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ABSTRACT

Personalized large language models (LLMs) are designed to tailor responses to
individual user preferences. While Reinforcement Learning from Human Feedback
(RLHF) is a commonly used framework for aligning LLMs with human preferences,
vanilla RLHF assumes that all human preferences share the same distribution,
preventing fine-tuned LLMs from generating personalized content when user
preferences are diverse. In this work, we propose Personalized-RLHF (P-RLHF),
an efficient framework that utilizes a lightweight user model to capture individual
user preferences and jointly learns the user model and the personalized LLM
from human feedback. P-RLHF exhibits the following three characteristics: (1) It
enables an LLM to generate personalized content and scale efficiently with growing
number of users. (2) It handles both explicit user preferences described as textual
input and implicit user preferences encoded in the feedback data. (3) It eliminates
the need for users to fully articulate their preferences, which are normally needed
for prompting LLMs to generate personalized content yet are often impractical to
obtain in real-world scenarios. Our experimental results show that personalized
LLMs trained using P-RLHF generate responses that are more closely aligned with
individual user preferences, outperforming vanilla, non-personalized RLHF and
prompting-based personalization approaches across different tasks.

1 INTRODUCTION

Personalization aims to generate tailored responses or recommendations to meet the unique pref-
erences of individual users, based on user information (e.g. demographic or interests) or their
historical data (Chen, 2023). It enhances user experience and engagement, making it crucial in a
wide range of domains including recommendation systems (Li et al., 2023b), chatbots (Ma et al.,
2021), healthcare (Kadariya et al., 2019), and education (Maghsudi et al., 2021). Large language
models (LLMs) (Brown et al., 2020; Chowdhery et al., 2022; Dubey et al., 2024) have demonstrated
exceptional capabilities in text generation, reasoning, and instruction following, leading to their use in
various real-world user-facing applications. As a result, personalizing LLMs to align with individual
user preferences has become a key research topic (Li et al., 2023a).

Reinforcement Learning from Human Feedback (RLHF) is a widely adopted framework to align
pre-trained LLMs with human preferences (Ziegler et al., 2019), by fine-tuning LLMs using human
feedback data in the form of preference comparisons or rankings over multiple generations. However,
standard RLHF approaches implicitly assume that all human preferences come from the same
distribution (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022; Rafailov et al., 2023),
limiting the ability of LLMs fine-tuned under such assumption to generate personalized responses
when user preferences encoded in human feedback are diverse or conflicting (Kirk et al., 2023). Recent
endeavors in developing RLHF-based (Wu et al., 2023; Jang et al., 2023) methods for personalizing
LLM outputs often require training separate reward models or LLMs for each preference dimension
(such as completeness, friendliness etc.), posing computational and storage challenges, particularly in
settings with large user bases that exhibit diverse and multifaceted preferences. Additionally, these
methods rely on predefined preference dimensions, limiting their flexibility, as it is often impractical
to exhaustively enumerate all user preference dimensions in real-world scenarios.

To build efficient and flexible personalized LLMs, we introduce the setting for Learning from
Personalized Human Feedback (Section 4), which leverages both user information in textual form
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Figure 1: Our Personalized RLHF framework. A personalized LLM (highlighted in orange) consists
of two key components: a learnable user model and a base LLM (introduced in Section 4.2). For
training, the user information ui and the preference data are collected from each user (in this example
there are 3 users i = 1, 2, 3). The user model maps the user information into user embeddings
(user-specific embeddings ei and the generic embedding e0 that captures the common preferences
shared across users), which are learned jointly with the base LLM using a new P-RLHF learning
objective (derived in Section 4.4). During generation, for seen users, the responses tailored to their
individual preferences are generated based on the learned user embeddings (ei), while for new users
unseen during training, responses are generated using the generic embedding (e0).

and historical feedback data in preference form. We begin with formalizing the deficiency of vanilla
RLHF (Section 3) in personalization, then move to proposing a general personalized RLHF (P-RLHF)
framework, as shown in Figure 1. Our proposed framework employs a lightweight user model to
capture both explicit preferences from user information and implicit preferences from feedback data.
This is particularly beneficial when it is difficult to fully describe user preferences using pre-defined
dimensions or text, as our design allows missing information to be inferred flexibly from feedback
data which enables a more comprehensive understanding of user preferences.

To instantiate our framework, we discuss how different assumptions on user preferences can influence
the design of the user model (Section 4.3). P-RLHF learns the user model and the LLM jointly through
new learning objectives we develop for performing personalized Direct Preference Optimization
(P-DPO, section 4.4). By incorporating a user model, P-RLHF eliminates the need for training
separate reward models or LLMs, enabling efficient and scalable personalization across large number
of users. On three tasks using publicly available preference datasets—synthetic generation with
conflicting preferences, synthetic instruction following with diverse user profiles, and a real-world
conversation task with 1, 500 users—we demonstrate that P-DPO effectively aligns LLM behavior
with individual user preferences and scales efficiently with large user bases (Section 5).

2 RELATED WORK

Reinforcement Learning from Human Feedback RLHF optimizes LLMs as RL policies to generate
responses aligned with human preferences (Stiennon et al., 2020; Ouyang et al., 2022; Bai et al.,
2022). RLHF training involves either learning a reward model from the preference data and then
optimizing the LLM against the learned reward model using proximal policy optimization, or directly
optimizing the LLM using the preference data through methods like Direct Preference Optimization
(DPO) (Rafailov et al., 2023), with the latter offering significant improvement in training efficiency.
Vanilla RLHF methods implicitly assume user preferences uniformity, overlooking inter-user diversity
and consequently limiting fine-tuned LLMs’ ability to generate personalized content tailored to
individual user preferences, especially when the often impractical explicit specification of user
preferences are not provided to the model.

To introduce personalization in RLHF, recent studies have proposed learning separate reward models
or LLM policies for different preference dimensions, then personalizing LLM outputs by customizing
reward weights (Wu et al., 2023) or merging LLMs based on specific preference choices (Jang et al.,
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2023). Our work differs from these previous studies in two key ways: (1) our personalized LLMs are
directly learned from user information and personalized feedback data, without relying on pre-defined
preference dimensions; and (2) we do not require multiple LLMs or reward models, instead using
only a small user model to augment the base LLM. Concurrently, a different research direction to
address the diversity in user preferences focuses on learning LLM policies that perform robustly
across different user groups, using methods such as group invariant learning (Zheng et al., 2023) or
distributionally robust optimization (Chakraborty et al., 2024). Unlike our approach, which generates
personalized content tailored to individual user preferences, these methods do not personalize the
LLM but instead focus on enabling it to generate content that minimizes performance discrepancies
between user groups from a fairness perspective.

Prompt-based LLM Personalization In addition to RLHF-based approaches, prompt-based LLM
personalization focuses on developing prompting techniques that enable LLMs to capture individual
user preferences and tailor their outputs accordingly. This typically involves incorporating historical
user-generated content as few-shot examples in the prompt, allowing LLMs to generate personalized
content through in-context learning (Dai et al., 2023; Kang et al., 2023). Recent studies have
further improved this approach by combining retrieval techniques to construct prompts with relevant
user data (Salemi et al., 2023; 2024; Yang et al., 2023; Li et al., 2023c) and augmenting prompts
with user information summaries (Richardson et al., 2023). Our work complements prompt-based
LLM personalization. While prompt-based methods utilize user-generated content, such as user-
written text or selected items, we focus on personalizing LLMs using preference data in the form of
comparisons or rankings, a common form of feedback collected from end-users that supplements
user-generated content and captures implicit user preference. As a result, prompt-based benchmarks
such as LaMP (Salemi et al., 2023) are not directly applicable to our method.

Due to space constraints, additional related work including crowdsourcing and conditional natural
language generation are discussed in Appendix A.

3 VANILLA RLHF

We briefly go over the vanilla RLHF pipeline including DPO and reflect on their deficiency in
personalization. In vanilla RLHF, there are three steps (Ziegler et al., 2019; Ouyang et al., 2022):
(1) obtain a supervised fine-tuned (SFT) policy (denoted as ωSFT) using a demonstration dataset; (2)
learn a Reward Model (RM) using a preference dataset; and (3) optimize the LLM against the learned
reward model using policy optimization methods, e.g., proximal policy optimization (PPO) Schulman
et al. (2017). Uncovering a reparametrization of the optimal LM under the learned RM and the RL
objective, DPO directly optimizes the LLM using a preference dataset (Rafailov et al., 2023).

Vanilla RLHF via Reward Modeling The vanilla reward learner has access to a preference dataset
D = {(xi, yi,1, yi,2)}ni=1. In each sample, xi is the prompt, yi,1 and yi,2 are two generated texts such
that yi,1 is preferred over yi,2 (i.e., yi,1 → yi,2) under the prompt xi. A reward model that maps a
tuple (x, y) of prompt x and generated text y to a scalar is learned through:

rvanilla ↑ argmin
r

↓Ex,y1,y2→D[log ε(r(x, y1)↓ r(x, y2))], (1)

where ε is the sigmoid function and the minimization is over all measurable functions. As noted
in Zhu et al. (2023); Rafailov et al. (2023), the underlying assumption for using equation 1 to learn
the reward model rvanilla is that the user preferences follow the Bradley-Terry (BT) model (Bradley
& Terry, 1952). In other words, the vanilla RM rvanilla is the maximum likelihood estimator on the
dataset D under the assumption: for all prompt x and generated texts y1, y2, user preferences follow

P(y1 → y2|x) =
exp (r(x, y1))

exp (r(x, y1)) + exp (r(x, y2))
= ε(r(x, y1)↓ r(x, y2)). (2)

Once rvanilla is learned, the LLM policy ωvanilla is learned by maximizing the rewards under a KL-
divergence penalty which controls the deviance between the learned LLM and the SFT ωSFT:

ωvanilla ↑ argmax
ω

Ex→D,y→ω(·|x)[rvanilla(x, y)]↓ ϑEx→D[KL(ω(·|x),ωSFT(·|x))], (3)

where KL is short-handed for the Kullback–Leibler divergence and ϑ > 0 is a tunable parameter
controlling the strength of the penalty.
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Vanilla DPO DPO is an alternative to RM-based RLHF approaches. As noted in Rafailov et al.
(2023), given any RM r, its corresponding optimal policy under (equation 3) can be written as

ω(y|x) = 1

Z(x)
ωSFT(y|x)exp

(
r(x, y)

ϑ

)
, (4)

where Z(x) is a generated-text-independent (or y-independent) normalizing factor. Plugging equa-
tion 4 into the reward objective (equation 1), we obtain the following way of obtaining ωvanilla:

ωvanilla ↑ argmin
ω

↓Ex,y1,y2→D

[
log ε

(
ϑ log

ω(y1|x)
ωSFT(y1|x)

↓ ϑ log
ω(y2|x)

ωSFT(y2|x)

)]
, (5)

where D is the preference data given in equation 1. Under this reparametrization, the corresponding
vanilla RM rvanilla can be written as rvanilla(x, y) = ϑ log ωvanilla(y|x)

ωSFT(y|x) + ϑ logZ(x). In the following,
we reflect on the underlying assumption about user preferences in vanilla RLHF and highlight the
limitations of LLMs fine-tuned under such assumption for personalized content generation.

3.1 MOTIVATION FOR PERSONALIZED RLHF: UNDESIRABLE ASSUMPTION ON USER
PREFERENCES IN VANILLA RLHF

We study the behavior and underlying assumption of rvanilla that is either learned explicitly through
the reward modeling step (equation 1) or implicitly through DPO (equation 5). We show that
the corresponding assumption is particularly problematic when users have diverse or conflicting
preferences. The proofs for this section are in Appendix B.

As in Ziegler et al. (2019), often times, the reward learner has access to identifier information u ↑ U
of the user who provides their preferences (and annotations), in addition to the prompt and generated
texts (x, y1, y2). In vanilla RLHF, while we make the explicit assumption that user preferences follow
a BT model (equation 2), we often ignore the implicit assumption we make on preference uniformity:
Assumption 3.1 (Preference Uniformity). In vanilla reward modeling and DPO, the user preferences
are assumed to be uniform, i.e., for all u ↑ U ,

P(y1 → y2|x, u) = P(y1 → y2|x). (6)

This assumption may be reasonable when our goal is to uncover certain preferences that are common
across different users, concerning topics like factuality and safety. In settings where user preferences
are diverse (e.g., on styles of generated texts), this assumption may be undesirable. We showcase this
by first analyzing how rvanilla behaves on the training dataset, and then discussing general problems
with the Preference Uniformity Assumption 3.1.
Lemma 3.2. [rvanilla is equivalent to majority voting] For all i ↑ [n], the estimated user preference
under rvanilla is given by

P(yi,1 → yi,2|xi) =ε(rvanilla(xi, yi,1)↓ rvanilla(xi, yi,2)) =

∑
j↑[Ci]

I{yj,1 = yi,1}
|Ci|

,

where Ci = {j ↑ [n]|xj = xi, yj,1 = yi,1, yj,2 = yi,2} ↔ {j ↑ [n]|xj = xi, yj,1 = yi,2, yj,2 = yi,1}
is the set of sample indices that share the same prompt and response pairs as xi.

The above lemma, though straightforward, showcases one of the fundamental problems with rvanilla.
That is, it induces a majority voting regime where responses preferred by the majority are assumed to
be preferred by all users. In the personalization setting where diversity in preferences matters, such a
majority-voting scheme may silence the preferences of the minority communities. In the worst case
where the preferences of the majority and minority groups conflict, the LLM’s generations may be
entirely misaligned with what the minority users prefer.

Reflecting more on the Preference Uniformity Assumption (3.1), we find that under this assumption,
when there is a minority and a majority group that differ in their preferences, the minority group will
necessarily suffer more in the sense that their true preference P(y1 → y2|x, uminority) deviates from
the assumed uniform preference P(y1 → y2|x) more than that for P(y1 → y2|x, umajority). In addition,
this deviance increases as the size of the majority group increases.
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Lemma 3.3. When P(umajority) ↗ P(uminority), we have that |P(y1 → y2|x) ↓ P(y1 →
y2|x, uminority)| > |P(y1 → y2|x) ↓ P(y1 → y2|x, umajority)|. In addition, as the majority group
size increases, the minority group deviates from the assumed uniform preference more, i.e.,
|P(y1 → y2|x)↓ P(y1 → y2|x, uminority)| is monotonically increasing with respect to P(umajority).

Lemma 3.2 and 3.3 showcase that rvanilla, obtained under vanilla reward modeling (equation 1) or
vanilla DPO (equation 5), may be unsuitable when user preferences are diverse. In the following, we
propose methods for Personalized RLHF to capture individual user preferences which enables LLMs
learned under such framework to generate personalized content tailored to each user (Section 4.2).
Below we first formally define the task of learning from personalized feedback.

4 LEARNING FROM PERSONALIZED HUMAN FEEDBACK

4.1 PERSONALIZED LLM: PROBLEM SETUP

We first formally define the learning setup when given a personalized preference dataset. A person-
alized human feedback (or preference) dataset Dp = {(xi, yi,1, yi,2, ui)}ni=1 consists of n samples
where ui ↑ U is the information of the user who annotates the data or provides the preferences, xi is
the prompt, yi,1 and yi,2 are two generated texts such that yi,1 → yi,2 under the user’s preference. We
consider cases where ui = (ut

i, u
p
i ) is the user information: ut

i is their (optional) textual information,
e.g., demographic data or user preference descriptions, and up

i is the unique user identifier (e.g., an
assigned annotator or user id). For new, unknown user, their identifier is set to up

i = up
0 and their user

textual information ut
i is optional.

A personalized LLM ωp takes in a prompt x and the user information u ↑ U and customizes its text
generation based on user u’s personal preference (explicitly specified in ut

i or implicitly encoded in
their feedback data), i.e., y ↘ ωp(·|x, u). When there is no textual information, i.e., ut = (), and the
user index is unknown, i.e., up = up

0, the LLM ωp generates a non-personalized response. In the
following, we present a general framework to obtain the personalized LLM ωp.

4.2 P-RLHF GENERAL FRAMEWORK

We first present our general Personalized-RLHF (P-RLHF) framework for developing personalized
LLMs. When building personalized LLMs, we start with a base LLM, often times, ωSFT, and specify:

• a learnable User Model fP that extracts a user embedding (tensor) eu from the user information
u = (ut, up). In other words, for all u ↑ U , a user embedding is given by eu = fP(u).

Thus, the personalized LLM ωP consists of the user model fP and a base LLM, as illustrated in
Figure 1. Below we first provide some examples of user models. We will then present new objectives
(e.g., P-DPO) for learning the user model and the personalized LLM.

4.3 P-RLHF USER MODELS

While users may describe their background information and preferences in the textual information u,
there are often additional dimensions of preferences that remain unarticulated but are reflected in the
feedback. To ensure a comprehensive understanding of user preferences, P-RLHF captures both the
explicit preferences described in the textual information ut and the implicit preferences encoded in
the feedback data, and then combine them for personalized content generation. The user model fP
is thus designed to include two components: an explicit user model fex

P and an implicit user model
f im

P , to address both aspects.

The explicit user model fex
P takes in textual information ut and outputs the explicit user embedding

eex for user u. Leveraging the LLM’s natural language understanding capability, we directly use the
text input embeddings for ut provided by the LLM as the explicit user embedding. Specifically, eex

u ↑
RTtext↓d, where Ttext is the number of tokens in ut and d is the token-wise embedding dimensionality
of the LLM. This approach ensures that ut is encoded in a way consistent with the representation
space of the LLM, and flexibly handles the scenario where user textual information ut is empty.

The implicit user model f im
P captures the additional user preferences that are not articulated in ut but

are latent in the feedback data. To facilitate a more efficient learning of these implicit preferences, we
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structure f im
P to encode specific preference assumptions regarding how different users’ preferences

are related to each other. In the following, we illustrate how f im
P can be defined. The implicit user

preferences are learned without relying on the textual user information. It directly maps the unique
user identifier up to its embedding eim ↑ RTu↓d, where Tu is the user token length, a factor that
controls the expressivity of implicit user embeddings. For simplicity, we consider such identifiers as
indices: For known users, up

i ↑ {1, . . . ,m}, where m represents the total number of users. For any
new, unknown user (encountered only during inference time), we assign them index up

0 = 0. Below
we provide some examples on the implicit user model f im

P .
Example 1 (Uniform Preference). Let I = {0} ↔ [m] be the set of indices for users in U . For i ↑ I,
the implicit user model f im

P (i) = eim outputs the same embedding.

Implicit User Model LLM (Explicit User Model)

User textual 
information

User index

Implicit 
user 

embedding

Explicit 
user 

embedding

Prompt

Text
embedding

Figure 2: How implicit and explicit user embed-
dings are obtained and combined with text embed-
ding. Dashed boxes indicate optional components.
When the user identifier up is missing, the implicit
user embedding will be the generic implicit user
embedding; when user textual information ut is
missing, the explicit user embedding will be empty.

We note that this embedding eim can be an empty
tensor. This user model assumes that all users
share the same embedding, which is the under-
lying assumption of vanilla RLHF.
Example 2 (Individualized Preference). The im-
plicit user model outputs f im

P (0) = eim
0 for (un-

known) users indexed by 0. For all i ↑ [m], the
user model outputs f im

P (i) = eim
i = eim

0 + oi
where oi is a user-specific offset tensor.

This user model assumes that a user with in-
dex i has their individualized preference offset
oi while maintaining a component eim

0 shared
across users, as shown in Figure 6a. The com-
mon tensor eim

0 can be understood as the com-
monality across user preferences concerning top-
ics like factuality and safety. When the common
user embedding eim

0 and the individual offsets oi
are vectors, one can implement this user model
as an embedding table.
Example 3 (Cluster-based Preference). For all
i ↑ I, the user model outputs f im

P (i) = eim
i = V · wi where V is an embedding table including K

cluster centers, with K being the number of clusters, and wi ↑ RK is a weight vector for each user.

Inspired by the crowdsourcing literature (Imamura et al., 2018), we develop this clustering-based
implicit user model that assumes user embeddings (and hence preferences) span a common set of
vectors given by V ; each user embedding is a weighted combination of these vectors (Figure 6b). In
the special case where wi’s are one-hot vectors and thus each implicit user embedding eim

i is a row of
V , user embeddings form clusters and hence the name cluster-based preference. From an efficiency
standpoint, the cluster-based preference model can also be viewed as a low-rank approximation:
instead of having a different embedding (of size d) for each of the (m + 1) users (resulting in an
embedding table V ind of size (m+1)≃Tu≃d), here, we approximate the matrix by V ind ⇐ W clusterV
where V ↑ RK↓Tu↓d is the embedding table for the cluster centers and W cluster ↑ (m+ 1)≃K is
an embedding table where its i-th row is wi.

Finally, the user model fP(u) = concat(f im
P (up), f ex

P (ut)) passes the concatenated implicit and
explicit user embeddings to the LLM for personalized response generation, as shown in Figure 2.
As illustrated in the blue box in Figure 1, when generating responses for a known user u ↑ U , the
LLM can leverage the learned user preferences encoded in both the embedding eex

u capturing explicit
user preference and the embedding eim

i capturing implicit user preference to tailor its outputs to the
unique preference of user u. For an unknown user without any textual information, i.e., ut = () and
up = up

0 = 0, the LLM generates a non-personalized response utilizing only the generic implicit user
embedding eim

0 which captures the common preference shared by all seen users during training, similar
as in vanilla RLHF. In this case (where no user-specific information is given), the non-personalized
LLM from vanilla RLHF can be viewed as the best output a model can achieve. For an unseen
user with available textual information up, the LLM can utilize eex

u and eim
0 , which combines the

user-specific explicit preference with the generic implicit preference, effectively warming up the
LLM for the unseen user even in the absence of feedback data from them.
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4.4 P-RLHF LEARNING OBJECTIVE: PERSONALIZED DPO

Given the learnable user model fP, we have a user embedding eu = concat(eim
i , eex

u ) ↑ R(Tu+Ttext)↓d

for each user u ↑ U . We integrate it into the personalized LLM through soft prompting (Lester et al.,
2021). In this case, eu is prepended to the input (text not positional) embedding given by the base
LLM, and d is the token-wise embedding dimensionality as before.

Given the personalized LLM ωP specified with the corresponding user model fP, we use the following
learning objective in P-DPO:

min
ωP

→E(x,y1,y2,ut,up)→DP

[
ω log ε

(
ϑ log

ϖP(y1|x, ut, up)
ϖSFT(y1|x)

→ ϑ log
ϖP(y2|x, ut, up)

ϖSFT(y2|x)

)

+ (1→ ω) log ε

(
ϑ log

ϖP(y1|x, ut, up
0)

ϖSFT(y1|x)
→ ϑ log

ϖP(y2|x, ut, up
0)

ϖSFT(y2|x)

)]
,

where ϑ > 0 controls the deviance of ωP from the policy ωSFT. The loss can be viewed as a
combination of a user-identifier-specific loss term that relies on user identifier up and a user-identifier-
agnostic loss term that depends on up

0. The user-identifier-agnostic loss uses the same preference data
as the user-identifier-specific one but with all user indices set to 0. The hyper-parameter ϖ ↑ [0, 1] is
used to balance between the two loss components.

5 EXPERIMENTS

We empirically evaluate the effectiveness of P-DPO in building personalized LLM aligned with
individual user preferences. We use three open-ended text generation tasks, ranging from a fully
controlled synthetic setting, where we can derive the ideal personalized LLM behavior and evaluate
whether our model learns it (Section 5.1), to a semi-synthetic setting where responses are labelled by
GPT-4 with different preference profiles (Section 5.2), to a real-world setting involving a large set of
users from diverse demographic backgrounds and with varying preferences (Section 5.3).

5.1 GENERATION WITH CONFLICTING PREFERENCES

Controlled synthetic setup. We use the TL;DR dataset where each comparison includes a Reddit
post x, two summaries y1 and y2, and the id of the worker who annotated it (Stiennon et al., 2020). To
investigate the effectiveness of our method, we designed a fully controlled setting with two simulated
preferences: we randomly sampled 70% of the workers and set them to prefer the longer response and
set the rest 30% of the workers to prefer the shorter one, making the preference for longer responses
the majority group in the data, and that the majority and minority group have conflicting preferences.
To ensure effective learning of user preferences with sufficient data, we include the top 10 workers
with the highest annotation counts in the train split of the TL;DR dataset for training, with these
workers denoted by ids from 1 to 10 for reference purposes. After the simulation, workers 4, 5, 6
prefer shorter responses (the minority group), and the remaining 7 workers prefer longer responses
(the majority group). More dataset details can be found in Appendix C.1. We experimented with user
models that encode individualized preference assumption (Example 2), with ϖ = 0.5 and Tu = 10.
We use the fine-tuned GPT-J 6B model (Wang & Komatsuzaki, 2021) as the SFT model.

Expected behavior of the optimal personalized LLM. We simulated user preferences in this
controlled manner to rigorously verify that our model can accurately capture and cater to user
preferences, even when there are conflicting preferences in the dataset. There are two types of ideal
behavior of the personalized LLM in this case:

E1 For users who always prefer shorter responses (i.e., the minority users), their ground-
truth reward follows the Bradley-Terry model: P(short response → long response|x, u) =
1 = ε(r(x, short response, u)↓ r(x, long response), u), implying that r(x, short response, u)↓
r(x, long response, u) = +⇒. Consequently, the shortest possible responses (i.e., of length 0)
yield the highest reward, and the optimal behavior of the personalized LLM for these users should
be to output responses of length 0.

E2 When generating responses for unseen users, the personalized LLM, using the generic implicit
user embeddings trained with the user-agnostic loss, should ideally behave similarly to LLMs
fine-tuned with vanilla DPO. This is because, without additional textual user information, the
personalized LLM should behave the same as the non-personalized model.
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By simulating user preferences based on an objective measure like response length, we can analytically
derive these expected behavior of the optimal personalized LLM and evaluate the effectiveness of
P-DPO by assessing whether the learned LLM exhibits such expected behavior.

Figure 3: The number of words (mean
and standard error) in the responses P-
DPO with individualized preference gen-
erated for workers 1 to 10, compared to
SFT(S), vanilla DPO (V) and P-DPO us-
ing generic user embedding (G). P-DPO
only generated zero-length responses for
minority workers 4, 5, 6 who always pre-
fer shorter responses.

Observed behavior of the LLM learned from P-DPO.
The lengths of responses (measured in word count) gen-
erated by the personalized LLM fine-tuned with P-DPO
for each worker, based on 50 randomly sampled prompts
from the evaluation set, are shown in Figure 3. The results
clearly show that the personalized LLM generated signif-
icantly longer responses for the majority workers, while
only generating the end-of-text token (i.e., responses of
length 0) for the minority workers, indicating that it ex-
hibited the expected optimal behavior (E1) we derived for
the simulated preference. Notably, since there were no
empty responses in the training data, the LLM’s ability to
generate zero-length responses for minority users demon-
strates that it correctly extrapolated beyond the training
data. Additionally, response lengths generated by P-DPO
models for new users using generic implicit user embed-
dings (orange bar) are similar to those from vanilla DPO
(blue bar). Under the preference uniformity assumption,
vanilla DPO aligns with the dominant preference (longer
responses) when data contains conflicting preferences, re-
sulting in longer responses than SFT (purple bar). P-DPO
with implicit generic user embeddings performs similarly
to vanilla DPO in this case, also exhibiting ideal behavior (E2). Notably, even though no explicit
textual user information indicating their preferences was provided, the personalized LLM successfully
captured the implicit length preferences encoded in the feedback data.

Additional results. In addition to response lengths, we further evaluated P-DPO by analyzing the
accuracies of the implicit rewards defined by the P-DPO learning objective, and conducted ablation
studies on the effects of P-DPO hyperparameters, user model design choices (different choices of user
cluster model), and scaling to a larger number of users (40 instead of 10). The detailed experimental
results are provided in Appendix C.3 and C.4.

5.2 INSTRUCTION FOLLOWING UNDER DIFFERENT PREFERENCE PROFILES

Setup: Diverse user profiles based on multiple preference dimensions. Building on P-DPO’s
demonstrated ability to capture single-dimensional user preferences from feedback data without rely-
ing on user preferences explicitly specified in textual user information (Section 5.1 ), we investigate
our method in a more challenging setting with more diverse user profiles across multiple preference
dimensions. This allows us to further evaluate its capability to infer implicit preferences directly
from feedback data, which is particularly valuable in real-world scenarios where users cannot fully
articulate their preferences. The Personalized-Soups (P-SOUPS) dataset Jang et al. (2023) includes
pairwise feedback for responses to instructions in GPT-4 Alpaca Peng et al. (2023). The responses
were sampled from Tulu-7B Wang et al. (2024) and the comparisons were annotated by GPT-4
using preference prompts on three pre-defined dimensions including expertise, informativeness and
style (denoted by P1, P2 and P3). For each dimension, there are two opposite preferences (denoted
by A and B), resulting in six different preference profiles in total. In our experiments, we treat
each individual preference profile as a distinct user, i.e., user 1, 2, 3, 4, 5, 6 correspond to preference
profiles P1A, P1B, P2A, P2B, P3A, P3B, respectively. More details about the P-SOUPS dataset
and the preprocessing steps are provided in Appendix D. For P-SOUPS, we focused our experiment
on P-DPO with individualized preference, with ϖ = 0.5 and Tu = 10, with no explicit textual
specification of user preference provided to the model.

Ideal performance of the personalized LLM. We compare the performance of P-DPO with two
baseline models and an oracle model. Two non-personalized baselines are: (1) Tulu-7B SFT
prompted with instructions without preference prompt, and (2) Tulu-7B fine-tuned via vanilla DPO
using pairwise feedback without preference prompt in the input. For the training and evaluation
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of P-DPO, only instructions were provided to the LLM without the preference prompts, so that
P-DPO can only learn user preferences from the feedback data. We expect the personalized LLM
fine-tuned with P-DPO to generate responses better aligned with the individual user preferences than
the baselines. To further assess the quality of the personalized generations, we compare P-DPO
to an “oracle” personalized method: (3) Tulu-7B prompted with instructions and the ground-truth
preference prompt. Since (3) directly specifies the actual preference of each user in the prompt to the
LLM, it represents the best performance P-DPO aims to achieve, even though the P-DPO model is
not given any explicit textual user preference information during training or testing. Following Jang
et al. (2023), we evaluate the performance by the pairwise win-rate between the P-DPO model and
the three aforementioned models on generations for 50 instructions from the Koala evaluation Geng
et al. (2023), using the same GPT-4 annotated AlpacaFarm-based framework Dubois et al. (2024).

Observed performance of the LLM learned from P-DPO. The win-rates for each individual user
are shown in Table 1. For baselines (1) and (2), the same generation was used for every user. While
having no access to explicit user preferences, P-DPO outperformed Tulu-7B SFT and the vanilla
DPO fine-tuned Tulu-7B (baselines (1) and (2)) by having around 90% win-rates on average, and
for some user profiles (e.g. user 3 and 6, prefer concise / unfriendly responses), the win-rates are
100%. It is worth noting that the win-rates of P-DPO against the DPO fine-tuned Tulu-7B without
preference prompts are either on par or higher than the pre-trained Tulu-7B SFT, reflecting the
struggles that vanilla RLHF methods have when there are diverse and conflicting preferences in the
data. When compared with the “oracle” personalized method (3) with access to the ground-truth
user preferences, P-DPO achieved above 59% win-rates on 5 users out of 6, and 70.24% win-rate
on average. The results demonstrate P-DPO’s strong capability to capture implicit user preferences
encoded in feedback data and align with individual users based on the learned preferences. The
example generations for all 6 users are provided in Appendix D.3.

Table 1: The win-rates (%) of P-DPO against three methods, evaluated by GPT-4. “Pref” stands for
“Preference Prompt”. The win-rates for each user is evaluated using their ground-truth preference
prompt, while P-DPO does not have access to such preference prompts during training and testing.
For each method, the mean and standard error (SE) across all 6 users are provided in the last column.

Baseline Method User 1 User 2 User 3 User 4 User 5 User 6 Mean ± SE

Tulu SFT w/o Pref 91.67 86.36 100.00 59.57 96.00 100.00 88.93± 5.70
Tulu vanilla DPO 95.92 86.67 100.00 63.04 100.00 100.00 90.94± 5.45
Tulu SFT w/ Pref 73.47 74.42 90.48 48.00 59.09 76.00 70.24± 5.50

5.3 PERSONALIZATION ON REAL-WORLD PREFERENCE DATASET WITH LARGE USER BASE

Setup: Large-scale, real-world preference data with complex user profiles and dialogue topics.
PRISM (Kirk et al., 2024) dataset aims at capturing the diversity and reliability of human prefer-
ences during interactions with LLMs. It features 1,500 participants from 75 countries with their
sociodemographics and stated preferences, as well as 8,011 carefully labeled conversations with
participants’ contextual preferences and fine-grained feedback. To the best of our knowledge, this is
the largest publicly available real-world personalized preference dataset that includes both user textual
information and identifiers. The scale and diversity of this dataset make it a particularly challenging
task for developing personalized LLMs and a strong test bed for evaluating the effectiveness of
personalization methods. Further details of the PRISM dataset are provided in Appendix E.1.

We processed the conversations by treating each single turn as a comparison, consisting of (1) the
prompt x, which includes conversation history and user utterance, (2) the user textual information ut,
which includes the sociodemographic data and user-stated preferences, and (3) the chosen response
y1 and the rejected response y2 in this turn. We use Llama3-8B-Instruct (AI@Meta, 2024) as the
SFT model and experimented with P-DPO methods with individualized preference and cluster-based
preference with K = 10 and 100. As in Section 5.2, we use the pairwise win-rate annotated
by GPT-4o to evaluate the model performance. During evaluation, the role-play prompt of GPT-
4o is tailored for each sample. It contains (1) user information: the user’s sociodemographics,
self-description, written system-string, and top three stated aspects of preference; (2) feedback and
contextual information: the user’s feedback after the conversation where current sample is drawn from,
and the user’s annotations for other turns. An example role-play prompt is provided in AppendixE.2.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Ideal performance of the personalized LLMs. We first compare models learned from P-DPO with
the one from vanilla DPO. All the methods are trained with user textual information. Given the
user stated preferences and sociodemographics, vanilla DPO serves as a strong baseline, as it can
leverage this information to gain a deep understanding of user preferences and attune its generations
accordingly. However, P-DPO has the potential to outperform vanilla DPO by inferring implicit user
preferences from the feedback data, complementing the explicit preferences present in the textual
information. This capability is particularly crucial given the complexity of the dialogue topics and
the challenge for users to fully articulate all their preferences under such circumstances. Ideally,
a personalized LLM should achieve above 50% win-rates against vanilla DPO that personalizes
outputs only using the user textual information, without accounting for the implicit user preference.
Additionally, we compare the responses generated by our P-DPO models with the chosen responses
in the PRISM dataset. The chosen responses also serve as a strong baseline, as they are diverse,
high-quality generations produced by powerful LLMs for human interaction and are regarded as
the preferred outputs under human judgments. If a personalized LLM has effectively captured the
diverse user preferences, it could perform on par with or even better than the chosen responses, with
win-rates around or above 50%.

Observed performance of the LLM learned from P-DPO. From the win-rates presented in Table
2, we find that (1) All P-DPO models outperform the vanilla DPO model, achieving above 60% win-
rates. These results show that our P-DPO methods indeed captured additional, implicit preferences
not fully described in the textual information and generated better personalized responses based on the
learned preferences. (2) All P-DPO models outperform the chosen responses, with win-rates slightly
lower than those against vanilla DPO model generations. Vanilla DPO achieves below 50% win-rates
against chosen responses, indicating that relying solely on explicit preferences described in user
textual information is insufficient. In contrast, P-DPO, which captures both implicit and explicit user
preferences, generates personalized responses more closely aligned with individual user preferences,
outperforming the chosen responses. (3) P-DPO with cluster-based user model performs best on
PRISM. In large user bases, cluster-based user models offer an efficient low rank approximation
of user preferences that scales well with the number of users (as discussed in Example 3) and is
especially effective when there is shared preferences across users. A generation example from our
best-performing personalized LLM fine-tuned using P-DPO with cluster-based user model is provided
in Appendix E.3. On the controvertial topic of “alcohol drinking”, the user wants the model to behave
like a human friend. Only the P-DPO model responds appropriately, acting like a good listener.

Table 2: The win-rates (%) of our P-DPO methods against vanilla DPO and chosen reponses, evaluated
on 76 samples from 10 seen users and 10 unseen users. We consider “tie” as “both sides win.” We
report both the per-sample and per-user win-rates. Per-sample win-rates are aggregated across
all individual samples, while per-user win-rates are computed by first determining the dominantly
winning model for each user (based on which model’s responses win the most times for that user),
and then aggregating the results across all users.

Vanilla DPO Individualized
P-DPO

Cluster-based
P-DPO K = 10

Cluster-based
P-DPO K = 100

per-sample
win rate

vs. vanilla DPO \ 64.47 61.84 65.79
vs. chosen response 42.11 60.52 61.84 60.52

per-user
win rate

vs. vanilla DPO \ 60.00 60.00 65.00
vs. chosen response 25.00 55.00 70.00 60.00

Computational / Memory Cost. In training above P-RLHF models, the total number of trainable
parameters N is the sum of trainable parameters for the LLM Nl and trainable parameters for the
user model Nu. The user model is “lightweight” because Nu ⇑ Nl. For example, when K = 10
in training personalized LLM using PRISM, Nu ⇑ Nl/10. Other existing RLHF personalization
methods (e.g., (Jang et al., 2023)) require training multiple LLMs, resulting in N = Nl ≃ c for c ↗ 2,
which is much larger than Nl +Nu.

Conclusions. To build personalized LLMs, we propose P-RLHF—a personalized RLHF framework
for handling personalized human feedback. Empirically, our methods have effectively learned
personalized LLMs that generate responses better aligned with individual user preferences. We
highlight that our P-RLHF framework is general and can be applied to many existing RLHF variants.
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Ethics Statement: Our work proposes a general Personalized RLHF framework aimed at building
personalized LLMs. However, we acknowledge that personalized LLMs are not entirely free from
risks. Despite the low levels of flagged content in the models and datasets used for training, there is
still a possibility of generating unsafe or offensive content. Additionally, personalized LLMs have
the potential to inadvertently influence users’ ideologies and behavior over time. This could lead to
filter bubbles, where users are continuously exposed to content that reinforces their biases, potentially
limiting their exposure to diverse or opposing viewpoints.

Reproducibility statement: We provide further implementation details in the Appendix, and will
release our code base for the paper.
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