
TailorKV: A Hybrid Framework for Long-Context Inference via Tailored
KV Cache Optimization

Anonymous ACL submission

Abstract
The Key-Value (KV) cache in generative large001
language models (LLMs) introduces substan-002
tial memory overhead. Existing works miti-003
gate this burden by offloading or compressing004
the KV cache. However, loading the entire005
cache incurs significant latency due to PCIe006
bandwidth bottlenecks in CPU-GPU communi-007
cation, while aggressive compression causes008
notable performance degradation. We iden-009
tify that certain layers in the LLM need to010
maintain global information and are unsuitable011
for selective loading. In contrast, other layers012
primarily focus on a few tokens with domi-013
nant activations that potentially incur substan-014
tial quantization error. This observation leads015
to a key insight that loading dominant tokens016
and quantizing all tokens can complement each017
other. Building on this insight, we propose a018
hybrid compression method, TailorKV, which019
seamlessly integrates quantization and offload-020
ing. TailorKV develops an inference frame-021
work along with a hardware-friendly implemen-022
tation that leverages these complementary char-023
acteristics. Extensive long-context evaluations024
exhibit that TailorKV achieves nearly lossless025
performance under aggressive compression set-026
tings, outperforming the state-of-the-art. Par-027
ticularly, the Llama-3.1-8B with 128k context028
can be served within a single RTX 3090 GPU,029
reaching 82 ms per token during decoding.030

1 Introduction031

Large language models (LLMs) have demonstrated032

exceptional performance in tasks such as multi-turn033

dialogues (Chiang et al., 2023) and multi-document034

understanding (Bai et al., 2024). In response to the035

growing complexity of tasks, recent LLMs have036

expanded their context windows to over 128k to-037

kens, e.g., GPT-4 (Achiam et al., 2023) and Gemini-038

1.5 (Team et al., 2024). Typically, the inference039

of LLMs is auto-regressive, with the Key-Value040

(KV) cache stored in memory to avoid recomputa-041

tion. However, the size of KV cache grows linearly042

with sequence length, leading to much higher GPU 043

memory consumption and inference latency. 044

Recent studies have proposed sparse attention 045

mechanisms to reduce KV cache usage. These 046

methods fall into two categories: irreversible evic- 047

tion and recallable selection. Irreversible eviction 048

methods (Li et al., 2024; Zhang et al., 2023; Xiao 049

et al., 2023) suffer from accuracy degradation 050

due to permanently discarding tokens that may 051

later become crucial, particularly in multi-turn di- 052

alogues. Recallable selection methods adopt a 053

different approach by maintaining the entire KV 054

cache while selecting only a subset of tokens for 055

processing. However, methods like Quest (Tang 056

et al., 2024) and SparQ (Ribar et al., 2023) en- 057

counter memory limitations when attempting to 058

store all tokens on the GPU. Although CPU of- 059

floading mitigates GPU memory limitations, ex- 060

isting approaches (Xiao et al., 2024; Zhang et al., 061

2024a) still require retrieving a substantial portion 062

of tokens (around 20%), introducing significant de- 063

coding latency overheads due to slow data transfer 064

between CPU RAM and GPU RAM. 065

To optimize accuracy, memory, and latency si- 066

multaneously, we first analyze the compression 067

preferences for the KV cache based on layer char- 068

acteristics. Prior researches (Feng et al., 2024; Cai 069

et al., 2024) applied different sparsity rates to dif- 070

ferent layers under the same compression strategy. 071

However, our analyses demonstrate that perfor- 072

mance degradation primarily stems from the appli- 073

cation of unsuitable compression at the layer level 074

(Section 3). Therefore, we suggest that shallow 075

layers, which exhibit dense attention patterns and 076

emphasize global information (Wan et al., 2024), 077

are better suited for uniform compression like quan- 078

tization. Conversely, layers with a few dominant 079

tokens and largely redundant information are well- 080

suited for sparsity, as performance can be main- 081

tained by retrieving only the dominant tokens. 082

Building upon these insights, we propose a novel 083

1

framework, TailorKV, which employs hybrid com-084

pression techniques to reduce GPU memory us-085

age. We introduce an identification metric to clas-086

sify Transformer layers into two distinct types: (i)087

quantization-friendly layers, which preserve global088

information from a macro perspective, and (ii)089

sparsity-friendly layers, which capture crucial in-090

formation from a micro perspective. This design en-091

ables quantization-friendly layers to employ static092

quantization, achieving a high compression ratio093

(1-bit per floating-point number) while maintain-094

ing model quality. Meanwhile, for sparsity-friendly095

layers, the system offloads the KV cache to CPU096

memory during prefilling and dynamically retrieves097

the Top-K tokens during decoding. By aligning098

compression strategies with the characteristics of099

each layer, this tailored approach significantly re-100

duces overall memory consumption.101

The accuracy and efficiency of TailorKV are102

evaluated on various backbone LLMs using long-103

context benchmarks. The results demonstrate that104

TailorKV drastically reduces memory usage by105

quantizing 1 to 2 layers to 1-bit precision and load-106

ing only 1% to 3% of the tokens for the remain-107

ing layers while maintaining nearly lossless perfor-108

mance. Specifically, TailorKV achieves a decoding109

latency of 82 ms for Llama-3.1-8B with a 128k-110

context on a single RTX 3090 (PCIe 1.0)1, yielding111

a 53.7% reduction in peak GPU memory usage.112

The key contributions are summarized as follows.113

• We identify layer-specific compression prefer-114

ences and develop an identification metric to115

determine optimal compression strategies for116

different layers in the model.117

• We present TailorKV, a hybrid KV cache com-118

pression framework that combines quantiza-119

tion and offloading techniques through an120

algorithm-system co-design, preserving both121

model accuracy and execution efficiency.122

• Extensive experiments on long-context bench-123

marks demonstrate the nearly lossless perfor-124

mance of TailorKV with minimal GPU mem-125

ory consumption and acceptable latency.126

2 Preliminaries127

2.1 Attention and KV Cache128

LLM inference consists of two stages: prefill and129

decode. During prefilling, the entire prompt is used130

1We combine TailorKV with 4-bit weight-only quantiza-
tion (Lin et al., 2024) for prefill phase memory allocation.

to generate the first token. Consider the prompt em- 131

bedding X ∈ Rn×d along with the weight matrices 132

Wq
i ,W

k
i ,W

v
i ∈ Rd×dh for head i ∈ [1, h], where 133

n is the sequence length, d is the hidden dimension 134

and dh is the head dimension. The keys and values 135

for head i are computed and cached, as follows: 136

Ki = XWk
i , Vi = XWv

i . (1) 137

During decoding, the new token embedding x ∈ 138

R1×d is computed iteratively to produce the query, 139

key, and value vectors. The cache is updated and 140

the output o of each attention head is computed as: 141

Ki ← Cat[Ki,xW
k
i],Vi ← Cat[Vi,xW

v
i],

(2) 142143

ai = Softmax
(
qiK

⊤
i /

√
dh

)
,oi = aiVi, (3) 144

where qi = xWq
i , and the attention outputs from 145

all heads are concatenated and sent to the FFN. 146

2.2 Quantization of KV Cache 147

Quantization converts continuous or high-precision 148

values into lower-precision discrete representations. 149

Given a tensor X in high precision, the typical 150

uniform quantization process can be expressed as: 151

XQ = Quantb(X, s, z)

= clamp(⌊X− z

s
⌉, 0, 2b − 1),

(4) 152

where XQ represents the quantized tensor in b-bit 153

precision, with z = minX as the zero point and 154

s = maxX−minX
2b−1

as the scaler. The clamp function 155

restricts values to the b-bit integer range and ⌊·⌉ 156

denotes the rounding function. 157

2.3 GPU-CPU Co-execution 158

As the sequence length increases, the size of the 159

KV cache grows, significantly raising the demand 160

for GPU resources. For example, with a sequence 161

length of 512k, Llama-2-7B (Touvron et al., 2023) 162

requires up to 256GB of memory for the KV cache. 163

Current LLM serving systems (Kwon et al., 2023; 164

Qin et al., 2024) employ an offloading strategy that 165

stores the KV cache in cost-effective CPU memory 166

and loads it onto the GPU during inference. How- 167

ever, I/O transfer latency becomes the bottleneck in 168

inference due to the low-bandwidth PCIe interface. 169

For instance, transferring the KV cache of a single 170

layer (≈ 8GB) from the CPU memory to the RTX 171

3090 GPU via PCIe 1.0 link (4GB/s) takes around 172

2s, while the attention computation for a single 173

layer on the RTX 3090 GPU only takes around 174

10ms. Thus, on-demand fetching is currently the 175

most common approach to reduce GPU idle time. 176

2

Sparse Error: 0.7178

Quantization Friendly Sparsity Friendly

Layer 0 Layer 16

Sparse Error: 0.0473

(a) Dense (left) and sparse (right) attention.

0 3 6 9 12 15 18 21 24 27 30
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ar

se
 E

rr
or

Yi-6B-200K
Llama-3.1-8B-Instruct
Llama-2-7B-32K-Instruct

(b) Sparse error on different LLMs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Layer

TriviaQA
Qasper
TREC
MF-en

HotpotQA
2WikiMQA
GovReport
MultiNews
SAMSum

PR-en
PCount

Lcc
RB-P

D
at

as
et

s

Llama-2-7B-32K-Instruct

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Layer

TriviaQA
Qasper
TREC
MF-en

HotpotQA
2WikiMQA
GovReport
MultiNews
SAMSum

PR-en
PCount

Lcc
RB-P

D
at

as
et

s

Llama-3.1-8B-Instruct

(c) Sparse error on different datasets.

Figure 1: Observations on attention. (a) Attention weights on Llama-2-7B-32K-Instruct. Detailed visualizations
are in Appendix J. (b) Sparse error of different models on the 2WikiMQA dataset, with only the top 5% of attention
scores retained. (c) Sparse error on different datasets, with only the top 5% of attention scores retained.

Strategy RB-P LCC GovReport TriviaQA

16-bit 56.7 63.4 34.9 91.6
1-bit (KIVI) 24.4 26.2 8.3 18.6

1-bit (L = {0}) 57.1 62.6 34.9 92.1
1-bit (L = {2}) 53.0 59.3 32.6 91.9
1-bit (L = {10}) 52.3 59.3 31.2 90.7
1-bit (L = {18}) 53.7 60.0 34.9 89.4

Table 1: Results of 1-bit quantization on different layers,
using Llama-3.1-8B. L denotes the quantized layer.

3 Motivations and Observations177

Layers have compression preferences. In con-178

trast to previous belief (Li et al., 2024; Zhang et al.,179

2023), we propose that not all layers are suitable180

for sparsity. To quantify the sparsity challenges181

during decoding, we define the sparse error E . Let182

a ∈ R1×n represents the attention weight as de-183

fined in Equation 3, and letM ∈ {0, 1}n denote184

a binary mask that selects the top k elements of a.185

The sparse error E for each head is defined as:186

â = a⊙M, E = 1−
∑n

i=1âi. (5)187

As shown in Figure 1a, layers with dense attention188

distributions exhibit higher sparse errors compared189

to those with sparse distributions. Additionally, we190

observe sparse error patterns across models and191

datasets. Figure 1b shows that sparse errors are192

similar across models, with higher sparse errors in193

shallower layers (e.g., 0, 1). Figure 1c shows that194

the distribution of sparse errors remains consistent195

across various datasets for the same model.196

Similarly, not all layers are suitable for quantiza-197

tion. As shown in Table 1, quantizing the KV cache198

to 1-bit leads to significant performance degrada-199

tion. This degradation is primarily caused by layers200

with sparse distributions, which are more sensitive201

0 50 100

0

25

50

75Se
qu

en
ce

 L
en

gt
h

Prefill

Decode

Layer 25 Head 24 Query

0 50 100

0

25

50

75

Prefill

Decode

Layer 25 Head 6 Key

0 50 100

0

25

50

75

Prefill

Decode

Layer 25 Head 6 Value

0 50 100
Channel

0

25

50

75

Ti
m

es
 o

f T
op

-8

0 50 100
Channel

0

25

50

75

0 50 100
Channel

0

20

40

60

2.5

5.0

7.5

5

10

0.5

1.0

1.5

Figure 2: (Top) Query and key in Llama-3.1-8B-Instruct
show outlier patterns in some channels, while the value
shows no outliers. (Bottom) The number of times reach-
ing the Top-8. Outliers may appear in any position.

to quantization. In contrast, quantizing the dense 202

layer (e.g., 0th) incurs no performance loss. 203

These findings highlight the need for a tailored 204

KV cache compression strategy. We regard layers 205

with dense distributions as quantization-friendly, 206

which focus on global information, and layers with 207

sparse distributions as sparsity-friendly, which pri- 208

oritize crucial information. 209

Attention scores correlate with outliers. Each 210

channel in the key and query contributes to the 211

attention scores through their dot product, as ex- 212

pressed by the formula qK⊤. Figure 2 (Top) illus- 213

trates that some channels have large magnitudes in 214

the query and key. It follows from the dot product 215

formula that attention scores correlate with these 216

outliers. A recent method (Yang et al., 2024b) fo- 217

cuses on static channel sparsity, utilizing offline cal- 218

ibration technique to identify high-magnitude chan- 219

nels. However, we find that the sparsity of query 220

and key channels is dynamic rather than static. As 221

shown in Figure 2 (Bottom), outliers in the query 222

and key do not consistently appear in fixed posi- 223

3

`

`

Offline Identify

Estimate Sparsity

Determine Pattern

Prompt Encoding

Quantization

Friendly

Sparsity

Friendly

GPU

CPU

Keys

Values

(1) Offload

Quantized KV

Cache Buffer

Token Generation

① Per-Channel Quant

① Per-Token Quant

Top-K Tokens

Buffer

(4) Fetch

(6) Full-precision

Matrix Multiplication

(3) Retrieval

Top-K Tokens

Critical Key

Buffer (reading)

Critical Key

Buffer (writing)

(2) Prefetch in the
previous layer

KV Cache Memory Pool

(5) Prefetch for
the next layer

Current Query

Critical Current Query

②Mixed-precision

Matrix Multiplication

Current Query
Keys

Values

Layer 0

Layer N-1

Layer N

Quantized Token

Quantization

Friendly Layer

Sparsity

Friendly Layer

Offloaded Token

Selective Token

Attention

Scores ෡𝐀

Critical
Key Cache

Critical
Key Cache

Top-K
Tokens

𝑛q

𝑛

Figure 3: System overview of TailorKV. Offline identification categorizes the layers into quantization-friendly and
sparsity-friendly. For quantization-friendly layers, we employ aggressive static quantization. For sparsity-friendly
layers, we dynamically retrieve Top-K tokens. Critical current query and critical key cache represent the outliers in
the query and key cache, respectively.

tions; instead, they may appear in any position. Fur-224

thermore, dynamically selecting high-magnitude225

channels improves the recall of dominant tokens226

compared to using a static offline strategy. This227

claim is empirically validated in Section 5.4.228

4 Methodology229

4.1 Offline Identification230

Empirical observation in Section 3 suggests that231

some layers benefit more from quantization, while232

others are better suited for sparsity. To avoid dis-233

rupting the standard inference, we apply an offline234

strategy to identify the compression preference of235

each layer. In this phase, we introduce a met-236

ric—dense preference score P—to assess whether237

each attention layer favors quantization or sparsity.238

Given a prompt length n, we first use the most re-239

cent nq query vectors Qlast_q ∈ Rnq×dh and the240

key vectors K ∈ Rn×dh to compute the attention241

score matrix Â for each head during prefilling:242

Â = Softmax
(
Qlast_qK

⊤/
√
dh

)
. (6)243

Next, we select the top k indices from Â and244

sum the top k elements in order to compute the245

dense preference score P:246

Î =
{
(i, j) | Topk(Âi,:, k)

}nq

i=1
, (7)247

248
P = nq −

∑
(i,j)∈ÎÂi,j . (8)249

If the dense preference score Pl of layer l exceeds250

the predefined threshold τ , the layer is regarded251

as quantization-friendly; otherwise, it is deemed252

sparsity-friendly. This can be formalized as:253

C(l) =

{
Quantization-Friendly, if Pl > τ,

Sparsity-Friendly, otherwise.
(9)254

The metric P consistently assesses the same 255

model across various datasets (for details, see Ap- 256

pendix C). After layer-level identification, we ap- 257

ply dynamic retrieval for sparsity-friendly layers 258

and static quantization for quantization-friendly 259

layers. The overall workflow is shown in Figure 3. 260

4.2 Dynamic Retrieval 261

For sparsity-friendly layers, we propose a dynamic 262

retrieval algorithm with an asynchronous system 263

design. Figure 3 shows the management framework 264

of the CPU memory pool and GPU memory buffer. 265

To facilitate LLM inference on memory-limited de- 266

vices, we offload the KV cache to lower-cost CPU 267

memory layer by layer during prefilling. Subse- 268

quently, we retrieve the Top-K tokens on demand 269

during decoding, thus minimizing communication 270

overhead. The core design is illustrated in Figure 4. 271

As explained in Section 3, attention scores cor- 272

relate with outliers in the query and key. To more 273

accurately assess token importance, we approxi- 274

mate attention scores prior to original operation 275

based on this insight. We first estimate the criti- 276

cal channels to identify outliers in the query and 277

key cache, referred to as the critical current query 278

and critical key cache. Since the critical key cache 279

resides in the CPU, we employ prefetching to load 280

it in advance. We leverage inter-layer similarity to 281

predict the critical channels ahead of time (for a 282

detailed explanation, see Appendix B). The similar- 283

ity between adjacent layers arises from the residual 284

connection, as validated in prior research (Lee et al., 285

2024). At layer l − 1, we estimate the query q̂ for 286

layer l, using the weight matrix from layer l and the 287

hidden state from layer l − 1. The contribution of 288

4

𝒍

Channel

T
o

ke
n

Abs Max

Key Cache

Abs

3 11 15 7

30 107229

Critical Current Query

-6 1023 -1

𝒍 − 𝟏

Hidden State

High Cosine

Similarity

Q_Proj

𝒍

6 1023 1

𝒍

𝒍

Channel

T
o

ke
n

Critical Key Cache 𝒍

3

-1

-2

2 -11

10

11

9

5

4

-4

-4 7

7

-6

5

1

-1

-1

0

Top-K Tokens

Layer 𝒍

Stage 2: Retrieval

Top-K Tokens

Prefetch Critical Key

Cache for Layer 𝑙

Layer 𝒍 − 𝟏

Stage 1: Estimate

Critical Channel

CPU

GPU

𝒔 = ෝ𝒒 ∙ max(𝑲)

max(𝑲)ෝ𝒒

Figure 4: Two-stage dynamic retrieval process: Stage 1
estimates critical channels at layer l − 1 and prefetches
critical key cache for layer l. Stage 2 approximates
attention scores and selects Top-K tokens at layer l.

the i-th channel to the attention scores is computed289

via element-wise multiplication of q̂ and K:290

si = |q̂i| ·max(|Ki|), i = 1, 2, ..., dh. (10)291

Next, we prefetch the l-th layer’s critical key292

cache based on s, using double buffering—one293

buffer for writing and the other for reading—to294

enable concurrent execution. Then, we retrieve295

the Top-K tokens by approximating the attention296

scores at l-th layer based on the critical current297

query and the critical key cache, followed by fetch-298

ing the Top-K tokens. Figure 5 outlines the com-299

putation and communication during decoding. The300

only non-overlappable operation is fetching Top-K301

tokens, as it depends on the current layer’s query.302

TailorKV demonstrates how a heterogeneous de-303

sign overcomes resource constraints by leveraging304

CPU-GPU co-execution.305

4.3 Static Quantization306

Unlike traditional quantization methods (Liu et al.,307

2024c; Yang et al., 2024a; He et al., 2024), Tai-308

lorKV focuses on ensuring that each layer "plays its309

role," thus enabling more aggressive compression310

scheme, such as 1-bit quantization. As illustrated311

in Figure 2, outliers are present in the key cache312

along the channel dimension, while the value cache313

contains no outliers. For quantization-friendly lay-314

ers, we apply static per-token quantization to the315

value cache and per-channel quantization to the key316

cache (Liu et al., 2024c). As shown in Equation 4,317

we introduce a 1-bit quantization kernel and also318

implement FP16×INT1 GEMV.319

Compute 𝑞𝑘𝑣 and ො𝑞
Minimal Bubbles

Overlap

Decode Layer 𝒍 − 𝟏 Decode Layer 𝒍

Retrieval Top-K Tokens

Attention and FFN

Fetch Top-K Tokens

Prefetch Critical Key Cache

Decode Layer 𝒍 − 𝟏 Decode Layer 𝒍

TailorKV

Sequential

PCIe

PCIe

GPU

GPU

Timeline

Idleness

Figure 5: Timeline of dynamic retrieval. Blue signifies
computation and pink signifies communication.

4.4 Memory Footprint Analysis 320

Let the number of layers be L, the number of heads 321

be h, the sequence length be n, and the head di- 322

mensions be dh. All input tokens are represented 323

in FP16. We demonstrate a comparison of memory 324

usage on the GPU for different methods in Table 2. 325

TailorKV mainly manages a quantized KV cache 326

buffer in quantization-friendly layers and a critical 327

key buffer in sparsity-friendly layers. 328

Method Memory Parameters

Original 2Lnhdh -
SnapKV 2αLnhdh budget: α
Quest 2Lnhdh(1 +

1
β
) page size: β

Ours (Q) 2lqnhdh(
1
16

+ 2
g
) bit size: 1, group size: g,

num layers of Q: lq
Ours (S) 2nhds num critical channel: ds

Table 2: Comparison of memory usage among different
methods. The symbols Q and S denote the quantization-
friendly layer and sparsity-friendly layer, respectively.

5 Experiments 329

5.1 Experimental Setup 330

Baselines and Benchmarks. We evaluate three 331

widely used models with their respective con- 332

text lengths: Llama-3.1-8B-Instruct (Dubey et al., 333

2024), Yi-6B-200K (01-ai, 2024a), and Yi-9B- 334

200K (01-ai, 2024b). To demonstrate the su- 335

perior performance of our method, we compare 336

TailorKV with competitive baselines, including 337

StreamingLLM (Xiao et al., 2023), SnapKV (Li 338

et al., 2024), Quest (Tang et al., 2024), and PQ- 339

Cache (Zhang et al., 2024a). To evaluate the per- 340

formance in long-context scenarios, we employ 341

three well-designed benchmarks, including Long- 342

Bench (Bai et al., 2024), InfiniteBench (Zhang 343

et al., 2024b), and RULER (Hsieh et al., 2024). 344

Refer to Appendix G for further details. 345

5

Methods
LongBench InfiniteBench

Tokens SD.QA MD.QA Summ FS.L Code Synth Avg. Tokens Retr Dia Novel Math Code Avg.

Llama-3.1-8B 128k 49.6 50.9 31.2 69.4 60.0 53.5 53.8 128k 99.6 19.0 30.2 34.0 22.8 44.0
StreamLLM 192 26.3 42.7 17.9 50.0 48.2 53.5 40.6 1024 3.2 7.0 23.7 34.0 22.8 18.3
SnapKV 192 35.2 48.1 20.2 56.5 52.8 52.5 45.2 1024 96.6 9.5 27.4 34.0 22.8 41.0
Quest 192 40.1 46.9 20.7 61.6 48.0 52.4 46.2 1024 64.4 14.0 25.7 34.0 25.1 33.8
PQCache 192 48.4 49.5 27.0 67.3 56.3 53.6 51.7 1024 5.5 15.0 27.5 34.0 23.3 21.5
TailorKV-1 64(+128) 48.2 50.9 29.2 68.1 58.3 53.4 52.6 128(+896) 86.5 18.0 28.9 34.0 22.8 40.4
TailorKV-2 64(+128) 49.3 50.5 29.4 68.7 58.1 53.3 52.9 128(+896) 94.8 18.5 30.0 34.0 22.8 42.6

Yi-9B 200k 36.6 44.7 28.8 60.6 69.6 35.0 47.0 200k 100.0 2.5 25.2 23.4 26.3 39.2
StreamLLM 192 21.3 33.6 11.0 44.1 51.8 14.7 30.6 1024 1.5 2.5 24.2 23.7 21.3 16.4
SnapKV 192 25.0 38.8 11.9 49.0 59.7 18.8 35.0 1024 59.0 3.0 24.9 22.5 26.6 30.0
Quest 192 29.2 37.9 15.4 57.5 59.6 25.7 39.1 1024 98.4 4.0 21.8 18.2 18.7 36.1
PQCache 192 32.4 41.6 19.2 58.6 64.4 27.8 42.0 1024 7.8 2.0 25.3 22.2 25.6 18.5
TailorKV-1 64(+128) 38.0 44.3 27.3 60.2 66.3 24.3 44.7 128(+896) 98.7 2.5 26.6 24.0 21.3 39.2
TailorKV-2 64(+128) 35.6 43.5 27.3 60.1 66.0 23.5 44.0 128(+896) 98.5 4.5 25.3 24.0 24.9 39.4

Yi-6B 200k 32.4 15.3 1.3 49.9 69.8 9.5 29.7 200k 99.2 0.0 25.2 6.8 26.9 37.1
StreamLLM 192 20.0 11.6 1.6 34.0 44.6 4.0 20.4 1024 2.0 0.0 21.8 4.8 25.8 13.5
SnapKV 192 24.2 13.0 1.6 38.5 51.2 3.7 23.3 1024 55.7 2.5 23.2 4.5 26.9 26.4
Quest 192 26.5 12.5 0.3 46.9 51.9 8.5 26.2 1024 99.5 3.0 22.0 5.1 26.6 35.8
PQCache 192 30.4 14.5 0.6 48.0 55.8 4.0 27.3 1024 6.9 1.5 24.6 5.7 26.9 16.3
TailorKV-1 64(+128) 32.5 15.4 1.4 49.7 55.9 4.0 28.3 128(+896) 98.7 2.5 25.3 7.7 26.4 37.2
TailorKV-2 64(+128) 32.5 15.3 1.5 49.1 56.4 4.0 28.2 128(+896) 98.5 3.0 25.3 8.0 26.7 37.3

Table 3: Task performance (%) on LongBench and InfiniteBench. 13 sub-tasks of LongBench are aggregated into
6 classes, and 9 sub-tasks of InfiniteBench are aggregate into 5 classes. The aggregation of sub-tasks is discussed in
Table 10 and Table 11, while the detailed results for all sub-tasks can be found in Table 14 and Table 15.

Implementation. We set τ to 0.2 for all models.346

TailorKV-1 and TailorKV-2 represent KV cache347

stored with 1-bit and 2-bit precision in quantization-348

friendly layers, respectively. The group size is349

64, with the zero point and scaler stored in 16-bit.350

For sparsity-friendly layers, the number of tokens351

involved in attention computation is nlocal+(ntopk),352

where nlocal refers to the GPU budget and ntopk353

represents the additional communication overhead.354

The number of critical channels is 8 for LongBench355

and 12 for both InfiniteBench and RULER. The356

symbol Q represents quantization-friendly layers.357

Llama-3.1-8B is configured with Q = {0}, while358

Llama-2-7B, Yi-6B, and Yi-9B are configured with359

Q = {0, 1}. Additional details are in Appendix D.360

Hardware. The experiments are conducted un-361

der two different settings: the first equipped with an362

NVIDIA RTX 3090 GPU (24GB) and Intel Xeon363

Gold 6240 CPU, interconnected via PCIe 1.0 ×16364

(4GB/s); the second equipped with an NVIDIA365

A100 GPU (80GB) and Intel Xeon Platinum 8369B366

CPU, interconnected via PCIe 4.0 ×16 (32GB/s).367

5.2 Accuracy on Long Context Tasks368

LongBench. As shown in Table 3, SnapKV and369

StreamingLLM degrade in performance due to the370

loss of crucial information. Although Quest and371

PQCache improve performance, their individual372

4K 8K 16K 32K 64K 128K
Sequence Length

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Llama-3.1-8B-Instruct

4K 8K 16K 32K 64K 128K
Sequence Length

0

20

40

60

80

100
Yi-9B-200K

Full
StreamLLM

SnapKV
Quest

PQCache
TailorKV-1

TailorKV-2

Figure 6: The average accuracy of different methods on
RULER. The sparsity-friendly layer in TailorKV uses
128+(896) tokens, while other methods use 1024 tokens.
See Table 16 for details.

strategies face limitations under restricted budgets. 373

TailorKV outperforms the best method by 2.32%, 374

5.42%, and 3.66% on Llama-3.1-8B, Yi-9B, and 375

Yi-6B, respectively, by preserving the 1-bit KV 376

cache for quantization-friendly layers and selecting 377

192 tokens for sparsity-friendly layers. Appendix F 378

provides a discussion on retrieval accuracy of our 379

sparsity-friendly layers compared to other methods. 380

InfiniteBench. Table 3 presents evaluations on 381

the challenging benchmark InfiniteBench. As the 382

context length increases, the clustering overhead of 383

PQCache on the CPU grows. We restrict K-Means 384

to one iteration for real-time inference, which com- 385

promises accuracy and exposes PQCache’s limi- 386

6

16k 32k 64k 96k 128k
Sequence Length

0

25

50

Pe
ak

 M
em

or
y

(G
B

)

O
O

M

O
O

M

Llama-2-7B (MHA)

16k 32k 64k 96k 128k
Sequence Length

0

20

40

Llama-3.1-8B (GQA)

Full Cache PQCache OffloadCache TailorKV

Figure 7: Peak memory usage on A100 (80GB).

Methods Llama-2-7B Llama-3.1-8B

16k 32k 64k 96k 16k 32k 64k

NVIDIA RTX 3090 (24GB, PCIe 1.0 link)

Full Cache OOM OOM OOM OOM 0.033 0.042 OOM
OffloadCache 0.893 1.776 OOM OOM 0.242 0.460 OOM
PQCache OOM OOM OOM OOM 0.126 OOM OOM
TailorKV 0.067 0.087 0.135 0.176 0.062 0.067 0.103

NVIDIA A100 (80GB, PCIe 4.0 link)

Full Cache 0.045 0.077 0.140 OOM 0.024 0.033 0.050
OffloadCache 0.433 0.838 1.767 3.253 0.124 0.227 0.435
PQCache 0.108 0.111 0.114 0.115 0.104 0.105 0.108
TailorKV 0.041 0.062 0.098 0.132 0.045 0.047 0.054

Table 4: Decoding latency(s) on different devices. Ad-
ditional results are provided in Table 13.

tations. Notably, our hybrid strategy outperforms387

individual strategies, with an average performance388

loss under 1.5% compared to the full cache, espe-389

cially excelling in dialogue, novel, and math tasks.390

RULER. Figure 6 summarizes the accuracy on391

RULER, with the sequence length ranging from392

4K to 128K. TailorKV captures crucial information393

from redundant contexts, leading to superior perfor-394

mance on most tasks, such as Needle-in-a-haystack,395

Question Answering, and Variable Tracking (de-396

tailed results provided in Table 16).397

5.3 Efficiency Results398

We evaluate peak memory usage and decoding la-399

tency in comparison with the full cache, Offload-400

Cache, and PQCache. Specifically, the full cache401

is implemented by FlashAttention-2 (Dao, 2023)402

and OffloadCache is a script2 from the official li-403

brary that prefetches next layer’s KV cache from404

the CPU memory to the GPU.405

Peak Memory Usage. As shown in Figure 7, our406

method achieves superior memory efficiency com-407

pared to alternative methods, enabling deployment408

on lower-end GPUs such as the RTX 3090. Specif-409

ically, compared to full cache, TailorKV reduces410

2https://github.com/huggingface/transformers

0 5 10
Latency (ms)

Ours ()

Ours ()

PQCache

OffloadCache
Llama-2-7B (MHA)

0 1 2 3
Latency (ms)

Llama-3.1-8B (GQA)

Attention Retrieval Gather & Transfer 1-Bit Fused Kernel

Figure 8: Latency breakdown (ms) under different meth-
ods. Q and S denote the quantization-friendly layer and
sparsity-friendly layer, respectively.

GPU memory usage by approximately 73.8% for 411

Llama-2-7B with a sequence length of 128k. 412

End-to-End Latency. As shown in Table 4, the 413

increasing sequence length causes out-of-memory 414

errors in the full cache, PQCache, and Offload- 415

Cache on the RTX 3090. For 64k context on the 416

A100, TailorKV achieves significant latency re- 417

ductions compared to OffloadCache and PQCache: 418

18.0× and 1.2× faster than the MHA model, and 419

8.1× and 2.0× faster than the GQA model. Tai- 420

lorKV’s latency is comparable to that of full atten- 421

tion, as a result of multi-threading used to execute 422

asynchronous tasks, which enables the overlap of 423

computation and CPU-GPU communication. 424

Latency Breakdown. As depicted in Figure 8, 425

we evaluate the breakdown of latency for a sin- 426

gle Transformer block with a sequence length of 427

16k on the A100 GPU. Compared to PQCache, 428

TailorKV reduces retrieval latency by 27.8% for 429

the GQA model and 40.5% for the MHA model, 430

and data transfer latency by 83.5% and 82.2% for 431

the same models. This reduction is primarily at- 432

tributable to our use of DGL (Wang et al., 2019) 433

to directly transfer rows from a CPU tensor to the 434

GPU device, whereas PQCache first gathers rows 435

on the CPU and then transfers them to the GPU. 436

5.4 Ablation Study 437

We conduct ablation studies on the LongBench 438

benchmark using the Llama-3.1-8B-Instruct model. 439

Effect of Tailored Strategies. As depicted in Fig- 440

ure 9 (a), 1-bit quantization is applied to certain lay- 441

ers, while only 64(+128) tokens are computed for 442

the remaining layers, with the quantization-friendly 443

layer defined as Q = {0}. The results indicate that 444

quantizing only the 0th layer yields the best per- 445

formance, while quantizing sparsity-friendly layers 446

degrades performance, highlighting the need for 447

tailored compression strategies. 448

7

https://github.com/huggingface/transformers

SD.QA MD.QA Summ FS.L Code Synth
0

20

40

60

80
Sc

or
e

(a) Effect of Tailored Strategies.
 = {0} (Avg. 52.6)
 = {0, 1-10} (Avg. 37.2)
 = {0, 11-20} (Avg. 20.8)
 = {0, 21-31} (Avg. 20.5)

SD.QA MD.QA Summ FS.L Code Synth
0

20

40

60

80

Sc
or

e

(b) Effect of Dynamic Channels.
TailorKV-1 (Avg. 52.6)
TailorKV-1 w/o Dynamic (Avg. 48.5)
TailorKV-2 (Avg. 52.8)
TailorKV-2 w/o Dynamic (Avg. 48.9)

SD.QA MD.QA Summ FS.L Code Synth
0

20

40

60

80

Sc
or

e

(c) Effect of the Number of Critical Channels.
Num = 2 (Avg. 44.0)
Num = 4 (Avg. 48.9)
Num = 8 (Avg. 52.6)
Num = 16 (Avg. 53.3)
Num = 32 (Avg. 53.7)

Figure 9: Ablation studies. (a) Performance comparison with different layers quantized to 1-bit. (b) Performance of
TailorKV with dynamic or static channels. (c) Performance comparison with different numbers of critical channels.

Effect of Dynamic Channels. Prior study (Yang449

et al., 2024b) employed offline calibration to stat-450

ically select high-magnitude channels. However,451

we find that outliers may appear at any position, not452

fixed to specific channels (Section 3). Figure 9 (b)453

compares the performance of dynamic and static454

channels. In general, our dynamic retrieval method455

demonstrates better performance.456

Effect of the Number of Critical Channels. In457

Figure 9 (c), we maintain the 64(+128) configu-458

ration and adjust the number of critical channels.459

Reducing the number of critical channels decreases460

retrieval latency. However, performance signifi-461

cantly degrades when the number is set to 2 or 4.462

Overall, selecting 8 critical channels achieves a fa-463

vorable balance between performance and latency.464

6 Related Work465

Existing KV cache compression methods include466

eviction, selection, and quantization, with detailed467

comparisons in Appendix A. Eviction methods re-468

duce KV cache size by evicting most tokens during469

inference. StreamingLLM (Xiao et al., 2023) iden-470

tifies ‘Attention Sinks’ by retaining the initial and471

the most recent tokens. H2O (Zhang et al., 2023),472

SnapKV (Li et al., 2024), and Scissorhands (Liu473

et al., 2023) estimate token importance based on474

historical attention scores. However, evicting dom-475

inant tokens may degrade accuracy in tasks like476

‘needle-in-the-haystack’ and multi-turn dialogues.477

Selection methods are more commonly used in478

sparse attention scenarios. Quest (Tang et al., 2024)479

retains the KV cache and utilizes paged keys for re-480

trieving tokens, but it fails to reduce memory usage481

and suffers from lower recall. Instead, KV cache482

offloading methods like PQCache (Zhang et al.,483

2024a) and InfiniGen (Lee et al., 2024) approxi-484

mate attention scores for identifying and loading485

critical tokens from CPU to GPU, though they face486

challenges in balancing computation and commu-487

nication due to large KV cache loads. Some meth- 488

ods (Chen et al., 2024; Liu et al., 2024b) use LSH 489

and KNN to retrieve critical tokens, which are pro- 490

cessed on the CPU and subsequently merged with 491

GPU outputs; however, imbalanced computation 492

times may result in GPU idle time. 493

Quantization is a common compression tech- 494

nique that converts high-precision floats into low- 495

precision integers. Existing methods employ vari- 496

ous solutions to minimize quantization error. For 497

example, KVQuant (Hooper et al., 2024) iso- 498

lates outliers for mixed precision, GEAR (Kang 499

et al., 2024) utilizes SVD to recover residuals, and 500

KIVI (Liu et al., 2024c) quantizes keys per channel 501

and values per token. FlexGen (Sheng et al., 2023) 502

reduces I/O transfer latency by quantizing the KV 503

cache to 4-bits. However, none of these methods 504

reduce the KV cache to 1-bit. By contrast, we fo- 505

cus on exploring layer characteristics and selecting 506

the most suitable compression strategy. 507

7 Conclusion 508

In this paper, we propose TailorKV, an effective 509

framework for KV cache management in LLMs. 510

We begin by observing that different layers ex- 511

hibit distinct compression preferences and catego- 512

rize them into quantization-friendly and sparsity- 513

friendly, each employing a tailored strategy. Specif- 514

ically, quantization-friendly layers aggressively 515

quantize the KV cache to 1-bit. Sparsity-friendly 516

layers, on the other hand, dynamically retrieve 517

dominant tokens based on large magnitudes in the 518

query and key channels, integrating CPU-GPU co- 519

design. Experiments across long-context bench- 520

marks show that TailorKV effectively minimizes 521

the usage of the KV cache while maintaining model 522

performance, with an acceptable latency cost. Our 523

hybrid framework demonstrates the potential of 524

deploying LLMs on resource-limited GPUs, ex- 525

tending the application of LLMs to more devices 526

while maintaining efficiency. 527

8

Limitations528

Although TailorKV has demonstrated superior529

memory optimization and latency reduction in long-530

context scenarios, it still exhibits some limitations,531

which are summarized as follows: (1) TailorKV532

primarily focuses on improving the efficiency of533

the decode phase by asynchronously transferring534

tokens from the CPU memory to the GPU. How-535

ever, it is challenging to completely overlap the of-536

floading latency during the prefill phase. Moreover,537

the efficiency of the prefill phase in long-context538

scenarios is also important. It is noteworthy that539

our work is compatible with and complementary to540

approaches for prefilling acceleration (Jiang et al.,541

2024). (2) We have designed tailored strategies542

for different layers to facilitate deployment, and543

we are confident that TailorKV can be adapted on544

a head-wise basis. These issues hold significant545

importance, and we intend to further explore them546

in our future research.547

References548

01-ai. 2024a. Yi-6b-200k. https://huggingface.549
co/01-ai/Yi-6B-200K. Accessed: 2024-07-01.550

01-ai. 2024b. Yi-9b-200k. https://huggingface.551
co/01-ai/Yi-9B-200K. Accessed: 2024-07-01.552

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama553
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,554
Diogo Almeida, Janko Altenschmidt, Sam Altman,555
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.556
ArXiv preprint, abs/2303.08774.557

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,558
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao559
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,560
and Juanzi Li. 2024. LongBench: A bilingual, multi-561
task benchmark for long context understanding. In562
Proc. of ACL, pages 3119–3137. Association for563
Computational Linguistics.564

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu565
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao566
Chang, Junjie Hu, et al. 2024. Pyramidkv: Dynamic567
kv cache compression based on pyramidal informa-568
tion funneling. ArXiv preprint, abs/2406.02069.569

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang570
Zhou, Jianyu Zhang, Niklas Nolte, Yuandong Tian,571
Matthijs Douze, Leon Bottou, Zhihao Jia, et al. 2024.572
Magicpig: Lsh sampling for efficient llm generation.573
ArXiv preprint, abs/2410.16179.574

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,575
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan576
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.577
2023. Vicuna: An open-source chatbot impressing578

gpt-4 with 90%* chatgpt quality. See https://vicuna. 579
lmsys. org (accessed 14 April 2023), 2(3):6. 580

Tri Dao. 2023. Flashattention-2: Faster attention with 581
better parallelism and work partitioning. ArXiv 582
preprint, abs/2307.08691. 583

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 584
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 585
Akhil Mathur, Alan Schelten, Amy Yang, Angela 586
Fan, et al. 2024. The llama 3 herd of models. ArXiv 587
preprint, abs/2407.21783. 588

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and 589
S Kevin Zhou. 2024. Ada-kv: Optimizing kv cache 590
eviction by adaptive budget allocation for efficient 591
llm inference. ArXiv preprint, abs/2407.11550. 592

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong 593
Zhou, and Bohan Zhuang. 2024. Zipcache: Accurate 594
and efficient kv cache quantization with salient token 595
identification. ArXiv preprint, abs/2405.14256. 596

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 597
Michael W Mahoney, Yakun Sophia Shao, Kurt 598
Keutzer, and Amir Gholami. 2024. Kvquant: To- 599
wards 10 million context length llm inference with kv 600
cache quantization. ArXiv preprint, abs/2401.18079. 601

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan- 602
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang, 603
and Boris Ginsburg. 2024. Ruler: What’s the real 604
context size of your long-context language models? 605
ArXiv preprint, abs/2404.06654. 606

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, 607
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua 608
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, 609
et al. 2024. Minference 1.0: Accelerating pre-filling 610
for long-context llms via dynamic sparse attention. 611
ArXiv preprint, abs/2407.02490. 612

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa 613
Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao. 614
2024. Gear: An efficient kv cache compression 615
recipefor near-lossless generative inference of llm. 616
ArXiv preprint, abs/2403.05527. 617

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 618
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 619
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 620
memory management for large language model serv- 621
ing with pagedattention. In Proceedings of the 29th 622
Symposium on Operating Systems Principles, pages 623
611–626. 624

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong 625
Sim. 2024. Infinigen: Efficient generative inference 626
of large language models with dynamic kv cache 627
management. In 18th USENIX Symposium on Op- 628
erating Systems Design and Implementation (OSDI 629
24), pages 155–172. 630

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat 631
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, 632
Patrick Lewis, and Deming Chen. 2024. Snapkv: 633

9

https://huggingface.co/01-ai/Yi-6B-200K
https://huggingface.co/01-ai/Yi-6B-200K
https://huggingface.co/01-ai/Yi-6B-200K
https://huggingface.co/01-ai/Yi-9B-200K
https://huggingface.co/01-ai/Yi-9B-200K
https://huggingface.co/01-ai/Yi-9B-200K
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2410.16179
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2405.14256
https://arxiv.org/abs/2405.14256
https://arxiv.org/abs/2405.14256
https://arxiv.org/abs/2405.14256
https://arxiv.org/abs/2405.14256
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2403.05527
https://arxiv.org/abs/2403.05527
https://arxiv.org/abs/2403.05527
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469

Llm knows what you are looking for before genera-634
tion. ArXiv preprint, abs/2404.14469.635

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-636
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,637
Xingyu Dang, Chuang Gan, and Song Han. 2024.638
Awq: Activation-aware weight quantization for on-639
device llm compression and acceleration. Proceed-640
ings of Machine Learning and Systems, 6:87–100.641

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam-642
reza Haffari, and Bohan Zhuang. 2024a. Minicache:643
Kv cache compression in depth dimension for large644
language models. ArXiv preprint, abs/2405.14366.645

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang,646
Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-647
gruidong Zhang, Bailu Ding, Kai Zhang, et al.648
2024b. Retrievalattention: Accelerating long-context649
llm inference via vector retrieval. ArXiv preprint,650
abs/2409.10516.651

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao652
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-653
lidis, and Anshumali Shrivastava. 2023. Scis-654
sorhands: Exploiting the persistence of importance655
hypothesis for LLM KV cache compression at test656
time. In Proc. of NeurIPS.657

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,658
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,659
and Xia Hu. 2024c. Kivi: A tuning-free asymmet-660
ric 2bit quantization for kv cache. ArXiv preprint,661
abs/2402.02750.662

Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang,663
Yongwei Wu, Weimin Zheng, and Xinran Xu.664
2024. Mooncake: A kvcache-centric disaggre-665
gated architecture for llm serving. ArXiv preprint,666
abs/2407.00079.667

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley,668
Charlie Blake, Carlo Luschi, and Douglas Orr. 2023.669
Sparq attention: Bandwidth-efficient llm inference.670
ArXiv preprint, abs/2312.04985.671

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan672
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-673
pher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:674
High-throughput generative inference of large lan-675
guage models with a single GPU. In Proc. of ICML,676
volume 202 of Proceedings of Machine Learning677
Research, pages 31094–31116. PMLR.678

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,679
Baris Kasikci, and Song Han. 2024. Quest: Query-680
aware sparsity for efficient long-context llm inference.681
ArXiv preprint, abs/2406.10774.682

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan683
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,684
Damien Vincent, Zhufeng Pan, Shibo Wang, et al.685
2024. Gemini 1.5: Unlocking multimodal under-686
standing across millions of tokens of context. ArXiv687
preprint, abs/2403.05530.688

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 689
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 690
Baptiste Rozière, Naman Goyal, Eric Hambro, 691
Faisal Azhar, et al. 2023. Llama: Open and effi- 692
cient foundation language models. arXiv preprint 693
arXiv:2302.13971. 694

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan 695
Tao, Zhihong Zhu, Xin Wang, Siqi Luo, Jing Xiong, 696
and Mi Zhang. 2024. D2o: Dynamic discriminative 697
operations for efficient generative inference of large 698
language models. ArXiv preprint, abs/2406.13035. 699

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei 700
Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu, 701
Yu Gai, et al. 2019. Deep graph library: A graph- 702
centric, highly-performant package for graph neural 703
networks. ArXiv preprint, abs/1909.01315. 704

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan 705
Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, 706
and Maosong Sun. 2024. Infllm: Training-free long- 707
context extrapolation for llms with an efficient con- 708
text memory. In Proc. of NeurIPS. 709

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 710
Han, and Mike Lewis. 2023. Efficient streaming 711
language models with attention sinks. ArXiv preprint, 712
abs/2309.17453. 713

June Yong Yang, Byeongwook Kim, Jeongin Bae, 714
Beomseok Kwon, Gunho Park, Eunho Yang, Se Jung 715
Kwon, and Dongsoo Lee. 2024a. No token left be- 716
hind: Reliable kv cache compression via importance- 717
aware mixed precision quantization. ArXiv preprint, 718
abs/2402.18096. 719

Shuo Yang, Ying Sheng, Joseph E Gonzalez, Ion 720
Stoica, and Lianmin Zheng. 2024b. Post-training 721
sparse attention with double sparsity. ArXiv preprint, 722
abs/2408.07092. 723

Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, 724
Xupeng Miao, Xiaonan Nie, Weipeng Chen, and Bin 725
Cui. 2024a. Pqcache: Product quantization-based kv- 726
cache for long context llm inference. ArXiv preprint, 727
abs/2407.12820. 728

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang 729
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai, 730
Shuo Wang, Zhiyuan Liu, et al. 2024b. bench: Ex- 731
tending long context evaluation beyond 100k tokens. 732
In Proc. of ACL, pages 15262–15277. 733

Xuan Zhang, Cunxiao Du, Chao Du, Tianyu Pang, Wei 734
Gao, and Min Lin. 2024c. Simlayerkv: A simple 735
framework for layer-level kv cache reduction. ArXiv 736
preprint, abs/2410.13846. 737

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 738
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, 739
Yuandong Tian, Christopher Ré, Clark W. Barrett, 740
Zhangyang Wang, and Beidi Chen. 2023. H2O: 741
heavy-hitter oracle for efficient generative inference 742
of large language models. In Proc. of NeurIPS. 743

10

https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2409.10516
https://arxiv.org/abs/2409.10516
https://arxiv.org/abs/2409.10516
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://arxiv.org/abs/2402.02750
https://arxiv.org/abs/2402.02750
https://arxiv.org/abs/2402.02750
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2312.04985
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://arxiv.org/abs/2406.10774
https://arxiv.org/abs/2406.10774
https://arxiv.org/abs/2406.10774
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2406.13035
https://arxiv.org/abs/2406.13035
https://arxiv.org/abs/2406.13035
https://arxiv.org/abs/2406.13035
https://arxiv.org/abs/2406.13035
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2408.07092
https://arxiv.org/abs/2408.07092
https://arxiv.org/abs/2408.07092
https://arxiv.org/abs/2407.12820
https://arxiv.org/abs/2407.12820
https://arxiv.org/abs/2407.12820
https://arxiv.org/abs/2410.13846
https://arxiv.org/abs/2410.13846
https://arxiv.org/abs/2410.13846
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html

A Comparison with Other Approaches744

Figure 10 compares TailorKV with other methods:745

(a) Full cache retains the entire KV cache. (b) The746

eviction methods permanently evict specific tokens747

from each layer, leading to irreversible information748

loss since evicted tokens may be important later. (c)749

The selection methods offload the entire KV cache750

to the CPU, enabling tokens recall but incurring751

significant communication overhead because of the752

large volume of tokens involved. (d) Our method753

employs layer-specific compression strategies, fa-754

cilitating more aggressive compression.755

(b) Eviction Strategy

(H2O/SnapKV)

(a) Full Cache

L
ay

er
 I

n
d

ex

Token Index

L
ay

er
 I

n
d

ex

Token Index

L
ay

er
 I

n
d

ex

Token Index

L
ay

er
 I

n
d

ex

Token Index

(c) Selection Strategy

(Infllm/PQCache/InfiniGen)
(d) Ours

Current Layer

Evited Token Offloaded Token Quantized Token

Important TokenCurrent Token

Irreversible strategy

leads to information loss.

Figure 10: Comparison of TailorKV with other methods
in managing KV cache budget across layers.

B Inter-Layer Similarity756

Let hl denote the hidden state at the l-th layer. To757

quantify the similarity between the hidden states of758

two adjacent layers, we employ cosine similarity,759

which is formally defined as:760

sim(h(l−1),h(l)) =
h(l−1) · h(l)

∥h(l−1)∥∥h(l)∥
. (11)761

We define the query weight at the l-th layer as W (l)
q .762

As shown in Figure 11, h(l) and h(l−1) closely763

resemble each other, allowing us to approximate764

the query at the l-th layer based on the hidden state765

from the l − 1-th layer:766

q̂(l) = W(l)
q (h(l−1)). (12)767

Existing research (Liu et al., 2024a) has eluci-768

dated that the KV cache exhibits similarity across769

adjacent layers. However, as illustrated in Fig- 770

ure 11, the similarity between q̂(l) and q(l) exceeds 771

that between q(l−1) and q(l), suggesting that using 772

hidden states from the preceding layer enhances 773

prediction accuracy. 774

1 5 9 13 17 21 25 29
Layer Index l

0.0

0.2

0.4

0.6

0.8

1.0

C
os

 S
im

ila
rit

y

sim(q(l), q(l))

sim(q(l 1), q(l))

sim(h(l 1), h(l))

Figure 11: Cosine similarity between adjacent layers.

C Offline Identification on Different 775

Datasets 776

As shown in Figure 12, the curves represent dif- 777

ferent datasets. The distribution of P is consistent 778

across various datasets for the same model, indi- 779

cating that the metric P effectively captures the 780

characteristics of different layers, enabling appro- 781

priate compression strategy. 782

0 3 6 9 12 15 18 21 24 27 30
Layer

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

se
 P

re
fe

re
nc

e
Sc

or
e

threshold

Llama-3.1-8B-Instruct

0 3 6 9 12 15 18 21 24 27 30
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

se
 P

re
fe

re
nc

e
Sc

or
e

threshold

Llama-2-7B-32K-Instruct

Figure 12: Dense preference score P for layers across
different offline datasets.

11

Methos Ratio Qspr MulFi HQA WMQA GRpt MulN TREC SMSM TriQA Repo LCC PsgC PsgR Avg.

Llama-3.1-8B 1× 45.5 53.8 54.7 47.1 34.9 27.5 73.0 43.8 91.6 56.7 63.4 7.5 99.5 53.8

SimLayerKV 1.53× 45.6 52.3 54.5 44.5 32.2 26.9 71.5 43.8 91.3 54.9 62.8 7.9 95.5 52.6
TailorKV-1 34.2× 43.4 53.0 55.3 46.5 31.3 27.2 70.0 42.5 91.6 54.8 61.8 7.9 99.0 52.6
TailorKV-2 32.7× 44.8 53.9 54.8 46.2 31.9 26.8 70.5 43.2 92.3 54.2 62.1 7.7 99.0 52.9

Table 5: Performance comparison between TailorKV and SimLayerKV. TailorKV computes only 64 (+128) tokens
for sparsity-friendly layers. SimLayerKV retains the most recent 1024 tokens for the "lazy" layers, while the
"non-lazy" layers preserve full precision. Additionally, the threshold for SimLayerKV on Llama-3.1-8B is 0.9, with
more than half of the layers being "non-lazy."

Methods Configurations

StreamingLLM num local: 128, num initial: 64

SnapKV window size: 64, max capacity prompt:
128, kernel size: 7, pooling: max pooling

Quest page size: 16, token budget: 196

PQCache partitions in PQ: 2, bits for PQ codes: 6,
K-Means iterations: adaptive, nlocal: 64,
ntopk: 128

TailorKV-1 τ : 0.2, bit size: 1, group size: 64, nlocal:
64, ntopk: 128, num critical channels: 8

TailorKV-2 τ : 0.2, bit size: 2, group size: 64, nlocal:
64, ntopk: 128, num critical channels: 8

Table 6: Configurations of long-context methods on
LongBench.

Methods Configurations

StreamingLLM num local: 896, num initial: 128

SnapKV window size: 128, max capacity prompt:
896, kernel size: 7, pooling: max pooling

Quest page size: 16, token budget: 1024

PQCache partitions in PQ: 2, bits for PQ codes: 6,
K-Means iterations: 1 (exceeding 64k),
nlocal: 128, ntopk: 896

TailorKV-1 τ : 0.2, bit size: 1, group size: 64, nlocal:
128, ntopk: 896, num critical channels: 12

TailorKV-2 τ : 0.2, bit size: 2, group size: 64, nlocal:
128, ntopk: 896, num critical channels: 12

Table 7: Configurations of long-context methods on
InfiniteBench and RULER.

D Baselines Settings783

In Table 6 and Table 7, we present the configura-784

tion for the long-context methods employed in our785

experiments.786

E Comparison with Hybrid Method787

To validate the effectiveness of our quantization-788

sparsity hybrid framework, we compare it to Sim-789

LayerKV (Zhang et al., 2024c), a similar hybrid790

method. SimLayerKV assumes that some layers in 791

LLMs exhibit "lazy" behavior, retaining only the 792

initial and most recent tokens, while "non-lazy" 793

layers require full precision to retain all tokens. 794

Table 5 presents the experimental results on Long- 795

Bench. The results show that at an average com- 796

pression rate of 34.2×, the performance of our 797

method is comparable to that of SimLayerKV at 798

a 1.53× compression rate. Our approach achieves 799

optimal performance with minimal memory over- 800

head, providing strong evidence for the practicality 801

of this quantization-sparsity hybrid architecture. In 802

contrast, SimLayerKV requires real-time identifi- 803

cation of layer types based on historical attention 804

scores, making it incompatible with FlashAttention. 805

This introduces additional computational and mem- 806

ory overhead, which increases latency and may 807

cause out-of-memory issues. 808

F Effectiveness of Dynamic Retrieval 809

Table 8 presents a comparison of retrieval accuracy 810

between our sparsity-friendly layers and alternative 811

methods, using the Llama-3.1-8B-Instruct model 812

on the LongBench benchmark. Specifically, we 813

retain full precision for the KV cache in the 0th 814

layer of StreamLLM, SnapKV, and Quest, thereby 815

preserving the global information in the 0th layer. 816

TailorKV-1 and TailorKV-2 represent the quan- 817

tization of the 0th layer’s KV cache to 1-bit and 818

2-bit precision, respectively. 819

The experimental results demonstrate that our 820

retrieval method outperforms other sparse methods 821

when the global information is preserved in the 822

0th layer. Specifically, TailorKV applies quantiza- 823

tion to the 0th layer, whereas other methods use 824

full precision (16-bit), and the attention calculation 825

utilizes the same tokens from layer 1 to layer 31. 826

This notable performance advantage highlights that 827

our retrieval method effectively identifies the most 828

important tokens, thereby minimizing the loss of 829

crucial information. 830

12

Methos Tokens Qspr MulFi HQA WMQA GRpt MulN TREC SMSM TriQA Repo LCC PsgC PsgR Avg.

Llama-3.1-8B 128k 45.5 53.8 54.7 47.1 34.9 27.5 73.0 43.8 91.6 56.7 63.4 7.5 99.5 53.8

StreamLLM‡ 192 21.4 31.3 46.5 38.9 17.9 18.0 40.0 34.4 75.7 45.7 50.7 8.0 99.0 40.6
StreamLLM† 192 21.6 30.8 45.5 39.0 18.4 17.9 40.5 34.1 75.6 45.5 52.8 8.0 99.0 40.7
SnapKV‡ 192 25.7 44.7 52.6 43.7 20.0 20.5 41.0 39.6 89.0 48.7 57.0 8.0 97.0 45.2
SnapKV† 192 32.4 47.0 54.6 44.0 21.9 22.8 48.0 40.0 90.3 51.9 59.9 8.0 98.0 47.6
Quest‡ 192 35.9 44.2 52.8 41.0 17.7 23.8 63.0 36.0 86.0 43.6 52.3 8.4 96.5 46.2
Quest† 192 39.1 45.1 52.4 43.4 21.1 25.6 65.5 38.7 88.1 44.8 52.0 8.1 97.0 47.8
TailorKV-1 64(+128) 43.4 53.0 55.3 46.5 31.3 27.2 70.0 42.5 91.6 54.8 61.8 7.9 99.0 52.6
TailorKV-2 64(+128) 44.8 53.9 54.8 46.2 31.9 26.8 70.5 43.2 92.3 54.2 62.1 7.7 99.0 52.9

Table 8: Effectiveness of dynamic retrieval. Methods marked with † indicate that the 0th layer of the model retains
the full-precision (16-bit) KV cache, while methods marked with ‡ indicate that all layers use the same compression
strategy. TailorKV-1 and TailorKV-2 store the KV cache as 1-bit and 2-bit, respectively, in the 0th layer.

G More Information on Models and831

Benchmarks832

G.1 Baselines833

In all of our experiments, we use pre-trained model834

weights obtained from Huggingface. These models835

are based on two representative attention structures:836

(1) MHA: including Llama-2-7B-32K-Instruct3.837

(2) GQA: including Llama-3.1-8B-Instruct4, Yi-838

6B-200K5, and Yi-9B-200K6. Detailed information839

about the four models can be found in Table 9.840

To showcase the state-of-the-art performance of841

our method, we compare TailorKV with the fol-842

lowing baselines: (1) StreamingLLM (Xiao et al.,843

2023): An eviction strategy that retains only the ini-844

tial and most recent tokens. (2) SnapKV (Li et al.,845

2024): An eviction strategy that chooses clustered846

important KV positions. (3) Quest (Tang et al.,847

2024): A selection strategy that determines page848

criticality through paged key. (4) PQCache (Zhang849

et al., 2024a): A selection strategy that retrieves850

Top-K tokens through vector quantization.851

G.2 Benchmarks852

LongBench (Bai et al., 2024). A benchmark is853

conducted across six categories: summarization,854

code completion, synthetic tasks, few-shot learn-855

ing, and single/multi-document question answering.856

Table 10 presents detailed information on the 13857

datasets in LongBench.858

InfiniteBench (Zhang et al., 2024b). A bench-859

mark designed to assess the ability of language860

3https://huggingface.co/togethercomputer/
Llama-2-7B-32K-Instruct

4https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

5https://huggingface.co/01-ai/Yi-6B-200K
6https://huggingface.co/01-ai/Yi-9B-200K

models to process, understand, and reason with 861

extremely long contexts (200k+ tokens). We test 862

the Llama3 and Yi models with context lengths of 863

128K and 200K, truncating inputs beyond these 864

limits. Table 11 provides details of the 9 datasets 865

in InfiniteBench. 866

RULER (Hsieh et al., 2024). A benchmark in- 867

tended to assess the long-context modeling capabil- 868

ities of language models, covering question answer- 869

ing, retrieval, aggregation, and multi-hop tracing. 870

This benchmark consists of 13 representative tasks, 871

with sequence lengths ranging from 4K to 128K. 872

For each task, we employed 25 samples. Detailed 873

information is provided in Table 12. 874

H Detailed Results 875

H.1 Accuracy on Long Context Tasks 876

As shown in Figure 13, TailorKV consistently out- 877

performs other methods on the RULER benchmark 878

for Yi-6B-200K (01-ai, 2024a). Additionally, Ta- 879

ble 16 shows accuracy results for sequence lengths 880

of 64k and 128k on RULER. Table 14 and Table 15 881

present experimental results for LongBench and 882

InfiniteBench. 883

4K 8K 16K 32K 64K 128K
Sequence Length

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Full
StreamLLM
SnapKV
Quest

PQCache
TailorKV-1
TailorKV-2

Figure 13: Performance comparison of various methods
on RULER with Yi-6B-200K.

13

https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/01-ai/Yi-6B-200K
https://huggingface.co/01-ai/Yi-9B-200K

Name Claimed Length Query Heads KV Heads Num Layers Q

Llama-3.1-8B-Instruct 128k 32 8 32 {0}
Llama-2-7B-32K-Instruct 32k 32 32 32 {0, 1}
Yi-6B-200K 200k 32 4 32 {0, 1}
Yi-9B-200K 200k 32 4 48 {0, 1}

Table 9: Details of models. Q denotes the quantization-friendly layer.

Label Task Capability Metric Avg len #data

Qspr Qasper Single-Doc. QA (SD.QA) F1 3,619 200
MulFi MultiFieldQA-en Single-Doc. QA (SD.QA) F1 4,559 150
HQA HotpotQA Multi-Doc. QA (MD.QA) F1 9,151 200
WMQA 2WikiMultihopQA Multi-Doc. QA (MD.QA) F1 4,887 200
GRpt GovReport Summarization (Summ) Rouge-L 8,734 200
MulN MultiNews Summarization (Summ) Rouge-L 2,113 200
TREC TREC Few-shot Learning (FS.L) Accuracy (CLS) 5,177 200
SMSM SAMSum Few-shot Learning (FS.L) Rouge-L 6,258 200
TriQA TriviaQA Few-shot Learning (FS.L) F1 8,209 200
Lcc LCC Code Completion (Code) Edit Sim 1,235 500
Repo RepoBench-P Code Completion (Code) Edit Sim 4,206 500
PsgC PassageCount Synthetic (Synth) Accuracy (EM) 11,141 200
PsgR PassageRetrieval-en Synthetic (Synth) Accuracy (EM) 9,289 200

Table 10: Details of LongBench.

Label Task Context Capability Metric Avg len #Examples

R.PK Retrieve.PassKey Fake Book Retrieve (Retr) Accuracy 122.4k 590
R.Num Retrieve.Number Synthetic Retrieve (Retr) Accuracy 122.4k 590
En.Dia En.Dia Script Dialogue (Dia) Accuracy 103.6k 200
Sum En.Sum Fake Book Novel Rouge-L-Sum 171.5k 103
En.MC En.MC Fake Book Novel Accuracy 184.4k 229
En.QA En.QA Fake Book Novel QA F1 Score 192.6k 351
Zh.QA Zh.QA New Book Novel QA F1 Score 2068.6k 175
Math.F Math.Find Synthetic Math Accuracy 87.9k 350
Code.D Code.Debug Code Document Code Accuracy 114.7k 394

Table 11: Details of InfiniteBench.

Label Task Category

N-S1 Single NIAH Retrieval
N-S2 Single NIAH Retrieval
N-S3 Single NIAH Retrieval
N-MK1 Multi-keys NIAH Retrieval
N-MK2 Multi-keys NIAH Retrieval
N-MK3 Multi-keys NIAH Retrieval
N-MV Multi-values NIAH Retrieval
N-MQ Multi-queries NIAH Retrieval
VT Variable Tracking Multi-hop Tracing
CWE Common Words Aggregation
FWE Frequent Words Extraction Aggregation
QA-1 Question Answering Question Answering
QA-2 Question Answering Question Answering

Table 12: Details of RULER.

14

H.2 Efficiency Results884

In Table 13, we present the end-to-end latency for885

Llama-3.1-8B-Instruct, Llama-2-7B-32K-Instruct,886

Yi-6B-200K, and Yi-9B-200K. The results indicate887

that our method achieves efficiency closest to that888

of the original model.

Method 16k 32k 64k 96k 128k

Llama-3.1-8B-Instruct

Full Cache 0.024 0.033 0.050 0.062 0.082
OffloadCach 0.124 0.227 0.435 0.743 0.992
PQCache 0.104 0.105 0.108 0.108 0.110
TailorKV 0.045 0.047 0.054 0.054 0.056

Llama-2-7B-32K-Instruct

Full Cache 0.045 0.077 0.140 OOM OOM
OffloadCach 0.433 0.838 1.767 3.253 4.468
PQCache 0.108 0.111 0.112 0.115 0.120
TailorKV 0.041 0.062 0.098 0.132 0.170

Yi-6B-200K

Full Cache 0.019 0.021 0.029 0.036 0.044
OffloadCach 0.066 0.118 0.221 0.325 0.430
PQCache 0.085 0.087 0.090 0.092 0.094
TailorKV 0.041 0.042 0.046 0.049 0.056

Yi-9B-200K

Full Cache 0.029 0.032 0.043 0.055 0.070
OffloadCach 0.102 0.205 0.417 0.626 0.843
PQCache 0.130 0.138 0.139 0.144 0.150
TailorKV 0.066 0.067 0.072 0.076 0.079

Table 13: Decoding latency(s) on A100 (80G).
889

I Inference Algorithm Overview890

Figure 14 provides the PyTorch-style pseudo-code891

of the TailorKV algorithm. Lines 2-7 illustrate the892

initialization process. To reduce memory alloca-893

tion overhead, tensors are allocated on the specified894

device during the initialization phase. Simultane-895

ously, a thread pool is used to manage the parallel896

execution of multiple threads.897

During prefilling, for quantization-friendly lay-898

ers, TailorKV quantizes the KV cache and stores899

the quantization parameters (Lines 19-21), then900

calculates attention (Line 68) using FlashAtten-901

tion (Dao, 2023). For sparsity-friendly layers, Tai-902

lorKV transfers the KV cache to CPU memory and903

calculates attention (Line 68) using FlashAttention.904

During decoding, for quantization-friendly lay-905

ers, TailorKV integrates the quantized KV cache906

into the attention calculation. For sparsity-friendly907

layers, Lines 24-37 illustrate the process of dynami-908

cally retrieving Top-K tokens. Specifically, at layer909

l− 1, the algorithm first estimates the critical chan-910

nels (Equation 10) and prefetches the critical key911

cache for the next layer (Lines 52-58). Next, it uses 912

the critical current query and the prefetched key 913

cache to approximate the attention scores (Lines 39- 914

45), and then fetches the Top-K tokens (Lines 46- 915

51) at layer l. 916

J Attention Visualization Across Models 917

As shown in Figure 15, the attention patterns of dif- 918

ferent models closely match the results predicted by 919

our usage metric P . Specifically, the quantization- 920

friendly layers of Llama-2-7B-32K-Instruct and Yi- 921

6B-200K are identified as the 0th and 1st layers. In 922

these layers, attention patterns are dense, while the 923

other layers are sparse. Similarly, the quantization- 924

friendly layer of Llama-3.1-8B-Instruct is the 0th 925

layer, where attention pattern is dense, with sparse 926

features in the remaining layers. 927

K Observations on QKV 928

Figure 16 illustrates the distribution patterns of 929

queries, keys, and values across different attention 930

heads in Llama-3.1-8B-Instruct. Although outliers 931

appear in both the keys and queries, the locations 932

of the outlier channels are not consistently fixed. 933

L Information About Use Of Ai 934

Assistants 935

We use Copilot and ChatGPT to assist us with de- 936

bugging and writing. 937

15

Method Tokens
SD.QA MD.QA Summ FS.L Code Synth

Avg.
Qspr MulFi HQA WMQA GRpt MulN TREC SMSM TriQA Repo LCC PsgC PsgR

Llama-3.1-8B 128k 45.5 53.8 54.7 47.1 34.9 27.5 73.0 43.8 91.6 56.7 63.4 7.5 99.5 53.8
StreamLLM 192 21.4 31.3 46.5 38.9 17.9 18.0 40.0 34.4 75.7 45.7 50.7 8.0 99.0 40.6
SnapKV 192 25.7 44.7 52.6 43.7 20.0 20.5 41.0 39.6 89.0 48.7 57.0 8.0 97.0 45.2
Quest 192 35.9 44.2 52.8 41.0 17.7 23.8 63.0 36.0 86.0 43.6 52.3 8.4 96.5 46.2
PQCache 192 45.6 51.2 53.8 45.3 29.0 25.9 69.5 41.2 91.3 54.1 58.5 8.2 99.0 51.7
TailorKV-1 64(+128) 43.4 53.0 55.3 46.5 31.3 27.2 70.0 42.5 91.6 54.8 61.8 7.9 99.0 52.6
TailorKV-2 64(+128) 44.8 53.9 54.8 46.2 31.9 26.8 70.5 43.2 92.3 54.2 62.1 7.7 99.0 52.9

Yi-9B 200k 38.4 34.9 52.7 36.7 31.0 26.7 77.0 14.9 90.0 67.4 71.9 2.5 67.5 47.0
StreamLLM 192 22.3 20.4 36.7 30.6 11.8 10.3 45.5 9.2 77.7 49.6 54.1 3.5 26.0 30.6
SnapKV 192 26.7 23.3 44.2 33.4 11.5 12.3 44.5 13.4 89.1 56.6 62.8 1.6 36.0 35.0
Quest 192 32.4 26.0 44.2 31.5 14.3 16.5 73.0 13.4 86.2 55.6 63.7 3.9 47.5 39.1
PQCache 192 36.9 27.9 47.6 35.5 19.3 19.2 74.0 12.2 89.6 62.0 66.8 4.6 51.0 42.0
TailorKV-1 64(+128) 37.7 38.2 52.8 35.8 29.8 24.9 76.0 15.2 89.5 64.3 68.4 3.5 45.0 44.7
TailorKV-2 64(+128) 37.6 33.6 52.6 34.4 29.4 25.3 76.0 15.0 89.3 63.5 68.5 3.0 44.0 44.0

Yi-6B 200k 25.4 39.5 14.8 15.8 2.8 0.01 72.5 7.7 69.7 58.5 61.2 3.5 15.5 29.7
StreamLLM 192 11.0 29.0 11.1 12.1 3.1 0.1 41.5 5.1 55.5 43.1 46.2 3.0 5.0 20.4
SnapKV 192 14.9 33.5 13.1 13.0 3.3 0.01 45.0 6.6 63.8 48.8 53.7 3.0 4.5 23.3
Quest 192 19.9 33.2 11.8 13.2 0.5 0.1 67.0 9.4 64.5 50.2 53.7 3.5 13.5 26.2
PQCache 192 24.1 36.8 13.6 15.3 1.3 0.01 68.5 7.6 68.1 54.1 57.4 2.5 5.5 27.3
TailorKV-1 64(+128) 24.5 40.5 15.6 15.3 2.7 0.1 72.0 8.5 68.3 55.2 56.5 2.5 5.5 28.3
TailorKV-2 64(+128) 24.1 40.8 15.2 15.5 3.0 0.01 72.0 8.6 66.7 54.8 57.9 2.5 5.5 28.2

Table 14: Results on LongBench (Bai et al., 2024) of different methods.

Methods Tokens R.PK R.Num En.Dia Sum En.MC En.QA Zh.QA Math.F Code.D Avg.

Llama-3.1-8B 128K 100.0 99.3 19.0 26.8 65.9 14.8 13.3 34.0 22.8 44.0
StreamLLM 1024 3.3 3.0 7.0 12.7 66.3 5.9 9.7 34.0 22.8 18.3
SnapKV 1024 100.0 93.2 9.5 22.4 65.5 10.4 11.3 34.0 22.8 41.0
Quest 1024 100.0 28.9 14.0 12.2 69.8 9.2 11.4 34.0 25.1 33.8
PQCache 1024 8.6 2.5 15.0 18.9 65.9 12.6 12.6 34.0 23.3 21.5
TailorKV-1 128+(896) 99.8 73.2 18.0 22.8 66.4 13.6 13.0 34.0 22.8 40.4
TailorKV-1 128+(896) 100.0 89.4 18.5 24.1 66.8 14.4 12.9 34.0 22.8 42.6

Yi-9B 200K 100.0 100.0 2.5 8.2 65.0 10.8 16.7 23.4 26.3 39.2
StreamLLM 1024 2.5 0.5 2.5 6.4 66.8 8.8 15.0 23.7 21.3 16.4
SnapKV 1024 99.8 18.3 3.0 8.6 67.6 8.4 14.9 22.5 26.6 30.0
Quest 1024 100.0 96.9 4.0 3.4 58.5 12.5 12.7 18.2 18.7 36.1
PQCache 1024 9.6 5.9 2.0 8.7 66.3 11.2 14.9 22.2 25.6 18.5
TailorKV-1 128+(896) 100.0 98.3 2.5 7.3 64.2 15.1 19.7 24.0 21.3 39.2
TailorKV-1 128+(896) 100.0 99.7 4.5 8.2 65.1 11.2 16.6 24.0 24.9 39.4

Yi-6B 200K 100.0 98.4 1.0 3.4 53.3 18.2 26.0 6.8 26.9 37.1
StreamLLM 1024 3.3 0.6 0.0 3.9 52.8 10.2 20.2 4.8 25.8 13.5
SnapKV 1024 100.0 11.5 2.5 3.1 53.2 14.1 22.2 4.5 26.9 26.4
Quest 1024 100.0 99.1 3.0 3.6 52.4 13.4 18.8 5.1 26.6 35.8
PQCache 1024 10.1 3.7 1.5 4.4 51.5 16.4 26.2 5.7 26.9 16.3
TailorKV-1 128+(896) 100.0 97.5 2.5 4.4 53.3 17.4 26.0 7.7 26.4 37.2
TailorKV-1 128+(896) 100.0 97.0 3.0 4.0 53.3 18.0 25.8 8.0 26.7 37.3

Table 15: Results on InfiniteBench (Zhang et al., 2024b) of different methods.

16

Methods N-S1 N-S2 N-S3 N-MK1 N-MK2 N-MK3 N-MV N-MQ VT CWE FWE QA-1 QA-2 Avg.

Sequence Length = 64k

Llama-3.1-8B 100.0 100.0 100.0 100.0 100.0 96.0 99.0 100.0 100.0 14.8 92.0 60.0 52.0 85.6
StreamLLM 8.0 4.0 0.0 8.0 0.0 0.0 5.0 3.0 2.4 0.8 72.0 28.0 28.0 12.2
SnapKV 96.0 84.0 0.0 88.0 32.0 0.0 40.0 69.0 74.4 0.8 41.3 56.0 48.0 48.4
Quest 88.0 100.0 60.0 92.0 72.0 0.0 93.0 90.0 80.0 8.4 70.6 52.0 52.0 66.0
PQCache 36.0 60.0 12.0 68.0 48.0 4.0 16.0 37.0 52.8 0.0 73.3 56.0 48.0 39.2
TailorKV-1 100.0 100.0 96.0 100.0 96.0 28.0 99.0 100.0 85.6 18.4 57.3 56.0 48.0 75.7
TailorKV-2 100.0 100.0 100.0 100.0 96.0 68.0 97.0 98.0 88.0 19.6 62.7 60.0 56.0 80.4

Yi-9B 100.0 100.0 100.0 100.0 92.0 48.0 61.0 88.0 12.8 15.6 88.0 32.0 48.0 68.1
StreamLLM 0.0 4.0 0.0 4.0 0.0 0.0 1.0 0.0 0.0 1.2 74.6 16.0 28.0 9.9
SnapKV 80.0 28.0 0.0 20.0 4.0 0.0 11.0 11.0 22.4 5.6 48.0 24.0 44.0 22.9
Quest 68.0 92.0 20.0 68.0 40.0 0.0 24.0 42.0 16.0 10.8 62.6 28.0 36.0 39.0
PQCache 32.0 56.0 4.0 36.0 16.0 0.0 7.0 39.0 31.2 6.0 66.6 20.0 36.0 26.9
TailorKV-1 100.0 100.0 92.0 100.0 84.0 28.0 53.0 89.0 6.4 32.0 49.3 32.0 48.0 62.6
TailorKV-2 100.0 100.0 92.0 100.0 84.0 28.0 62.0 90.0 42.4 33.6 48.0 28.0 48.0 65.8

Yi-6B 100.0 100.0 100.0 96.0 56.0 24.0 39.0 76.0 24.8 0.8 73.3 32.0 24.0 57.3
StreamLLM 0.0 0.0 0.0 8.0 0.0 0.0 3.0 0.0 0.0 0.4 62.6 20.0 16.0 8.5
SnapKV 88.0 4.0 0.0 16.0 0.0 0.0 5.0 7.0 15.2 0.0 65.3 28.0 20.0 19.1
Quest 72.0 84.0 0.0 52.0 20.0 0.0 28.0 30.0 20.0 1.6 56.0 24.0 20.0 31.3
PQCache 16.0 20.0 0.0 28.0 8.0 0.0 5.0 3.0 10.4 0.0 50.6 24.0 24.0 14.5
TailorKV-1 100.0 100.0 100.0 96.0 12.0 24.0 41.0 65.0 28.8 1.2 58.7 28.0 24.0 52.2
TailorKV-2 100.0 100.0 100.0 100.0 24.0 28.0 40.0 67.0 42.4 0.8 57.3 32.0 24.0 55.1

Sequence Length = 128k

Llama-3.1-8B 100.0 100.0 100.0 100.0 88.0 64.0 96.0 98.0 95.2 1.6 66.6 64.0 36.0 77.6
StreamLLM 0.0 4.0 0.0 0.0 4.0 0.0 5.0 4.0 0.0 0.4 9.3 24.0 20.0 5.4
SnapKV 100.0 84.0 0.0 84.0 24.0 0.0 19.0 38.0 65.6 0.0 28.0 48.0 32.0 40.2
Quest 80.0 68.0 0.0 88.0 48.0 0.0 66.0 71.0 59.2 0.4 52.0 48.0 28.0 46.8
PQCache 0.0 8.0 0.0 4.0 8.0 0.0 2.0 3.0 0.8 0.0 66.6 40.0 32.0 12.6
TailorKV-1 92.0 92.0 100.0 100.0 64.0 0.0 93.0 98.0 67.2 0.4 16.0 60.0 40.0 63.3
TailorKV-2 100.0 92.0 100.0 100.0 64.0 16.0 96.0 97.0 85.6 0.4 40.0 64.0 36.0 68.5

Yi-9B 100.0 100.0 100.0 96.0 80.0 28.0 69.0 84.0 10.4 3.6 89.3 36.0 36.0 64.0
StreamLLM 0.0 4.0 4.0 0.0 0.0 0.0 2.0 1.14 0.0 0.0 86.6 16.0 24.0 10.6
SnapKV 92.0 12.0 0.0 20.0 4.0 0.0 12.0 4.0 7.2 2.0 53.3 20.0 32.0 19.9
Quest 100.0 84.0 4.0 72.0 24.0 0.0 28.0 28.0 16.8 0.8 69.3 24.0 32.0 37.1
PQCache 8.0 16.0 0.0 24.0 4.0 0.0 2.0 5.0 4.0 0.4 77.3 16.0 28.0 14.2
TailorKV-1 100.0 100.0 96.0 96.0 72.0 20.0 44.0 79.6 19.2 23.2 44.0 40.0 32.0 58.9
TailorKV-2 100.0 100.0 96.0 96.0 76.0 20.0 55.0 80.0 48.8 24.0 41.3 36.0 32.0 61.9

Yi-6B 100.0 100.0 100.0 84.0 72.0 4.0 30.0 67.0 4.8 1.2 100.0 32.0 24.0 55.3
StreamLLM 0.0 4.0 4.0 0.0 0.0 0.0 2.0 1.0 0.0 0.8 68.0 20.0 16.0 8.9
SnapKV 76.0 0.0 0.0 16.0 0.0 0.0 1.0 4.0 8.0 0.8 69.3 20.0 16.0 16.2
Quest 96.0 72.0 0.0 72.0 20.0 0.0 17.0 23.0 6.4 0.8 49.3 16.0 8.0 29.2
PQCache 0.0 8.0 0.0 12.0 4.0 0.0 1.0 2.0 0.0 0.0 54.6 24.0 28.0 10.2
TailorKV-1 100.0 100.0 100.0 84.0 16.0 0.0 25.0 47.0 3.2 0.8 61.3 32.0 22.7 45.5
TailorKV-2 100.0 100.0 100.0 84.0 28.0 4.0 21.0 48.0 14.4 1.2 60.0 32.0 20.0 47.1

Table 16: Accuracy (%) of different methods and models on RULER (Hsieh et al., 2024) evaluated at length of 64k
and 128k. The sparsity-friendly layer in TailorKV uses 128+(896) tokens, while other methods use 1024 tokens.

17

1 class TailorKV(Cache):
2 def __init__(self, layers):
3 self.quant_layer = [], self.quant_unit = [] # quantization parameters
4 self.cpu_k, self.cpu_v = [], [] # CPU
5 self.static_k, self.static_v, self.critical_k, self.quant_unit = [], [], [], [] # GPU
6 self.executor = ThreadPoolExecutor(max_workers = max_workers), self.future = [None for _ in range(self.num_layers)]
7 ...
8 def update(self, key_states, value_states, query_states, next_layer_q, layer_idx):
9 if prefill: # prefilling

10 if layer_idx not in self.quant_layer: # sparsity-friendly layer
11 # Offload the KV Cache to CPU
12 self.cpu_k[layer_idx].copy_(key_states), self.cpu_v[layer_idx].copy_(value_cache)
13 self.trans_cpu_k[layer_idx].copy_(key_states.transpose(2, 3))
14 # Retain the local and initial tokens on the GPU
15 self.static_k[layer_idx][:,:,:self.initial,:] = key_states[:,:,:self.initial,:]
16 self.static_k[layer_idx][:,:,-self.local:,:] = key_states[:,:,-self.local:,:]
17 self.static_v[layer_idx][:,:,:self.initial,:] = value_states[:,:,:self.initial,:]
18 self.static_v[layer_idx][:,:,-self.local:,:] = value_states[:,:,-self.local:,:]
19 else: # quantization-friendly layer
20 ...
21 self.quant_unit[layer_idx] = (k_quant, k_scale, k_zp, v_quant, v_scale, v_zp)
22 self.absmax_k[layer_idx] = torch.max(torch.abs(key_states), dim = 2, keepdim = True)[0]
23 else: # decoding
24 if layer_idx not in self.quant_layer: # sparsity-friendly layer
25 # Save new token
26 self.gen_k[layer_idx][:,:,self._gen_tokens-1:self._gen_tokens,:] = key_states
27 self.gen_v[layer_idx][:,:,self._gen_tokens-1:self._gen_tokens,:] = value_states
28 # Synchronize
29 self.future[layer_idx].result()
30 # Retrieval Top-K indices based on approximate attention score
31 topk_indices = self.approximate_attn(query_states, key_states, layer_idx)
32 flatten_index = self.index_prefix[:,None] + topk_indices.view(self.batch_size * self.num_kv_heads, self.budget)
33 # Load a portion of tokens to the GPU
34 select_k, select_v = self.load_gpu(layer_idx, flatten_index.view(-1))
35 # Prefetch critical key cache for next layer
36 self.future[(layer_idx+1) % self.num_layers] = self.executor.submit(self.prefecth_critical_k, next_layer_q,

layer_idx)
37 return select_k, select_v
38 else: ... # quantization-friendly layer
39 def approximate_attn(self, query_states, key_states, layer_idx):
40 ...
41 critical_q = torch.gather(reduce_q(query_states, kv_groups), dim=-1, index=self.channel_indices[layer_idx])
42 partial_att = torch.matmul(critical_q, self.critical_k[layer_idx & 1][:,:,:,:self._seen_tokens])
43 _, topk_indices = torch.topk(partial_att, k=self.budget, dim=-1)
44 topk_indices = topk_indices + self.initial
45 return topk_indices
46 def load_gpu(self, layer_idx, flatten_index):
47 self.cuda_k[:,:,self.initial + self.local:,:] = gather_pinned_tensor_rows(self.cpu_k[layer_idx].view(-1, self.head_dim),

flatten_index).view(self.batch_size, self.num_kv_heads, self.budget, self.head_dim)
48 self.cuda_v[:,:,self.initial + self.local:,:] = gather_pinned_tensor_rows(self.cpu_v[layer_idx].view(-1, self.head_dim),

flatten_index).view(self.batch_size, self.num_kv_heads, self.budget, self.head_dim)
49 self.cuda_k[:,:,:self.initial + self.local,:] = self.static_k[layer_idx]
50 self.cuda_v[:,:,:self.initial + self.local,:] = self.static_v[layer_idx]
51 return torch.cat([self.cuda_k, self.gen_k[layer_idx][:, :, :self._gen_tokens, :]], dim=2), torch.cat([self.cuda_v, self.

gen_v[layer_idx][:, :, :self._gen_tokens, :]], dim=2)
52 def prefecth_critical_k(self, next_layer_query, layer_idx):
53 if (layer_idx+1) not in self.quant_layer:
54 result = torch.mul(torch.abs(reduce_q(next_layer_q,self.num_kv_groups)), self.absmax_k[layer_idx+1])
55 _, top_channel = torch.topk(result, self.num_channel, dim=-1)
56 self.channel_indices[layer_idx+1] = top_channel
57 flatten_channel = self.channel_prefix[:,None] + top_channel.view(self.batch_size * self.num_kv_heads, self.num_channel)
58 self.critical_k[(layer_idx+1) & 1] = gather_pinned_tensor_rows(self.trans_cpu_k[layer_idx+1].view(-1, self.max_len),

flatten_channel.view(-1)).view(self.batch_size, self.num_kv_heads, self.num_channel, self.max_len)
59 def reduce_q(hidden_states, n_rep):
60 batch, num_attention_heads, slen, head_dim = hidden_states.shape
61 if n_rep == 1: return hidden_states # MHA
62 hidden_states = hidden_states.view(batch, num_attention_heads // n_rep, n_rep, slen, head_dim) # GQA
63 return hidden_states.mean(dim=2)
64 ...
65 def attention_forward(self, hidden_states, ..., past_key_value = Optional[Cache] = None):
66 if prefill: # prefilling
67 past_key_value.update(key_states, value_states, query_states, self.layer_idx)
68 attn_output = flash_attention(key_states, value_states, query_states)
69 else: # decoding
70 next_layer_q_proj = past_key_value.layers[(self.layer_idx+1) % self.num_layers].self_attn.q_proj
71 next_layer_q = next_layer_q_proj(hidden_states).view(bsz, 1, self.num_heads, self.head_dim).transpose(1, 2)
72 next_layer_q, _ = apply_rotary_pos_emb(next_layer_q, key_states, cos, sin, position_ids)
73 if self.layer_idx in past_key_value.quant_layer: ... # quantization-friendly layer
74 else: # sparsity-friendly layer
75 select_k, select_v = past_key_value.update(key_states, value_states, query_states, next_layer_q, self.layer_idx)
76 attn_output = flash_attention(select_k, select_v, query_states)

Figure 14: Implementation of TailorKV in pseudo PyTorch style.

18

(a) Visualization of attention weights on Llama-2-7B-32K-Instruct.

(b) Visualization of attention weights on Llama-3.1-8B-Instruct.

(c) Visualization of attention weights on Yi-6B-200K.

Figure 15: Visualization of attention weights across the 2WikiMQA dataset.

19

Figure 16: Magnitude of query, key and value for Llama-3.1-8B-Instruct.

20

	Introduction
	Preliminaries
	Attention and KV Cache
	Quantization of KV Cache
	GPU-CPU Co-execution

	Motivations and Observations
	Methodology
	Offline Identification
	Dynamic Retrieval
	Static Quantization
	Memory Footprint Analysis

	Experiments
	Experimental Setup
	Accuracy on Long Context Tasks
	Efficiency Results
	Ablation Study

	Related Work
	Conclusion
	Comparison with Other Approaches
	Inter-Layer Similarity
	Offline Identification on Different Datasets
	Baselines Settings
	Comparison with Hybrid Method
	Effectiveness of Dynamic Retrieval
	More Information on Models and Benchmarks
	Baselines
	Benchmarks

	Detailed Results
	Accuracy on Long Context Tasks
	Efficiency Results

	Inference Algorithm Overview
	Attention Visualization Across Models
	Observations on QKV
	Information About Use Of Ai Assistants

