The recent trend toward more complex flow
and diffusion generative models leads to prohibitively
high fine-tuning memory (VRAM) requirements.

Large-scale generative foundation models
have recently made remarkable progress.
Among them, flow (Lipman et al., 2023; Al-
bergo & Vanden-Eijnden, 2023; Liu et al.,
2023) and diffusion models (Ho et al., 2020;
Sohl-Dickstein et al., 2015; Song et al., 2020)
stand out for their ability to generate high-
fidelity samples across a wide range of do-
mains, including images (Ho et al., 2020),
chemistry (Hoogeboom et al., 2022), biology
(Corso et al., 2023), and robotics (Chi et al.,
2023). For many applications (e.g., control-
lable image editing and drug discovery (Olive-
crona et al., 2017)), adapting such large pre-
trained models to downstream rewards is essential. Existing approaches based on reinforcement learn-
ing (RL) (Zhao et al., 2025; Black et al., 2023; Fan et al., 2023; Hu et al., 2025) and stochastic optimal
control (SOC) (Domingo-Enrich et al., 2025; Uehara et al., 2024; Tang, 2024; Domingo-Enrich et al.,
2024) rely on backpropagating through the full model to update model weights. This makes them
increasingly memory-intensive as model sizes scale to billions of parameters, as illustrated in Figure 1.

Despite their promising performance (e.g., Domingo-Enrich et al., 2025; Zhao et al., 2025), RL and
SOC-based fine-tuning methods remain fundamentally limited by resource requirements that scale
with model size. Moreover, many state-of-the-art approaches require the reward function to be differ-
entiable (e.g., Domingo-Enrich et al., 2025), which severely limits applicability to black-box optimiza-
tion settings where only function evaluations are available without access to structural information.
This constraint is problematic for real-world applications such as drug discovery, where molecular

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

property prediction relies on complex simulators (Bannwarth et al., 2019; Sholl & Steckel, 2009;
Forli et al., 2016) or experimental measurements (Hughes et al., 2011). This raises a key question:

How can we leverage SOC (or RL) machinery to adapt flow and diffusion models to
non-differentiable rewards with controllable resource usage and competitive performance?

Table 1: Algorithm capabilities.

VM CG AM CT-PPO

No fine-tuning ✓ ✓ ✗ ✗
Gradient-free ✓ ✓ ✗ ✓
Online data ✓ ✗ ✓ ✓
Hyperparams. 1 1 1 5

Limitations of fine-tuning methods suggest recon-
sidering approaches like classifier guidance (CG)
(Dhariwal & Nichol, 2021) that offer computational
advantages by avoiding updates to base model param-
eters and enables adaptation with non-differentiable
rewards. However, we show that CG has notable
limitations, such as limited expressivity and a
train-test distribution mismatch. We address these
shortcomings by proposing Value Matching (VM),
a control-theoretic algorithm that learns the value function online, enabling discovery of high-reward
regions beyond the data distribution. Further, we analyze how VM differs from fine-tuning approaches
such as Adjoint Matching (AM) (Domingo-Enrich et al., 2025) and Continuous-Time PPO (CT-PPO)
(Zhao et al., 2025), notably not requiring fine-tuning and avoiding reward gradients. Lastly, we show
that VM achieves performance competitive with CT-PPO at significantly lower resource requirements.

Our Contributions:
• A control-theoretic viewpoint shedding light on how the offline nature of classifier guidance hinders

the discovery of high-reward samples beyond the data distribution (Section 4).
• Value Matching (VM), a theoretically-grounded online method for reward adaptation of flow models

through value function learning, highlighting advantages compared to AM and CT-PPO (Section 5).
• An experimental evaluation across image and molecular generation tasks using non-differentiable

rewards, showing that VM (i) achieves superior stability and sample efficiency compared to classifier
guidance, (ii) reduces resource requirements by 95% relative to fine-tuning methods while main-
taining comparable performance, and (iii) enables effective adaptation of molecular and large-scale
text-to-image models through value networks significantly smaller than the base model (Section 6).

2 BACKGROUND AND NOTATION

Flow Models. In this work, we consider the problem of adapting flow (Lipman et al., 2023; Albergo
& Vanden-Eijnden, 2023; Liu et al., 2023) and diffusion models (Ho et al., 2020; Sohl-Dickstein et al.,
2015; Song et al., 2020), which have emerged as leading approaches for generative modeling across
various domains, including images (Rombach et al., 2022; Peebles & Xie, 2023; Podell et al., 2024;
Gupta et al., 2024; Esser et al., 2024), text (Gat et al., 2024), and molecular design (Hoogeboom et al.,
2022; Dunn & Koes, 2024a;b). Typically, flow models are sampled through an ordinary differential
equation (ODE) (Lipman et al., 2023), however, they can also be sampled via a stochastic differential
equation (SDE) with equal time marginals (Maoutsa et al., 2020). We sample by simulating an SDE:

dxt = b(xt, t) dt+ σ(t) dBt, x0 ∼ p0, (1)

where b : Rd × [0, 1] → Rd is the drift, σ : [0, 1] → Rd×d is the diffusion, and Bt is a Brownian mo-
tion. For unbiased adaptation, we use a memoryless parameterization (Domingo-Enrich et al., 2025):

b(x, t) ≜
α̇t

αt
x+ σ2(t)∇ log pt(xt), σ2(t) = 2βt

(
α̇t

αt
βt − β̇t

)
, (2)

with (αt, βt) defined as the flow schedule (Lipman et al., 2023) and (α̇t, β̇t) being time derivatives.

Stochastic Optimal Control (SOC). For our approach, we frame KL-regularized adaptation as an
SOC problem (Bellman & Dreyfus, 2015; Fleming & Rishel, 2012), a general framework that deals
with optimization over stochastic processes. Specifically, we restrict ourselves to a quadratic cost
control-affine Bolza problem (Bolza, 1904) on a finite time horizon [0, 1] with dynamics:

dxt = (b(xt, t) + σ(t)u(xt, t)) dt+ σ(t) dBt, x0 ∼ p0. (3)

Further, the cost functional J is defined as the total cost of a control u starting from a point (x, t),
composed of a quadratic running cost 1

2∥u(xt, t)∥2 and an arbitrary terminal cost g : Rd → R. The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

control problem is to find the control u that minimizes the cost functional J at every point (x, t):

u⋆ ∈ argmin
u∈U

J(u;x, t) ≜ Epu

[
1

2

∫ 1

t

∥u(xs, s)∥2 ds+ g(x1)

∣∣∣∣ xt = x

]
. (4)

From here, the value function is defined as the optimal value of the cost functional:

V (x, t) ≜ inf
u∈U

J(u;x, t) = J(u⋆;x, t). (5)

Further, V can be defined through the base distribution (Domingo-Enrich et al., 2024, Appendix B):

V (x, t) = − logEppre
1

[exp(−g(x1)) | xt = x]. (6)

3 PROBLEM SETTING

We consider the generative optimization problem (Li et al., 2024b; De Santi et al., 2025a;b) of
adapting a pre-trained flow or diffusion model ppre to maximize a reward function r : Rd → R
in expectation, weighted by λ ∈ R≥0, and remain close to ppre in terms of Kullback-Leiber (KL)
divergence. Formally, we optimize over policies π with induced last-timestep marginal pπ1 :

argmax
π

Epπ
1
[λr(x1)]−DKL(p

π
1 ∥ ppre1) s.t. dxt = bπ(xt, t) dt+ σ(t) dBt. (7)

The optimal solution π⋆ of Problem (7) induces the tilted distribution p⋆1(x) ∝ ppre1 (x) exp(λr(x)) if
σ follows a memoryless noise schedule (Domingo-Enrich et al., 2025). In flow models, this objective
is equivalent to the following quadratic cost control-affine control problem (Tang, 2024):

argmin
u:Rd×[0,1]→Rd

E
[
1

2

∫ 1

t

∥u(xs, s)∥2 ds− λr(x1)

∣∣∣∣ xt = x

]
s.t. dxt = (bpre(xt, t) + σ(t)u(xt, t)) dt+ σ(t) dBt.

(8)

Existing fine-tuning methods (e.g., Domingo-Enrich et al., 2025; Zhao et al., 2025) encounter scalabil-
ity challenges because they require updating the base model parameters. To perform these updates, the
gradients of the loss function must be backpropagated through the entire model. This process is highly
memory-intensive, as calculating the gradients requires storing all intermediate activations of the
model. As a result, the memory footprint scales with model size, posing a major bottleneck as these
models grow to billions of parameters. Next, we introduce an approach that addresses this issue.

4 DISENTANGLING OPTIMIZATION THROUGH VALUE FUNCTION LEARNING

In this work, we advocate for learning the value function V of Equation (5) to solve Problem (7), which
offers compelling advantages over current fine-tuning methods: (1) support of non-differentiable
rewards (cf . Xu et al., 2023; Clark et al., 2024; Domingo-Enrich et al., 2025) and (2) controllable
resource usage. Once learned, the value function allows us to find the optimal control u⋆ through
Pontryagin’s minimum principle (Pontryagin, 1962), where the first-order optimality condition gives:

u⋆(x, t) = −σ⊺(t)∇xV (x, t). (9)

A key insight for Problem (7) is that the value function retains differentiability even when the reward
function is not, ensuring well-defined optimal control. Intuitively, this occurs because stochastic noise
acts as a smoothing kernel; the value function V at time t averages over all noise realizations from xt

to x1, effectively regularizing reward discontinuities (see Figure 3). We formalize this as follows.
Proposition 1. Under the memoryless noise schedule and assuming that r is bounded and measurable,
the value function V is differentiable in x at t < 1.
Proof outline. We write V (x, t) = − logψ(x, t) where ψ(x, t) = Eppre [exp(λr(x1)) | xt = x].
Then apply the chain rule and show that ψ > 0 and that ψ is differentiable (see Appendix A.3).

This proposition enables the optimization of non-differentiable reward functions commonly used in
practical applications, rendering this approach gradient-free. It proves particularly valuable in settings
where reward functions are treated as black boxes, providing only function evaluations without
access to gradients or structural information. For instance, in molecular generation, reward functions
often rely on external simulators (Bannwarth et al., 2019; Sholl & Steckel, 2009; Forli et al., 2016)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Base model ppre1 . (b) Reward r. (c) Optimal p⋆1.

High reward

(d) CG training data. (e) VM training data.

Figure 2: Training distribution evolution for VM and CG on a 2D environment, showing that VM
aligns its training distribution with the optimal distribution throughout training, whereas CG does not.
(2d, 2e) Points with lower opacity represent earlier training stages.

t = 0.66 t = 0.74 t = 0.81
t = 0.88 t = 0.94 t = 1.00

Figure 3: Evolution of value func-
tion for a discontinuous reward.

or experimental measurements (Hughes et al., 2011) that only
return scalar values. In such cases, value function learning
makes reward adaptation possible, as opposed to methods that
rely on reward gradients (e.g., Xu et al., 2023; Clark et al., 2024;
Domingo-Enrich et al., 2025).

Beyond handling non-differentiable rewards, learning the value
function disentangles reward adaptation from base model op-
timization. Consequently, the dominating computational cost
shifts from base model training to base model inference and
value function learning. This leads to controllable resource
usage by allowing for the flexible choice of a value network architecture. As we show in Section 6,
the value function can be made significantly smaller than the base model, resulting in a substantial
reduction in cost, while achieving comparable performance to fine-tuning methods. Because of this
significant cost reduction, the value function learning approach is highly practical for the adaptation
of large-scale models where fine-tuning would be prohibitively expensive.

Having established the advantages of value function learning, we next recall how classifier guidance
can be viewed as an offline algorithm to learn the value function V .

Classifier Guidance as Offline Value Function Learning. As previously established by Pandey
et al. (2025), Classifier Guidance (CG) (Dhariwal & Nichol, 2021) admits an interpretation as value
function learning. The approach involves training a classifier pY |t(y | x) over noisy samples x
at timesteps t ∈ [0, 1] and using its log-gradient ∇x log pY |t(y | x) to guide generation. This
procedure can be understood as leveraging Equation (6) to solve Problem (7) with the reward function
r(x) = log pY |1(y | x) and value function V (x, t) = − log pY |t(y | x) (see Appendix A.5 for the
derivation), which in turn motivates a generalized loss function for arbitrary rewards:

LCG(θ;x[0,1]) ≜
1

2

∫ 1

0

| exp(−Vθ(xt, t))− exp(λr(x1))|2 dt,

dxt = bpre(xt, t) dt+ σ(t) dBt, x0 ∼ p0.

(10)

Throughout the remainder of this work, we use CG to refer to this loss formulation. Next, we discuss
issues with this approach for generative optimization (Li et al., 2024b; De Santi et al., 2025a;b).

Limitations of Classifier Guidance for Generative Optimization. The CG formulation in Equa-
tion (10) represents an offline value function learning approach because it trains on samples from the
fixed, pre-trained distribution ppret rather than the current policy distribution put . This offline nature is
inherent to the loss formulation itself: the expectation in Equation (6) is computed over the pre-trained
distribution, necessitating that the value function is trained on samples from this fixed source.

However, for generative optimization tasks such as reward maximization, we wish to sample high
reward designs beyond regions of high data availability (Li et al., 2024b; De Santi et al., 2025a;b).
This objective reveals a fundamental limitation of the offline approach: a distribution mismatch
arises between the fixed training distribution ppret and the target distribution p⋆t that the learned
policy encounters during inference (see Figure 2). As the policy shifts probability mass toward
higher-reward regions, the training samples from ppret become increasingly less informative, reducing
sample efficiency and potentially limiting the method’s ability to discover optimal solutions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Value Matching algorithm.

Require: Pre-trained base model with sampling SDE dxt = b(xt, t) dt+σ(t) dBt, Reward function
r : Rd → R, Untrained value function approximator Vθ : Rd × [0, 1] → R, Number of iterations
N ∈ N, Trajectories per iteration m ∈ N, Timestep-dependent weighting w : [0, 1] → R>0.

1: for N iterations do
2: Sample m trajectories under the current policy:

dxi,t =
(
bpre(xi,t, t)− σ2(t)∇Vθ̄(xi,t, t)

)
dt+ σ(t) dBt, xi,0 ∼ p0, i ∈ [m].

3: Estimate the cost functional for each timestep in each trajectory with θ̄ = stopgrad(θ):

Ĵi,t =
1

2

∫ 1

t

∥σ(s)∇Vθ̄(xi,s, s)∥2 ds− λr(xi,1), t ∈ [0, 1], i ∈ [m].

4: Compute the loss function:

L(θ) = 1

2m

m∑
i=1

∫ 1

0

w(t) · |Vθ(xi,t, t)− Ĵi,t|2 dt.

5: Make an optimization step with ∇L(θ).
6: end for

Additionally, the exponential terms in Equation (10) create numerical stability issues during training,
due to overflows when λr(x) > 90 under 32-bit floating-point precision. This constrains the method’s
expressivity to small reward scalings λ, as we show in Section 6. To address these limitations, we
leverage the control-theoretic viewpoint to next introduce an online value function learning approach
that aligns the training and inference distributions while maintaining numerical stability.

5 VALUE MATCHING: SCALABLE AND GRADIENT-FREE REWARD-GUIDED
ADAPTATION

We introduce Value Matching (VM), an online method for learning the value function that overcomes
a fundamental limitation of CG by training on trajectories from the current policy. As detailed in
Algorithm 1, VM leverages Equations (5) and (9) to estimate the value function. This is achieved by it-
eratively regressing the approximator Vθ onto the cost functional J , computed using the current policy.

LVM(θ;x[0,1]) ≜
1

2

∫ 1

0

w(t) · |Vθ(xt, t)− Ĵ(−σ⊺∇xVθ̄;x[0,1], t)|2 dt,

Ĵ(u;x[0,1], t) ≜
1

2

∫ 1

t

∥u(xs, s)∥2 ds− λr(x1), θ̄ = stopgrad(θ)

dxt =
(
bpre(xt, t)− σ2(t)∇xVθ̄(xt, t)

)
dt+ σ(t) dBt, x0 ∼ p0.

(11)

The VM algorithm follows a simple iterative procedure. Each iteration begins by sampling trajectories
using the control policy u(x, t) = −σ⊺(t)∇xVθ(x, t), derived from the current value function approx-
imator Vθ . These trajectories serve a dual purpose in the training loop. First, they are used to compute
single-sample Monte Carlo estimates Ĵt of the cost functional J , which serves as the regression target:

Ĵt =
1

2

∫ 1

t

σ2(s)∥∇xVθ̄(xs, s)∥2 ds− λr(x1). (12)

Here, θ̄ = stopgrad(θ) prevents gradients from flowing through the target, ensuring that Ĵt is
treated as a fixed target value during backpropagation. Second, the states xt along these same
trajectories provide the input data for the value function. The network parameters θ are updated
by regressing the model’s prediction Vθ(xt, t) onto the target Ĵt using an ℓ2-loss:

L(θ) = 1

2

∫ 1

0

w(t) · |Vθ(xt, t)− Ĵt|2 dt. (13)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To stabilize training under the memoryless schedule where σ(t) → ∞ as t → 0, we incorporate
a weighting w : [0, 1] → R>0. Empirically, we find the following scheme effective (see Figure 10):

w(t) =
1

λ2
(
1 + 1

2

∫ 1

t
σ2(s) ds

) . (14)

This scheme normalizes rewards by the scaling factor λ and down-weights timesteps with high future
variance. For models employing multiple schedulers, weights are averaged across schedulers.

Finally, the weights θ are updated using a gradient descent step with ∇L(θ). For numerical imple-
mentation, the underlying SDE is simulated with the Euler-Maruyama method (Kloeden & Platen,
1992) using T steps, and the integrals are approximated as Riemann sums (Anton, 1999) over the
same discretization. The procedure to efficiently compute Equation (12) is outlined in Appendix B.3.
In the following result, we show that this approach converges to the true value function in expectation.
Proposition 2. The value function V is the unique critical point of E[LVM].
Proof outline. We first establish that V is a stationary point by computing the functional derivative of
E[LVM]. Uniqueness then follows as a standard result in SOC (see Appendix A.4).

This proposition provides theoretical justification for using gradient-based methods to optimize Vθ,
ensuring that VM converges to the correct value function under appropriate conditions. To build
intuition for VM, we next show how it relates to current state-of-the-art fine-tuning algorithms.

Value Matching as the Gradient-Free Analogue of Adjoint Matching. Conceptually, Adjoint
Matching (AM) (Domingo-Enrich et al., 2025) can be understood as learning the value function
gradient ∇xV by iteratively matching it to single-sample Monte Carlo estimates of ∇xJ . Our method
represents a zeroth-order analogue, where V is learned by regressing onto estimates of J , and the
gradient is obtained via backpropagation. Thus, AM and VM are procedurally very similar.

Value Matching Simplifies Continuous-Time PPO. Zhao et al. (2025) introduced a Continuous-
Time Proximal Policy Optimization (CT-PPO) algorithm that learns the optimal control by iteratively
alternating between training a value function and using it to optimize an actor network, starting from
the pre-trained model (see Algorithm 2). We argue that by setting the actor to spre(x, t)−∇xVθ(x, t),
the actor optimization step becomes redundant and the VM algorithm emerges. This substantially
simplifies the algorithm and eliminates the need for fine-tuning the base model. Moreover, VM
requires fewer hyperparameters to achieve optimal performance, as shown in Appendix E.1.

6 RESULTS

We now evaluate Value Matching (VM), aiming to showcase four primary insights: (i) we verify
that VM recovers the correct tilted distribution in an illustrative environment; (ii) we demonstrate the
scalability of VM to high-dimensional image and molecular domains; (iii) we show that VM is more
sample efficient and expressive than CG; and (iv) we find that VM can reduce resource requirements
by over 95% compared to the fine-tuning method CT-PPO, while achieving comparable performance.

pu1 ppre1 p⋆1

Figure 4: 1D toy experiment.

To ensure fairness, we limit the number of sampled trajectories to
128K in all direct comparisons. For CT-PPO, we conduct an extensive
hyperparameter search (Appendix E.1) and adopt the value network
from (Zhao et al., 2025) that defines the value function as a convex
combination between r ◦ x̂θ, where x̂θ predicts x1 from xt, and a
residual network Fϕ. For Vθ in VM and Fϕ in CT-PPO, we use a
1.8M-parameter CNN for images and a 2.5M-parameter GNN for
molecules. Additional training details in Appendix B.

VM recovers the tilted distribution with non-differentiable
rewards. To confirm that VM optimizes the intended objective,
we test it in a simple one-dimensional setting, where the base
distribution is a Gaussian mixture and the reward is binary and non-
differentiable. As shown in Figure 4, VM successfully converges
to the tilted distribution, the optimal solution. Moreover, it reveals the value function at intermediate
timesteps. Consistent with the theory, the diffusion introduces an attenuating effect: values blur out
and move to the origin as t→ 0. The blurring effect intuitively explains why the value function is
differentiable for timesteps t < 1, even when r is not. Next, we consider high-dimensional domains.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

N
/A

CIFAR DiT SD2 FlowMol
0

50

100

150

200

M
em

or
y

(G
B

)

N
/A

CIFAR DiT SD2 FlowMol
0

200

400

600

800

G
PU

Ti
m

e
(h

)

VM, CG
CT-PPO
AM

Figure 5: Resource requirements for adaptation methods across base models (16-bit, A100 GPUs).
We do not show requirements for AM on FlowMol, because molecular rewards are inherently
non-differentiable. LEFT: Memory requirements in GB. RIGHT: Training wall-clock time in hours.

VM is remarkably resource-efficient. As shown in Figure 5, VM demonstrates exceptional com-
putational efficiency in comparison to fine-tuning methods. It requires less than 12 GB of memory
across all evaluated models, whereas CT-PPO and AM demand up to 250 GB for SD2; a reduction of
over 95%. The time requirements show similar advantages: VM completes training in under 35 hours
for all models, while CT-PPO requires up to 800 GPU-hours for SD2. This efficiency gap widens with
model scale: while the resource cost for fine-tuning methods grows substantially from CIFAR to
SD2, VM maintains a consistently low overhead. These results establish that VM can be orders of
magnitude more efficient than fine-tuning alternatives. Next, we show that small value networks are
sufficient for effective reward adaptation and give comparable performance to fine-tuning methods.

Figure 6: Samples with same random
seed. TOP: SD2 base model. BOTTOM:
VM with compression reward.

VM effectively adapts large-scale image generation
models. To demonstrate the general efficacy of VM, we
apply it to the Diffusion Transformer (DiT) (Peebles & Xie,
2023) trained on the 256×256 ImageNet dataset (Deng
et al., 2009), and the text-to-image model Stable Diffusion
2 (SD2) (Rombach et al., 2022). For training prompts, we
randomly selected 40K captions from the LVIS dataset
(Schuhmann & Bevan, 2023). The reward functions are
compression and incompression, which correspond to
minimizing and maximizing the bits per pixel (BPP) of
the sample’s JPEG-compressed version, at quality level 85.
By learning to exploit JPEG’s frequency-based method,
we find that VM generates less detailed, low-frequency
images under the compression reward and high-frequency
Moiré patterns under the incompression reward (see Appendix D). Further, quantitative evaluation of
DiT over 10K samples reveals that VM achieves 0.6± 0.3 and 3.1± 1.1 BPP under the compression
and incompression rewards. Next, we investigate the performance of VM on molecular generation.

6.50 4.86 5.12 8.63

13.87 10.26 13.44 16.01

Figure 7: Samples with same random
seed. TOP: FlowMol base model. BOT-
TOM: VM with dipole moment reward.

VM can effectively adapt molecular generation models.
In molecular design, we evaluate VM on the continuous
FlowMol model (Dunn & Koes, 2024b), pre-trained on
the GEOM-Drugs dataset (Axelrod & Gomez-Bombarelli,
2022). The reward function is the dipole moment, com-
puted using GFN2-xTB (Bannwarth et al., 2019) fol-
lowing geometry relaxation with GFN-FF (Spicher &
Grimme, 2020). Due to the discrete nature of molecules
and the geometry relaxation step, this reward func-
tion is non-differentiable. To prevent reward exploita-
tion, wherein FlowMol frequently generates fragmented
molecules, these outputs are assigned a zero reward. We
find that optimizing this reward increases the frequency
of heteroatoms and halogens, causing a 5-fold rise in highly electronegative fluorine (Figure 24).
Moreover, over 10K samples, VM increases the average dipole moment to 7.5 ± 3.8 Debye from
the base model’s 6.4± 3.5 Debye, while simultaneously reducing the fragmentation rate from 31%
to 28%. From this, we conclude that VM can successfully optimize for the target property without
resorting to reward hacking. In the remainder of this section, we compare VM against CG and CT-PPO.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50 100

2.5

3

3.5

4

Reward Scale (λ)

R
ew

ar
d

(↑
)

0 200 400
0

0.1

0.2

0.3

Training Steps

D
K
L
(p

⋆
∥
p
u
)

VM
CG
Diverged
Base

Figure 8: Comparison between VM and CG in large- and small-scale settings. LEFT: On the CIFAR
image model with aesthetic reward, CG is unstable under moderate reward scaling. RIGHT: In a simple
1D environment, VM converges significantly faster than CG to the tilted distribution in terms of KL.

−6

−4

−2

6

6.5

7

7.5

8

2.5

3

3.5

4

0 50 100

100

200

300

0 50 100

100

200

0 50 100

50

100

150

Mode collapse

R
ew

ar
d

(↑
)

Compression Incompression Aesthetic

B
as

e
FI

D
(↓

)

VM
CT-PPO
Base

Reward Scale (λ)

Figure 9: Comparison between VM and CT-PPO across various reward functions and scalings. VM
demonstrates performance comparable to CT-PPO but with more predictable and stable behavior,
shown by a consistent reward improvement as λ increases. In contrast, CT-PPO suffers from mode
collapse on the compression task. TOP: Mean reward. BOTTOM: FID to base model.

VM is more sample efficient and expressive than classifier guidance. In this comparison, we
demonstrate two key advantages of VM over CG: higher reward expressivity and greater sample
efficiency. To evaluate the first, we use a 32×32 CIFAR-10 base model and the LAION aesthetics
reward (Schuhmann, 2022). As shown in Figure 8 (left), the experiment reveals that CG becomes
unstable at moderate reward scales (λ ≥ 10), a significant practical limitation given that meaningful
optimization often requires higher λ values. In contrast, VM maintains stable training and leads to
much higher rewards. We then evaluate sample efficiency in a one-dimensional environment by track-
ing the KL divergence to the optimal distribution during training. The results (Figure 8, right) show
VM consistently converging to superior optima, indicating a more effective use of training samples.
The combination of enhanced stability and improved sample efficiency makes VM a more robust and
practical alternative to CG for reward adaptation tasks, especially in resource-constrained settings.

VM demonstrates superior stability and controllability relative to CT-PPO while maintaining
comparable performance. In the comparison with the fine-tuning method CT-PPO, we use the same
base model as in the previous experiment across three reward functions: compression, incompression,
and LAION aesthetics. The results, shown in Figure 9, show that VM is more robust and practical.
While CT-PPO suffers from catastrophic mode collapse on the compression task (producing only
all-white and all-black samples), VM’s performance improves consistently as λ increases. On the
other two rewards, their performance is comparable. However, achieving this with CT-PPO requires
an extensive hyperparameter search (Appendix E.1), a significant practical drawback from which
VM does not suffer. Finally, VM exhibits more controllability through the reward scaling, where it
maintains the expected behavior of deviating further from the base model, measured in FID (Heusel
et al., 2017) to the base model, in order to increase rewards. Taken together, VM represents a more
stable, efficient, and reliably controllable algorithm for reward adaptation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

7 RELATED WORK

Reward-Guided Flow Fine-Tuning for Generative Optimization. Recent work has explored
fine-tuning flow and diffusion models for objectives beyond likelihood estimation, with leading
approaches formulating the problem through RL and SOC frameworks. In this view, the generation
process is a sequential decision problem where a policy is learned to steer the model toward desirable
outcomes. An early approach, DDPO (Black et al., 2023) applies a policy gradient method to directly
optimize for arbitrary rewards but often suffers from “reward collapse”, where it overfits to a few
high-reward samples at the cost of diversity. To counter this, DPOK (Fan et al., 2023) incorporated
KL regularization to preserve diversity, though the KL term was approximated by an upper bound.
A key insight was that the KL divergence can be computed with a quadratic running cost, enabling a
control-theoretic interpretation. Leveraging this insight, SOCM (Domingo-Enrich et al., 2024) casts
the control problem as an importance-weighted regression task. Further advancing this line, Adjoint
Matching (Domingo-Enrich et al., 2025) resolved a critical value function bias in earlier methods,
enabling provably unbiased reward adaptation. In an effort to address limitations of discretization,
Zhao et al. (2025) introduced a continuous-time RL framework. Recent work also renders it possible to
maximize rewards while preserving information from ppre more generally than KL, as well as enabling
risk-averse and risk-sensitive reward optimization (De Santi et al., 2025a). Our work advances this
research line by introducing an algorithm that preserves the online nature of control-theoretic schemes,
while lowering the memory requirements significantly, thereby easing its practical adoption.

Classifier(-Free) Guidance. A widely used alternative to fine-tuning is to steer the generative
process at inference time. Classifier guidance (Dhariwal & Nichol, 2021) leverages the gradients
of a separately trained classifier to push the sampling trajectory toward samples that exhibit desired
attributes. To eliminate the need for an external model, classifier-free guidance (Ho & Salimans, 2022)
modifies the training of the generative model itself to learn both a conditional and an unconditional dis-
tribution. At inference, the model is guided by amplifying the difference between the two, effectively
steering generations toward the desired condition. These guidance mechanisms are foundational in
diffusion model research, and improving upon them has become an active field of study (e.g., Karras
et al., 2024; Sadat et al., 2024; 2025; Rajabi et al., 2025). In this work, we establish a connection to
these methods by showing that VM can be viewed as an online generalization of classifier guidance.

Inference-Time Schemes Beyond Guidance. Another family of methods performs reward op-
timization at inference-time through local, step-wise decisions. Many of these approaches can be
understood as approximating an optimal denoising process by leveraging the pre-trained model as a
look-ahead function to predict future rewards (Uehara et al., 2025). For instance, at each denoising
step, methods like SVDD (Li et al., 2024a) and SCG (Huang et al., 2024) evaluate multiple candidate
states and select the next state based on these predictions, employing strategies such as resampling or
greedy selection. In contrast to such local methods, OC-Flow (Wang et al., 2025) adopts a global
perspective, optimizing the entire trajectory at once by framing the task as an optimal control problem.
The downside of inference-time schemes is a substantially increased wall-clock time for generation.
Our method does not suffer from this by amortizing the optimization cost during training.

8 CONCLUSION AND OUTLOOK

We introduce Value Matching (VM), a scalable and efficient online method for adapting pre-trained
flow models to arbitrary reward functions. Drawing from fundamental insights in optimal control
theory, VM learns the value function, which yields several key advantages. First, the resource
requirements are controllable by a flexible choice of the value network architecture. Second, by
learning the value function, VM naturally handles non-differentiable rewards, a crucial capability for
black-box optimization problems.

Our experiments on image and molecular generation tasks demonstrate these benefits empirically.
VM reduces memory and compute requirements by up to 95% compared to fine-tuning methods while
achieving comparable performance. Furthermore, VM shows higher reward expressivity and proves
more sample efficient than classifier guidance. By providing a theoretically grounded and practical
framework for reward-guided adaptation, VM opens up promising opportunities for future research,
such as applying VM to more complex, real-world problems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide comprehensive details to ensure the reproducibility of our work. For all algorithms
introduced, pseudocode is included, and benchmarks are performed against existing, publicly
documented methods. In Appendix B.1, we detail the value network architectures used in this
work. Further, in Appendix B.3, we show how to compute the integrals in practice. Moreover, in
Appendix C, we give descriptions of the evaluation metrics, including how they are computed. Lastly,
in Appendix E, we report the hyperparameters used for the CT-PPO experiments.

REFERENCES

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023.

Howard Anton. Calculus: A new horizon. New York: Wiley, 1999.

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
for property prediction and molecular generation. Scientific Data, 9(1):185, 2022.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Christoph Bannwarth, Sebastian Ehlert, and Stefan Grimme. Gfn2-xtb—an accurate and broadly
parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics
and density-dependent dispersion contributions. Journal of chemical theory and computation, 15
(3):1652–1671, 2019.

Richard E Bellman and Stuart E Dreyfus. Applied dynamic programming. Princeton university press,
2015.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Oskar Bolza. Lectures on the Calculus of Variations, volume 14. University of Chicago Press, 1904.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
on differentiable rewards. In The Twelfth International Conference on Learning Representations,
2024.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi S. Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. In The Eleventh International Conference
on Learning Representations, 2023.

Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, and Andreas Krause.
Flow density control: Generative optimization beyond entropy-regularized fine-tuning. In The
Exploration in AI Today Workshop at ICML 2025, 2025a.

Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, and Andreas Krause.
Provable maximum entropy manifold exploration via diffusion models. In Forty-second Interna-
tional Conference on Machine Learning, 2025b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, and Ricky TQ Chen. Stochastic
optimal control matching. Advances in Neural Information Processing Systems, 37:112459–112504,
2024.

Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control. In
The Thirteenth International Conference on Learning Representations, 2025.

Ian Dunn and David Ryan Koes. Exploring discrete flow matching for 3d de novo molecule generation.
ArXiv, pp. arXiv–2411, 2024a.

Ian Dunn and David Ryan Koes. Mixed continuous and categorical flow matching for 3d de novo
molecule generation. ArXiv, pp. arXiv–2404, 2024b.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first international conference on machine learning, 2024.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-tuning
text-to-image diffusion models. In Thirty-seventh Conference on Neural Information Processing
Systems (NeurIPS) 2023. Neural Information Processing Systems Foundation, 2023.

Wendell H Fleming and Raymond W Rishel. Deterministic and stochastic optimal control, volume 1.
Springer Science & Business Media, 2012.

Wendell H Fleming and H Mete Soner. Controlled Markov processes and viscosity solutions. Springer,
2006.

Stefano Forli, Ruth Huey, Michael E Pique, Michel F Sanner, David S Goodsell, and Arthur J Olson.
Computational protein–ligand docking and virtual drug screening with the autodock suite. Nature
protocols, 11(5):905–919, 2016.

Avner Friedman. Stochastic differential equations and applications. In Stochastic differential
equations, pp. 75–148. Springer, 1975.

Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine
learning. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. Advances in Neural Information Processing Systems, 37:
133345–133385, 2024.

Yatharth Gupta, Vishnu V Jaddipal, Harish Prabhala, Sayak Paul, and Patrick Von Platen. Progressive
knowledge distillation of stable diffusion xl using layer level loss. arXiv preprint arXiv:2401.02677,
2024.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pp. 8867–8887.
PMLR, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zijing Hu, Fengda Zhang, Long Chen, Kun Kuang, Jiahui Li, Kaifeng Gao, Jun Xiao, Xin Wang, and
Wenwu Zhu. Towards better alignment: Training diffusion models with reinforcement learning
against sparse rewards. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 23604–23614, 2025.

Yujia Huang, Adishree Ghatare, Yuanzhe Liu, Ziniu Hu, Qinsheng Zhang, Chandramouli Shama
Sastry, Siddharth Gururani, Sageev Oore, and Yisong Yue. Symbolic music generation with non-
differentiable rule guided diffusion. In Forty-first International Conference on Machine Learning,
2024.

James P Hughes, Stephen Rees, S Barrett Kalindjian, and Karen L Philpott. Principles of early drug
discovery. British journal of pharmacology, 162(6):1239–1249, 2011.

Mark Kac. On distributions of certain wiener functionals. Transactions of the American Mathematical
Society, 65(1):1–13, 1949.

Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
Guiding a diffusion model with a bad version of itself. Advances in Neural Information Processing
Systems, 37:52996–53021, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Peter E Kloeden and Eckhard Platen. Numerical solution of stochastic differential equations. Springer
Berlin, Heidelberg, 1992.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gokcen Eraslan, Surag Nair, Tommaso
Biancalani, Shuiwang Ji, Aviv Regev, Sergey Levine, et al. Derivative-free guidance in continuous
and discrete diffusion models with soft value-based decoding. arXiv preprint arXiv:2408.08252,
2024a.

Zihao Li, Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Yinyu Ye, Minshuo Chen, and Mengdi Wang.
Diffusion model for data-driven black-box optimization. CoRR, 2024b.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations,
2023.

Dimitra Maoutsa, Sebastian Reich, and Manfred Opper. Interacting particle solutions of fokker–
planck equations through gradient–log–density estimation. Entropy, 22(8):802, 2020.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9(1):48, 2017.

K. Pandey, F. Sofian, F. Draxler, T. Karaletsos, and S. Mandt. Variational control for guidance in
diffusion models. In International Conference on Machine Learning (ICML), 2025.

Amey P Pasarkar and Adji Bousso Dieng. Cousins of the vendi score: A family of similarity-based
diversity metrics for science and machine learning. In International Conference on Artificial
Intelligence and Statistics, pp. 3808–3816. PMLR, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 1962.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Javad Rajabi, Soroush Mehraban, Seyedmorteza Sadat, and Babak Taati. Token perturbation guidance
for diffusion models. arXiv preprint arXiv:2506.10036, 2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Seyedmorteza Sadat, Otmar Hilliges, and Romann M Weber. Eliminating oversaturation and artifacts
of high guidance scales in diffusion models. In The Thirteenth International Conference on
Learning Representations, 2024.

Seyedmorteza Sadat, Manuel Kansy, Otmar Hilliges, and Romann M. Weber. No training, no
problem: Rethinking classifier-free guidance for diffusion models. In The Thirteenth International
Conference on Learning Representations, 2025.

Christoph Schuhmann. Laion aesthetics predictor v1, 2022. URL https://github.com/
LAION-AI/aesthetic-predictor.

Christoph Schuhmann and Peter Bevan. Gpt4vision captions for
livis, 2023. URL https://huggingface.co/datasets/laion/
220k-GPT4Vision-captions-from-LIVIS.

David S Sholl and Janice A Steckel. Density functional theory: a practical introduction. John Wiley
& Sons, 2009.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. pmlr, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Sebastian Spicher and Stefan Grimme. Robust atomistic modeling of materials, organometallic, and
biochemical systems. Angewandte Chemie International Edition, 59(36):15665–15673, 2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Wenpin Tang. Fine-tuning of diffusion models via stochastic control: entropy regularization and
beyond. arXiv preprint arXiv:2403.06279, 2024.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-time
diffusion models as entropy-regularized control. arXiv preprint arXiv:2402.15194, 2024.

13

https://github.com/LAION-AI/aesthetic-predictor
https://github.com/LAION-AI/aesthetic-predictor
https://huggingface.co/datasets/laion/220k-GPT4Vision-captions-from-LIVIS
https://huggingface.co/datasets/laion/220k-GPT4Vision-captions-from-LIVIS

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Masatoshi Uehara, Yulai Zhao, Chenyu Wang, Xiner Li, Aviv Regev, Sergey Levine, and Tommaso
Biancalani. Inference-time alignment in diffusion models with reward-guided generation: Tutorial
and review. arXiv preprint arXiv:2501.09685, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Luran Wang, Chaoran Cheng, Yizhen Liao, Yanru Qu, and Ge Liu. Training free guided flow-matching
with optimal control. In The Thirteenth International Conference on Learning Representations,
2025.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. Advances
in Neural Information Processing Systems, 36:15903–15935, 2023.

Richard Zhang. Making convolutional networks shift-invariant again. In International conference on
machine learning, pp. 7324–7334. PMLR, 2019.

Hanyang Zhao, Haoxian Chen, Ji Zhang, David Yao, and Wenpin Tang. Score as action: Fine
tuning diffusion generative models by continuous-time reinforcement learning. In Forty-second
International Conference on Machine Learning, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDICES

CONTENTS

A Proofs 16

A.1 Assumptions . 16

A.2 Useful Lemmas . 16

A.3 Proposition 1 . 17

A.4 Proposition 2 . 17

A.5 Derivation of Classifier Guidance Value Function 18

B Experimental Details 19

B.1 Value Network Architectures . 19

B.2 Efficiently Computing Rewards . 19

B.3 Efficiently Computing the Cost Functional Estimate 19

B.4 Weighting Functions . 20

C Evaluation Metrics 21

C.1 Fréchet Inception Distance . 21

C.2 Vendi Score . 21

D Samples and Training Curves 22

D.1 Diffusion Transformer . 22

D.2 Stable Diffusion 2 . 23

D.3 GEOM-Drugs . 26

E Proximal Policy Optimization Algorithm 28

E.1 Hyperparameter Ablations . 29

F Flow Models 30

F.1 Flow Matching . 30

F.2 Diffusion Models . 31

F.3 Diffusion Models as an Instance of Flow Matching 32

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A PROOFS

A.1 ASSUMPTIONS

Assumption 1. a(t) ≜ σ(t)σ⊺(t) is uniformly elliptic.
Assumption 2. The base drift b : Rd × [0, 1] → Rd is Lipschitz continuous in x and continuous in t.
Assumption 3. The norm of the base drift ∥b∥ is bounded.
Assumption 4. The reward function r : Rd → R is bounded.

A.2 USEFUL LEMMAS

Lemma 1 (Application of the Feynman-Kac formula (Kac, 1949)). Let V be the value function
defined in Equation (5), then:

V (x, t) = − logEppre [exp(λr(x1)) | xt = x]. (15)
Lemma 2 (Friedman (1975); Chapter 6, Theorem 4.5). Under Assumptions 1 to 3, the transition
density ps|t(y | x) of the uncontrolled SDE satisfies the following upper bound on its norm for
0 ≤ t < s ≤ 1:

∥∇xps|t(y | x)∥ ≤ C(s− t)−
d+1
2 exp

(
−c∥y − x∥2

s− t

)
, (16)

where C, c > 0 are constants and x,y ∈ Rd. Further, ∇xps|t(y | x), ∇2
xps|t(y | x), and

∂tps|t(y | x) are uniformly continuous.
Lemma 3 (Fleming & Soner (2006), Chapter 5, Theorem 9.1). Consider the following Hamilton-
Jacobi-Bellman equation:

−∂tW (x, t) +H
(
x, t,∇xW (x, t),∇2

xW (x, t)
)
= 0, (17)

where in our case the Hamiltonian, H, is:

H(x, t,p,A) = −1

2
tr(a(t)A)− ⟨b(x, t),p⟩+ 1

2
∥σ⊺(t)p∥2. (18)

Assume Assumptions 1 to 4. Let W be a bounded viscosity subsolution and V be a bounded viscosity
supersolution. Then,

sup
(x,t)∈Rd×[0,1]

(W (x, t)− V (x, t)) = sup
x∈Rd

(W (x, 1)− V (x, 1)). (19)

Lemma 4 (Uniqueness). Under the assumptions of Lemma 3, the viscosity solution to Equation (17)
is unique.

Proof. We show this result by a comparison principle. Assume that Equation (17) has two viscosity
solutions V1 and V2 with terminal condition V1(x, 1) = V2(x, 1) = −λr(x). Since they are viscosity
solutions, they are also viscosity sub- and supersolutions. By their terminal condition, we know that:

sup
x∈Rd

(W (x, 1)− V (x, 1)) = sup
x∈Rd

−λr(x) + λr(x) = 0. (20)

We will first show that V1 ≤ V2. Apply Lemma 3 with W = V1 and V = V2, then we have:
V1(x, t)− V2(x, t) ≤ sup

(x,t)

(V1(x, t)− V2(x, t)) = sup
x∈Rd

(V1(x, 1)− V2(x, 1)) = 0. (21)

As such we have V1(x, t) ≤ V2(x, t) for all (x, t).

Now we show that V2 ≤ V1. Again, apply Lemma 3 with W = V2 and V = V1, then we have:
V2(x, t)− V1(x, t) ≤ sup

(x,t)

(V2(x, t)− V1(x, t)) = sup
x∈Rd

(V2(x, 1)− V1(x, 1)) = 0. (22)

Thus we also have V2(x, t) ≤ V1(x, t) for all (x, t).

In conclusion, we have V1 − V2 = 0, meaning that they are equal.

Putting it all together, we have that the following HJB equation has a unique solution:

∂tW (x, t) +
1

2
tr
(
a(t)∇2

xW (x, t)
)
+ ⟨b(x, t),∇xW ⟩ − 1

2
∥σ⊺(t)∇xW∥2 = 0,

W (x, 1) = −λr(x).
(23)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 PROPOSITION 1

Under Assumptions 1 to 4, the value function V : Rd × [0, 1] → R defined in Equation (5) is
differentiable in x for t < 1

Proof. Let t < 1. Define ψ(x, t) ≜ Eppre [exp(λr(x1)) | xt = x]. Then from Lemma 1, we have
V (x, t) = − logψ(x, t). Thus, it suffices to show that (1) ψ > 0 and (2) ψ is differentiable in x:

1. We assume that r is bounded, so exp(λr(x)) > 0. Hence, ψ(x, t) > 0.

2. Writing ψ as an integral we have:

ψ(x, t) =

∫
exp(λr(y))p1|t(y | x) dy. (24)

Using that r is bounded such that exp(λr) < M for some M and Lemma 2, we can show that the
gradient norm of the integrand is dominated by an integrable function:

∥∇x exp(λr(y))p1|t(y | x)∥ = exp(λr(y))∥∇xp1|t(y | x)∥ (25)

≤MC(1− t)−
d+1
2 exp

(
−c∥y − x∥2

1− t

)
, (26)

where M,C, c, d > 0 are constants. Thus, we can differentiate under the integral:

∇ψ(x, t) =
∫

exp(λr(y))∇xp1|t(y | x) dy. (27)

Further using Lemma 2, the transition density is continuously differentiable in x. Thus, ψ is
differentiable.

This fails for t = 1 since r might be non-differentiable and we have V (x, 1) = −λr(x). In
conclusion, by the chain rule:

∇V (x, t) = −∇ψ(x, t)
ψ(x, t)

(28)

Therefore, V is continuously differentiable in x for t < 1.

A.4 PROPOSITION 2

The value function V is the unique critical point of E[LVM].

Proof. Let W : Rd × [0, 1] → R be a value function approximator and denote W̄ = stopgrad(W)
where the argument of stopgrad is treated as constant w.r.t. differentiation. In this proof, assume
that any trajectory x[0,1] is sampled from the current policy without gradients w.r.t. weights:

dxt =
(
b(xt, t)− σ(t)σ⊺(t)∇W̄ (xt, t)

)
dt+ σ(t) dBt. (29)

Critical point. In order to find the critical points, we will derive the functional derivative of E[LVM].
Let C : Rd × [0, 1] → R be an arbitrary function, then:

d

dϵ
E[LVM(W + ϵC;x[0,1])]

∣∣∣∣
ϵ=0

(30)

=
d

dϵ
E
[
1

2

∫ 1

0

w(t) ·
∣∣∣(W + ϵC)(xt, t)− Ĵ

(
−σ⊺∇W̄ ;x[0,1], t

)∣∣∣2 dt]∣∣∣∣
ϵ=0

(31)

= E
[
1

2

∫ 1

0

w(t) · d

dϵ

∣∣∣(W + ϵC)(xt, t)− Ĵ
(
t− σ⊺∇W̄ ;x[0,1], t

)∣∣∣2∣∣∣∣
ϵ=0

dt

]
(32)

= E
[∫ 1

0

C(xt, t) · w(t) ·
(
W (xt, t)− Ĵ

(
−σ⊺∇W̄ ;x[0,1], t

))
dt

]
(33)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Using the tower property of expectation:

= E
[∫ 1

0

C(xt, t) · w(t) ·
(
W (xt, t)− E

[
Ĵ
(
−σ⊺∇W̄ ;x[0,1], t

) ∣∣∣ xt

])
dt

]
. (34)

So, the functional derivative is:
δ

δW
E[LVM(W)(x, t)] = w(t) ·

(
W (x, t)− E

[
Ĵ
(
−σ⊺∇W̄ ;x[0,1], t

) ∣∣∣ xt = x
])
. (35)

Thus, any critical point (a point where the functional derivative equals zero) must satisfy:

W ⋆(x, t) = E
[
Ĵ
(
−σ⊺∇W ⋆;x[0,1], t

) ∣∣∣ xt = x
]

(36)

= E
[
1

2

∫ 1

t

∥σ⊺(s)∇W ⋆(xs, s)∥2 ds− λr(x1)

∣∣∣∣ xt = x

]
. (37)

By plugging Equation (9) into Equation (5), we know that the value function can be written as:

V (x, t) = J(u⋆;x, t) (38)
= J(−σ⊺∇V ;x, t) (39)

= E
[
1

2

∫ 1

t

∥σ⊺(s)∇V (xs, s)∥2 ds− λr(x1)

∣∣∣∣ xt = x

]
. (40)

Therefore V is a critical point of E[LVM].

Uniqueness. As shown, a critical point W must satisfy the fixed-point:

W (x, t) = E
[
1

2

∫ 1

t

∥σ⊺(s)∇W (xs, s)∥2 ds− λr(x1)

∣∣∣∣ xt = x

]
, (41)

where the expectation is over trajectories from the controlled SDE:

dxs = (b(xs, s)− a(s)∇W (xs, s)) ds+ σ(s) dBs, xt = x. (42)

By the Feynman-Kac formula, W satisfies the following PDE:

∂tW + ⟨b− a∇W,∇W ⟩+ 1

2
tr
(
a∇2W

)
+

1

2
∥σ⊺∇W∥2 = 0, W (x, 1) = −λr(x). (43)

Noticing that ⟨∇W,a∇W ⟩ = ∥σ⊺∇W∥2, the PDE simplifies to:

∂tW + ⟨b,∇W ⟩+ 1

2
tr
(
a∇2W

)
− 1

2
∥σ⊺∇W∥2 = 0, W (x, 1) = −λr(x). (44)

Using Lemma 4, we know that this HJB equation has a unique solution. This concludes the proof of
Proposition 2: V is the unique critical point of E[LVM].

A.5 DERIVATION OF CLASSIFIER GUIDANCE VALUE FUNCTION

In this setting, we have r(x) = log ppreY |1(y | x) for some class label y and λ = 1. From Lemma 1,
we have:

V (x, t) = − logEppre [exp(λr(x1)) | xt = x] (45)
= − logEppre [ppre(y | x1) | xt = x] (46)

= − log

∫
ppre1|t (x1 | x)ppreY |1(y | x1) dx1 (47)

We have y⊥xt | x1, so by the chain rule:

= − log

∫
ppre1,Y |t(x1, y | x) dx1 (48)

By marginalization:

= − log ppreY |t(y | x). (49)

This concludes the derivation of the statement.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL DETAILS

All VM experiments employ the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 1 × 10−4,
a batch size of 128, and 100 SDE discretization steps. Unless otherwise specified, image experiments
utilize a 1.8M-parameter convolutional neural network (CNN) and molecular experiments employ a
2.5M-parameter graph neural network (GNN) to parameterize the value function approximator Vθ.
Additionally, to normalize the CG loss function (as we do for VM by adding the 1/λ2 term to w(t)),
we normalize LCG by dividing it by exp(2λ).

B.1 VALUE NETWORK ARCHITECTURES

Convolutional Neural Network. We employ a standard CNN architecture consisting of an input
convolution, three downsampling stages, an adaptive average pool, and a final linear head. Timesteps
are embedded using a sinusoidal timestep embedder (Vaswani et al., 2017). Each downsampling
stage comprises two layers with the following structure: convolution with a 3×3 kernel → group
normalization (Wu & He, 2018) → FiLM (Perez et al., 2018) to incorporate timestep information
→ sigmoid linear unit (Hendrycks & Gimpel, 2016) activation function. Finally, the input is added
residually and the result is downsampled using blur pool (Zhang, 2019). The convolutional layers in
the downsampling stages use a base hidden dimensionality of 64, which doubles at each stage.

Graph Neural Network. The GNN architecture follows a similar design to the CNN architecture
(excluding downsampling), where we replace the input convolution with a linear layer, convolutions
with graph convolutions (Kipf & Welling, 2017), and group normalization with layer normalization
(Ba et al., 2016). We utilize all node information available from the FlowMol model: atom position,
atom type, and formal charge. We also incorporate edge data by linearly transforming the edge
features and adding the mean of all incoming edge features to the node features after the input linear
layer. Each block uses a hidden dimensionality of 256 across 6 stages.

B.2 EFFICIENTLY COMPUTING REWARDS

To efficiently compute reward functions for latent diffusion models, we decode samples individually.
This approach significantly reduces VRAM requirements, as decoded samples are typically very
large. We find that this strategy does not result in substantially increased wall-clock time.

B.3 EFFICIENTLY COMPUTING THE COST FUNCTIONAL ESTIMATE

We discretize the time horizon into T evenly spaced points. On this discretization, we perform the
Euler-Maruyama method for sampling. Thus, at each step, the gradient ∇xV is computed. Based on
this gradient, we compute the running cost at every step:

Lt =
1

2
∥σ⊺(t)∇xV (xt, t)∥2. (50)

At the final time step, the reward R = r(x1) is received. The estimated cost functional Ĵt is then com-
puted by summing the running costs from time t onward and subtracting the scaled terminal reward:

Ĵt =
1

T

T∑
τ=t

Lτ/T − λR. (51)

In total, computing the cost functional estimate involves computing T d-dimensional norms and
adding T scalars using a reverse cumulative sum.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.4 WEIGHTING FUNCTIONS

0 0.2 0.4 0.6 0.8 1
0

0.5

1
w
(t
)

Optimal Transport

0 0.2 0.4 0.6 0.8 1
0

0.5

1

DDPM

0 0.2 0.4 0.6 0.8 1
0

0.5

1

FlowMol

Timestep (t)

Figure 10: Weighting function w(t) under various (αt, βt)-schedules, λ = 1, and the memoryless
noise schedule.

Figure 10 displays the weighting function defined in Equation (14) for the schedules of models
considered in this work. As can be seen, it down-weights earlier timesteps, which intuitively have the
highest variance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C EVALUATION METRICS

Throughout this work, we employ three key metrics to assess performance: average reward, Fréchet
inception distance (FID) (Heusel et al., 2017), and Vendi diversity (Friedman & Dieng, 2023; Pasarkar
& Dieng, 2024). The average reward measures an algorithm’s ability to exploit the reward function
effectively, while FID relative to the base model captures the extent of deviation from the base
model required to achieve this performance. Vendi diversity quantifies the variety within generated
samples. Our objective is to achieve high reward and diversity while maintaining low FID. However,
an inherent trade-off exists between reward optimization and sample diversity. In this section, we
detail the computation of these metrics. For each metric, we assume access to a dataset of n samples.

C.1 FRÉCHET INCEPTION DISTANCE

FID (Heusel et al., 2017) is computed by first embedding each data point through a pre-trained
Inception network (Szegedy et al., 2015) and extracting feature activations from the final layer. The
Fréchet distance computes the means (µ1,µ2) and covariance matrices (Σ1,Σ2) of both datasets,
then calculates:

dF (X1,X2) ≜ ∥µ1 − µ2∥2 + tr
(
Σ1 +Σ2 − 2(Σ1Σ2)

1/2
)
. (52)

Typically, X1 represents a reference dataset and X2 contains samples from the generative model. In
this work, however, we set the reference dataset to samples from the base model and X2 to samples
from the reward-adapted model. This provides a measure of how much the reward-adapted version
has deviated from the base model.

C.2 VENDI SCORE

The Vendi score (Friedman & Dieng, 2023; Pasarkar & Dieng, 2024) is a diversity metric that
requires only a positive semi-definite similarity function k : X × X → R with k(x,x) = 1 for
all x ∈ X . It computes pairwise similarities between all samples and organizes them into a matrix
K ∈ Rn×n where kij = k(xi,xj). The Vendi score is defined as the exponential of the entropy
of the eigenvalues of K/n:

VSk({x1, . . . ,xn}) ≜ exp

(
−

n∑
i=1

λi log λi

)
. (53)

In this work, we employ the following similarity function:

k(x,y) = ⟨clip(x), clip(y)⟩, (54)

where clip(·) represents a CLIP image encoder (Radford et al., 2021) that produces normalized
embeddings.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D SAMPLES AND TRAINING CURVES

The plotted costs reflect the deviation of the fine-tuned model from the base model; they correspond
to the KL divergence between the base and controlled processes pu, conditioned on the same initial
state (Domingo-Enrich et al., 2025):

DKL

(
pu(x[0,1] | x0)

∥∥ ppre(x[0,1] | x0)
)
= Epu

[
1

2

∫ 1

0

∥u(xt, t)∥2 dt
]

(55)

D.1 DIFFUSION TRANSFORMER

(a) Base model (mean size: 1.89 bits/pixel).

(b) Compression reward (λ = 25; mean size: 0.49 bits/pixel).

(c) Incompression reward (λ = 25; mean size: 3.31 bits/pixel).

Figure 11: Samples from Diffusion Transformer generated under the same random seed. Inference
with CFG weight 2, whereas training was done without CFG.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 1,000 2,000

−2

−1

0

R
ew

ar
d

0 1,000 2,000

0

10

20

30

R
un

ni
ng

C
os

t

Training Steps

Figure 12: Training curves for VM on the DiT model with compression reward (λ = 25).

0 1,000 2,000
2

4

6

R
ew

ar
d

0 1,000 2,000

0

20

40

60

80

R
un

ni
ng

C
os

t

Training Steps

Figure 13: Training curves for VM on the DiT model with incompression reward (λ = 25).

D.2 STABLE DIFFUSION 2

Figure 14: Prompt: A chocolate cake on a plate with decorative pattern, a fork beside it, giving off a
sense of indulgence or celebration. Reward: Compression (λ = 2500). CFG weight: 4.0.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 15: Prompt: Skiing scene with multiple individuals dressed in ski gear, engaging in skiing
activities amidst snowy surroundings, suggesting a resort or slope ambiance. Reward: Compression
(λ = 2500). CFG weight: 4.0.

Figure 16: Prompt: Dog seated on a red lounge chair in a cozy, sophisticated room with a painting,
various decorations, and multiple lampshades while wearing a collar. Reward: Compression
(λ = 2500). CFG weight: 4.0.

Figure 17: Prompt: A surfer in a wet suit performs a carving turn by a pier, on a beach break with no
other surfers or boats present. Reward: Incompression (λ = 2500). CFG weight: 4.0.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 18: Prompt: An orange cat with a blue hat featuring a logo, resting on a dark-colored
background. Reward: Incompression (λ = 2500). CFG weight: 4.0.

Figure 19: Prompt: A freight train with cargo containers passes through a railroad crossing. Reward:
Incompression (λ = 2500). CFG weight: 4.0.

0 200 400 600 800

−2

−1.5

−1

−0.5

R
ew

ar
d

0 200 400 600 800

0

1,000

2,000

R
un

ni
ng

C
os

t

Training Steps

Figure 20: Training curves for VM on the SD2 model with compression reward (λ = 2500).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 200 400 600 800

2

3

4

R
ew

ar
d

0 200 400 600 800

0

500

1,000

1,500

R
un

ni
ng

C
os

t

Training Steps

Figure 21: Training curves for VM on the SD2 model with incompression reward (λ = 2500).

D.3 GEOM-DRUGS

Fragmented 6.50 5.53 4.22 5.24 Fragmented 4.86

4.50 5.05 Fragmented 5.14 9.26 4.89 8.63

(a) Base model (mean reward: 4.56).

Fragmented 13.87 6.12 Fragmented 4.60 Fragmented 10.26

4.55 5.35 6.41 13.44 3.21 4.55 16.01

(b) VM on dipole moment reward (λ = 100; mean reward: 6.31).

Figure 22: Samples from the continuous GEOM-Drugs FlowMol base and VM model under the same
random seed.

0 1,000 2,000

4

5

6

R
ew

ar
d

0 1,000 2,000

0

200

400

R
un

ni
ng

C
os

t

Training Steps

Figure 23: Training curves for VM on the continuous GEOM-Drugs FlowMol model with dipole
moment reward (λ = 100).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C N O S F Cl Br P I
0

20

40

60

%
A

to
m

s

Base Model

C N O S F Cl Br P I

Value Matching

Figure 24: Atom type frequency distributions for molecules generated by FlowMol base model and
VM with dipole moment reward (λ = 100). Results shown for 10K generated samples.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E PROXIMAL POLICY OPTIMIZATION ALGORITHM

Algorithm 2 Continuous-Time PPO (CT-PPO) algorithm.

Require: Initial policy parameters θ (pre-trained), Initial value function parameters ϕ, Reward
function r : Rd → R, Number of iterations N ∈ N, Training steps per iteration K ∈ N,
Trajectories per iteration m ∈ N, Batch size B ∈ N, Exploration level σ ∈ R>0, Scaling
parameter η ∈ R>0, Clipping parameter ϵ ∈ R>0.

1: for N iterations do
2: Fix current policy θ̄ = θ.
3: Sample m trajectories under the current policy:

dxt =

(
α̇t

αt
xt + σ2(t)at

)
dt+ σ(t) dBt, at = sθ̄(xt, t).

4: Compute returns:

Rt = r(x1)−
1

2λ

∫ 1

t

σ2(s)∥sθ̄(xs, s)− spre(xs, s)∥2 ds.

5: Initialize dataset DV = {(t,xt, Rt)}t∈[0,1] with all trajectories.
6: repeat K times
7: Sample B ⊂ DV with batch-size B.
8: Compute loss:

L(ϕ) = 1

B

∑
(t,xt,Rt)∈B

(Vϕ(xt, t)−Rt)
2.

9: Make an optimization step with ∇L(ϕ).
10: end repeat
11: Sample exploration noise ϵt ∼ N (0, I) independently for each timestep and trajectory.
12: Compute pseudo-samples and advantages:

ãt = at + σϵt

qt =
1

η

(
Vϕ
(
xt + ησ2(t)ϵt, t

)
− Vϕ(xt, t)

)
.

13: Initialize dataset Dπ = {(t,xt, ãt, qt)}t∈[0,1] with all trajectories.
14: repeat K times
15: Sample B ⊂ Dπ with batch-size B.
16: Compute likelihood ratio:

ρθt =
πθ(ãt | xt, t)

πθ̄(ãt | xt, t)
, πθ(a | x, t) = N (a; sθ(x, t), σI).

17: Compute loss:

L(θ) = 1

B

∑
(t,xt,ãt,qt)∈B

min
{
ρθt qt, clip

(
ρθt , 1− ϵ, 1 + ϵ

)
qt
}
.

18: Make an optimization step with ∇L(θ).
19: end repeat
20: end for

We set K = ⌈m/B⌉ such that each point is seen once. For the actor and critic, we use learning rates
3 × 10−5 and 1 × 10−6, respectively. For data collection, we standardize the number of trajectories and
batch size using m = 512, B = 128, and N = 250. This configuration processes 128K trajectories
during training, consistent with other methods in this work.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.1 HYPERPARAMETER ABLATIONS

To ensure a fair comparison, we conduct comprehensive hyperparameter optimization for CT-PPO
through an extensive grid search over the clipping parameter ϵ, exploration level σ, and scale
η. Specifically, we conducted a grid search on (ϵ, σ, η) ∈ {0.05, 0.1, 0.2} × {0.01, 0.1, 0.2} ×
{0.001, 0.005, 0.01}. While this additional tuning effort could be considered part of CT-PPO’s
computational overhead, it ensures optimal performance for our evaluation. In contrast, both VM and
AM do not have any hyperparameter search cost.

0.01 0.1 0.2

0.001

0.005

0.01

6.1 6.6 6.7

6.3 7.2 7.4

6.5 7.5 7.6

Sc
al

e
(η

)

ϵ = 0.05

0.01 0.1 0.2

6.1 6.7 6.8

6.3 7.3 7.5

6.4 7.6 7.7

ϵ = 0.1

0.01 0.1 0.2

6.1 6.8 7

6.3 7.4 7.6

6.5 7.6 7.8

ϵ = 0.2

Exploration Level (σ)

6

6.5

7

7.5

8

(a) Average reward.

0.01 0.1 0.2

0.001

0.005

0.01

17.5 32.6 39.7

24.6 87.6 99.7

28.4 116.5 118.3

Sc
al

e
(η

)

ϵ = 0.05

0.01 0.1 0.2

17.7 40.1 47.5

23.1 100.7 99.9

26.6 126.3 133

ϵ = 0.1

0.01 0.1 0.2

17.5 47.7 56.9

23.5 116.5 131.2

30 128.2 132.3

ϵ = 0.2

Exploration Level (σ)

50

100

(b) FID to the base model.

0.01 0.1 0.2

0.001

0.005

0.01

29.7 28.4 28.2

30.1 27.9 26.8

30 27.1 27.5

Sc
al

e
(η

)

ϵ = 0.05

0.01 0.1 0.2

28.9 28.1 27.3

29.7 26.7 28.3

29.5 27.2 27.3

ϵ = 0.1

0.01 0.1 0.2

29.9 27.5 27.4

30 27.5 27.1

30.4 27.7 27.8

ϵ = 0.2

Exploration Level (σ)

27

28

29

30

31

(c) Vendi score (diversity).

Figure 25: Base model: CIFAR. Reward: Incompression (λ = 100).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F FLOW MODELS

For completeness, in this section we provide an overview of flow matching (Lipman et al., 2023;
Albergo & Vanden-Eijnden, 2023; Liu et al., 2023) and how diffusion models (Ho et al., 2020;
Sohl-Dickstein et al., 2015; Song et al., 2020) can be viewed as an instance of it. Further, we show
how to sample flow matching models through an SDE with equivalent time marginals. Lastly, we
show how to sample flow matching or diffusion models from a common perspective through the score
function.

F.1 FLOW MATCHING

Given a source distribution p and a target distribution q, the flow matching framework aims to solve
the flow matching problem:

Find the velocity field v : Rd × [0, 1] → Rd generating marginal distributions pt, where
p0 = p and p1 = q.

The flow matching framework solves this problem by the following steps:

1. Identify a known source distribution p and unknown target distribution q, of which we have finite
samples.

2. Define a probability path pt that interpolates p0 = p and p1 = q.
3. Learn the velocity field by a neural network vθ.
4. Sample the learned model by solving an ODE:

dxt = vθ(xt, t) dt. (56)

In general, we could use a coupled data distribution x0,x1 ∼ p0,1, however, we will only be
considering the case where x0 ∼ N (0, Id). Further, q is unknown, but we do assume that we have
access to a dataset of samples from this distribution. E.g., we might want to model a distribution
of images and take the 32 ×32 CIFAR-10 dataset (Krizhevsky et al., 2009) as samples from this
distribution.

Next, we need to define a probability path {pt}t∈[0,1] that interpolates between p0 = p and p1 = q.
This is done by a conditional strategy, which involves defining pt|1. We can then construct the
marginal probability path by:

pt(x) =

∫
pt|1(x | x1)q(x1) dx1. (57)

We will consider an affine parameterization of the conditional probability path:
pt|1(x | x1) = N

(
x;αtx1, β

2
t Id
)
, (58)

where αt, βt : [0, 1] → [0, 1] are smooth functions satisfying α0 = β1 = 0, α1 = β0 = 1, and
α̇t > 0 > β̇t for t ∈ (0, 1). (The dot-notation denotes the time-derivative.) We can sample from this
distribution as follows:

xt|1 = αtx1 + βtx0, x0 ∼ p0. (59)
Commonly, the optimal transport schedule is used where αt = t and βt = 1− t.

Differentiating w.r.t. t gives the associated marginal velocity field:

v(x, t) = E[α̇tx1 + β̇tx0 | xt = x]. (60)
Thus, we can train using the flow matching loss:

LFM(θ) ≜ Et,xt

[
∥vθ(xt, t)− v(xt, t)∥2

]
,

t ∼ U([0, 1]),xt ∼ pt.
(61)

However, this is (almost always) intractable, because we do not know the velocity field yet and
we cannot sample pt. In order to alleviate these issues, we can drastically simplify the loss by
conditioning on the target sample x1:

LCFM(θ) ≜ Et,x1,xt

[
∥vθ(xt, t)− v(xt, t | x1)∥2

]
,

t ∼ U([0, 1]),x1 ∼ p1,xt ∼ pt|1(· | x1),
(62)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Algorithm 3 Flow Matching training.

Require: Untrained velocity model vθ, Schedule αt, βt : [0, 1] → [0, 1], Source distribution p, and
target distribution q.

1: while not converged do
2: Sample x0 ∼ p, x1 ∼ q, and t ∼ U([0, 1]).
3: Compute xt = αtx1 + βtx0 and vt = α̇tx1 + β̇tx0.
4: Compute the loss LCFM = ∥vθ(xt, t)− vt∥2.
5: Do an optimization step with ∇θLCFM.
6: end while
7: return vθ

where the conditional velocity is

v(x, t | x1) = α̇tx1 + β̇tx0, xt = x (63)

= α̇tx1 +
β̇t
βt

(x− αtx1) (64)

=

(
α̇t −

αtβ̇t
βt

)
x1 +

β̇t
βt

x. (65)

Amazingly, these two loss functions have the same gradient w.r.t. the parameters (Lipman et al.,
2023):

∇θLFM = ∇θLCFM. (66)
This justifies applying gradient-based optimization methods on the conditional loss, which is tractable,
because it will lead to the same parameter updates. See Algorithm 3 for the training algorithm. Refer
to (Lipman et al., 2024) for an in-depth treatment of flow matching models.

Lastly, instead of sampling from a deterministic ODE, we can also consider sampling from a family
of SDEs:

dxt =

(
v(xt, t) +

σ2(t)

2ηt
(v(xt, t)− κtxt)

)
dt+ σ(t) dBt, (67)

where Bt is a Brownian motion, σ : [0, 1] → Rd×d is an arbitrary state-independent diffusion
coefficient, and

ηt ≜ βt

(
α̇t

αt
βt − β̇t

)
, κt ≜

α̇t

αt
. (68)

It can be shown that the generative processes in Equation (56) and Equation (67) have equivalent
time marginals (Maoutsa et al., 2020). In the memoryless noise schedule, we have σ(t) =

√
2ηt

(Domingo-Enrich et al., 2025).

F.2 DIFFUSION MODELS

Diffusion models take a (slightly) different perspective than flow matching. They view sampling
as the reversal of a data destruction (or noising) process. For this, we must first define the noising
process:

xt+1 =
√
γtxt +

√
1− γtϵt, ϵt ∼ N (0, In), (69)

where γt follows some schedule from 0 to T such that xT ∼ N (0, In).1 As such, starting from
x0 = x ∼ q, the data gets progressively more like Gaussian noise. Using Gaussian arithmetic, the
above process can be computed in a closed form:

xt =
√
γ̄tx0 +

√
1− γ̄tϵ, ϵ ∼ N (0, In), (70)

where γ̄t =
∏t−1

s=0 γs. The denoising process from time T to 0 can be computed as follows:

xt−1 =
1√
γt

(
xt −

1− γt√
1− γ̄t

ϵt

)
+ σtz, z ∈ N (0, Id). (71)

Here the only unknown is ϵt, so we will train a network to approximate it; see Algorithm 4
1Generally, (γt, γ̄t) are denoted by (αt, ᾱt). This notation is used here to avoid confusion with flow matching

schedules.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Algorithm 4 Diffusion model training.

Require: Untrained epsilon model ϵθ, Schedule {γt}Tt=0, Target distribution q
1: while not converged do
2: Sample x0 ∼ q, ϵ ∼ N (0, In) and t ∼ U([T]).
3: Compute xt =

√
γ̄tx0 +

√
1− γ̄tϵ.

4: Compute the loss LDM = ∥ϵθ(xt, t)− ϵ∥2.
5: Do an optimization step with ∇θLDM.
6: end while
7: return ϵθ

F.3 DIFFUSION MODELS AS AN INSTANCE OF FLOW MATCHING

We can sample a diffusion model with the DDIM schedule through the following SDE (Domingo-
Enrich et al., 2025):

dxt =

(
˙̄γt
2γ̄t

xt −
(

˙̄γt
2γ̄t

+
σ2(t)

2

)
ϵ(xt, t)√
1− γ̄t

)
dt+ σ(t) dBt. (72)

In order to consolidate diffusion models and flow matching models into a common framework where
p0 = N (0, Id), we will be working with the score function:

s(x, t) ≜ ∇x log pt(x) (73)

s(x, t) =
1

ηt
(v(x, t)− κtx) (74)

s(x, t) = − ϵ(x, t)√
1− γ̄t

. (75)

We can now sample either a diffusion model or flow matching model by converting their parametriza-
tion to the score function and sampling the following SDE:

dxt =

(
κtxt +

(
σ2(t)

2
+ ηt

)
s(xt, t)

)
dt+ σ(t) dBt, (76)

In the case of diffusion models, we have

αt =
√
γ̄t, βt =

√
1− γ̄t (77)

with associated time derivatives:

α̇t =
˙̄γt

2
√
γ̄t
, β̇t = −

˙̄γt
2
√
1− γ̄t

. (78)

We will use the convention of flow matching models. Generally, in diffusion models, we have that
time is discrete from 0–K and decreases when sampling. Thus, we have the following conversion
between the two conventions:

γ̄t = γ̄⌊K(1− t)⌋ (79)
˙̄γt = K · (γ̄⌊K(1− t)− 1⌋ − γ̄⌊K(1− t)⌋). (80)

One can easily verify that this is equivalent to sampling from DDIM.

32

	Introduction
	Background and Notation
	Problem Setting
	Disentangling Optimization through Value Function Learning
	Value Matching: Scalable and Gradient-Free Reward-Guided Adaptation
	Results
	Related Work
	Conclusion and Outlook
	Proofs
	Assumptions
	Useful Lemmas
	Proposition 1
	Proposition 2
	Derivation of Classifier Guidance Value Function

	Experimental Details
	Value Network Architectures
	Efficiently Computing Rewards
	Efficiently Computing the Cost Functional Estimate
	Weighting Functions

	Evaluation Metrics
	Fréchet Inception Distance
	Vendi Score

	Samples and Training Curves
	Diffusion Transformer
	Stable Diffusion 2
	GEOM-Drugs

	Proximal Policy Optimization Algorithm
	Hyperparameter Ablations

	Flow Models
	Flow Matching
	Diffusion Models
	Diffusion Models as an Instance of Flow Matching

