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Abstract
Large Language Models (LLMs) have shown001
remarkable reasoning capabilities, while their002
practical applications are limited by severe fac-003
tual hallucinations due to limitations in the004
timeliness, accuracy, and comprehensiveness005
of their parametric knowledge. Meanwhile, en-006
hancing retrieval-augmented generation (RAG)007
with reasoning remains challenging due to in-008
effective task decomposition and redundant009
retrieval, which can introduce noise and de-010
grade response quality. In this paper, we011
propose DeepRAG, a framework that mod-012
els retrieval-augmented reasoning as a Markov013
Decision Process (MDP), enabling reasonable014
and adaptive retrieval. By iteratively decom-015
posing queries, DeepRAG dynamically deter-016
mines whether to retrieve external knowledge017
or rely on parametric reasoning at each step.018
Experiments show that DeepRAG improves re-019
trieval efficiency and boosts answer accuracy020
by 26.4%, demonstrating its effectiveness in021
enhancing retrieval-augmented reasoning.022

1 Introduction023

Large Language Models (LLMs) have shown con-024

siderable promise in reasoning (Plaat et al., 2024).025

Nevertheless, their limitations in capacity and ca-026

pabilities result in significant issues with factual027

hallucinations, stemming from challenges related028

to the timeliness, accuracy, and comprehensiveness029

of their parametric knowledge (Zhang et al., 2023;030

Huang et al., 2023). To mitigate these problems,031

Retrieval-Augmented Generation (RAG) has been032

introduced as a promising approach. By incorporat-033

ing relevant information from knowledge bases or034

search engines, RAG enhances the factual accuracy035

of model responses (Zhao et al., 2024).036

However, enhancing RAG with reasoning still037

poses several challenges (Gao et al., 2025). One038

significant issue is that complex queries often ne-039

cessitate multi-step decomposition to establish a040

coherent reasoning process (Radhakrishnan et al.,041

Question: What is the total runtime of all movies in The Lord of the Rings?

I know The Lord of the Rings trilogy 
consists of three films: The 
Fellowship of the Ring, The Two 
Towers, and The Return of the King. 

However, I am unsure of their exact 
runtimes.
To find out, I first need to determine 
the runtime of each film individually.

searching...

After retrieving this information, I 
can compute the total runtime as:
178 + 179 + 201 = 558 minutes.

What are the titles of the movies in 
The Lord of the Rings?

The Fellowship of the Ring, The Two 
Towers, The Return of the King

Step 1

What is the total runtime of the 
The Lord of the Rings?

178 + 179 + 201 = 558 minutes

Final answer: 558 minutes

Step 2,3,4

Step 5

What is the runtime of The 
Fellowship of the Ring?

178 minutes

What is the runtime of The 
Fellowship of the Ring?

DeepRAG Human Thinking 

Retrieval narrative
Atomic 
decisions

Figure 1: Correspondence between human thinking
processes and DeepRAG. Specifically, retrieval nar-
rative ensures a structured workflow by generating sub-
queries that seek additional information based on pre-
vious content, and atomic decisions dynamically deter-
mines whether to retrieve external knowledge or rely
solely on the parametric knowledge for each subquery.

2023; Guan et al., 2024). Iterative retrieval has 042

been proposed as a solution to continuously up- 043

date retrieval results, addressing the dynamic in- 044

formation needs that arise during the generation 045

process (Yue et al., 2024; Wang et al., 2025). De- 046

spite this, LLMs frequently struggle to generate 047

precise and atomic subqueries, which are essential 048

for more effective retrieval and question decompo- 049

sition (Wu et al., 2024). From the perspective of 050

RAG, iterative retrieval should ideally generate the 051

next atomic query based on the current question 052

and the available information in an adaptive man- 053

ner. As illustrated in Figure 1, the process flows 054

logically from one step to the next. Specifically, 055

the goal of finding each movie’s runtime in steps 056

2-4 is derived from step 1’s identification of the 057

three titles of the Lord of the Rings series. 058

Additionally, retrieval is not always essen- 059

tial (Jeong et al., 2024). Some queries depend on 060

external knowledge (steps 2-4), while others can 061

be addressed through the reasoning capabilities of 062

the LLM alone (step 5 requires summarizing pre- 063
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vious information). Moreover, LLMs have shown064

the ability to function as knowledge bases in their065

own right (Petroni et al., 2019) (such as in step066

1, where the three movie titles are widely known).067

Unnecessary retrieval can be redundant and may068

introduce noise, and degrade the quality of gener-069

ated responses (Chen et al., 2023; Tan et al., 2024;070

Yu et al., 2022).071

To tackle these issues, we introduce DeepRAG,072

a new framework inspired by how humans search073

the Internet based on demand. This framework074

aims to enhance reasoning capabilities in retrieval-075

augmented generation by modeling the process as076

a Markov Decision Process. DeepRAG incorpo-077

rates two main components: retrieval narrative and078

atomic decisions, which together create a strategic079

and adaptive retrieval system. As depicted in Fig-080

ure 1, the retrieval narrative ensures a structured081

workflow by generating subqueries that seek addi-082

tional information based on previous content. For083

each subquery, atomic decisions dynamically de-084

termines whether to retrieve external knowledge or085

rely solely on the LLM’s parametric knowledge.086

As illustrated in Figure 2, our framework con-087

sists of three components: 1) Binary Tree Search,088

which constructs a binary tree for each subquery089

related to the given question, exploring paths based090

on either parametric knowledge or external knowl-091

edge. 2) Imitation Learning, which extracts the092

reasoning process that leads to the correct final an-093

swer with minimal retrieval cost based on Binary094

Tree Search, enabling the model to learn the pat-095

tern of “subquery generation – atomic decision –096

intermediate answer”. 3) Chain of Calibration,097

which calibrates the LLM’s internal knowledge by098

refining each atomic decision, enabling it to make099

accurate atomic decisions about the necessity of re-100

trieval. By explicitly enhancing the LLM’s ability101

to recognize its own knowledge limits, we can train102

any model in an end-to-end manner, allowing it to103

dynamically decide when and what to retrieve.104

We validate the effectiveness of DeepRAG105

across in-distribution, out-of-distribution, time-106

sensitive, and heterogeneous knowledge base107

datasets. Experimental results show that Deep-108

RAG significantly outperforms existing methods,109

achieving a 21.99% increase in accuracy while also110

enhancing retrieval efficiency. Further analysis in-111

dicates that DeepRAG demonstrates a stronger cor-112

relation between its retrieval decisions and para-113

metric knowledge, suggesting more effective cali-114

bration of knowledge boundaries.115

2 Related Work 116

Adaptive Retrieval-Augmented Generation 117

Existing adaptive RAG approaches can be broadly 118

categorized into three types: classifier-based 119

methods (Cheng et al., 2024; Jeong et al., 2024) 120

requiring additional linear head training for 121

retrieval decisions, confidence-based methods 122

(Jiang et al., 2023; Su et al., 2024; Dhole, 2025) 123

relying heavily on threshold-dependent uncertainty 124

metrics, and LLM-based methods (Asai et al., 125

2023; Zhang et al., 2024) generating retrieval 126

decisions but often fail to accurately recognize 127

their knowledge boundaries, making it unreliable 128

to delegate retrieval timing decisions to the model. 129

Our method leverages the inherent generative 130

capabilities of LLMs to explore knowledge 131

boundaries in RAG settings. This design maintains 132

the model’s native generation abilities while 133

eliminating the need for additional parameters or 134

unreliable uncertainty metrics. 135

Reasoning in Retrieval-Augmented Generation 136

Recent advances in RAG have increasingly em- 137

phasized the integration of reasoning capabilities. 138

Search-o1 (Li et al., 2025) incorporates retrieval 139

into inference to build an agentic system, while its 140

application is limited to reasoning models (Chen 141

et al., 2025). Self-RAG (Asai et al., 2023) and 142

Auto-RAG (Yu et al., 2024) enhance reasoning 143

through automatic data synthesis within retrieval- 144

augmented frameworks, while AirRAG (Feng et al., 145

2025) combines Monte Carlo Tree Search with self- 146

consistency techniques. These methods, however, 147

often depend heavily on extensive retrieval or sam- 148

pling overhead. More recent developments have ex- 149

plored reinforcement learning to enhance retrieval 150

quality (Jin et al., 2025; Song et al., 2025; Gao 151

et al., 2024), while these methods generally over- 152

look retrieval efficiency in their reward function. 153

In contrast, DeepRAG offers a flexible, end-to-end 154

solution that enables arbitrary models to retrieve 155

information step by step as needed, based on their 156

evolving reasoning process. 157

Knowledge Boundary LLMs struggle to accu- 158

rately distinguish between what they know and 159

what they don’t know (Yin et al., 2023; Kapoor 160

et al., 2024a; Yin et al., 2024). Additional fine- 161

tuning (Kapoor et al., 2024b) or precise prob- 162

ing (Cheng et al., 2024) is typically required to 163

calibrate the model’s cognition. Our approach ex- 164

plores knowledge boundaries in RAG settings. 165
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Stage I: Imitation Learning 

RALM

Calibrated 
RALM

Ans

Stage II: Chain of Calibration 

Binary Tree Search 
Question

Retrieved Parametric

Question

Parametric 
Knowledge

Retrieved
Documents

Intermediate
Answer

Subquery Knowledge
Source

Subquery

Ans

Optimization Preference pairsTrajectory with least retrieval

Ans Ans

Question
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Figure 2: An overview of DeepRAG, our framework comprises three steps: (1) Binary Tree Search, (2) Imitation
Learning, and (3) Chain of Calibration. Given a set of supervised datasets, we first use binary tree search to
synthesize data for imitation learning, allowing the model to learn effective retrieval patterns. Next, we employ
binary tree search to generate preference data, further calibrating the LLM’s awareness of its knowledge boundaries.

3 Thinking to Retrieve Step by Step166

In this section, we present our proposed method,167

DeepRAG. At its core, DeepRAG models the pro-168

cess of question decomposition, atomic decisions,169

and final answer generation as a Markov Decision170

Process. Given a set of supervised datasets, we171

first use binary tree search to synthesize data for172

imitation learning, allowing the model to learn ef-173

fective retrieval patterns. Next, we employ binary174

tree search to generate preference data, further cal-175

ibrating the LLM’s awareness of its knowledge176

boundaries. In the following subsections, we pro-177

vide a detailed description of each component of178

DeepRAG.179

3.1 Overview of the MDP Modeling180

We formalize the step-by-step reasoning process of181

retrieval-augmented generation as a Markov Deci-182

sion Process (Sutton and Barto, 2018), represented183

by the tuple (S,A,P ,R), where S denotes the set184

of states, A represents the set of actions, P defines185

the transition dynamics, and R specifies the reward186

function.187

States. At each step t, the state st ∈ S represents188

the partial solution to the original question. We189

denote st =
[
x, (q1, r1), . . . , (qt, rt)

]
, where x is190

the input question, qi refers to the i-th subquery,191

and ri refers to the i-th intermediate answer (and192

any retrieved documents based on qi).193

Actions. At state st, the model selects an action194

at+1 = (σt+1, δt+1) ∈ A, which consists of two195

sub-decisions:196

1. Termination decision: Given the partial solu-197

tion st, the model makes a binary decision σt+1 ∈ 198

{continue, terminate} to determine whether to 199

proceed with generating the next subquery qt+1 or 200

finalize the answer o. 201

2. Atomic decision: For each subquery qt+1, 202

the model decides whether to retrieve external 203

knowledge or rely solely on its parametric knowl- 204

edge. Formally, this decision is represented as 205

δt+1 ∈ {retrieve, parametric}. 206

Transitions. After executing the action at+1 = 207

(σt+1, δt+1) in state st, the environment updates 208

the state to st+1 based on transition dynamics P . 209

Specifically, if σt+1 = terminate, the 210

process concludes by generating the final an- 211

swer o, resulting in the terminal state st+1 = 212[
x, (q1, r1), . . . , (qt, rt), o

]
. Otherwise, it gen- 213

erates the next subquery qt+1. 214

If δt+1 = retrieve, the model retrieves docu- 215

ments dt+1 and generates an intermediate answer 216

iat+1 for subquery qt+1. Otherwise, it relies on 217

parametric knowledge to generate the intermediate 218

answer. The response rt+1 is set as [dt+1, iat+1] 219

(if retrieved) or iat+1 (if not). The updated state is 220

st+1 =
[
x, (q1, r1), . . . , (qt+1, rt+1)

]
. 221

Rewards. The reward function evaluates the state 222

based on answer correctness and retrieval cost, ap- 223

plied only after generating the final answer o. For- 224

mally, R
(
st+1 = st + [o]

)
= −C(o) × T (st), 225

where C(o) indicates correctness (1 if correct, ∞ 226

otherwise), and T (st) represents the total retrieval 227

cost in state st. Therefore, this reward prioritizes 228

answer correctness while encouraging the model 229

to reduce retrieval cost as much as possible. 230
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3.2 Binary Tree Search231

Building on this formulation, LLM iteratively de-232

composes a given question into subqueries, each233

derived from previously acquired information. The234

detailed generation instruction is outlined in Ap-235

pendix A.2, with the answer format below.

Answer format

Question: <Question>
Follow up: <Subquery1>
Let’s search the question in Wikipedia.
Context: <Paragraph Text>
Intermediate answer: <Intremediate Answer1>
Follow up: <Subquery2>
Intermediate answer: <Intermediate Answer2>
......
So the final answer is: <Answer>

236 Then, we implement a binary tree search to con-237

struct reasoning paths that integrate different re-238

trieval strategies for each subquery. As illustrated239

in Figure 2, given a question, the model gener-240

ates the i-th subquery and explores two answering241

strategies: directly leveraging parametric knowl-242

edge (blue node) or retrieving external documents243

(green node). Therefore, we can construct a binary244

tree for each subquery related to the given ques-245

tion, exploring paths based on either parametric246

knowledge or external knowledge.247

3.3 Imitation Learning248

We present an algorithm that leverages binary trees249

to identify the optimal reasoning process that leads250

to the correct final answer while minimizing re-251

trieval costs, corresponding to the highest reward252

as defined in Section 3.1. Based on the synthesized253

optimal reasoning data, we fine-tune the model to254

improve its termination and atomic decisions while255

enhancing its query decomposition capabilities and256

generating faithful intermediate answers.257

Synthesizing Data As shown in Alg. 1, we em-258

ploy a priority queue to maintain reasoning trajec-259

tories based on their retrieval costs. This allows us260

to efficiently explore potential reasoning paths by261

iteratively constructing and evaluating them until262

either finding a correct answer or exhausting all263

viable options within specified constraints. For in-264

stances where no correct answer can be obtained265

after exhausting all options, we discard them.266

Through the synthesis process above, the train-267

ing dataset obtained contains an adaptive reasoning268

process, which can be used to facilitate arbitrary269

LLMs in enhancing the RAG capabilities.270

Algorithm 1 Data Construction for Stage I
Require: Question x, answer y, language model M, Re-

trieverR, max history length T
Ensure: Optimal reasoning process s∗ or null
1: Initialize priority queue PQ ← {([x], 0)}

▷ (trajectory, retrieval count)
2: while PQ is not empty do
3: (h, r)← PQ.dequeue()

▷ Get trajectory with lowest retrieval count
4: q ←M(h) ▷ Subquery Generation
5: if ShouldAnswer(q) or length(h) > T then
6: o←M(h, q) ▷ Final answer
7: if IsEqual(o, y) then return h

8: else
9: a←M(h, q) ▷ Direct answer

10: PQ.enqueue(([h, (q, a)], r))
11: d←R(q) ▷ Retrieve document
12: a←M(h, q, d) ▷ Retrieved answer
13: PQ.enqueue(([h, (q, (d, a))], r + 1))

14: return null

Training Objective We implement a masked loss 271

function for the retrieved documents to prevent 272

the model from learning irrelevant or noisy text 273

that could negatively impact its performance. The 274

detailed objective is shown in Appendix B.1. 275

3.4 Chain of Calibration 276

Building on the markov process in Section 3.1, we 277

identify four key optimization aspects for Deep- 278

RAG: termination and atomic decisions, query de- 279

composition, and intermediate answer generation. 280

Unlike the others, atomic decisions require the 281

model to recognize its own knowledge boundaries 282

to make precise judgments. 283

We propose a method that dynamically opti- 284

mizes atomic decisions for each subquery, rather 285

than training LLMs on complete reasoning paths. 286

Our approach consists of two key components: (1) 287

synthesizing preference data to determine when re- 288

trieval is necessary, and (2) fine-tuning the LLM 289

with this data using Chain of Calibration training 290

to enhance its ability to make informed atomic de- 291

cisions based on its internal knowledge boundaries. 292

Synthesizing Preference Data First, we iden- 293

tify an optimal path with minimal retrieval based 294

on Alg. 1 using the model trained in Stage I. This 295

provides the optimal atomic decision for each sub- 296

query, determining whether retrieval is necessary. 297

From this path, we construct preference pairs for 298

each subquery to indicate the preferred retrieval 299

choice. For example, in Figure 2, the optimal path 300

may suggest answering the first subquery using 301

parametric knowledge while requiring document 302

retrieval for the second. Accordingly, we generate 303

preference pairs favoring parametric knowledge for 304
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the first subquery and retrieval for the second. This305

process enables LLMs to learn when to retrieve306

external information, thereby improving its ability307

to maximize the use of parametric knowledge and308

reducing unnecessary retrievals.309

Chain of Calibration Objective We fine-310

tune the LLM using a Chain of Calibration311

objective on our synthesized preference data.312

Given the i-th subquery and a state si =313

[x, (q1, r1), · · · , (qi−1, ri−1)], we have two dis-314

tince intermediate answer r1i = a1i and r2i =315

(di, a
2
i ). Based on the synthesis process above, we316

can tag which ri is preferred and optimize it. The317

detailed equation is shown in Appendix B.2.318

4 Experiment319

4.1 Datasets320

We use six open-domain QA datasets for our experi-321

ments. We treat training datasets as in-distribution,322

and unseen ones as out-of-distribution. The in-323

distribution datasets include HotpotQA (Yang et al.,324

2018), and 2WikMultihopQA (Ho et al., 2020),325

and the out-of-distribution datasets consist of326

CAG (Pan et al., 2024), PopQA (Mallen et al.,327

2022), WebQuestions (Berant et al., 2013), and328

MuSiQue (Trivedi et al., 2022). Specifically, we329

employ the time-sensitive subset of CAG to evalu-330

ate temporal reasoning capabilities. Furthermore,331

WebQuestions is built upon Freebase to assess332

model robustness when information may be absent333

from the knowledge base.334

4.2 Baselines335

We use the following baselines to evaluate the336

performance: CoT (Wei et al., 2022) and CoT*,337

which employ 8-shot examples extracted from the338

training dataset. The asterisk (*) indicates the339

model output was trained using the same data em-340

ployed for training the DeepRAG. CoT-Retrieve341

and CoT-Retrieve* augment the eight examples342

in the context with retrieved relevant documents343

based on the query. IterDRAG (Yue et al., 2024)344

refers to decomposing the question and answer345

step by step based on in-context learning. Au-346

toRAG (Yu et al., 2024) uses trained models to347

iteratively decompose questions and retrieve rele-348

vant documents for answering. Search-o1 (Li et al.,349

2025) leverages special tokens to prompt reasoning350

models to autonomously invoke retrieval as needed.351

UAR (Cheng et al., 2024) employs a trained classi-352

fier to determine when to retrieve. FLARE (Jiang353

et al., 2023) and DRAGIN (Su et al., 2024) are354

confidence-based method that decide the timing 355

of retrieval based on token importance and uncer- 356

tainty. TAARE (Zhang et al., 2024) allows the 357

LLM itself to determine when retrieval is needed. 358

4.3 Implementation Details 359

We train our target model on two QA datasets: Hot- 360

potQA and 2WikiMultihopQA. For imitation learn- 361

ing, we randomly sample 4,000 examples from 362

each dataset. To enhance the model’s question de- 363

composition and context-based generation capabili- 364

ties, we employ Qwen-2.5-72B to generate the gray 365

(query decomposition) and green nodes (retrieved 366

answers) in Figure 2, and use the target model to 367

generate the blue nodes (parametric answers) for 368

data synthesis. For chain of calibration, we sample 369

an additional 1,000 examples from each dataset. 370

The performance is evaluated using Exact Match 371

(EM) and F1 score. 372

Following Su et al. (2024), we adopt BM25 373

for retrieval and Wikipedia1 as knowledge base. 374

For time-sensitive questions in CAG, we uti- 375

lize the dataset-provided up-to-date passages 376

as knowledge base. We selected Llama-3-8B- 377

Instruct (Dubey et al., 2024), Qwen-2.5-7B and 378

Qwen-2.5-32B (Yang et al., 2024) as our target 379

model. To implement Search-o1, we employ the 380

distillation series of DeepSeek-R1 (Guo et al., 381

2025), as the method depends on reasoning models. 382

4.4 Overall Results 383

The results in Table 1 demonstrate DeepRAG’s su- 384

perior performance and robustness across different 385

scenarios. 386

DeepRAG demonstrates superior perfor- 387

mance across most datasets via thinking to re- 388

trieve step by step. Our method consistently out- 389

performs existing approaches across various back- 390

bones and model sizes. Compared to reasoning- 391

based and adaptive RAG baselines, DeepRAG out- 392

performs across all datasets, demonstrating the ef- 393

fectiveness of the structured retrieval narrative and 394

on-demand atomic decisions. Specifically, the lim- 395

ited performance of IterDRAG highlights the ne- 396

cessity of learning both query decomposition and 397

faithful answering. Confidence-based methods like 398

FLARE struggle to determine the optimal retrieval 399

timing due to their reliance on unstable, predefined 400

metrics. Moreover, we observe that confidence- 401

based methods suffer from instability, as their per- 402

1https://dl.fbaipublicfiles.com/dpr/wikipedia_
split/psgs_w100.tsv.gz
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Types Methods

in-distribution out-of-distribution

AvgHotpot QA 2WikiMultihopQA CAG PopQA Web Question MuSiQue
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Llama-3-8B

Reasoning

CoT 27.20 37.75 28.20 34.85 7.17 10.41 21.20 25.33 25.20 40.56 13.70 22.97 24.54
CoT-Retrieve 34.90 46.85 35.80 43.41 55.45 64.08 32.80 45.87 22.90 39.22 19.10 28.18 39.05

CoT* 21.80 31.69 25.60 30.89 5.30 7.58 23.10 25.31 26.80 40.20 4.80 13.85 21.41
CoT-Retrieve* 22.50 32.15 23.70 29.21 44.86 55.69 38.70 45.64 17.60 29.20 5.70 11.60 29.71

IterDRAG 23.20 30.95 19.60 24.80 38.32 46.18 22.70 34.53 15.90 26.79 12.40 17.75 26.09
Auto-RAG 25.80 36.09 23.00 30.09 49.22 59.61 27.80 42.02 17.40 32.94 19.10 28.33 32.62
Search-o1 14.80 24.08 22.20 27.10 3.43 6.61 10.30 13.54 15.30 29.60 5.40 11.98 15.36

Adaptive

FLARE 23.80 32.88 30.30 37.45 34.89 43.45 28.80 40.61 28.80 40.61 14.50 23.57 31.64
DRAGIN 27.60 38.05 29.10 35.68 4.05 7.18 22.60 28.53 21.20 38.72 11.80 19.97 23.71

UAR 29.70 40.66 34.80 42.40 52.96 61.53 33.00 45.95 22.70 39.10 19.10 28.38 37.52
TAARE 30.60 41.43 35.20 42.85 52.96 61.59 33.20 46.01 23.40 39.56 18.60 27.55 37.75

Ours
DeepRAG-Imi 35.10 46.59 47.20 52.33 50.47 59.55 43.60 48.50 30.00 41.76 22.30 30.46 42.32

DeepRAG 40.70 51.54 48.10 53.25 52.96 61.92 42.50 47.80 32.70 45.24 22.50 30.40 44.13

Qwen-2.5-7B

Resaoning

CoT 18.90 27.81 23.40 28.97 3.12 5.71 15.20 19.20 18.30 34.86 5.60 13.12 17.85
CoT-Retreive 24.90 34.78 18.60 23.44 41.43 51.47 27.30 41.20 15.10 29.84 6.70 15.10 27.49

CoT* 17.60 26.15 25.10 29.62 3.12 5.62 7.90 11.06 15.60 32.45 4.70 13.40 16.03
CoT-Retrieve* 23.40 32.29 22.40 27.51 43.30 54.51 26.60 35.46 13.80 25.60 6.20 12.85 26.99

IterDRAG 13.70 26.84 9.30 20.47 21.81 39.59 18.00 31.44 12.50 26.95 9.20 17.25 20.59
Search-o1 11.60 16.95 22.00 25.02 3.43 4.78 4.40 7.61 7.70 19.97 2.10 7.48 11.09

Adaptive

FLARE 23.40 32.06 21.80 26.51 34.89 42.62 19.00 28.24 16.10 31.89 8.40 15.15 25.00
DRAGIN 16.70 24.60 12.40 16.76 3.43 5.45 12.00 15.80 17.40 32.43 4.20 7.98 14.10

UAR 24.50 34.22 23.90 28.20 34.89 43.92 27.00 40.47 16.60 32.28 7.10 15.62 27.39
TAARE 25.30 35.03 21.30 25.67 40.81 50.78 27.00 40.92 18.20 33.14 6.90 15.46 28.38

Ours
DeepRAG-Imi 30.40 39.44 32.00 38.32 47.98 56.99 37.50 40.72 23.90 38.62 16.50 24.67 35.59

DeepRAG 32.10 41.14 40.40 44.87 51.09 59.76 40.60 43.19 24.20 38.83 19.50 32.35 39.00

Qwen-2.5-32B

Reasoning

CoT 20.6 30.62 24.4 30.94 3.12 5.42 10.9 14.45 9.7 26 9.5 18.26 16.99
CoT-Retrieve 28.6 39.43 27.9 36.73 39.56 49.97 33.8 45.91 17.2 34.15 12.9 21.98 32.34
Iter-DRAG 22.9 38.26 19.6 35.70 33.02 45.61 20.3 33.2 13.3 27.57 17.6 27.8 27.91
Search-o1 34 45.64 29.1 35.12 19 24.35 23.1 30.69 17.9 35.11 16.4 25.6 28.00

Ours DeepRAG 36.2 46.90 46.3 50.50 52.02 61.42 46.3 49.2 28.1 43.27 19.60 27.47 42.27

Table 1: The overall experimental results of DeepRAG and other baselines on five benchmarks. The best/second best
scores in each dataset are bolded/underlined. DeepRAG-Imi (Stage I) and DeepRAG (Stage II) both demonstrate
superior performance compared to existing methods across all test scenarios.

formance is highly sensitive to threshold selection.403

Meanwhile, iterative retrieval methods like Auto-404

RAG often fall into continuous retrieval loops when405

no highly relevant information is found.406

DeepRAG exhibits remarkable generalization407

capabilities and robustness in time-sensitive and408

out-of-distribution settings. In the time-sensitive409

dataset CAG, DeepRAG performs well compared410

to other adaptive and reasoning retrieval methods.411

It is worth noting that CoT-Retrieve outperforms412

it on CAG. We attribute this to the core challenge413

of the time-sensitive setting is to trigger retrieval414

most of the time. Furthermore, DeepRAG achieves415

substantial F1 score improvements of 2.63 and 4.57416

on PopQA and WebQuestions respectively, even417

in scenarios where relevant information may be418

sparse or missing from the knowledge base.419

By learning from self-synthesized data, Deep-420

RAG effectively explores knowledge boundaries421

while minimizing hallucination risks. TAARE422

often underperforms direct retrieval methods, high-423

lighting the mismatch between its internal knowl- 424

edge and verbose. Moreover, aggressive fine- 425

tuning approaches like CoT* and CoT-Retrieve* de- 426

grade model performance by forcing the model to 427

learn knowledge beyond its knowledge boundaries. 428

DeepRAG carefully preserves model capabilities 429

during fine-tuning by leveraging self-synthesized 430

data, effectively preventing additional hallucination 431

while maintaining performance. 432

5 Analysis 433

5.1 Retrieval Efficiency 434

To evaluate the efficiency of our method, we com- 435

pare the average number of retrievals on the We- 436

bQuestions dataset and report the average compu- 437

tation time per query. The computation time is 438

measured on an H20*8 machine. As shown in 439

Table 2, We have the following observations: 1) 440

DeepRAG can achieve higher accuracy with rela- 441

tively lower retrieval costs, attributed to its dynamic 442

usage of internal knowledge. 2) Confidence-based 443
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Method EM
Avg. Retrievals

TimeAll Correct Incorrect

FLARE 28.80 0.00 0.00 0.00 2.58
DRAGIN 21.20 0.00 0.00 0.00 1.36
UAR 22.70 0.96 0.95 0.97 0.43
TAARE 23.40 0.66 0.65 0.66 0.11
IterDRAG 15.90 2.25 2.16 2.27 1.09
Auto-RAG 17.40 4.52 3.03 2.35 0.71
DeepRAG-Imi 30.00 0.43 0.13 0.56 0.67
DeepRAG 32.70 0.28 0.12 0.36 0.50

Table 2: Retrieval frequency analysis on WebQuestions
across different methods. “Correct” indicates the aver-
age number of retrievals for instances where the model
produced correct answers, while “Incorrect” represents
the average retrievals for cases with incorrect answers.
Time refers to the average seconds spent per item.

approaches demonstrate limited robustness across444

datasets. For instance, neither FLARE nor DRA-445

GIN triggers retrieval under the default confidence446

threshold in the WebQuestions dataset. 3) Iterative447

retrieval-based methods typically require numerous448

retrieval operations. Therefore, efficient adaptive449

retrieval methods like DeepRAG become crucial450

for optimizing resource utilization while maintain-451

ing performance.452

5.2 Relevance to Parametric Knowledge453

In this section, we investigate the relationship be-454

tween retrieval needs and internal knowledge to455

demonstrate how effectively atomic decisions ex-456

plores the knowledge boundary.457

Ideally, models should initiate retrieval for458

queries beyond their parametric knowledge while459

utilizing their existing knowledge for familiar460

queries. We use CoT results as an indicator of461

whether the model can answer questions using its462

parametric knowledge. Then, we analyze whether463

other adaptive retrieval methods align with this pat-464

tern of parametric knowledge utilization.465

We report four metrics. F1 score and Accuracy466

serve as basic performance measures, while bal-467

anced accuracy and Matthews Correlation Coeffi-468

cient(MCC) (contributors, 2025) are employed to469

account for the class imbalance between retrieval-470

required and retrieval-not-required cases.471

As shown in Table 3, we find that: 1) Deep-472

RAG demonstrates superior relevance performance473

across F1, balanced accuracy, and MCC metrics.474

This suggests that DeepRAG successfully identifies475

retrieval necessity by exploring knowledge bound-476

ary; 2) While FLARE, DRAGIN, and TAARE477

exhibit high accuracy scores, their relatively low478

Method F1 Acc Balanced Acc MCC

FLARE 0.000 0.718 0.500 0.000
DRAGIN 0.007 0.709 0.495 -0.045

UAR 0.481 0.756 0.648 0.341
TAARE 0.127 0.712 0.518 0.078

Iter-DRAG 0.000 0.718 0.500 0.000
Auto-RAG 0.000 0.718 0.500 0.000

DeepRAG-Imi 0.580 0.732 0.709 0.393
DeepRAG 0.621 0.749 0.743 0.451

Table 3: Analysis of internal knowledge utilization
across different adaptive retrieval methods on 2Wiki-
MultihopQA.
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Figure 3: Experiment result and retrieval efficiency on
2WikiMultihopQA under RL setting.

balanced accuracy and MCC scores suggest they 479

mainly succeed in retrieval-required cases but strug- 480

gle to properly avoid unnecessary retrievals. 481

5.3 Effectiveness under RL Setting 482

Recently, GRPO (Shao et al., 2024) has shown 483

promising results in enhancing model capabili- 484

ties. Building upon this, we further explore the 485

potential of DeepRAG by incorporating reinforce- 486

ment learning (RL). Specifically, we initialize from 487

DeepRAG-Imi and optimize Stage II using the 488

GRPO objective. The detailed implementation can 489

be found in Appendix C.5. 490

Figure 3 presents the training dynamics of our 491

RL-enhanced model. The results reveal an encour- 492

aging trend: as training progresses, the F1 score 493

on 2WikiMultihopQA gradually improves while 494

the average number of retrievals decreases. This 495

demonstrates that our reward design effectively 496

guides the model to achieve better performance 497

with more efficient retrieval behavior. 498

5.4 Question Decomposition Effectiveness 499

We systematically analyze the effectiveness of 500

question decomposition in retrieval narrative. As 501

shown in Figure 7, we present the distribution of 502

subquery counts and retrieval attempts for different 503

questions. Most questions require 3-5 decompo- 504

sition steps, while retrieval attempts are primarily 505
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trievals on the ablation study for
Chain of Calibration.
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concentrated within 0-2 rounds. This demonstrates506

that DeepRAG effectively decomposes questions507

while minimizing redundant retrieval.508

Moreover, we analyze the average counts of509

WH-words, nouns, verbs, and conjunctions in sub-510

queries, as shown in Figure 8. The results indicate511

that DeepRAG decomposes atomic queries with512

fewer pronouns and conjunctions.513

5.5 Different Inference Strategy514

To gain a deep insight into the effectiveness of515

atomic decision, we evaluate DeepRAG’s perfor-516

mance under two extreme scenarios: relying solely517

on internal knowledge (retrieve only) and using518

retrieval in each subquery (parametric only). As519

shown in Figure 4, parametric only yields poor per-520

formance, while retrieve only achieves relatively521

higher accuracy but incurs substantial retrieval522

costs. DeepRAG achieves superior performance by523

adaptively selecting between internal and external524

knowledge sources.525

Moreover, DeepRAG outperforms the retrieve526

only approach because retrieval can hinder model527

performance due to long context or irrelevant 528

knowledge in certain scenarios. 529

5.6 Ablation Study 530

In this section, we conducted experiments to vali- 531

date the effectiveness of DeepRAG’s data construc- 532

tion and training process. 533

For Imitation Learning, we compare our default 534

strategy of selecting paths with minimal retrieval 535

cost against two alternative approaches: maximum 536

retrieval cost (most) and random path selection 537

(random). As shown in Figure 5, DeepRAG-Imi 538

achieves lower retrieval costs and higher average 539

performance compared to both the most and ran- 540

dom methods. 541

For Chain of Calibration, we compare our de- 542

fault approach of constructing preferences based 543

on nodes from optimal paths against two alterna- 544

tives: constructing pairs for all nodes and construct- 545

ing sentence-level partial order pairs based on re- 546

trieval efficiency. As shown in Figure 6, Deep- 547

RAG achieves lower retrieval costs while maintain- 548

ing higher average performance. In contrast, the 549

sentence-level partial order pairs learned incorrect 550

preferences, resulting in over-reliance on internal 551

knowledge and consequently leading to both low 552

retrieval costs and poor performance. 553

6 Conclusion 554

In this paper, we present DeepRAG to model 555

retrieval-augmented reasoning as a Markov Deci- 556

sion Process, enabling strategic and adaptive re- 557

trieval by decomposing queries into subqueries and 558

retrieval on demand. Specifically, we develop a 559

binary tree search method to synthesize data for 560

imitation learning and further chain of calibration 561

to train the model in an end-to-end manner. Experi- 562

ments across various QA tasks show that DeepRAG 563

improves retrieval efficiency while improving an- 564

sweraccuracyby 26.4%,demonstrating its effective- 565

ness in optimizing retrieval-augmented reasoning. 566
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Limitations567

There are several limitations of our current Deep-568

RAG framework, which we plan to address in the569

future. Firstly, we construct datasets based on570

the final answer accuracy using exact match score.571

In the future, we will expand our work to more572

domains like multi-turn dialogue with richer met-573

rics like perplexity. Secondly, despite our method574

showing strong generalization across multi-hop fac-575

tual QA, time-sensitive QA, and heterogeneous576

knowledge base QA, it lacks integration with exter-577

nal resources such as knowledge graphs and tools.578

We will expand our work to domains requiring di-579

verse external information integration, including580

retrieved data, knowledge graph data, and tool out-581

put.582
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A Templates 824

A.1 Case Study 825

A.2 DeepRAG Construct Instruction 826

Instruction: You are a helpful Retrieval-Augmented
Generation (RAG) model. Your task is to answer
questions by logically decomposing them into clear
sub-questions and iteratively addressing each one.

Use "Follow up:" to introduce each sub-question and
"Intermediate answer:" to provide answers.

For each sub-question, decide whether you can pro-
vide a direct answer or if additional information is
required. If additional information is needed, state,
"Let’s search the question in Wikipedia." and then use
the retrieved information to respond comprehensively.
If a direct answer is possible, provide it immediately
without searching.

827

B Method Details 828

B.1 Imitation Learning Objective 829

We implement a masked loss function for the re- 830

trieved documents to prevent the model from learn- 831

ing irrelevant or noisy text that could negatively 832

impact its performance. In this way, we hope the 833

model to enhance the ability to decompose sub- 834

queries and retrieve them based on demand. For 835

each instance, the loss function is formulated as 836

follows: 837

L = −
∑

1≤i≤n

log [Pr(qi|si−1) + Pr(ai|si−1, qi, di)] 838

where, di refers to null if there is no reieval for ith 839

reasoning step, n refers to the total iteration. 840

B.2 Chain of Calibration Objective 841

We fine-tune the LLM using a Chain of Calibration 842

objective on our synthesized preference data. 843

Given the i-th subquery and the state si = 844

[x, q1, r1, · · · , qi−1, ri−1], we have two distince in- 845

termediate answer r1i = a1i and r2i = (di, a
2
i ). 846

Based on the process above, we have known which 847

ri is preferred. As a result, the training objective 848

can be formulated as follows: 849

L = − log σ

(
β log

πθ(yw | si, qi)
πref(yw | si, qi)

− β log
πθ(yl | si, qi)
πref(yl | si, qi)

)
850

where σ is the logistic function, the hyperparam- 851

eter β regulates the penalty imposed for the devi- 852

ations from the base reference model πref . The 853

terms yw and yl refer to the generated snippets 854
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What is the place of birth of the director of film Peter'S Friends?

Follow up: Who is the director of film Peter's Friends?
Let's search the question in Wikipedia.
Context: Peter's Friends is a 1992 British comedy film written by Rita 
Rudner and Martin Bergman, and directed and produced by Kenneth 
Branagh......
Intermediate answer: Kenneth Branagh

Follow up: What is the place of birth of Kenneth Branagh?
Intermediate answer: Belfast, Northern Ireland

Final answer:
<answer long>The director of film Peter's Friends is Kenneth Branagh, 
and he was born in Belfast, Northern Ireland.</answer long>
<answer short>Belfast</answer short>

What is the place of birth of the director of film Peter'S Friends?

Analysis: To answer this question, I would need to know the director of the film “Peter's 
Friends” and his place of birth.
Initial Query: Who is the director of the film “Peter's Friends” and where was he born?
Document 1: Peter's Friends Peter's Friends is a 1992 British comedy film…, and 
directed and produced by Kenneth Branagh……
Intermediate answer_1: Based on the Retrieved Document_1, the director of film 
“Peter‘s Friends” is Richard Curtis. However,…, we need to find the place of birth of 
Richard Curtis.
Refined Query: What is the place of birth of Richard Curtis, the director of Peter's 
Friends?
Document 2: Richard Curtis …was born in New Zealand to Australian parents.
Intermediate answer_2: Based on the Retrieved Document_2, Richard Curtis was born 
in New Zealand. Therefore, the place of birth of the director of film “Peter‘s Friends” is 
New Zealand.
Final answer: New Zealand.

Ours Auto 
RAG 

Figure 9: Case Study: Auto-RAG vs. DeepRAG. DeepRAG achieves success by atomic query decomposition,
faithful intermediate answer, and adaptively using internal knowledge.

for direct answers and retrieved answers, respec-855

tively. Specifically, the snippet “Intermediate An-856

swer:” corresponds to a direct answer, while the857

snippet “Let’s search the question on Wikipedia”858

corresponds to retrieval-based answers.859

C Detailed Analysis860

As illustrated in Figure 9, we conduct a case study861

comparing DeepRAG with Auto-RAG (Yu et al.,862

2024), a closely related method that utilizes iter-863

ative retrieval for retrieval-augmented generation.864

For each subquery, Auto-RAG retrieves relevant865

documents and generates a corresponding suban-866

swer. This approach is not only time-consuming867

but also fails when no relevant documents are re-868

trieved. Although Auto-RAG attempts to address869

this issue using its own relevant documents, it870

falls into endless loops in most cases. In con-871

trast, DeepRAG iteratively generates subqueries872

and determines whether to use internal knowledge873

at each iteration. The binary tree search data syn-874

thesis method for optimization ensures reliable sub-875

query generation, intermediate answers, and final876

answers. Even when no related information exists877

in retrieved documents, the model is directed to pro-878

vide a final answer based on internal knowledge.879

C.1 Retrieval Efficiency880

To demonstrate the efficiency of our method, we881

compare the average number of retrievals on 2Wiki-882

MultihopQA and WebQuestions. As shown in Ta-883

ble 2, We have following observations:884

1) Compared to other adaptive retrieval meth-885

ods, DeepRAG can achieve higher accuracy with886

relatively lower retrieval costs. This can be at-887

tributed to our dynamic usage of internal knowl-888

edge. Additionally, DeepRAG exhibits a posi-889

tive trend in exploring relevant evidence when890

faced with insufficient retrieval results, as evi-891

denced by the lower average retrieval numbers in 892

both 2WMQA (0.92 compared to 1.25) and WQ 893

(0.12 compared to 0.36). 2) Confidence-based ap- 894

proaches demonstrate limited robustness across 895

datasets. For instance, while using identical thresh- 896

olds, both FLARE and DRAGIN methods show 897

inconsistent behaviors: they trigger approximately 898

one retrieval per query in 2WMQA, but fail to reach 899

the retrieval threshold entirely in WQ. This incon- 900

sistency highlights the challenge of maintaining 901

reliable performance across different datasets using 902

confidence-based methods. 3) Iterative retrieval- 903

based approaches typically require numerous re- 904

trieval operations, resulting in substantial computa- 905

tional costs. Therefore, efficient adaptive retrieval 906

methods like DeepRAG become crucial for opti- 907

mizing resource utilization while maintaining per- 908

formance. 909

C.2 Relevance to Parametric Knowledge 910

In this section, we investigate the relationship be- 911

tween retrieval needs and parametric knowledge to 912

demonstrate how effectively our method explores 913

the knowledge boundary. 914

Ideally, models should initiate retrieval for 915

queries beyond their parametric knowledge while 916

utilizing their existing knowledge for familiar 917

queries. We use CoT results as an indicator of 918

whether the model can answer questions using 919

its parametric knowledge. Subsequently, we ana- 920

lyze whether other adaptive retrieval methods align 921

with this pattern of parametric knowledge utiliza- 922

tion. We evaluate the relevance using four met- 923

rics. F1 score and Accuracy serve as basic per- 924

formance measures, while balanced accuracy and 925

Matthews Correlation Coefficient(MCC) are em- 926

ployed to account for the class imbalance between 927

retrieval-required and retrieval-not-required cases. 928

The MCC ranges from -1 to 1, where a value of 1 929
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indicates perfect correlation, 0 represents no corre-930

lation (random chance), and -1 signifies an inverse931

correlation.932

As shown in Table 3, we find that 1) Deep-933

RAG demonstrates superior relevance performance934

across F1, balanced accuracy, and MCC metrics.935

This suggests that DeepRAG successfully identifies936

retrieval necessity by exploring knowledge bound-937

ary. 2) While FLARE, DRAGIN, and TAARE938

exhibit high accuracy scores, their relatively low939

balanced accuracy and MCC scores suggest they940

mainly succeed in retrieval-required cases but strug-941

gle to properly avoid unnecessary retrievals.942

C.3 Performance against Strong Baseline943

Models944

We compare DeepRAG with recent strong reason-945

ing models: QwQ-32B-preview (Team, 2024) and946

gpt-4o-turbo (OpenAI). As shown in Table 4, Deep-947

RAG achieves superior average performance over948

QwQ and gpt-4o, particularly in time-sensitive QA949

tasks. While DeepRAG does not surpass gpt-4o in950

some cases, it achieves comparable performance951

levels. These results demonstrate that by adap-952

tively leveraging retrieval, DeepRAG can achieve953

an equivalent level of factual accuracy to the para-954

metric knowledge of strong reasoning models.955

Models ID CAG PopQA WQ Avg

QwQ-32B 31.43 3.43 10.60 15.10 18.40
gpt-4o-turbo 60.6 23.36 43.50 25.35 42.68

DeepRAG-qwen 43.00 51.09 40.60 24.20 40.38
DeepRAG-llama 52.40 52.96 42.50 32.70 46.59

Table 4: Performance against strong baseline models.

C.4 Ablation Study956

In this section, we conducted experiments to vali-957

date the effectiveness of DeepRAG’s data construc-958

tion and training process.959

Method ID CAG PopQA WebQuestion
AvgF1 EM EM EM

DeepRAG-Imi 49.46 50.47 43.60 30.00 44.60
most 47.31 51.09 31.30 28.00 41.12

random 44.76 51.40 34.80 27.10 40.56

Table 5: Experiment results of the ablation study on the
Imitation Learning Stage. ID refers to the average score
of two in-distribution dataset HotpotQA and 2WikiMul-
tihopQA.

Imitation Learning We compare our default960

strategy of selecting paths with minimal retrieval961

Method ID CAG PopQA WebQuestion
AvgF1 EM EM EM

DeepRAG 52.40 61.92 47.80 45.24 47.67
all-node 50.92 50.47 41.50 32.70 45.30

sentence-wise 30.16 12.46 20.00 12.90 21.14

Table 6: Experiment results of the ablation study on the
Chain of Calibration Stage.

cost against two alternative approaches: maximum 962

retrieval cost and random path selection. As shown 963

in Table 5, DeepRAG-Imi enables the model to 964

learn knowledge boundaries during the imitation 965

learning stage. Notably, CAG performs relatively 966

poorly at this stage due to its time-sensitive na- 967

ture, which necessitates constant retrieval of up- 968

to-date information. Moreover, as illustrated in 969

Figure 5, DeepRAG-Imi achieves lower retrieval 970

costs and higher average performance compared 971

to both the maximum-retrieval-cost and random 972

selection methods. 973

Chain of Calibration We compare our default 974

approach of constructing preferences based on 975

nodes from optimal paths against two alternatives: 976

constructing pairs for all nodes and construct- 977

ing sentence-level partial order pairs based on re- 978

trieval efficiency. As shown in Table 6, DeepRAG 979

demonstrates significant advantages over both vari- 980

ants. Specifically, as illustrated in Figure 6, Deep- 981

RAG achieves lower retrieval costs while maintain- 982

ing higher average performance. In contrast, the 983

sentence-level partial order pairs learned incorrect 984

preferences, resulting in over-reliance on internal 985

knowledge and consequently leading to both low 986

retrieval costs and poor performance. 987

C.5 Implementation Details under RL Setting 988

We implement based on Search-R1 repository 2. 989

We adopt GRPO with a batch size of 32 and per- 990

form 8 rollouts per prompt. To avoid introducing 991

noise, we additionally mask the retrieved text dur- 992

ing training. 993

Rt =


0, answer ✗ and format ✗

0.1, answer ✗ and format ✓

1− 0.1×min(5, retrieve_timet), answer ✓

994

C.6 Retrieval Efficiency 995

To demonstrate the efficiency of our method, we 996

compare the average number of retrievals on 2Wiki- 997

2https://github.com/PeterGriffinJin/Search-R1
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Dataset Method EM
Avg. Retrievals

All Correct Incorrect

2WMQA

FLARE 30.30 0.99 1.00 0.99
DRAGIN 29.10 1.03 1.03 1.03
UAR 34.80 0.81 0.68 0.89
TAARE 35.20 0.93 0.93 0.97
IterDRAG 19.60 2.46 2.49 2.45
Auto-RAG 23.00 6.26 4.13 1.81
DeepRAG-Imi 47.20 1.13 0.95 1.28
DeepRAG 48.10 1.09 0.92 1.25

WQ

FLARE 28.80 0.00 0.00 0.00
DRAGIN 21.20 0.00 0.00 0.00
UAR 22.70 0.96 0.95 0.97
TAARE 23.40 0.66 0.65 0.66
IterDRAG 15.90 2.25 2.16 2.27
Auto-RAG 17.40 4.52 3.03 2.35
DeepRAG-Imi 30.00 0.43 0.13 0.56
DeepRAG 32.70 0.28 0.12 0.36

Table 7: Retrieval frequency analysis on 2WikiMulti-
hopQA(2WMQA) and WebQuestions(WQ) across dif-
ferent adaptive retrieval methods. "Correct" indicates
the average number of retrievals for instances where
the model produced correct answers, while "Incorrect"
represents the average retrievals for cases with incorrect
answers.

MultihopQA and WebQuestions. As shown in Ta-998

ble 7, We have the following observations: 1) Deep-999

RAG can achieve higher accuracy with relatively1000

lower retrieval costs, attributed to its dynamic us-1001

age of internal knowledge. 2) Confidence-based1002

approaches demonstrate limited robustness across1003

datasets. For instance, neither FLARE nor DRA-1004

GIN trigger retrieval under the default confidence1005

threshold in WQ. 3) Iterative retrieval-based meth-1006

ods typically require numerous retrieval operations.1007

Therefore, efficient adaptive retrieval methods like1008

DeepRAG become crucial for optimizing resource1009

utilization while maintaining performance.1010
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